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ABSTRACT

Contrastive pre-training on image-text pairs, exemplified by CLIP, becomes a
standard technique for learning multi-modal visual-language representations. Al-
though CLIP has demonstrated remarkable performance, training it from scratch
on noisy web-scale datasets is computationally demanding. On the other hand,
mask-then-predict pre-training approaches, like Masked Image Modeling (MIM),
offer efficient self-supervised learning for single-modal representations. This paper
introduces Unmasked Token Alignment (UTA), a method that leverages existing
CLIP models to further enhance its vision-language representations. UTA trains a
Vision Transformer (ViT) by aligning unmasked visual tokens to the corresponding
image tokens from a frozen CLIP vision encoder, which automatically aligns the
ViT model with the CLIP text encoder. The pre-trained ViT can be directly applied
for zero-shot evaluation even without training on image-text pairs. Compared to
MIM approaches, UTA does not suffer from training-finetuning inconsistency and
is much more training-efficient by avoiding using the extra [MASK] tokens. Ex-
tensive experimental results demonstrate that UTA can enhance CLIP models and
outperform existing MIM methods on various uni- and multi-modal benchmarks.

1 INTRODUCTION

Contrastive pre-training, e.g., CLIP (Radford et al. 2021}, with web-scale image-text pairs is
becoming the mainstream technique for learning multi-modal visual-language representations. The
pre-trained CLIP model has unlocked the potential of various downstream applications, including
zero-shot image classification and retrieval, and high-quality text-to-image generation (Rombach
et al., [2022; Ramesh et al.,|2022). Furthermore, the pre-trained visual and text encoders can be further
used for multi-modal and even uni-modal tasks.

Unlike classical supervised learning on the human-annotated classification dataset, CLIP and its
variants are typically trained on much noisier datasets found on the web such as LAION (Schuhmann
et al.,[2022)) and WIT (Radford et al., 2021), and require an extremely large batch size to work well.
Directly training on those datasets from scratch requires a lot of computing resources, making it
not accessible to most researchers. In contrast, the mask-then-predict pre-training approaches, e.g.,
Masked Image Modeling (MIM) (He et al., 2021} Xie et al.l 2021) and Masked Language Modeling
(MLM) (Devlin et al.l|2019), have been shown to be efficient and powerful way to learn single-modal
(visual or language) representations in self-supervised manner and can achieve strong performance by
fine-tuning the pre-trained models on downstream tasks. The key design of those methods is to predict
the masked tokens from the other visible and unmasked input tokens. We ask the question: can we
take advantage of both types of methods and further enhance the vision-language representations over
CLIP? There are recent works, e.g., EVA (Fang et al., 2023b)), utilizing a pre-trained CLIP model for
generating the prediction targets for MIM. The resulting vision models show stronger performance
than the encoders pre-trained using either only MIM or only CLIP, demonstrating the effectiveness of
combining MIM and CLIP for multi-modal feature learning. However, those methods are limited to
learning single-modal representations, and extra contrastive fine-tuning is needed for multi-modal
feature learning, as proposed in EVA-CLIP (Sun et al., [2023).

In this paper, we propose an efficient method, Unmasked Token Alignment (UTA), for enhancing
the alignment between vision-language representations, which better utilizes existing pre-trained
CLIP models. In particular, our method trains a Vision Transformer (ViT) (Dosovitskiy et al., 2021)
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Figure 1: Overview of Unmasked Token Alignment (UTA). During the pre-training of UTA, only
the unmasked tokens are inputted into the vision encoder and aligned with the CLIP vision encoder.
After pre-training, the pre-trained vision encoder is automatically aligned with the CLIP text encoder
and can be directly applied for the zero-shot evaluation even without contrastive training on image-
text pairs. The pre-trained vision encoder can be further fine-tuned for uni-modal or multi-modal
downstream tasks.

model from scratch by using the unmasked and sparse visual tokens to align with corresponding
image tokens of a frozen CLIP model. For the train-from-scratch ViT model, we randomly mask a
portion of image tokens with a reversed masking strategy, where only the unmasked (i.e. kept) tokens
(including the [CLS] token) are inputted into the ViT model and aligned with the output of the frozen
CLIP visual model. We maximize the cosine similarity for token alignment, and therefore, the ViT
model is automatically aligned with the CLIP text encoder in the normalized embedding space.

There are two major advantages of using the proposed unmasked token alignment strategy. 1) After
pre-training the vision model, we can directly conduct zero-shot classification and retrieval using the
normalized features of the trained ViT model and the CLIP text encoder. We illustrate the pre-training
and fine-tuning pipeline of UTA in Fig.[I] In contrast, the masked prediction objective used in
existing MIM works (EVA (Fang et al.,[2023b), BEiT-3 (Wang et al.| 2022b)) relies on the [MASK]
tokens to predict the CLIP features while the unmasked tokens are not trained to align with the CLIP
model as we do. They do not support zero-shot evaluation without contrastive fine-tuning as only the
unmasked tokens are used for zero-shot evaluation. 2) MIM works suffer from the training-finetuning
inconsistency as a large portion of [MASK] tokens never appear during the fine-tuning. In contrast,
our approach better maintains the training-finetuning consistency by only inputting and aligning
the unmasked tokens, which are processed both in training and inference. We also empirically find
that further adding the masked prediction objective on our UTA results in much worse zero-shot
performance.

Compared to the existing MIM approach that relies on the [MASK] tokens to predict the CLIP
features with the masked prediction objective, our method is conceptually simple and computationally
efficient by avoiding introducing the [MASK] tokens, which can reduce the training FLOPs for up to
50%. But at the same time, our pre-trained models are also suitable for fine-tuning on downstream uni-
modal or multi-modal tasks. In particular, our pre-trained ViT-L obtains 78.5% zero-shot accuracy
on ImageNet without contrastive fine-tuning from image-text pairs. After fine-tuning with the
DataComp-1B dataset (Gadre et al., [2023)), we obtained 80.8% zero-shot accuracy on ImageNet,
surpassing the DataComp baseline and EVA-CLIP by 1.6% and 1.0%, respectively. On the more
recent multi-modal benchmark, i.e., LLaVA-Bench (Liu et al., 2023), we outperform CLIP and
EVA-02 by 2.2% and 1.4%, respectively. We also fine-tune the pre-trained vision model on object
detection and segmentation tasks and demonstrate better results than the competitive EVA-02 (Fang
et al., |2023a) models on those tasks.

2 METHOD

In this section, we first review the widely used Masked Image Modeling (MIM) pre-training and its
more advanced version equipped with a pre-trained CLIP model. We then introduce the unmasked
token alignment (UTA) approach and its implementation.
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2.1 A REVISIT OF MASKED IMAGE MODELING WITH CLIP

MIM methods (Bao et al., 2021; |He et al., 2021} | Xie et al.,|2021) typically use a Vision Transformer
(ViT) (Dosovitskiy et al.} 2021) for pre-training. An input image is first divided into non-overlapping
image patches, which are converted into a sequence of tokens with a project layer and positional
embedding. Then a portion of the tokens are randomly sampled, where the masked tokens are filled
with a special [MASK] token. The masked image is processed by the ViT to produce the latent
representations, and a lightweight head is utilized to predict the original image based on the latent
representations. After pre-training, the ViT is used for further fine-tuning on downstream visual tasks.

Some recent papers (Peng et al 2022} [Fang et al.|[2023bj Hou et al.| [2022; Xiao et al.| 2022) utilize
the hidden features of a pre-trained CLIP model as the reconstruction targets and achieve much better
performance than methods using the low-level pixels as the targets (He et al.| 2021} | Xie et al., [2021).
In particular, the unmasked image is fed into the visual encoder of the CLIP model for obtaining the
full image’s hidden feature map. The masked prediction objective is to align the predicted feature
with the CLIP’s visual feature on the masked tokens.

2.2 UNMASKED TOKEN ALIGNMENT

Using the masked prediction objective to align a train-from-scratch ViT model with the pre-trained
CLIP visual model still uses the problematic [MASK] tokens. It causes training-finetuning inconsis-
tency and makes the trained ViT unable to perform zero-shot classification without fine-tuning. To
tackle the issue, we propose a simple yet effective solution that does not utilize the extra [MASK]
tokens. We align the feature maps of the two models with a dense distillation objective, where the
feature maps of the train-from-scratch ViT model and CLIP vision encoder are obtained with a partial
view and a full view, respectively. Specifically, given an input image, we use a random mask to mask
a portion of image tokens. Unlike previous works that use the [MASK] tokens to fill in the masked
patches, we directly drop the masked tokens and only input the rest tokens into the ViT encoder. For
the pre-trained CLIP model, we input the original image and obtain a full hidden feature map. Then
we select the corresponding unmasked (kept) tokens from the CLIP vision encoder’s feature map,
which are used as the targets for the train-from-scratch ViT encoder.

The cosine similarity is maximized for the token alignment. After pre-training, the ViT encoder
is aligned with the CLIP vision encoder in the normalized embedding space. Therefore, the ViT
encoder is also aligned with the CLIP text coder as the CLIP’s vision and text encoders share the same
embedding space. As a result, we can directly conduct the zero-shot evaluation with the pre-trained
ViT encoder and CLIP text encoder even without training on the image-text pairs. We show that we
can already achieve decent zero-shot performance after the unmasked alignment.

Reversed block-wise masking. Previous works (Bao et al 2021)) typically use block-wise masking
to preserve the structure of input images. However, we note that such masking is spatially unequalized,
which tends to mask the center area of the images with a much higher probability, and as a result, the
tokens in the border area are trained much more times than tokens in the center area. We introduce a
reversed block-wise masking strategy, which first generates a mask with block-wise masking and then
randomly reverses the mask with a probability of 0.5. Our masking strategy preserves the structure of
the input images and also alleviates the spatial unequalization problem.

Pre-training efficiency analysis. As we do not need to process the extra [MASK] tokens during the
pre-training, we can largely improve the masked training efficiency. In practice, we use a large mask
ratio, e.g., 0.5, for pre-training. Thus, compared to EVA (Fang et al.,|2023b) or BEiT v2 (Peng et al.,
2022) which require inputting extra [MASK] tokens, our UTA can reduce the training FLOPs by
50%.

2.3 IMPLEMENTATION

Vision transformer architecture. We follow EVA-02 (Fang et al.l 2023a) to introduce architectural
modifications on vision transformer for improving the performance and training stability. In particular,
we add extra relative positional embedding introduced by |Su et al.|(2021)) in the self-attention layer.
We replace the original feedforward network (FFN) in vision transformer with the SwiGLU variant
introduced by [Shazeer| (2020). Moreover, we add an extra LayerNorm (Ba et al.| [2016) layer in the
FFN to stabilize the training as proposed by Wang et al.| (2022a)).
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CLIP teacher model. Instead of using original CLIP models for pre-training, we follow Fang et al.
(2023a) to use a better-performing CLIP model, i.e., giant-sized EVA-CLIP model (Sun et al., [2023),
for providing the alignment targets during pre-training. Our experiments show that the stronger CLIP
model can bring large zero-shot accuracy improvements. Additionally, we find the pre-trained ViT-L
model can surpass the giant-sized CLIP model after contrastive fine-tuning.

3 EXPERIMENTAL SETUP

To demonstrate the effectiveness of the proposed Unmasked Token Alignment (UTA), we conduct
experiments to pre-train ViT to align with CLIP vision-language representation on large-scale dataset
and apply the pre-trained models to downstream multi-modal and uni-modal tasks. The multi-modal
tasks include zero-shot classification, zero-shot retrieval, and the more recent LLaVA-Bench (Liu
et al.,2023)). The uni-modal tasks include ImageNet classification (Deng et al., 2009), object detection,
and segmentation.

Pre-training. All ViT models are pre-trained on ImageNet-21K (Deng et al., |2009) dataset using
224 %224 input resolution. Unless otherwise specified, we pre-train for 150 epochs with batch size
of 4096. We use AdamW (Loshchilov & Hutter, 2017) optimizer with weight decay of 0.05. The
learning rate is linearly increased to 1.5x 10~ with 1 epoch of training and decays to 10~ with cosine
schedule (Loshchilov & Hutter, 2016)). By default, we use reversed block-wise masking with mask
ratios of 0.4 and 0.5 for base and large models, respectively.

Contrastive fine-tuning. Although the pre-trained ViT model can already demonstrate excellent
zero-shot capabilities even without contrastive fine-tuning, we also perform a much shorter contrastive
fine-tuning similar to other CLIP counterparts to further improve its zero-shot performance, especially
for the out-of-distribution tasks. In particular, we initialize the vision and text encoders with the
pre-trained ViT model and CLIP text encoder. Then we perform contrastive fine-tuning on the
DataComp- 1B dataset (Gadre et al.,|2023)). The temperature parameter in the contrastive loss (Radford;
et al.,|2021) is fixed to 0.01 during our training as initially the vision encoder and text encoder are
already aligned.

Fine-tuning. For evaluation on the LLaVA-Bench (Liu et al., [2023)) and uni-modal tasks, we only
keep the pre-trained ViT. On LLaVA-Bench, we follow the default settings to first train a projection
layer on CC-3M dataset (Sharma et al., [2018]) for feature alignment and then fine-tune the project
layer and Large Language Model (LLM) (Chiang et al., 2023) on LLaVA-Instruct-150K dataset (Liu
et al.l |2023). For object detection and instance segmentation tasks, we adopt the Cascade Mask
R-CNN (He et al.| 2017 |Cai & Vasconcelos, |2019) framework and separately fine-tune on the
COCO (Lin et al.,[2014) and LVIS (Gupta et al., 2019) datasets. For semantic segmentation task, we
adopt the UperNet (Xiao et al., 2018) framework and fine-tune on the ADE20K (Zhou et al.| [2017)
dataset. Please refer to the appendix [A.T] for more detailed configurations.

4 MAIN RESULTS

In this section, we compare the proposed Unmasked Token Alignment (UTA) to prior arts on various
benchmarks. We first conduct comparisons between UTA and previous zero-shot results in Sec.
We then compare UTA with other pre-training methods on LLaVA-Bench in Sec.[4.2] To show the
transferability of UTA, we present the transfer learning results on core vision tasks in Sec. 4.3

4.1 ZERO-SHOT RESULTS

We conduct zero-shot classification and retrieval and compare the results with other CLIP vari-
ants (Radford et al., 2021} [Cherti et al., 2023} Sun et al.| 2023)). In Tab. m we show that the pre-trained
ViT-B model can obtain 76.0% zero-shot accuracy on ImageNet-1K even without training on image-
text pairs. After fine-tuning with only 2B image-text samples, our ViT-B obtains 77.0% zero-shot
accuracy on ImageNet-1K, surpassing Open-CLIP (Cherti et al.| [2023)) and EVA-CLIP (Sun et al.,
2023)) by 2.3% and 1.0% respectively. On the challenging ObjectNet (Barbu et al., 2019) dataset,
we outperform Open-CLIP and EVA-CLIP by 11.3% and 6.0% points respectively. Our pre-trained
ViT-L model obtains 78.5% zero-shot accuracy on ImageNet-1K. After fine-tuning with 4B samples,
we achieve 80.8% accuracy, which outperforms Open-CLIP and EVA-CLIP by 5.3% and 1.0%
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Table 1: Zero-shot classification performance on ImageNet-1K (IN-1K), ImageNet-A (IN-
A) (Hendrycks et al., [2021b)), ImageNet-R (IN-R) (Hendrycks et al., [2021a), ImageNet-V2 (IN-
V2) (Recht et al.,[2019), ImageNet-Sketch (IN-S) (Wang et al., 2019), and ObjectNet (Barbu et al.}
2019). We also report the average accuracy over the 6 datasets.

Method Model #I-T Pairs | IN-IK IN-A IN-R IN-V2 IN-S ObjectNet | Average

CLIP B/16@224 13B 68.3 500 777 619 482 553 60.2
Open-CLIP B/16@224 34B 70.2 382 806 623  56.1 56.0 60.6
EVA-02-CLIP B/16@224 8B 74.7 541 825 67.0 577 62.3 66.4
UTA B/14@224 0B 76.0 542 76.7 68.1 525 63.6 65.2

UTA B/16@224 2B 770 598 841 695  60.2 68.3 69.8

CLIP L/14@224 13B 740 480 86.5 664 618 61.1 66.3
Open-CLIP L/14@224 32B 75.5 70.8  87.8 69.9  59.6 69.0 72.1
DataComp L/14@224 13B 79.2 69.6 908 721  68.0 74.3 75.7
EVA-02-CLIP L/14@224 4B 79.8 76.1 927 729  68.1 75.3 71.5
UTA L/14@224 0B 78.5 694 894 717 639 72.7 74.3

UTA L/14@224 4B 808 791 923 73.7 684 71.6 78.6

CLIP L/14@336 13B 766 775 8.0 709 610 72.0 74.5
EVA-02-CLIP L/14@336 6B 80.4 829 932 738 689 78.4 79.6
UTA L/14@336 4B 814 842 929 746 69.1 80.1 80.4
Open-CLIP g/14@224 34B 78.5 60.8 902 717 675 69.2 73.0
EVA-01-CLIP g/14@224 11B 79.3 741 925 721 68.1 75.3 76.9
UTA g/14@224 0B 79.3 735 916 726  66.7 74.6 76.4

UTA g/14@224 2B 815 819 935 748 69.6 79.7 80.2

Table 2: Zero-shot retrieval performance on Flickr30k (Young et al., [2014) and COCO (Lin et al.,
2014). R@1, R@5, and R@10 denote the recall performance among top-1, top-5, and top-10,
respectively.

Text Retrieval Image Retrieval
Method Model #I-T Pairs Flickr30k COCO Flickr30k COCOo
R@l R@5 R@]0 R@] R@5 R@I0 R@I R@5 R@I0 R@]l R@5 R@I10

CLIP B 13B 819 962 988 524 768 84.7 621 8.6 91.8 331 584 69.0
Open-CLIP B 34B 863 979 994 594 818 88.6 698 904 946 423 667 771
EVA-02-CLIP B 8B 857 967 989 587 80.7 882 712 91.0 947 424 669 763
UTA B 0B 884 985 995 634 839 900 755 931 964 468 715 808

UTA B 2B 91.3 989 997 647 850 905 745 931 96.0 459 705 793

CLIP L 13B 852 973 990 563 793 86.7 652 873 920 365 610 711
Open-CLIP L 34B 88.7 984 992 621 834 903 750 925 956 46.1 707 794
EVA-02-CLIP L 4B 89.7 98.6 992 637 843 904 773 936 968 475 712 79.7
UTA L 0B 912 987 998 66.6 86.5 915 783 941 969 495 734 819

UTA L 4B 93.0 99.0 99.7 665 869 922 774 938 96.6 487 723 80.9
Open-CLIP g 34B 914 992 996 664 860 918 777 941 969 488 733 81.5
EVA-01-CLIP g 11B 91.6 993 998 682 875 925 789 945 969 503 740 821
UTA g 0B 922 99.1 99.7 68.0 872 924 790 945 972 503 742 825

UTA g 2B 932 994 998 682 876 930 782 944 967 487 729 8l.1

respectively. Compared to strong EVA-CLIP, we achieve an average of 1.1% improvements over 6
evaluation datasets. We also fine-tune with 336336 input resolution using 200M samples, and we
obtain an average of 1.8% points improvements on the 6 evaluation datasets. We find that fine-tuning
on the larger but noisier DataComp-1B dataset (Gadre et al., 2023) can greatly boost the performance
on the ImageNet robust variants.

Table presents the zero-shot retrieval results on the Flickr30k (Young et al., 2014) and COCO (Lin
et al.| 2014) datasets. We find that the pre-trained model can already outperform other CLIP models
on all evaluated metrics. In particular, the base model improves the Open-CLIP and EVA-CLIP by an
average of 4% top-1 recall over the two datasets. For the large model, we improve the Open-CLIP
and EVA-CLIP by an average of 3.4% and 1.8% top-1 recall, respectively. We also find that further
fine-tuning on DataComp- 1B dataset can improve the text retrieval performance but also degenerate
the image retrieval performance.
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Question: What is the position of the skateboard in the image?

EVA: The skateboard is on the ground, with the person standing on
top of it.

UTA: The skateboard is positioned upright, with the wheels off the
ground, and the deck facing upwards.

Question: What is the man sitting in the middle doing in the

image?

EVA: The man in the image is sitting down, holding a glass of beer,

& and making a gesture or a sign with his hand.

[l UTA: The man in the image is sitting down, talking on his cell
phone, and holding his hands up while doing so.

Figure 2: Qualitative examples generated by LLaVA models fine-tuned with EVA-02 and UTA.

Table 3: Results on LLaVA-Bench (Liu et al.,[2023). The results of CLIP and EVA-02 are obtained
by our re-implementation with official checkpoints.

Method Model Conversation Detail Reasoning Overall

CLIP B/16 74.5 69.9 90.3 78.3
EVA-02 B/16 75.3 61.1 91.8 76.2
UTA B/16 80.8 66.2 88.8 78.8
CLIP L/14 78.7 70.4 90.0 79.8
EVA-02 L/14 80.4 71.6 91.1 80.6
UTA L/14 814 72.2 91.8 82.0
EVA-01 g/14 79.9 72.2 91.0 80.8
UTA g/14 84.1 71.3 93.5 83.1

4.2 MULTI-MODAL RESULTS

The emergent multi-modal capabilities of GPT-4 (OpenAlL |2023) have attracted widespread attention,
and there are various re-implementations of such capabilities using open-sourced vision and large
language models (Liu et al.l 2023} [Zhu et al., [2023). We adopt the LLaVA framework and evaluate
pre-trained models on the LLaVA-Bench. The results are presented in Tab. [3] Note that all the results
are obtained by fixing the vision encoders’ parameters, which can directly reflect the representation
quality of the pre-trained model. Notably, our model achieves the best results in the overall category.
Compared to the original CLIP large model (Radford et al.,2021), we overall obtain an improvement
of 2.2% accuracy. Using the same pre-training dataset and iterations, we also outperform EVA-
02 (Fang et al.,[2023a) for 1.4%. We compare the outputs generated by the two LLaVA models and
highlight the difference in Fig.[2} We show that our approach can capture more fine-grained details to
produce better answers.

4.3 CORE VISION TASK RESULTS

Prior arts (Bao et all 2021} |[He et al., |2021) demonstrate that the MIM pre-trained models have
superior performance after fine-tuning to downstream tasks, including ImageNet classification, object
detection, image segmentation, etc. There are some recent papers (Xie et al., 2023) that show the
mask-then-predict objective is the key to such fine-tuning capabilities. In our empirical evaluation,
we show that our UTA pre-training also has such capabilities.

We present the results of ImageNet classification in Tab.[d Compared to recent MIM works (e.g.,
BEIT v2 (Peng et al.l [2022)) which also utilize pre-trained CLIP model for pre-training, we obtain an
improvement of ~2% points after fine-tuning. We can also largely outperform the CLIP model for
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Table 4: ImageNet classification and ADE20K segmentation results. ZS and FT denote the zero-shot
and fine-tuning top-1 accuracy on ImageNet respectively. 1 denotes the model after contrastive
fine-tuning.

ImageNet ADE20K

Method  Model - #Params | 1, 56~ 7S FT | Input Size mloU
MAE B 86M 224 - 836 512 48.1
BETv2 B 86M 224 - 855 | 512 53.1

CLIP B 86M 24 683 857 ) ;
EVA02 B 86M 224 - 874 512 55.3
UTA B 86M 24 760 875 | 512 55.6
UTAT B 86M 24 710 874 | 512 55.1
MAE L 304M 224 - 89| 512 53.6
BETv2 L 304M 224 - 873 512 56.7

CLIP L 304M 24 740 880 ) ;
EVA-02 L 304M 224 - 890 512 58.3
UTA L 304M 24 785 892 | 512 58.8
EVA-CLIP g  101IM | 224 793 89.1| 5I2 57.4

Table 5: Object detection and instance segmentation results on COCO and LVIS datasets. T denotes
the model after contrastive fine-tuning.

#Enc. COCO LVIS

Method  Model Params APbox APmask APbox APmask
ViTDet B 86M 54.0 46.7 43.0 38.9
EVA-02 B 86M 55.5 47.1 47.1 41.4
UTA B 86M 55.8 47.7 49.1 43.1
UTAT B 86M 55.6 47.5 47.9 42.2
ViTDet L 304M 57.6 50.0 49.2 44.5
EVA-02 L 304M 58.5 50.3 55.3 48.6
UTA L 304M 58.7 50.5 55.9 49.5
EVA-CLIP g 1011M \ 59.1 51.1 56.4 51.3

both the zero-shot and fine-tuning accuracy. Compared with EVA-02, although we slightly improve
the fine-tuning accuracy, we can largely improve the zero-shot accuracy.

We show the results of performing object detection and instance segmentation on COCO and LVIS
datasets in Tab. E} Compared to the MAE pre-training (He et al.| 2021), we find our UTA can
improve the AP*** for more than 1% mAP on COCO and 6% mAP on more challenging LVIS.
Additionally, our approach also performs better than EVA-02, which demonstrates 2.0% and 0.6%
mAP improvements on LVIS for the base and large models respectively.

5 ABLATION STUDIES

In this section, we conduct ablation studies to evaluate the impact of different design choices of
our proposed Unmasked Token Alignment (UTA). Unless otherwise specified, we use the ViT-B
backbone and pre-train it for 90 epochs on the ImageNet-21K (Deng et al.,|2009) dataset.

Pre-training objectives. We thoroughly explore the effect of pre-training objectives and show the
results in Tab. [f] We also explore combining UTA and MIM by inputting masked and unmasked
tokens simultaneously and conducting token alignment for unmasked tokens and feature prediction
for masked tokens. We find that UTA performs best on all evaluated benchmarks while requiring
the least computation cost. In particular, we find the improvements on LVIS are most significant
compared to other approaches. Moreover, we show that combining UTA and MIM can lead to
much worse zero-shot accuracy but similar fine-tuning accuracy on ImageNet than using UTA alone.
We suspect the training-finetuning inconsistency introduced by the extra [MASK] tokens is more
significant when the backbone is fixed for evaluation.
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Table 6: The effect of pre-training objectives. FD denotes the re-implementation of the Feature
Distillation method (Wei et al.;,|2022)). ZS and FT denote the zero-shot and fine-tuned top-1 accuracy
on ImageNet respectively.

ImageNet COCO LVIS ADE20K
Config  FLOPs | 7™ g apbox  apmask  apbox  apmsk iy
FD 1.0x | 747 872 552 470 479 422 547
MIM  1.0x - 869 547 466 466 411 543
UTA+MIM  1.0x | 70.7 872 554  47.1 477 420 54.8
UTA 06x | 750 873 557 474 489  43.1 55.4

Table 7: The effect of positional embedding. PE denotes w/ or w/o positional embedding during
pre-training.

ImageNet COCO ADE20K
Method  PE 7™ g1 Apbr AP moU
MIM X - 85.8 509 432 51.8
MIM v - 86.9 547 46.6 54.3
Performance gap - -1.1 -3.8 -3.4 -2.5
UTA X 73.8 86.7 53.8 45.7 53.6
UTA v 75.0 873 557 474 554
Performance gap -1.2  -0.6  -1.9 -1.7 -1.8

Positional embedding. Compared to UTA which directly conducts token alignment on unmasked
tokens, MIM relies on the unmasked tokens to predict the features of the masked tokens. We speculate
that the MIM approach is more susceptible to the influence of positional embedding. We conduct an
experiment to remove all the positional embedding in the ViT architecture during pre-training. For
fine-tuning, we add the positional embedding back but initialize them with zero to ensure that the
initial state of fine-tuning is the same as the last state of pre-training. As shown in Tab. [/} we find that
the performance drop of UTA is much smaller compared to MIM. In particular, MIM has 3.8 AP>*
and 3.4 AP™K performance drop on COCO, while UTA only drops by half of the accuracies.

Different pre-trained CLIP models. We study the impact of different pre-trained CLIP models on
downstream performance. As shown in Tab.[§] we find that using a stronger CLIP model can lead
to better downstream performance. Additionally, we observe that the performance gap was not as
significant as on COCO and ADE20K, probably because the classes of those datasets can already be
easily classified by CLIP-L/14.

UTA for pre-training the text encoder. While we perform UTA to pre-train only the vision encoder
by default, we also explore using it to also pre-train a text encoder from scratch. We train a smaller
text encoder on DataComp-1B for 1 epoch. Empirically, we only obtain 54.5% zero-shot accuracy
after pre-training, which is much lower than using the CLIP text encoder. Thus, we decide to not
perform UTA for pre-training the text encoder.

Mask ratio and mask type. We examine the effect of the mask ratio and mask type on the final
performance. As shown in Tab. E] (left), we find that using a mask ratio of 0.4 achieves the best
computation-performance trade-off. Additionally, using the block-reversed masking performs best on
all evaluated datasets.

6 RELATED WORKS

Vision (-Language) Foundation Models. The Transformer architecture (Vaswani et al.,[2017) has
rapidly evolved to become a pivotal paradigm in both Computer Vision (CV) and Natural Language
Processing (NLP). Models like BERT (Devlin et al., 2019)) and the GPT (Floridi & Chiriatti, 2020)
series, built upon the Transformer architecture, have exhibited exceptional prowess across various
language tasks. Simultaneously, in the field of CV, Vision Transformers (ViTs) (Dosovitskiy et al.,
2021)) have emerged as potent contenders, gradually displacing CNNs in various downstream vision
tasks. Furthermore, the fusion of text and images in a shared embedding space, exemplified by
CLIP (Radford et al., 2021)), has rendered the Transformer an indispensable tool for versatile uni- and
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Table 8: The effect of pre-trained CLIP model.

ImageNet COCO ADE20K
CLIPModel 25 ‘ 7S FT AP™ AP™k  mioU

CLIP-L/14 740 | 67.7 86.6 55.6 473 53.7
EVA-CLIP-g/14 793 | 75.0 873 55.7 47.4 55.4

Table 9: The effect of mask ratio (left) and mask type (right). Block-R denotes the reversed block-wise
masking. We use mask ratio of 0.5 for the mask type ablation.

. | ImageNet COCO ADE20K ImageNet COCO ADE20K
Ratio FLOPS | 74 "kp  apoor  apmsk oy Mask ‘ 7S FT  AP™*  AP™K  mloU
00 10x | 747 872 552 470 547 Block | 742 872 553 466 4738
04 06x |750 873 557 474 554 Random | 747 872 551 464 477
05 05x | 748 873 553 468 550 Block-R | 748 873 553 468  55.0

0.7 03x | 740 870 55.0 46.6 54.8

multi-modal tasks. As training CLIP requires a large amount of computation resources, FLIP (Li et al.,
2023b) proposes to mask the visual input tokens to accelerate the training process of CLIP. Recently,
large-scale visual pre-training methods based on the Transformer architecture, such as BEiT-3 (Wang
et al., |2022a) and EVA (Sun et al., 2023), have continuously pushed the performance boundaries
of various downstream visual tasks. In this work, we introduce a simple yet effective large-scale
pre-training method for enhancing the multi-modal representations and demonstrate competitive
performance on various uni- and multi-modal tasks.

Masked Image Modeling (MIM). MIM is a popular pretext task where the vision model learns rich
visual representations by conducting reconstruction from corrupted images. Its initial introduction
can be traced back to ViT (Dosovitskiy et al., 2021) and iGPT (Chen et al., [2020). Subsequent
advancements in the field, exemplified by the notable contributions of BEiT (Bao et al.l [2021)),
MAE (He et al.| [2021), and others (Wang et al., 2022b; [Liu et al., [2022; |Xie et al., [2021)), have
consistently elevated the performance of the MIM method across diverse downstream tasks. Recent
works (Fang et al., [2023b}; |Peng et al., 2022; [Hou et al., 2022} Xiao et al., [2022) have highlighted the
utilization of carefully devised reconstruction targets, like the hidden features from a pre-trained CLIP
model, which has been shown to facilitate MIM in acquiring superior visual representations. However,
these methods rely on the [MASK] tokens to predict the masked features/pixels which introduces the
training-finetuning inconsistency. While UMT (Li et al., [2023a)) does not use the [MASK] tokens
and only processes the unmasked tokens, it focuses on training video models and does not align with
the CLIP text model without contrastive fine-tuning. In contrast, our UTA automatically aligns the
train-from-scratch ViT model with CLIP text model and enables zero-shot evaluation even without
training on image-text pairs.

7 CONCLUSION

In this paper, we introduce the Unmasked Token Alignment (UTA) method, which enhances the
alignment between vision and language representations by leveraging pre-trained CLIP models.
UTA trains a Vision Transformer (ViT) by aligning the unmasked tokens with corresponding visual
tokens of a frozen CLIP model. UTA does not suffer from training-finetuning inconsistency and is
training-efficient by avoiding using extra [MASK] tokens. The pre-trained ViT model and CLIP text
model can be directly applied for zero-shot evaluation even without contrastive training on image-text
pairs. Experimental results demonstrate the effectiveness of UTA across various uni- and multi-modal
downstream tasks, outperforming existing MIM and CLIP methods.

Limitations While the proposed UTA method presents promising results and advantages, it also
has some limitations. Firstly, UTA relies on the availability of a pre-trained CLIP model, which may
limit its applicability in scenarios where such models are not accessible or suitable. Additionally,
although UTA achieves strong zero-shot performance without contrastive fine-tuning, it still benefits
from further fine-tuning on large-scale image-text pairs, especially for robustness evaluation. While
UTA shows great potential for enhancing multi-modal representations, further research is needed to
address these limitations and improve its applicability in a wider range of applications.
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A APPENDIX

A.1 TRAINING DETAILS

Contrastive fine-tuning on DataComp-1B. We initialize the model with pre-trained ViT encoder
and CLIP text encoder and fix the temperature value in CLIP loss to 0.01. We use a total batch size
of 49,152 for fine-tuning. Following [Sun et al.|(2023)), we use LAMB (You et al.,|2019) optimizer
with peak learning rate of 2x 10 and 4 x 10™* for base and large models respectively. We use layer-
wise learning rate for fine-tuning and set the decay rate to 0.75 and 0.85 for base and large models
respectively. The weight decay is set to 0.05 for all models. We use cosine learning rate schedule and
decay the learning rate to 0. We use the prompt provided in CLIP (Radford et al.| 2021) for zero-shot
evaluation.

Fine-tuning with LLaVA. Following |Liu et al,| (2023), we use a two-stage instruction-tuning
procedure for LLaVA model training. Stage 1: Feature alignment. At this stage, we train the
linear projection layer between the frozen vision encoder and the Large Language Model (LLM) for
1 epoch, utilizing a filtered dataset containing 585K image-text pairs from CC-3M (Sharma et al.,
2018). We use AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate of 2 X 1072,
The learning rate is linearly warmed up for the first 150 iterations and decayed to 0 with cosine
schedule. We use a batch size of 128 and apply no weight decay. Stage 2: End-to-end fine-tuning.
We fine-tune the LLaVA model using 158K unique language-image instruction-following dataset for
3 epochs while keeping the vision encoder weights frozen. We use the same optimizer and learning
rate schedule as in the first stage except for changing the batch size to 32 and setting the learning rate
to 2 x 107°. We do not apply weight decay during this stage either.

Object detection and segmentation. Following (Li et al., 2021), we adopt Cascade Mask R-
CNN (He et al.}2017; |Cai & Vasconcelos}, [2019)) framework for fine-tuning on COCO (Lin et al.,
2014) and LVIS (Gupta et al., [2019). We follow most of the hyper-parameters settings in EVA-
02 (Fang et al.,|2023a). On COCO, we use batch size of 128 and fine-tune for 60k iterations. We
use learning rate of 5 x 107°/6 x 10~°, drop path rate (Huang et al., 2016) of 0.1/0.4, layer-wise
decay rate of 0.7/0.8 for base/large models. On LVIS, we use batch size of 64 and fine-tune for 100k
iterations. The learning rate is set to 10~%. The drop path rate and layer-wise decay rate are the
same as those used on COCO. We adopt the UperNet (Xiao et al., [2018)) framework for semantic
segmentation on ADE20K (Zhou et al.,2017). In particular, we use batch size of 32 and fine-tune
for 60k iterations. We use learning rate of 6 x 107°/4 x 10~°, drop path rate of 0.15/0.2, layer-wise
decay rate of 0.85/0.9 for base/large models.
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