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ABSTRACT

We study reinforcement learning (RL) with no-reward demonstrations, a setting in
which an RL agent has access to additional data from the interaction of other agents
with the same environment. However, it has no access to the rewards or goals of
these agents, and their objectives and levels of expertise may vary widely. These
assumptions are common in multi-agent settings, such as autonomous driving. To
effectively use this data, we turn to the framework of successor features. This
allows us to disentangle shared features and dynamics of the environment from
agent-specific rewards and policies. We propose a multi-task inverse reinforcement
learning (IRL) algorithm, called inverse temporal difference learning (ITD), that
learns shared state features, alongside per-agent successor features and preference
vectors, purely from demonstrations without reward labels. We further show how
to seamlessly integrate ITD with learning from online environment interactions,
arriving at a novel algorithm for reinforcement learning with demonstrations,
called ¥ ®-learning (pronounced ‘Sci-Fi’). We provide empirical evidence for the
effectiveness of W®-learning as a method for improving RL, IRL, imitation, and
few-shot transfer, and derive worst-case bounds for its performance in zero-shot
transfer to new tasks.

1 INTRODUCTION

If artificial agents are to be effective in the real world, they will need to thrive in environments
populated by other agents. Agents are typically goal-directed, sometimes by definition (Franklin &
Graesser, 1996). While their goals can be different, they often depend on shared salient features of the
environment, and may be able to interact with and affect the environment in similar ways. Humans
and other animals make ready use of these similarities to other agents while learning (Henrich,
2017; Laland, 2018). We can observe the goal-directed behaviours of other humans, and combine
these observations with our own experiences, to quickly learn how to achieve our own goals. If
reinforcement learning (RL, Sutton & Barto, 2018) agents could similarly interpret the behaviour of
others, they could learn more efficiently, relying less on solitary trial and error.

To this end, we formalise and address a problem setting in which an agent (the ‘ego-agent’) is given
access to observations and actions drawn from the experiences of other goal-directed agents interacting
with the same environment, but pursuing distinct goals. These observed trajectories are unlabelled
in the sense that they lack the goals or rewards of the other agents. This type of data is readily
available in many real-world settings, either from (i) observing other agents acting simultaneously
with the ego-agent in the same (multi-agent) environment, or (ii) multi-task demonstrations collected
independently from the ego-agent’s experiences. Consider autonomous driving as a motivating
example: the car can observe the decisions of many nearby human drivers with various preferences
and destinations, or may have access to a large offline dataset of such demonstrations. Because the
other agents are pursuing their own varied goals, it can be difficult to directly use this information
with conventional imitation learning methods (Widrow & Smith, 1964) or inverse RL (IRL) (Ng et al.,
2000; Ziebart et al., 2008).

While the ego-agent should not copy other agents directly, it is likely that the behaviour of all
agents depends on shared features of the environment. To disentangle such shared features from
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agent-specific goals, we turn to the framework of successor features (Dayan, 1993; Kulkarni et al.,
2016; Barreto et al., 2017). Successor features are a representation that captures the sum of state
features an agent’s policy will reach in the future. An agent’s goal is represented separately as a
preference vector.

In this paper, we demonstrate how a reinforcement learner can benefit from multi-task demonstrations
using the framework of successor features. The key contributions are:

1. Offline multi-task IRL: We propose an inverse RL algorithm, called inverse temporal
difference (ITD) learning. Using only demonstrations, we learn shared state features,
alongside per-agent successor features and inferred preferences. The reward functions can
be trivially computed from these learned quantities. We show empirically that ITD achieves
superior or comparable performance to prior methods.

2. RL with no-reward demonstrations: By combining ITD with learning from environ-
ment interactions, we arrive at a novel algorithm for RL with unlabelled demonstrations,
called W®-learning (pronounced ‘Sci-Fi’). W®-learning is compatible with sub-optimal
demonstrations. It treats the demonstrated trajectories as being soft-optimal under some
task and employs ITD to recover successor features for the demonstrators’ policies. W ®-
learning inherits the unbiased, asymptotic performance of RL methods while leveraging the
provided demonstrations with ITD. When the goals of any of the demonstrators are even
partially aligned with the W®-learner, this enables much faster learning than solitary RL.
Otherwise, when the demonstrations are not useful or even misleading, it gracefully falls
back to standard RL, unlike naive behaviour cloning or IRL.

3. Few-shot adaptation with task inference: Taking full-advantage of the successor features
framework, our W®-learner can even adapt zero-shot to new goals it has never seen or
experienced during training, but which are partially aligned with the demonstrated goals.
This is possible due to the disentanglement of representations into task-specific features
(i.e., preferences) and shared state features. We can efficiently update the task-specific
preferences and rely on generalised policy improvement for safe policy updates. We derive
worst-case bounds for the performance of ¥®-learning in zero-shot transfer to new tasks.

We evaluate U ®-learning in a set of grid-world environments, a traffic-flow simulator (Leurent, 2018),
and a task from the ProcGen suite Cobbe et al. (2020), observing advantages over vanilla RL, imitation
learning Reddy et al. (2019); Ho & Ermon (2016), and auxiliary-task baselines Hernandez-Leal et al.
(2017). Thanks to the shared state features between the ITD and RL components, we find empirically
that the W®-learner not only improves its ego-learning with demonstrations, but also enhances its
ability to model others agents using its own experience.

2 BACKGROUND AND PROBLEM SETTING

We consider a world that can be represented as an infinite horizon controlled Markov process (CMP)
given by the tuple: C = (S, A, P,v). S and A represent the continuous state and discrete action
spaces, respectively, s’ ~ P(-|s, a) describes the transition dynamics and + is the discount factor. A
task is formulated as a Markov decision process (MDP, Puterman, 2014), characterised by a reward
function, R : S x A — R,ie., M £ (C, R).

The goal of an agent is to find a policy which maps from states to a probability distribution over actions,
7: S — A(A), maximising the expected discounted sum of rewards G £ 3"7° | 4'R(s;, a;). The
action-value function of the policy 7 is given by Q™% (s,a) £ ES™ [G%|sy = s,a9 = a], where
EC™ [-] denotes expected value when following policy 7 in environment C.

2.1 RL WITH NO-REWARD DEMONSTRATIONS

We are interested in settings in which, in addition to an environment C, the agent has also access
to demonstrations without rewards, i.e., behavioural data of mixed and unknown quality. The
demonstrations are generated by other agents, whose goals and levels of expertise are unknown,
and who have no incentive to educate the controlled agent. We will refer to the controlled agent,
i.e., reinforcement learner, as the ‘ego-agent’ and to the agents that generated the demonstrations
as ‘other-agents’. We denote the demonstrations with D = {7, 7o, ..., 7y}, where the trajectory
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T £ (sg,ay,...,s7,ar; k) is generated by the k-th agent. Note that each trajectory does include an
identifier of the agent that generated it. The ego-agent also gathers its own experience by interacting
with the environment, collecting data B = {(s, a,s’, 7°¢°)}. Due to the lack of reward annotations
in D, and the fact that the data may be irrelevant to the ego-agent’s task, it is not trivial to combine
demonstrations from D with the ego-agent’s experience B.

2.2 SUCCESSOR FEATURES AND CUMULANTS

To make use of the demonstrations D, we wish to capture the notion that while the agents’ rewards
may differ, they share the same environment. To do so we turn to the framework of successor features
(SFs) (Barreto et al., 2017), in which rewards are decomposed into cumulants and preferences:

Definition 1 (Cumulants and Preferences). The (one-step) rewards are decomposed into task-agnostic
cumulants ®(s,a) € RY, and task-specific preferences w € R?:

R%(s,a) 2 &(s,a) w. (1)

The preferences w are a representation of a possible goal in the world C, in the sense that each
w gives rise to a task MW = (C, R¥). We use ‘task’, ‘goal’, and ‘preferences’ interchangeably
when context makes it clear whether we are referring to w itself, or the corresponding M™ or R%.
The action-value function for a policy 7 in M™% is then a function of the preferences w and the 7’s
successor features.

Definition 2 (Successor Features). For a given discount factor v € [0, 1), policy m and cumulants
®(s,a) € R, the successor features (SFs) for a state s and action a are:

UT(s,a) £ ECT [Z 7' ®(st, ar)
t=0

Sp = S, ap —a:| . (2)

The i-th component of U™ (s, a) gives the expected discounted sum of ®(s,a)’s i-th component,
when starting from state s, taking action a and then following policy 7. Intuitively, cumulants ¢ can
be seen as a vector-valued reward function and SFs U™ the corresponding vector-valued state-action
value function for policy 7.

An action-value function is then given by the dot product of the preferences w and 7’s SFs:
Q™ (s,a) = U (s,a) w. 3)
Proof. See Appendix D. O

Note that if we have W™, the value of 7 for a new preference w’ can be easily computed. This
property allows the successor features of a set of policies to be repurposed for accelerating policy
updates, as follows.

Definition 3 (Generalised Policy Improvement). Given a set of policies 11 = {my,..., 7k} and a
task with reward function R, generalised policy improvement (GPI) is the definition of a policy 7'
such that

Q”,’R(s, a) > sup Q”’R(s7 a),Vse S,ac A. “)

mell

Provided the SFs of a set of policies, i.e., {\I!”k }le, we can apply GPI to derive a new policy 7’
whose performance on a task w is no worse that the performance of any of 7 € II on the same task,
given by

7' (s) = arg max max U™ (s,a) w. ®)

a e
Eqn. (5) suggests that if we could estimate the SFs of other agents, we could utilise them for improving
the ego-agent’s policy with GPI. However, to do so with conventional methods we would require
access to their rewards, cuamulants and/or preferences. In our setting, we can only observe their
sequence of states and actions (Section 2.1). Next, we introduce our method that only requires
no-reward demonstrations to estimate SFs and can be integrated seamlessly with GPI for accelerating
reinforcement learning.
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3 ACCELERATING RL WITH DEMONSTRATIONS

We now present a novel method, ¥ ®-learning , that leverages reward-free demonstrations to accelerate
RL.Our approach consists of two components: (i) a novel inverse reinforcement learning algorithm,
called inverse temporal difference (ITD) learning, for learning camulants, per-agent successor features
and corresponding agent preferences from demonstration without reward labels, and (ii) a novel RL
algorithm that combines ITD with generalised policy improvement (GPI, Section 2.2).

3.1 INVERSE TEMPORAL DIFFERENCE LEARNING

Given demonstrations without rewards, D, we model the agents that generated the data as soft-optimal
for an unknown task. In particular, the k-th agent’s policy is soft-optimal under task w* and is given
by

exp(\Il"k (s,a) T wk)
>, exp(Um* (s, a) Twk)
We choose to represent the action-value functions of the other agents with their SFs and preferences

to enable GPI, and to expose task- and policy-agnostic structure in the form of shared cumulants ®.
The k-th agent’s successor features are temporally consistent with these cumulants ®

,VseS,acA. (6)

¥ (als) =

™" (s,a) = (s, a) + AECT [\P”k(s',wk(s))] . @

To learn these quantities from K demonstrators, we parameterise the SFs with O\I'k, preferences with
w*, and shared cumulants with 8. A schematic of the model architecture and further details are
provided in Appendix C. The parameters are learned by minimising a behavioural cloning and SFs
TD loss based on equations (6) and (7).

Behavioural cloning loss. Given demonstrations generated only by the k-th agent, i.e., D¥ C D,
we train its successor features @« and the preferences w” by minimising the negative log-likelihood
of the demonstrations

exp(U(se, ar; 09%)  Wh)
Lacq(ogr,w") 2 —E lo .
BC Q( vk, W ) ok Za exp(qj(st’ a; G\I,k)TWk)
Importantly, Eqn. (8) reflects the fact that along a trajectory 7, the successor features are a function of
the state and action at each time-step, s; and a;, while the preferences w" are learnable but consistent
across time and trajectories. A sparsity prior, i.e., £1 loss, on preferences w” is also used to promote
disentangled cumulant dimensions, see Figure 8.

(€))

Inverse temporal difference loss. The cumulant parameters 8¢ are trained to be TD-consistent
with all agents’ successor features. This procedure inverts' the standard TD-learning framework for
SFs (Dayan, 1993; Barreto et al., 2017) where they are trained to be consistent with a fixed cumulant
®. Instead, we first train the SFs and preference vectors to ‘explain’ the other agents’ behaviour with
the behavioural cloning loss Eqn. (8), and then train 84 to be consistent with these successor features
by minimising

EITD(Oq,) £ E H@(St,at; 94)) + ’V‘I/(St+17at+1; é\pk) — \I/(St, at; O\I,k,) H . (9)

(st,at,s¢41,8¢41,k)~D

stop-gradient

In practice, our ITD-learning algorithm alternates between minimising Lgc.¢ for training the suc-
cessor features and preferences, and Lyrp for training the shared cumulants, provided only with
no-reward demonstrations.From the definition of cumulants and preferences, we can recover the
k-th demonstrator’s reward, by applying Eqn. (1), i.e., R¥(s,a) ~ ®(s,a;03) ' w”. Our ITD algo-
rithm returns both Q-functions that can be used for imitating a demonstrator and an explicit reward
function for each agent, requiring only access to demonstrations without any online interaction with
the simulator. Hence ITD-learning is an offline multi-task IRL algorithm. ITD is summarised in
Algorithm 1.

Single-task setting. To gain more intuition about the ITD algorithm, consider the simpler case of
performing IRL with demonstrations from a single policy. This obviates the need for a representation

"Hence the name inverse TD learning.
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of preferences, so we can use w = 1. In this case W is the action-value function @) and & is simply
the reward R. Minimising (8) reduces to finding a @)-function whose softmax gives the observed
policy, and minimising (9) finds a scalar reward that explains the @-function. Our more general
formulation, with cumulants ® in place of a scalar reward, allows us to perform ITD-learning on
demonstrations from many policies, and to efficiently transfer to new tasks, as we show next.

3.2 W®-LEARNING WITH NO-REWARD DEMONSTRATIONS

Now we present our main contribution, ¥®-learning , which combines our ITD inverse RL algorithm
with RL and GPI, using no-reward demonstrations from other agents to accelerating the ego-agent’s
learning. ¥®-learning is summarised in Algorithm 1.

W d-learning is an off-policy algorithm based on Q-learning (Watkins & Dayan, 1992; Mnih et al.,
2013). The action-value function is represented with successor features, U°°, and preferences, w°,
as in Eqn. (3). The ego-agent interacts with the environment, storing its experience in a replay buffer,
B+ BU{(s,a,s’,r*¢)}. The U®P-learner also has estimates for the cumulants, per-agent SFs and
preferences obtained with ITD from the demonstrations D.

Reward loss. The ego-rewards, r°¢°, are used to ground the cumulants ¢ and the preferences w®°,
via the loss

Lr(00, W) é( E Gloa 0s) W — || (10)
Importantly, we share the same cumulants between the ITD-learning from other agents and the
ego-learning, so that they span the joint space of reward functions. This can be also seen as a
representation learning method, where by enforcing all agents, including the ego-agent, to share the
same ¢, we transfer information about salient features of the environment from learning about one
agent to benefit learning about all agents.

Temporal difference learning. The ego-agent’s successor features are learned using two losses.
First, we train the SFs to fit the Q-values using the Bellman error

Lo(0ge) 2 E W (s, a;0q) W — 1= — ymax ¥(s', a’; 0y) W | (11)

(s,a,s’,ree®)~B

stop-gradient

We additionally train the successor features to be self-consistent (i.e. to satisfy Equation 2) using a
TD loss ‘CTD—\II'

Lrp-w (Bye) £ ( /E "~B [[U(s,a;0w) — ®(s, a; éd’) —y (s, a’;00) || (12)
»a,8%,a’ )~ stop-gradient

GPI behavioural policy. Provided SFs estimates for the other agents, {0y }5_,, and the ego-agent
0.y, and inferred ego preferences, w°, we adopt an action selection mechanism according to the
GPI rule in Eqn. (5)

7%°(s) = arg max max (s, a;0v) we. (13)
a v

The GPI step lets the agent estimate the value of the demonstration policies on its current task, and
then copy the policy that it predicts will be most useful. We combat model overestimation by acting
pessimistically with regard to an ensemble of two successor features approximators. If the agent’s
estimated values are accurate and the demonstration policies are useful for the ego task, the GPI
policy can obtain good performance faster than policy iteration with only the ego value function. The
next section quantifies this claim.

Performance Bound. Given a set of demonstration task vectors {wy }#_; and successor features

for the corresponding optimal policies {\I!”k |, Barreto et al. (2017) show that it is possible to
bound the performance of the GPI policy on the ego-agent task w’ as a function of the distance of
w’ from the closest demonstration task w;, and the value approximation error of the predicted value

functions @”i = UTiyw’. We extend this result to explicitly account for the reward approximation
error ¢, obtained by the the learned cumulants and the SF approximation error §y.
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Theorem 1. (Informal statement.) Let ©* be the optimal policy for the ego task w' and let 7 be the

GPI policy obtained from {Q”i }, with 6., 0y the reward and successor feature approximation errors.
Then for all s, a

dr
I—~
Proof. See Appendix D for a formal statement. O

* T 2 .
Q(5:0) = Q"(5,0) < 37— | dmas min [lu” — ;| + 28 + [lul| 6w + (14)

In settings where the agent has a good reward and SFs approximation, and the ego task vector
w’ is close to the demonstration tasks, Theorem 1 says that the ego-agent will attain near-optimal
performance from the start of training.

4 EXPERIMENTS

We conduct a series of experiments to determine how well U®-learning functions as an RL, IRL,
imitation learning, and transfer learning algorithm.

Baselines. We benchmark against the following methods: (i) DQN: Deep Q-learning Mnih et al.
(2013), (ii) BC: Behaviour Cloning, a simple imitation learning method in which we learn p(a|s)
via supervised learning on the demonstration data, (iii) DQN+BC-AUX: DQN with an additional
behavior-cloning auxiliary loss Hernandez-Leal et al. (2019), (iv) GAIL: Generative Adversarial
Imitation Learning Ho & Ermon (2016), which uses a GAN-like approach to approximate the expert
policy, and (v) SQILv2: Soft Q Imitation Learning Reddy et al. (2019), a recently proposed imitation
technique that combines imitation and RL, and works in the absence of rewards. For high-dimensional
environments, we replace DQN with PPO, Proximal Policy Optimization Schulman et al. (2017).
Both DQN and PPO are trained to optimize environment reward through experience, and do not have
access to other agents’ experiences.

4.1 ENVIRONMENTS

Experiments are conducted using four environments, shown in Figure ??. We cover a broad range of
problem setting, including both multi-agent and single-agent environments, as well as learning online
during RL training, or offline from previously collected demonstrations.

Highway (Leurent, 2018) is a multi-agent autonomous driving environment in which the ego-agent
must safely navigate around other cars and reach its goal. The other agents follow near-optimal
scripted policies for various goals, depending on the scenario. In the single-task scenario, other
agents have the same objective as the ego-agent, so their experience is directly relevant. In the
adversarial task, the other agents do not move, and the ego-agent has to accelerate and go to a
particular lane while avoiding other vehicles. Finally, in the multi-task scenario, the other agents and
ego-agent have different preferences over target speed, preferred lane, and following distance. We
consider the multi-task scenario to be the most realistic and representative of real highway driving
with human drivers. In addition to highway driving, we also study the more complex Roundabout
task. Roundabout is inherently multi-task, in that other agents randomly exit either the first or second
exit, while the ego-agent must learn to take the third exit.

CoinGrid is a single-agent grid-world, environment containing goals of different colours. We collect
offline trajectories of pre-trained agents with preferences for different goals. During training, the
ego-agent is only rewarded for collecting a subset of the possible goals. We can then test how well the
ego-agent is able to transfer to a goal that was never experienced during training (Section 4.5). This
environment also enables learning easily interpretable preference vectors, allowing us to visualize
how well our method works as an IRL method for inferring rewards (Section 4.3).

FruitBot is a high-dimensional, procedurally generated, single-agent environment from the OpenAl
ProcGen (Cobbe et al., 2020) suite. We use FruitBot to test whether U ®-learning can scale up to
more complex RL environments, requiring larger deep neural network architectures that learn directly
from pixels. The agent must navigate around randomly generated obstacles while collecting fruit, and
avoiding other objects and walls. To create a multi-task version of FruitBot, we define additional tasks
which vary agents’ preferences over collecting objects in the environment, and train PPO baselines
on these task variants. The ego-agent observes the states and actions of these trained agents playing
the game in parallel with its own interactions.
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Figure 1: Learning curves for ¥ ®-learning and baselines in three tasks in the multi-agent Highway
environment (a-c), and in single-agent FruitBot (d). Tasks (a) and (b) represent extreme cases
where either RL or imitation learning is irrelevant. In (a) other agents have the same task as the
ego-agent, so imitation learning excels. In the adversarial task (b), other agents exhibit degenerative
behaviour, so imitation learning performs extremely poorly and traditional RL (DQN) excels. In
both of these extreme cases, ¥®-learning achieves good performance, showing it can flexibly
reap the benefits of either imitation or RL as appropriate. Task (c) is most realistic; here, other
agents have varied preferences and goals that may or may not relate to the ego-agent’s task. U®-
learning clearly outperforms baseline techniques. Similar results are shown in Fruitbot (d), showing
that W ®-learning scales well to high-dimensional environments, consistently outperforming baselines
like PPO and SQIL. We plot mean performance over 3 runs and individual runs with alpha.

4.2 ACCELERATING RL WITH NO-REWARD DEMONSTRATIONS

This section addresses two hypotheses: H1: When the unlabelled demonstrations are relevant, U ®-
learning can accelerate or improve performance of the ego-agent when learning with online RL;
and H2: If the demonstrations are irrelevant, biased, or are generated by sub-optimal demonstrators,
W d-learning can perform at least as well as standard RL.

Figure 1 shows the results of ¥ ®-learning and the baselines in the Highway and FruitBot environ-
ments. In the single-task scenario (1a), when other agents’ experience is entirely relevant to the
ego-agent’s task, imitation learning methods like BC and SQILv2 learn fastest. DQN learns slowly
because it does not use the other agents’ experience. However, W ®-learning achieves competitive
results, out-performing DQN+BC-Aux Hernandez-Leal et al. (2019); Ndousse et al. (2020). In the
adversarial task (1b), the other agents’ behaviors are irrelevant for the ego-agent’s task, so imitation
learning (BC and SQILv2) performs poorly, while traditional RL techniques (DQN and DQN+BC-
Aux) perform best. The performance of ¥®-learning does not suffer like other imitation learning
methods; instead, it retains the performance of standard RL (H2). U®-learning can flexibly reap the
benefits of either imitation learning or RL, depending on what is most beneficial for the task.

The multi-task scenario (1c) is the most realistic autonomous driving task, in which other agents
navigate the highway with varying driving styles. Here, ¥ ®-learning clearly out-performs all other
methods, suggesting it can leverage information about other agents’ preferences in order to learn the
underlying task structure of the environment, acclerating performance on the ego-agent’s RL task (H1).
FruitBot (1d) gives consistent results, showing that ¥®-learning scales well to high-dimensional,
single-agent tasks while still outperforming BC, SQIL, PPO, and PPO+BC-Aux.

4.3 INVERSE REINFORCEMENT LEARNING

We now test hypothesis H3: ITD is an effective IRL method, and can accurately infer other agents’
rewards. We present a quantitative and qualitative study of the rewards for other agents that are
inferred by ITD, as well as the learned cumulants and preferences. Here, we focus solely on offline
IRL and use only ITD to learn from offline reward-free demonstrations, without any ego-agent
experience.

To quantitatively evaluate how well ITD can infer rewards, we train an RL agent on the inferred
reward function, and compare the performance to other imitation learning and IRL methods. Table 3
gives the performance in terms of normalised returns on all three environments. Using ITD to infer
rewards results in significantly higher performance than BC and SQIL, in two environments, and
competitive performance in FruitBot. We note that unlike W ®-learning , BC and SQIL directly learn
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Table 1: We evaluate how well W ®-learning is able to transfer to new tasks in a few-shot fashion. We
construct a multi-task variant of the CoinGrid environment: The ego-agent is provided demonstrations
for either capturing only red coins R or only green coins G. Then it is evaluated on 4 different tasks:
collecting (i) both red and green coins R+G, (ii) collecting red and avoiding green coins R-G, (iii)
avoiding red and collecting green coins —R+G and (iv) avoiding both red and green coins —~R-G. A
“{” indicates methods that use a single model for all tasks, while “&” indicates methods that require
one model per task, i.e., they comprise of 4 models. Because it disentangles preferences from task
representation, U®-learning is able to adapt to reach optimal performance on the new tasks after a
single episode or improve intra-episode from the first episode after experiencing the first rewards. In
contrast, SQIL takes 100 episodes to adapt.

0-shot 1-shot 100-shot
Methods R+G R-G -R+G ~R-G | R+G R-G -R+G -R-G | R+G R-G -R+G -R-G
SQILv2* (Reddy et al., 2019) 1.0+£0.0 0.0+0.0 0.0+0.0 —=1.0+0.0 \ 1.0+0.0  0.0£0.0 0.0+£0.0 —1.0+0.0 | L0+0.0 1.0+0.0 1.0+0.0 1.0-+0.0
Ud-learning ¢ (ours, cf. Section 3.2)  1.040.0  02+0.1 02+0.1 —04+0.2 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0 | 1.0+0.0 1.0+0.0 1.0+0.0 1.0+0.0

a policy from demonstrations, and do not actually infer an explicit reward function. In contrast, GAIL
does infer an explicit reward function, and ITD gives consistently higher performance than GAIL in
all three environments. These results demonstrate that ITD is an effective IRL technique (H3).

Qualitatively, we can evaluate how well the cumulants inferred by ITD in the CoinGrid environment

span the space of possible goals. We compute the learned cumulants ¢?( ) for each square s in the
grid. Figure 8a shows the orlglnal CoinGrid game, and Figure 8b-8d shows the first three dimensions

of the learned cumulant vector, (/51 qbg (the rest are given in the Appendix). We find that ¢1 is most
active for red coins, ¢2 for green, and d)g, for yellow. Clearly, ITD has learned cumulant features that

span the space of goals for this game. See Appendix F for more details and visualisations of the
learned rewards and preferences.

4.4 IMITATION LEARNING

Here, we investigate hypothesis H4: W®-learning works as an effective imitation learning method,
allowing for accurate prediction of other agents’ actions. To test this hypothesis, we train other agents
in the Roundabout environment, then split no-reward demonstrations from these agents into a train
dataset (80%) and a held-out test dataset. We use the train dataset to run ITD, which means that we
use the data to learn both ® and the ¥ and w for other agents. Because it is specifically designed to
accurately predict other agents’ actions, we use BC as the baseline. We compare this to using only
ITD, and using the full ¥®-learning algorithm including ITD and learning from RL and experience
to update the shared cumulants ®.

Accuracy in predicting other agents’ actions on the held-out test set is used to measure imitation
learning performance. Figure 11 shows accuracy over the course of training. At each phase change
marked in the figure, the ego-agent is given a new task, to test how the representation learning
benefits from diverse ego-experience. We see that although BC obtains accurate train performance, it
generalises poorly to the test set, reaching little over 80% accuracy. Without RL, ¥ ®-learning achieves
similar performance. However, when using RL to improve imitation, ¥ ®-learning performs well on
both the train and test set, achieving markedly higher accuracy (.95%) in predicting other agents’
behaviour. This suggests that when W®-learning uses RL and interaction with the world to improve
the estimation of the shared cumulants @, this in turn improves its ability to model the @) function
of other agents and predict their behaviour. Further, ¥ ®-learning adapts well when the agent’s goal
changes, since it uses SFs to disentangle the representation of an agent’s goal from environment
dynamics. Taken together, these results demonstrate that U ®-learning also works as a competitive
imitation learning method (H4).

4.5 TRANSFER AND FEW-SHOT GENERALISATION

Since SFs have been shown to improve generalization and transfer in RL, here we test hypothesis HS:
W d-learning will be able to generalize effectively to new tasks in a few-shot transfer setting. Using
the CoinGrid environment, it is possible to precisely test whether the ego-agent can generalise to a
task it has never experienced during training. Specifically, we would like to determine whether: (i)



Under review as a conference paper at ICLR 2021

the ego-agent can generalise to tasks it was never rewarded for during training (but which it may have
seen other agents demonstrate), and (ii) the ego-agent can generalise to tasks not experienced by any
agents during training.

Table 1 shows the results of transfer experiments in which agents are given 0, 1, or 100 additional
training episodes to adapt to a new task. Unlike SQIL, W ®-learning is able to adapt 0-shot to obtain
some reward on the new tasks, and fully adapt after a single episode to achieve the maximum reward
on all transfer tasks. This is because W®-learning uses SFs to disentangle preferences (goals) in
the task representation, and learn about the space of possible preferences from observing other
agents. To adapt to a new task, it need only infer the correct preference vector. Task inference is
trivially implemented as a least squares regression problem, see Eqn. (10): Having experienced
B""Y in the new task, the W®-learner identifies the preference vector for the new task by solving
miny Y zwew Lr(O0, W). In contrast, SQIL requires 100 episodes to reach the same performance.

5 DISCUSSION

We have presented two major algorithmic contributions. The first, ITD, is a novel and flexible offline
IRL algorithm that discovers salient task-agnostic environment features in the form of cumulants,
as well as learning successor features and preference vectors for each agent which provides demon-
strations. The second, U®-learning , combines ITD with RL from online experience. This makes
efficient use of unlabelled demonstrations to accelerate RL, and comes with theoretical worst-case
performance guarantees. We showed empirically the advantages of these algorithms over various
baselines: how imitation with ITD can improve RL and enable zero-shot transfer to new tasks, and
how experience from online RL can help to improve imitation in turn.

Future Work. We want to explore ways to: (i) adapt U¢-learning to multi-agent strategic settings,
where coordination and opponent modelling (Albrecht & Stone, 2018) are essential and (ii) use a
universal successor features approximator (Borsa et al., 2018) for ITD, overcoming its current, linear
scaling with the number of distinct demonstrators.
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A RELATED WORK

Learning from demonstrations. Learning from demonstrations, also referred to as imitation
learning (IL, Widrow & Smith, 1964; Pomerleau, 1989; Atkeson & Schaal, 1997), is an attrac-
tive framework for sequential decision making when reliable, expert demonstrations are available.
Early work on IL assumed access to high-quality demonstrations and aimed to match the expert
policy (Pomerleau, 1991; Heskes, 1998; Ng et al., 2000; Abbeel & Ng, 2004; Billard et al., 2008;
Argall et al., 2009; Ziebart et al., 2008). Building on this assumption, many recent works have studied
various aspects of both single-task (Ratliff et al., 2006; Wulfmeier et al., 2015; Choi & Kim, 2011;
Finn et al., 2016b; Ho & Ermon, 2016; Finn et al., 2016a; Fu et al., 2017; Zhang et al., 2018; Rahma-
tizadeh et al., 2018) and multi-task (Dimitrakakis & Rothkopf, 2011; Miilling et al., 2013; Stulp et al.,
2013; Deisenroth et al., 2014; Sharma et al., 2018; Codevilla et al., 2018; Fu et al., 2019; Rhinehart
et al., 2020; Filos et al., 2020) IL. However, these methods are all limited by the performance of the
demonstrator that they try to imitate. Learning from suboptimal demonstrations has been studied
by Coates et al. (2008); Grollman & Billard (2011); Zheng et al. (2014); Choi et al. (2019); Shiarlis
et al. (2016); Brown et al. (2019), enabling, under certain assumptions, imitation learners to surpass
their demonstrators’ performance. In contrast, our method integrates demonstrations into an online
reinforcement learning pipeline and can use the demonstrations to improve learning on a new task.

Reinforcement learning with demonstrations. Demonstration trajectories have been used to
accelerate the learning of RL agents (Taylor et al., 2011; Vecerik et al., 2017; Rajeswaran et al.,
2017; Hester et al., 2018; Gao et al., 2018; Nair et al., 2018; Paine et al., 2018; 2019), as well as
demonstrations where actions and/or rewards are unknown (Borsa et al., 2017; Torabi et al., 2018;
Sermanet et al., 2018; Liu et al., 2018; Aytar et al., 2018; Brown et al., 2019). In contrast to the
standard imitation learning setup, these methods allow improving over the expert performance as
the policy can be further fine-tuned via reinforcement learning. Offline reinforcement learning with
online fine-tuning (Kalashnikov et al., 2018; Levine et al., 2020) can be framed under this settings too.
Our method builds on the same principles, however, unlike these works, we do not assume that the
demonstration data either come with reward annotations, or that they relate to the same task the RL
agent is learning (i.e., we learn from multi-task demonstrations which may include irrelevant tasks).

Successor features. Successor features (SFs) are a generalisation of the successor representa-
tion (Dayan, 1993) for continuous state and action spaces (Barreto et al., 2017). Prior work has
used SFs for (i) zero-shot transfer (Barreto et al., 2017; Borsa et al., 2018; Barreto et al., 2020); (ii)
exploration (Janz et al., 2019; Machado et al., 2020); (iii) skills discovery (Machado et al., 2017,
Hansen et al., 2019); (iv) hierarchical RL (Barreto et al., 2019) and theory of mind (Rabinowitz et al.,
2018). Nonetheless, in all the aforementioned settings, direct access to the rewards or cumulants was
provided. Our method, instead, uses demonstrations without reward labels for inferring the cumulants
and learning the corresponding SFs. More closely to this work, Lee et al. (2019) propose learning
cumulants and successor features for a single-task IRL setting. Their approach differs from ours
in two key respects: first, they use a learned dynamics model to learn the cumulants. Second, the
learned SFs are used for representing the action-value function, not to inform the behaviour policy
with GPL.

Model of others in multi-agent learning. Our method draws inspiration and builds on the multi-
agent learning setting, where multiple agents participate in the same environment and the states,
actions of others are observed (Davidson, 1999; Lockett et al., 2007; He et al., 2016; Jaques et al.,
2019). However, we do not explore strategic settings, where recursive reasoning (Stahl, 1993; Yoshida
et al., 2008) is necessary for optimal behaviour.
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B EXPERIMENTAL DETAILS

In this section we describe the environments used in our experiments (see Section 4) and the
experiment design.

B.1 HIGHWAY

We build on the highway-v0 task from the highway-env traffic simula-
tor (Leurent, 2018). The task is specified by:

1. State space, S: The kinematic information of the ego vehicle and the
five closest vehicles (ordered from closest to the furthest) is used as the
Markov state, i.e., s; = {[t, Yt Tt, Ut fego, othery, ..., otmer; € RO The E
ego-car is illustrated in green and the other cars in blue.

2. Action space, A: We use a discrete action space, constructed by /K -means ==
clustering of the continuous actions of the intelligent driving model (Kest-
ing et al., 2010). We found out that keeping 9 actions was sufficient, i.e.,
a; € {0,78}

3. Demonstrations, D: At each time-step, the ego-car observes online the
state-action pairs for the 5 closest cars.

Figure 2:
Highway

B.2 ROUNDABOUT

We build on the roundabot-v0 task from the highway—env traffic simula-
tor (Leurent, 2018). The task is specified by:

1. State space, S: The kinematic information of the ego vehicle and the
five closest vehicles (ordered from closest to the furthest) is used as the
Markov state, i.e., s; = {[1, Y1, @1, U] bego, others, ..., other; € R***. The
ego-car is illustrated in green and the other cars in blue.

2. Action space, A: We use a discrete action space, constructed by K -means
clustering of the continuous actions of the intelligent driving model (Kest-
ing et al., 2010). We found out that keeping 6 actions was sufficient, i.e.,

Figure 3:
a; € {0,...,5}. Roundabout

3. Demonstrations, D: At each time-step, the ego-car observes online the
state-action pairs for the 3 closest cars.

B.3 COINGRID

We build a simple multi-task grid-world. The task is specified by:

1. State space, S: We use a symbolic, multi-channel representation of the
7 x 7 gridworld (Chevalier-Boisvert et al., 2019): the first three channels
specify the presence or absence of the three different coloured boxes,
the forth channel was the walls mask and the fifth and last channel was
the position and orientation of the agent. We represent the orientation
of the agent by ‘painting’ the cell in front of the agent. Therefore s; €
{0’ 1}7><7><5'

2. Action space, A: We use the {LEFT, RIGHT, FORWARD} actions
from Minigrid (Chevalier-Boisvert et al., 2018) to navigate the maze, i.e.,
a; € {0,1,2}.

3. Demonstrations, D: At the beginning of training, the agent is given
state-action pairs of other agents collecting either red or green coins.

Figure 4:
CoinGrid
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B.4 FRUITBOT

We build on the Fruitbot environment from OpenAI’s ProcGen bench-
mark (Cobbe et al., 2020). The task is specified by:

1. State space, S: We use the original high-dimensional 64 x 64 RGB
observations, i.e., s; € [0, 1]64X64X3.

2. Action space, 4: We use the original 15 discrete actions, i.e., a; €
{0,...,14}.

3. Demonstrations, D: At each time-step, the agent observes online the
states and actions of 3 trained agents playing the game in parallel: One Figure 5:
agent collects both fruits and other objects, one collects other objects and Fruitbot
avoids fruits and the last one randomly selects actions.

17



Under review as a conference paper at ICLR 2021

C IMPLEMENTATION DETAILS

For our experiments we used Python (Van Rossum & Drake Jr, 1995). We used JAX (Bradbury et al.,
2018; Babuschkin et al., 2020) as the core computational library, Haiku (Hennigan et al., 2020) and
Acme (Hoffman et al., 2020) for implementing ¥®-learning and the baselines, see Section 4. We
also used Matplotlib (Hunter, 2007) for the visualisations and Weightd & Biases (Biewald, 2020) for
managing the experiments.

C.1 COMPUTATION GRAPH

O &

¢ €80 @

_ - /V
- /
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e /
......................... . 7 ego C?ego

Qk /-Z/ \
/T et
/ . AN

: sz \I/k — @ weeo
......................... - cITD :
7,eg0

Figure 6: Computational graph of the ¥ ®-learning algorithm. Demonstrations D contain data
from other agents for unknown tasks. We employ inverse temporal difference learning (ITD, see Sec-
tion 3.1) to recover other agents’ successor features (SFs) and preferences. The ego-agent combines
the estimated SFs of others along with its own preferences and successor features with generalised
policy improvement (GPI, see Section 2.2), generating experience. Both the demonstrations and the
ego-experience are used to learn the shared cumulants. Losses £, are represented with double arrows
and gradients flow according to the pointed direction(s).

C.2 NEURAL NETWORK ARCHITECTURE

= O==Clx

8

St

Figure 7: Neural network architecture of the U®-learner. The rectangular nodes are tensors
parametrised by MLPs and the circles are learnable vectors. We share an observation network/torso,
&, across all the network heads. The network heads that related to the other agents are in blue and
trained from demonstrations D. The ego-agent’s experience B is used for training the green heads.
The shared cumulants and torso are trained with both D and B. An ensemble of two successor
features approximators is used for the ego- and other- agents for combatting model overestimation,
see Section 3.
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Table 2: Wd-learner’s hyperparameters per environment. The tuning was performed on a
DQN (Mnih et al., 2013) baseline with population based training (Jaderberg et al., 2017) using
Weights & Biases (Biewald, 2020) integration with Ray Tune (Liaw et al., 2018). We selected the
best hyperparameters configuration out of 32 trials per environment and used this for our ¥ ®-learner.

Highway | CoinGrid | FruitBot
Torso network, £ MLP([512, 256]) IMPALA (Espeholt et al., 2018), shallow (no LSTM) | IMPALA (Espeholt et al., 2018), deep (no LSTM)
Cumulants approximator, ¢ MLP([128, 128]) MLP([256, 128]) MLP([256, 128])
Successor features approximator, ¥ MLP([256, 128]) MLP([512, 256]) MLP([512, 256])
Ensemble size, U 2 2 2
L, coefficient 0.05 0.05 0.05
Number of dimensions in ¢ 8 4 64
Minibatch size 512 64 32
n-step 4 8 128
Discount factor, ¢ 1.0 0.9 0.999
Target network update period 100 1000 2500
Optimiser ADAM (Kingma & Ba, 2014), 1r=1e-3 ADAM (Kingma & Ba, 2014), 1r=1e-4 ADAM (Kingma & Ba, 2014), 1r=5e-5

C.3 HYPERPARAMETERS
C.4 COMPUTE RESOURCES

All the experiments were run on Microsoft Azure Standard_NC6s_v3 machines, i.e., with a 6-core
vCPU, 112GB RAM and a single NVIDIA Tesla V100 GPU. The iteration cycle for (i) Highway
experiments was 3 hours; (ii) CoinGrid experiments was 5.5 hours and (iii) Fruitbot experiments
was 19 hours.
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D PROOFS

We begin by formalizing the statement of Theorem 1. When not specified the norm || - || refers to the
2-norm. Given a function F' : X — R for some finite set X', we will write F'(z) to denote the value
of the function on input z and F to denote the matrix representation of this function in R,

Theorem 1 (Formal statement). Let C = (S, A, P,) be a CMP with a finite state space. Let
¢:S — R and let & = ¢(S) € RIS Let (r;)5_, denote a set of reward functions on C, ¥ be
a collection of successor features approximations for policies (7)k_, (m; optimal for v;) with true
successor feature values V', and w; the best least-squares linear approximator of v; given ®, with
errors

|Bw; — 7il|oo < 0y and || T* — T'|| < by Vi.
Let w' be a new preference vector for a reward function r', with maximal error 6, as well. Let

Qi = \iiiw’ . Let m* be the optimal policy for the ego task w' and let 7 be the GPI policy obtained
from {Q™}, with 6, 8y the reward and successor feature approximation errors. Then for all s,a

2
1—x

1
(Gmax|lw; — w'|| +26,) + [|w'||dw + ——6 (15)

Q*(Saa)fQTr(s?a)S (1_7) T

Barreto et al. (2017) construct their bound on the sub-optimality of the GPI policy as a function of the
error of the value approximations *. Because we bound the reward approximation error, rather than
the value approximation error, we require an additional step to obtain a bound on the errors of the
value funciton approximations. To prove Theorem 1, we must therefore first use the following lemma
to bound the effect of the reward approximation error on the value approximation error. While this
result is straightforward, we include a short proof for completeness.

Lemma 1. Fix some policy w. Let r be reward vector and let w be the least-squares solution to
min ||®w — r||. Let U™ be the true successor features for ® under policy w, and let Q™ be the value.

Let 6, = R(S) — ®w, Opmae = |0, || Then letting Q = Ww, we have

- 1
10" = Qllee < 7——=0: (16)
-7
Proof.
1Q = Qlloe < Y _AIP™ (Pw — 1)l (17
<D AP0 fee =D A max | > (P (s, 8)5:(s)] (18)
t seS

Since PT is a stochastic matrix, so are all of its powers, and so the rows of (P™)" sum to 1.

< Z’Yt mE}X|ZPﬂ-t(S,S/)5max| :Z'}/témax (19)
" s
1
= e (20)
O

We now prove the main result.
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Proof. We follow the proof of Barreto et al. (2017, Theorem 2), with additional error terms to account
for the reward and successor feature approximation errors.

Q*(s,a) — Q™ (s,a) < Q*(s,a) — Q™ (s,a) + 1 E ’ye (Barreto et al., 2017, Theorem 1)
2 , 2
< ——|rj —7r|leo + € (Barreto et al., 2017, Lemma 1)
1—v 1—v
2 . 2
< ﬁ”d’wj +0; —pw =0l + T—5¢
<2 (max||w; — w'|| + 8, + 6r) + 2 .
= 1_’}/ ‘max J r T 1_—
2 ’ 2 T ’ ’
< —— (@maxllwj — w'[| +26,) + —— W’ — Vw + ¥;u" — Q]
11—~ 1—7
2 2 <
< T Gmaxllwy — 'l +287) + T 1P’ — Wy’ + ([ W0 — Qs
8 0
< 2 (Gmalwg — [+ 26,) + o [0 + o [’ — Qs
_1—’}’ max j r 1_7 v 1_7 J J
< 2 (Gumanllwy — ||+ 26,) + —2— [ S5 + 2 (50 (Lemma 1)
_1—’Y max J i 1_7 v 1_71_77‘
2 , , 1
= —— [(Pmax||w; — w'|| + 26;) + ||w']|0w + ——
| g — 'l +26) + oo + 2
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E ALGORITHMS

Algorithm 1: Inverse Temporal Difference Learning

Input
D = {(s1,a1,...,ar; k) ;} No-reward demonstrations
Aw L1 loss coefficient
Output:
05 Parameters of cumulants network
{0+ }£, Parameters of successor features approximators
{wF}E_ ~ Preferences vectors for the K agents

// initialisations
1 Initialise parameters Og, {Ogr, wF}E_|
2 while budget do

(@)
1

(@)

y Ay 7y ..

@ @),

< ST,

(s KON, ~D

Calculate behavioural cloning loss Lpc.g(6yx, w") on samples {7;}
Egn. (8)

Oq,k (i V@\pk ,CBC_Q(G\I;k s Wk)

whk & Vwk (EBC_Q(OW,W’C) + )\wHWkHl)

3 Sample trajectories {7;

4

Egn. (9)
03 & Vo, Lrpw (0w, ,0s)

Calculate inverse temporal difference loss Lirp (@4 ) on samples {7;}

N
ieq > see

> update Us

> update ws

N
ieq > see

> update @
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Algorithm 2: U®-Learning

Input
D ={(s1,a1,...,ar; k)5 ;} No-reward demonstrations
Aw L1 loss coefficient
Qutput :
0 yeso Ego successor features approximator
05 Parameters of cumulants network

{04x} | Parameters of successor features approximators
{wF}E_~ Preferences vectors for the K agents

// initialisations
Empty replay buffer for ego-experience B = {}
Initialise parameters @\yezo, W, O, {O g, wF}E |

while budget do

// agent—-environment interaction
Reset episode, s < env.reset (),t <+ 0
while not done do
we < argmin,, Lr(0s,w;B) > ego-task inference, see Eqn. (10)
a < mTgpy (s; PeEo weeo, {H\I,k},[f:l) > GPI, see Egn. (13)
Step in the environment, s, 7°¢°, done <+ env.step (a)
Append transition in the replay buffer, B «+— B U (s, a, r%¢° s’)
s s, t+—t+1
// parameter updates/learning
0p,{0yr, WwFHE  « TTD (D,)\W,O(p, {O\I,k7wk}£(:1) > see Algorithm. (1)
Sample transitions {(s(*),a(®), r¢2>() gD} ~ B
Calculate the reward loss Lg (6, we°) > see Egn. (10)
0o & Voo Lr(Op, W) > update ®
Calculate TD losses L (0wew ) and Lp.g (O gex ) > see Egqn. (11,12)
Qe & Vo (cQ(ow) n ﬁcm_\p(aw)) > update Wew
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(a) CoinGrid (b) b1 (© 2 () ¢3

Figure 8: Qualitative evaluation of the learned cumulants in the CoinGrid task. Cumulants qAbl, (52,
and (;33 seem to capture the red, green, and yellow blocks, respectively. Therefore, linear combinations
of the learned cumulants can represent arbitrary rewards in the environment, which involve stepping
on the coloured blocks.

F VISUALISATIONS

[ [ |
| |

(a) CoinGrid (b) ¢1 (c) ¢2 @ ¢3 (€) P4

Figure 9: Qualitative evaluation of the learned cumulants in the CoinGrid task. Cumulants ¢, ¢2, and
¢3 seem to capture the red, green, and yellow blocks, respectively. The yellow blocks are captured by
both and ¢,. Therefore, linear combinations of the learned cumulants can represent arbitrary rewards
in the environment, which involve stepping on the coloured blocks.

Returns

Normalised Returns
Normalised Returns

0.0
107 10° 10°
Timesteps

(c) Wd-learning for Highway
(a) ITD for Roundabout (b) ITD for CoinGrid Multi-Task

Figure 10: Sensitivity of our ITD (see Section 3.1) and W®-learning (see Section 3.2) algorithms to
the dimensionality of the learned cumulants. We consistently observe across all three experiments
(a)-(c) that for a small number of ® dimensions the cumulants are not expressive enough to capture
the axis of variation of the different agents’ reward functions (including the ego-agent in (c)). We
also note that the performance of both ITD and ¥ ®-learning is relative robust for a medium and large
number of ® dimensions. We attribute this to the used sparsity prior, i.e., £1 loss, to the preferences
w. In our experiments we selected the smallest number of ® dimensions that demonstrated good
performance to keep the number of model parameters as small as possible (in bold in the figures and
reported in Table 2).
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G INVERSE TEMPORAL DIFFERENCE LEARNING: EMPIRICAL RESULTS

Table 3: We evaluate how well ¥ ®-learning is able to infer the correct reward function by training an
RL agent on the inferred rewards, and comparing this to alternative imitation learning methods in
three environments. All methods are trained on expert demonstrations. A “{>” indicates methods that
infer an explicit reward function and then use one of DQNor PPOto train an RL agent, depending
on the environment. A “&” indicates methods that directly learn a policy from demonstrations. A
“4” indicates methods that use privileged task id information for handling multi-task demonstrations.
We report mean and standard error of normalised returns over 3 runs, where higher-is-better and the
performance is upper bounded by 1.0, reached by the same RL agent, trained with the ground truth
reward function.

Methods Roundabout PN ‘ CoinGrid PV ‘ FruitBotFF°
BCt* (Pomerleau, 1989) 0.81-0.02 0.69+0.06 0.37+0.02
SQIL* (Reddy et al., 2019) 0.85-+0.02 0.64-+0.05 0.35+0.03
GAIL™® (Ho & Ermon, 2016) 0.77+0.07 0.73+0.02 0.3140.02
ITD® (ours, cf. Section 3.1) 0.92+0.01 0.77+0.03 0.35+0.04
T T T
X N S B ]
- 100~ 1 7 —— WoL (ours)
P :
@ gol __':_f_: — ITD
© M e : J
3 ,f’ . . BC
[v] oo e T e
< ol | (ngw task)
- L L === train
0 10000 20000 — test

Timesteps

Figure 11: Test accuracy in predicting other agents’ actions.The shared cumulants ¢ for modelling
others- and ego- reward functions allow our W®-learner to improve its ability to predict others’
actions by experiencing new ego-tasks. Pure imitation learning and our ITD inverse RL methods
achieve high train accuracy but they do not have a mechanism for utilising RL experience to improve
their generalisation to the test set as new tasks are provided.
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