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Abstract

The rapid dissemination of misinformation001
through social media increased the importance002
of automated fact-checking. Furthermore, stud-003
ies on what deep neural models pay attention004
to when making predictions have increased in005
recent years. While significant progress has006
been made in this field, it has not yet reached007
a level of reasoning comparable to human rea-008
soning. To address these gaps, we propose a009
multi-task explainable neural model for mis-010
information detection. Specifically, this work011
formulates an explanation generation process012
of the model’s veracity prediction as a text sum-013
marization problem. Additionally, the perfor-014
mance of the proposed model is discussed on015
publicly available datasets and the findings are016
evaluated with related studies. 1017

1 Introduction018

Fake news is considered as media content that con-019

tains misinformation and can mislead people (Shu020

et al., 2017; Zhou and Zafarani, 2020). Advance-021

ments in social networking and social media not022

only facilitate information accessibility but also023

cause the rapid spread of fake news on social media024

(Vosoughi et al., 2018). Consequently, fake news025

becomes a powerful tool for manipulating public026

opinion, as observed during influential events like027

the 2016 US Presidential Election and the Brexit028

referendum (Pogue, 2017; Allcott and Gentzkow,029

2017). To address this issue, automated fake news030

detection methods have emerged, aiming to de-031

termine the veracity of claims while minimizing032

human effort (Oshikawa et al., 2020).033

Multi-task learning (MTL) is a technique in ma-034

chine learning to train similar tasks at the same035

time by leveraging their differences and common-036

alities (Crawshaw, 2020; Chen et al., 2021; Zhang037

and Yang, 2021). Additionally, MTL allows data038

1A GitHub link to the source code will be available at the
camera-ready stage.

utilization as the model can transfer knowledge be- 039

tween tasks. Notably, the insights gained while 040

learning one task can benefit other related tasks, 041

leading to better generalization across tasks. More- 042

over, from the business point of view, deploying a 043

single multi-task model may reduce the complexity 044

of maintenance and resource requirements. 045

This paper primarily focuses on designing a 046

multi-task explainable misinformation detection 047

model. To be more specific, a fact-checking model 048

is trained on veracity prediction and text summa- 049

rization tasks simultaneously. The generated sum- 050

maries are derived from evidence documents and 051

serve as justifications for the model’s veracity pre- 052

diction. Therefore, it should not be considered as 053

a post-hoc explainability model. The contribution 054

of the work lies in the use of multi-task learning 055

for fact-checking and text summarization together, 056

particularly through a new architecture including 057

different neural models. The tasks, fact-checking 058

and summarization, complement each other such 059

that one does misinformation detection while the 060

other explains the reason for the model’s decision. 061

2 Related Work 062

Automated fake news detection studies have been 063

studied from data mining (Shu et al., 2017) and nat- 064

ural language processing (Oshikawa et al., 2020; 065

Guo et al., 2022; Vladika and Matthes, 2023) 066

perspectives. Zhou and Zafarani (Zhou and Za- 067

farani, 2020) classify the previous studies into four 068

groups: knowledge-based (Pan et al., 2018; Cui 069

et al., 2020), style-based (Zhou et al., 2020; Pérez- 070

Rosas et al., 2018; Jin et al., 2016; Jwa et al., 2019), 071

propagation-based (Hartmann et al., 2019; Zhou 072

and Zafarani, 2019), and source-based (Sitaula 073

et al., 2020). 074

Kotonya and Toni (Kotonya and Toni, 2020a) 075

present a survey on explainable fact-checking that 076

categorized the studies based on their methods for 077
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generating explanations. These methods include ex-078

ploiting neural network artifacts (Popat et al., 2017,079

2018; Shu et al., 2019; Lu and Li, 2020; Silva et al.,080

2021), rule-based approaches (Szczepański et al.,081

2021; Gad-Elrab et al., 2019; Ahmadi et al., 2020),082

summary generation (Atanasova et al., 2020a;083

Kotonya and Toni, 2020b; Stammbach and Ash,084

2020; Brand et al., 2022), adversarial text genera-085

tion (Thorne et al., 2019; Atanasova et al., 2020b;086

Dai et al., 2022), causal inference for counterfac-087

tual explanations (Cheng et al., 2021; Zhang et al.,088

2022; Li et al., 2023; Xu et al., 2023), neurosym-089

bolic reasoning (Pan et al., 2023) and question-090

answering (Ousidhoum et al., 2022; Yang et al.,091

2022).092

The most related study in the literature was the E-093

BART model (Brand et al., 2022) that was trained094

for both classification and summarization by in-095

troducing a joint prediction head on top of the096

BART (Lewis et al., 2020) language model. In097

other words, the encoder and decoder of the BART098

model are shared for both tasks. In contrast to this099

approach, this work incorporates the T5 Encoder as100

a shared module. For summarization, a T5 Decoder101

is trained while feed-forward layers are employed102

for classification. We also measured the effect of103

using two loss weighting strategies and evaluated104

the impact of instruction fine-tuning by switching105

the T5 model with the Flan-T5 (Chung et al., 2022)106

version.107

3 Method108

In this study, a multi-task model that is based on109

the T5 (Raffel et al., 2020) transformer is proposed.110

The model is trained on text summarization and111

veracity prediction tasks jointly. T5 transformer is112

an encoder-decoder model that converts each task113

to a text-to-text problem. Google AI released the114

Flan-T5 (Chung et al., 2022) model that employs115

instructional fine-tuning to further improve the T5116

model that is also utilized in the evaluation.117

The model architecture is given in Figure 1. Both118

summarization and classification tasks share a T5119

Encoder during training. At first, the T5 Encoder120

encodes the claim and evidence sentences in a la-121

tent space. Afterwards, the T5 Decoder produces122

a summary using the T5 Encoder’s representation.123

Simultaneously, for the veracity prediction, the en-124

coder’s output is processed by two feed-forward125

layers respectively. We employ the ReLU activa-126

tion function and apply dropout between two linear127
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Figure 1: The multi-task model architecture

layers and the sigmoid activation function after the 128

second linear layer. Besides, the cross entropy loss 129

is used for measuring summary and classification 130

losses. 131

Two loss weighting strategies are employed: i) 132

static loss coefficients and ii) uncertainty weighting. 133

For the static loss coefficients, constant weights are 134

set for the classification and summarization losses 135

prior to training. To determine the optimal weights, 136

grid search-based validation experiments are per- 137

formed. In addition to the static loss coefficients, 138

this paper also utilizes the uncertainty weighting 139

strategy (Kendall et al., 2018) that enables dynamic 140

adjustment of the weights based on prediction con- 141

fidence. Subsequently, the overall loss is calculated 142

by taking the weighted sums of the summary loss 143

and the classification loss. 144

Figure 2 presents an example claim alongside 145

our model’s predictions. Based on supplementary 146

information provided under the "Evidence" section, 147

the claim has been verified by a reviewer. The gold 148

standard summary was also authored by human 149

annotators, while the abstractive summary was gen- 150

erated by a T5-based multi-task model. The gen- 151

erated summary not only aligns with the veracity 152

label but can be considered as an explanation of the 153

model’s reasoning behind its decision. 154

4 Experimental Results 155

In this section, the proposed model was evaluated 156

on three benchmark datasets. Note that we em- 157

ployed the T5-large model in the Huggingface’s 158

transformer library 2 and only the best results ob- 159

tained during the validation experiments for each 160

model are presented. Note that the experiments 161

were conducted using Nvidia RTX A6000 GPUs. 162

PUBHEALTH Results: The PUBHEALTH 163

(Kotonya and Toni, 2020b) dataset consists of 164

2https://huggingface.co/docs/transformers/
model_doc/t5
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Claim:  Study says too many Americans still drink too much. 

Evidence: ... The researchers found that 64 percent of men and 79 percent of women said they drank no alcohol at all that day, and another 18 percent 
of men and 10 percent of women drank within the recommended amounts. Nine percent of men said they had three to four drinks the day before and 8 
percent of women said they drank two to three alcoholic beverages, the researchers said. The heaviest drinkers of all were the 8 percent of men who 
had five or more drinks, and 3 percent of women who had four or more. “Overall the study confirms that rates of unhealthy alcohol use in the U.S. 
are significant,” said Jennifer Mertens, a research medical scientist at Kaiser Permanente Division of Research in Oakland, ...  

Gold Summary: On any given day in the United States, 18 percent of men and 11 percent of women drink more alcohol than federal guidelines 
recommend, according to a study that also found that 8 percent of men and 3 percent of women are full-fledged “heavy drinkers.” 

Our Model's Summary: Americans are still drinking too much alcohol, even if they don’t drink at all on any given day, according to a new study. 

Label: True 

 

 

 

 

Figure 2: A sample claim from PUBHEALTH (Kotonya and Toni, 2020b) with our model’s outputs

Table 1: Summarization results on PUBHEALTH

Model Rouge-1 Rouge-2 Rouge-L
Oracle
(Kotonya and Toni, 2020b)

39.24 14.89 32.78

Lead-3
(Kotonya and Toni, 2020b)

29.01 10.24 24.18

EXPLAINERFC-EXPERT
(Kotonya and Toni, 2020b)

32.30 13.46 26.99

T5 single-task 30.90 13.40 27.16
T5 multi-task 32.55 14.54 28.60
Flan-T5 multi-task 32.38 14.03 28.41

health-related claims with justifications which were165

written by journalists were considered as gold ex-166

planations to evaluate the correctness of claims.167

Each claim was annotated as True, False, Mixture168

or Unproven. The training set consists of 9466169

claims and 1183 claims exist in validation and test170

sets.171

Table 1 displays the summarization outcomes of172

our proposed models in comparison to the base-173

line and Oracle models. Lead-3 (Kotonya and174

Toni, 2020b) served as the baseline that utilized175

the first three sentences as a summary. Oracle176

(Kotonya and Toni, 2020b) was an extractive sum-177

mary model that served as an upper bound. Addi-178

tionally, EXPLAINERFC-EXPERT (Kotonya and179

Toni, 2020b) was a state-of-the-art single-task ab-180

stractive summary generator model which per-181

formed slightly better than our single-task model.182

Note that the T5 single-task and the T5 multi-task183

models were almost identical to the model archi-184

tecture given in Figure 1 but the classification head185

of the T5 single-task model was set to 0.186

Furthermore, the Flan-T5 multi-task model rep-187

resents an instruction fine-tuned variant of T5 that188

performed slightly less effectively than T5 for sum-189

marization, but both models outperformed the state-190

of-the-art model.191

The results for veracity prediction using the pre-192

cision, recall, F1-macro and accuracy metrics were193

presented in Table 2. The first two rows indi-194

cated the baselines. BERT (top-k) and SCIBERT195

models applied a sentence selection based on the196

Table 2: Veracity results on PUBHEALTH

Model Precision Recall F1-macro Accuracy
BERT (rand. sentences)
(Kotonya and Toni, 2020b)

38.97 39.38 39.16 20.99

BERT (all sentences)
(Kotonya and Toni, 2020b)

56.50 56.50 56.50 56.40

BERT (top-k)
(Kotonya and Toni, 2020b)

77.39 54.77 63.93 66.02

SCIBERT
(Kotonya and Toni, 2020b)

75.69 66.20 70.52 69.73

T5 single-task 78.24 71.05 61.08 71.05
T5 multi-task 77.62 70.32 60.93 70.32
Flan-T5 multi-task 76.46 76.64 65.18 76.64

sentences’ semantic similarity with the claim sen- 197

tences. For evidence selection, the authors em- 198

ployed the S-BERT (Reimers and Gurevych, 2019) 199

model. Therefore, we followed a similar approach 200

and selected the top-5 evidence sentences and the 201

claim statement as input for these models. 202

The results indicate that the Flan-T5 variant out- 203

performed the T5-based models for veracity de- 204

tection but on the F1-macro metric the state-of- 205

the-art SCIBERT model performed significantly 206

better than our models. The main reason for this 207

difference can be attributed to the considerable im- 208

balance in label distribution. For instance, the ratio 209

of claims labeled as Unproven is approximately 210

3.2%, while the Mixture cases constitute around 211

15.2% of the dataset. Our post-evaluation analy- 212

sis, in Appendix A, revealed that despite the us- 213

age of additional coefficients for the Unproven and 214

Mixture instances, our models suffered from the 215

data imbalance problem. Overall, the joint training 216

of veracity detection and evidence summarization 217

has a positive influence on the performance of our 218

model in both tasks. 219

FEVER Results: FEVER (Thorne et al., 2018) is a 220

benchmark dataset that includes 185K claims with 221

related evidence documents from Wikipedia. The 222

dataset was published for the FEVER shared task 223

in 2018 and the task consists of claim identification, 224

evidence retrieval and fact-checking subtasks. For 225

the fact-checking task, the claim statements were 226

annotated as Supports, Refutes and Not enough 227

info. 228
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Table 3: Veracity and summarization results on e-
FEVER

Model Dataset Acc.
(w/o N.E.I) Acc. Rouge-1 Rouge-2 Rouge-L

E-BARTSmall
(Brand et al., 2022)

eFever_Small 87.2 78.2 73.58 64.37 71.43

E-BARTFull
(Brand et al., 2022)

eFever_Full 85.2 77.2 65.51 57.60 64.07

T5-Full ( Only
Summarization)

eFever_Full - - 65.94 57.53 65.09

T5-Full (Only
Classification)

eFever_Full 91.12 73.61 - - -

T5-Small eFever_Small 91.11 74.75 74.00 63.64 72.78
T5-Small

(uncertainty
weighting)

eFever_Small 90.66 74.57 74.46 64.32 73.19

T5-Full eFever_Full 90.91 75,26 68,16 59,96 67,26
T5-Full

(uncertainty
weighting)

eFever_Full 90.90 74,28 67,30 59,36 66,49

Flan-T5 eFever_Full 94.36 79.91 66.75 58.42 65.88
Flan-T5

(uncertainty
weighting)

eFever_Full 93.94 79.02 68.84 60.89 67.97

Since the FEVER test set did not contain the true229

labels, the multi-task model’s veracity prediction230

performance was evaluated using the development231

set. We employed the DOMLIN system (Stamm-232

bach and Neumann, 2019) to retrieve evidence doc-233

uments. DOMLIN retrieved evidence documents234

for 17K out of the 20K claims in the development235

set, while labeling the remaining instances as "not236

enough info." With this supporting information,237

our multi-task model achieved an accuracy score238

of 76.18%. However, its Flan-T5-based counter-239

part outperformed it with a score of 80.44%. It’s240

worth noting that the DOMLIN model (Stamm-241

bach and Neumann, 2019) achieved an accuracy of242

71.44%, DOMLIN++ (Stammbach and Ash, 2020)243

achieved 77.48%, and the E-BART (Brand et al.,244

2022) model reached an accuracy of 75.10% by245

utilizing the similar evidence retrieval method.246

e-FEVER Results: The e-FEVER dataset (Stamm-247

bach and Ash, 2020) is a subset of the original248

FEVER dataset and consists of 67687 claims with249

evidence documents retrieved using the DOMLIN250

system (Stammbach and Neumann, 2019). In addi-251

tion to claims and evidence documents, the authors252

published the summaries generated by the GPT-3-253

based model (Brown et al., 2020) for each claim.254

Hence, these summaries were leveraged as ground-255

truth explanations to compare our model’s decision-256

making process with the GPT-3-based model.257

The authors pointed out that the GPT-3-based258

model generated null summaries for certain claims.259

To address this issue, similar to Brand et al. (Brand260

et al., 2022), two variations of the dataset were uti-261

lized: e-FEVER_Full and e-FEVER_Small. The262

former contains all claims, while the latter ex-263

cluded instances with null summaries. The e-264

FEVER_Small consists of 40702 instances. More- 265

over, Brand et al. (Brand et al., 2022) provided 266

some examples labeled as Not enough info that 267

could be either refuted or supported based on 268

the provided evidence documents. Therefore, 269

the binary veracity prediction performance of the 270

multi-task model was measured by ignoring the 271

Not enough info instances. Likewise, similar to 272

Brand et al. (Brand et al., 2022) two variations 273

of the multi-task model were trained: T5-Small 274

and T5-Full where the former was trained on e- 275

FEVER_Small and the latter was trained on e- 276

FEVER_Full. 277

Table 3 demonstrated the summarization and ve- 278

racity prediction results on the e-FEVER dataset. 279

To the best of our knowledge, only Brand et al. 280

(Brand et al., 2022) reported results on this dataset. 281

The baseline models were outlined in the third and 282

fourth rows that were trained specifically for ei- 283

ther summarization or classification. Therefore, 284

we did not report the classification results for the 285

summarization model, and vice versa. The fifth 286

and sixth rows indicated the models that utilized 287

e-FEVER_Small dataset. Both of the models out- 288

performed the E-BARTSmall model for summa- 289

rization and binary classification. However, E- 290

BARTSmall achieved higher accuracy than the pro- 291

posed models in three-class classification. 292

Similarly, on the initial data, eFever_Full, the 293

multi-tasked T5 models also achieved higher binary 294

classification accuracy and summarization scores 295

but performed worse than the E-BARTFull model 296

in multi-class classification. On the other hand, 297

replacing T5 with the Flan-T5 version led to the 298

highest accuracy scores in both binary and multi- 299

class classification. Moreover, the Rouge scores 300

of the T5 and Flan-T5 models were higher than 301

the E-BART model on the initial e-FEVER data. 302

These results on the dataset indicate a mutual in- 303

fluence between veracity detection and evidence 304

summarization due to joint training. Furthermore, 305

it was observed that the overall performance was 306

not significantly affected by the selection of the 307

loss weighting strategy. 308

5 Conclusion 309

In this paper, a T5-based explainable multi-task 310

fact-checking model is introduced. The results re- 311

vealed that leveraging multi-task learning yields 312

significant improvements in text summarization 313

and veracity detection performance. 314
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6 Limitations315

First, the T5 and Flan T5 models were pre-trained316

massively on English corpora. Consequently, the317

performance of these models on languages with318

limited resources may not be satisfactory. Secondly,319

the validation experiments revealed significant fluc-320

tuations in the model’s performance when utilizing321

certain hyperparameter sets. Therefore, the hyper-322

parameter optimization was a critical part of the323

evaluation process. Furthermore, the interpretabil-324

ity of the generated explanations may vary depend-325

ing on the complexity of the text. Transformer-326

based language models demand significant compu-327

tational and hardware resources. However, some328

recent parameter-efficient fine-tuning techniques,329

such as LoRA (Hu et al., 2022), have demon-330

strated their effectiveness. Therefore, future re-331

search should address these limitations to enhance332

the robustness and applicability of our approach.333
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A Confusion Matrices 590

Table 4: Confusion Matrix

Model Unproven False Mixture True Accuracy
T5 Unproven 27 8 5 5 60.00
single False 31 244 94 19 62.89
task Mixture 17 41 131 12 65.17

True 21 8 96 474 79.13
T5 Unproven 26 10 4 5 57.78
multi False 31 236 106 15 62.43
task Mixture 13 37 137 14 68.16

True 15 17 99 468 78.13
Flan-T5 Unproven 25 14 1 5 55.56
multi False 14 307 48 19 79.12
task Mixture 9 61 87 44 43.28

True 9 25 39 526 87.81

The confusion matrices of the models given 591

in Table 2 are demonstrated in Table 4. Confu- 592

sion matrices revealed that the margins between 593

the state-of-the-art model’s and our models’ F1- 594

macro scores are attributed to the class distributions. 595

More specifically, the dataset is highly imbalanced 596

and despite boosting the Unproven and Mixture 597

instances, the models suffered from the class im- 598

balance problem. Moreover, another takeaway is 599

that boosting the Mixture instances decreased the 600

accuracy of False claims, particularly for T5 mod- 601

els. 602

B Grid Search of Static Loss Coefficients 603

We performed an ablation study to explore can- 604

didate values to find an optimal set of hyper- 605

parameters for our multi-task model. We per- 606

formed a grid search using PUBHEALTH (Kotonya 607

and Toni, 2020b) dataset to determine the optimal 608

set of loss coefficients. The experimental results 609

are presented in Table 5. Note that, we kept the 610

linear layers’ size (for veracity prediction), dropout 611

probability, batch size and number of epoch con- 612

stant. 613

C Grid Search of Hidden Layer 614

Dimensions for Veracity Prediction 615

We also performed another ablation study to dis- 616

cover the optimal hidden layer size of the classi- 617

fication head of our multi-task model using the 618

PUBHEALTH (Kotonya and Toni, 2020b) dataset. 619

The experimental results are presented in Table 6. 620

Note that, we kept the dropout probability, batch 621

size and number of epochs constant. 622
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Table 5: Grid search of loss coefficients

Veracity (a),
Summary (b)
loss coefficients

Veracity label coefficients Rouge-1 Rouge-2 Rouge-L F1-macro F1-weighted

a=0.7, b=0.3 mixture_coeff=1.75, unproven_coeff=5 31,99 14,14 28,18 51,14 66,66
a=0.7, b=0.3 mixture_coeff=1.75, unproven_coeff=7 31,93 14,26 28,46 60,76 73,16
a=0.7, b=0.3 mixture_coeff=1.75, unproven_coeff=9 31,87 14,16 28,13 48,62 63,93
a=0.6, b=0.4 mixture_coeff=1.75, unproven_coeff=5 31,25 13,81 27,59 54,71 69,92
a=0.6, b=0.4 mixture_coeff=1.75, unproven_coeff=7 32,36 14,59 28,67 57,22 71,47
a=0.6, b=0.4 mixture_coeff=1.75, unproven_coeff=9 31,85 14,21 28,16 54,14 68,48
a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=5 32,52 14,50 28,74 56,71 69,86
a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=7 31,87 13,94 27,09 52,00 67,25
a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=9 31,71 13,88 28,19 51,12 65,78
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=5 31,02 13,50 27,53 50,94 65,48
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 31,82 14,00 28,12 55,87 68,57
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 31,96 14,42 28,40 56,52 69,93
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=5 31,43 14,03 27,75 50,59 65,76
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 31,96 14,38 28,28 55,62 68,57
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 32,54 14,48 28,69 60,07 72,50
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=5 31,78 13,86 28,04 58,73 72,20
a=0.8, b=0.2 mixture_coeff=1.75, unproven_coeff=5 32,27 14,32 28,64 58,02 72,19
a=0.8, b=0.2 mixture_coeff=1.75, unproven_coeff=7 31,05 13,44 27,49 50,96 65,48
a=0.8, b=0.2 mixture_coeff=1.75, unproven_coeff=9 32,03 13,74 28,06 57,59 70,41
a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=5 32,00 14,29 28,38 56,31 70,19
a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=7 31,82 14,16 28,14 55,05 69,52
a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=9 31,87 14,15 28,22 58,33 72,34
a=0.8, b=0.2 mixture_coeff=2.5, unproven_coeff=5 32,42 14,11 28,50 54,14 67,34
a=0.8, b=0.2 mixture_coeff=2.5, unproven_coeff=7 32,03 14,20 28,31 58,87 71,89
a=0.8, b=0.2 mixture_coeff=2.5, unproven_coeff=9 31,84 13,93 28,07 58,10 71,95
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=5 31,85 14,25 28,13 52,58 66,45
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 32,33 14,18 28,48 60,33 73,11
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 31,90 14,14 28,27 55,56 70,32

Table 6: Grid search of hidden layer size

Veracity (a),
Summary (b)
loss coefficients

Veracity label coefficients Hidden
Dim Rouge-1 Rouge-2 Rouge-L F1-macro F1-weighted

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 16 31,82 14,00 28,12 55,87 68,57
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 16 31,96 14,42 28,40 56,52 69,93
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 16 31,96 14,38 28,28 55,62 68,57
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 16 32,54 14,48 28,69 60,07 72,50
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 16 32,33 14,18 28,48 60,33 73,11
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 16 31,90 14,14 28,27 55,56 70,32
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 32 31,97 14,21 28,23 51,14 65,77
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 32 31,83 14,00 28,05 57,25 68,34
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 32 31,82 14,21 28,14 58,96 60,78
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 32 32,08 14,09 28,34 52,47 65,67
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 32 32,07 14,33 28,32 59,18 71,91
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 32 31,79 14,13 28,29 49,99 61,82
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 64 32,55 14,54 28,60 60,93 72,51
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 64 32,69 14,71 28,84 49,08 62,63
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 64 31,97 14,28 28,30 44,73 57,52
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 64 31,98 14,19 28,33 57,78 72,52
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 64 31,78 13,95 28,01 59,22 72,20
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 64 31,63 13,99 27,89 53,21 66,03
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 128 31,97 14,21 28,23 51,14 65,77
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 128 31,83 14,00 28,05 57,25 68,34
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 128 31,82 14,21 28,14 48,42 60,78
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 128 32,08 14,09 28,34 52,47 65,67
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 128 31,79 14,13 28,29 49,99 61,82
a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 128 32,55 14,54 28,60 60,93 72,51
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 256 32,07 14,33 28,32 59,18 71,91
a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 256 32,69 14,71 28,84 49,08 62,63
a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 256 31,97 14,28 28,30 44,73 57,52
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