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Abstract
Evaluating Natural Language Generation001
(NLG) systems is a challenging task. Firstly,002
the metric should ensure that the generated003
hypothesis reflects the reference’s semantics.004
Secondly, it should consider the grammatical005
quality of the generated sentence. Thirdly, it006
should be robust enough to handle various007
surface forms of the generated sentence.008
Thus, an effective evaluation metric has to009
be multifaceted. In this paper, we propose010
an automatic evaluation metric incorporating011
several core aspects of natural language un-012
derstanding (language competence, syntactic013
and semantic variation). Our proposed metric,014
RoMe, is trained on language features such as015
semantic similarity combined with tree edit016
distance and grammatical acceptability, using017
a self-supervised neural network to assess018
the overall quality of the generated sentence.019
Moreover, we perform an extensive robustness020
analysis of the state-of-the-art methods and021
RoMe. Empirical results suggest that RoMe022
has a stronger correlation to human judgment023
over state-of-the-art metrics in evaluating024
system-generated sentences across several025
NLG tasks.026

1 Introduction027

Automatic generation of fluent and coherent nat-028

ural language is a key step for human-computer029

interaction. Evaluating generative systems such as030

text summarization, dialogue systems, and machine031

translation is challenging since the assessment in-032

volves several criteria such as content determina-033

tion, lexicalization, and surface realization (Liu034

et al., 2016; Dale and Mellish, 1998). For assess-035

ing system-generated outputs, human judgment is036

considered to be the best approach. Obtaining hu-037

man evaluation ratings, on the other hand, is both038

expensive and time-consuming. As a result, devel-039

oping automated metrics for assessing the quality040

of machine-generated text has become an active041

area of research in NLP.042

The quality estimation task primarily entails 043

determining the similarity between the reference 044

and hypothesis as well as assessing the hypoth- 045

esis for grammatical correctness and naturalness. 046

Widely used evaluation metrics such as BLEU (Pap- 047

ineni et al., 2002), METEOR (Banerjee and Lavie, 048

2005), and ROUGE (Lin, 2004) which compute 049

the word-overlaps, were primarily designed for 050

evaluating machine translation and text summa- 051

rization systems. Word-overlap based metrics, on 052

the other hand, are incapable of capturing the hy- 053

potheses’ naturalness and fluency. Furthermore, 054

they do not consider the syntactic difference be- 055

tween reference and hypothesis. In a different line 056

of research, word mover distance (WMD) (Kus- 057

ner et al., 2015a), BERTScore (Zhang et al., 2020) 058

and MoverScore (Zhao et al., 2019) compute word 059

embedding based similarity for evaluating system- 060

generated texts. Although these metrics employ the 061

contextualized representation of words, they do not 062

take the grammatical acceptability of the hypoth- 063

esis and the syntactical similarity to the reference 064

into account. 065

To address these shortcomings, we propose 066

RoMe, an automatic and robust metric for eval- 067

uating NLG systems. RoMe employs a neural clas- 068

sifier that uses the generated sentence’s grammati- 069

cal, syntactic, and semantic qualities as features to 070

estimate the quality of the sentence. Firstly, it cal- 071

culates the earth mover’s distance (EMD) (Rubner 072

et al., 1998) to determine how much the hypothesis 073

differs from the reference. During the computa- 074

tion of EMD, we incorporate hard word alignment 075

and soft-penalization constants to handle various 076

surface forms of words in a sentence, such as re- 077

peated words and the passive form of a sentence. 078

Secondly, using a semantically enhanced tree edit 079

distance, the difference in syntactic structures be- 080

tween the reference and hypothesis sentences is 081

quantified. Thirdly, the metric incorporates a bi- 082

nary classifier to evaluate the grammatical accept- 083
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ability of the generated hypotheses. Finally, the084

scores obtained from the preceding steps are com-085

bined to form a representation vector, which is086

subsequently fed into a self-supervised network.087

The network produces a final score, referred to as088

RoMe’s output which represents the overall quality089

of the hypothesis statement.090

We investigate the effectiveness of our pro-091

posed metric by conducting experiments on092

datasets from various domains of NLG such093

as knowledge graph based language generation094

dataset (KELM (Agarwal et al., 2021)), dialogue095

datasets (Eric et al., 2017; Chaudhuri et al., 2021),096

the NLG2017 challenge dataset (Shimorina et al.,097

2018), structured data to language generation098

dataset (BAGEL (Mairesse et al., 2010) and SFHO-099

TEL (Wen et al., 2015)). The capability of existing100

metrics to handle various forms of text has lately101

become a matter of debate in the NLP community102

(Ribeiro et al., 2020; Novikova et al., 2017; Liu103

et al., 2016). Hence, we conduct an extensive ro-104

bustness analysis to assess RoMe’s performance105

in handling diverse forms of system-generated sen-106

tences. To verify our claim, we design the analysis107

based on the text perturbation methods used in108

CHECKLIST (Ribeiro et al., 2020) and adversarial109

text transformation techniques from TextFooler (Jin110

et al., 2020) and TextAttack (Morris et al., 2020).111

Empirical assessment on benchmark datasets and112

the robustness analysis results exhibit that RoMe113

can handle various surface forms and generate an114

evaluation score, which highly correlates with hu-115

man judgment. RoMe is designed to function at the116

sentence level and can be used to evaluate English117

sentences in the current version of the implemen-118

tation. In the future versions, we plan to extend119

RoMe by including more languages. We released120

the code and the annotation tool that we used to get121

human annotation public 1.122

2 Preliminaries123

2.1 Earth Mover’s Distance124

The Earth Mover’s Distance (EMD) estimates the125

amount of work required to transform a probabil-126

ity distribution into another (Rubner et al., 1998).127

Inspired by the EMD, in NLP the transportation128

problem is adopted to measure the amount of work129

required to match the system generated hypothesis130

sentence with the reference sentence (Kusner et al.,131

2015b; Zhao et al., 2019). Let us define the ref-132

1The URL of the Github repository will appear here.

Figure 1: Illustrating an abstraction of the EMD.

erence as R = {r1, r2, ..., rp} and the hypothesis 133

asH = {h1, h2, ..., hq}, where ri and hj indicates 134

the i-th and j-th word of the reference and hypoth- 135

esis, respectively. The weight of the word ri and 136

hj are denoted as mi and nj respectively. Then, 137

the total weight distribution ofR andH is m∑ = 138∑p
i=1mi and n∑ =

∑q
j=1 nj respectively. Here, 139

the sentence-level and normalized TF-IDF score 140

of a word is considered as the word’s weight. For- 141

mally, EMD can be defined as: 142

EMD(H,R) =
minfij∈F(H,R)

∑p
i=1

∑q
j=1 dijfij

min(m∑, n∑)
(1) 143

where dij is the distance between the words ri and 144

hj in the space and F(H,R) is a set of possible 145

flows between the two distribution that the system 146

tries to optimize. In Equation 1, EMD(H,R) 147

denotes the amount of work required to match the 148

hypothesis with the reference. The optimization is 149

done following four constraints: 150

fij ≥ 0 i = 1, 2, ..., p and j = 1, 2, .., q,
q∑

j=1

fij ≤ mi i = 1, 2, ..., p,

p∑
i=1

fij ≤ nj j = 1, 2, ..., q,

p∑
i=1

q∑
j=1

fij = min(m∑, n∑)

(2) 151

Figure 1 depicts the EMD for a given hypothesis- 152

reference pair. 153

2.2 Syntactic Similarity and Tree Edit 154

Distance 155

In computational linguistics, dependency and con- 156

stituency trees are used to represent syntactic de- 157

pendencies between words in a sentence. Unlike 158

the constituency tree, a dependency tree can repre- 159

sent non-adjacent and non-projective dependencies 160

in a sentence, which frequently appear in spoken 161

language and noisy text. That leads us to prefer 162

dependency trees over constituency trees for evalu- 163

ating NLG output. 164
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Formally, a dependency tree is a set of nodes165

Ω = {w0, w1, ..., wk} and a set of dependency166

links G = {g0, g1, ..., gk}, where w0 is the imagi-167

nary root node and gi is an index into Ω represent-168

ing the governor of wi. Every node has exactly169

one governor except for w0, which has no gover-170

nor (Hall and Novák, 2010). Syntactic similarity171

between a pair of dependency trees can be esti-172

mated using several methods, such as graph cen-173

tralities and Euclidean distances (Oya, 2020). In174

our work, we exploit the Tree Edit Distance (TED)175

algorithm (Zhang and Shasha, 1989) to estimate176

syntactic similarity between reference and hypothe-177

sis. TED is typically computed on ordered labeled178

trees and can thus be used to compare dependency179

trees. The edit operations performed during the180

comparison of parsed dependency trees include181

Change, Delete, and Insert.

Figure 2: Visualization of the required edit operations
to transform TH to TR. The operations corresponds
to the following sequence: delete(node with label c),
insert(node with label c).182

Lets consider TH and TH be the parsed depen-183

dency trees of the hypothesis and reference, respec-184

tively. The operations required to transform one185

tree into another are visualized in Figure 2. In TED,186

an exact match between the nodes of the compared187

trees is performed to decide if any edit operation188

is required. In this work, the syntactic difference189

between hypothesis and reference is determined by190

the output of TED, which specifies the total number191

of edit operations.192

3 RoMe193

In RoMe, a neural network determines the final194

evaluation score given a reference-hypothesis pair.195

The network is trained to predict the evaluation196

score based on three features: semantic similar-197

ity computed by EMD, enhanced TED, and the198

grammatical acceptability score. We explain these199

features in the following subsections.200

3.1 Earth Mover’s Distance based Semantic201

Similarity202

During the computation of EMD, we employ Se-203

mantic Word Alignment and Soft-penalization tech-204

niques to tackle repetitive words and passive forms 205

of a sentence. We compute a distance matrix and a 206

flow matrix as described below and finally obtain 207

EMD utilizing Equation 1. 208

Semantic Word Alignment. We first align the 209

word pairs between reference and hypothesis based 210

on their semantic similarities. The alignment is 211

performed by computing all paired cosine similar- 212

ities while taking word position information into 213

account, as in (Echizen-ya et al., 2019). In contrast 214

to (Echizen-ya et al., 2019), we use contextualized 215

pre-trained word embedding from the language 216

model ALBERT (Lan et al., 2020). ALBERT uses 217

sentence-order prediction loss, focusing on mod- 218

eling inter-sentence coherence, which improves 219

multi-sentence encoding tasks. 220

The word alignment score is computed as fol- 221

lows: 222

A(ri, hj) =
~ri · ~hj

‖~ri‖‖ ~hj‖
· |q (i+ 1)− p (j + 1) |

pq
(3) 223

where ~ri and ~hj denote the contextualized word 224

embedding of ri and hj , respectively. The first 225

part of the right side of the equation computes the 226

cosine similarity between ~ri and ~hj , and the second 227

part calculates the relative position information as 228

proposed in (Echizen-ya et al., 2019).

Figure 3: An example word alignment matrix for the
reference sentence: "tesla motors is founded by elon
musk" and its passive form: "elon musk founded tesla
motors" is illustrated here. 229

Figure 3 depicts a matrix of word alignment 230

scores generated on an example pair of sentences. 231

This alignment strategy fails to handle repetitive 232

words where a word from the hypothesis may get 233

aligned to several words in the reference (see Fig- 234

ure 4). To tackle such cases, we restrict the word 235

alignment by imposing a hard constraint. In the 236

hard constraint, we prevent the words in the hypoth- 237

esis from getting aligned to multiple words in the 238

reference as illustrated by the dotted arrows in Fig- 239

ure 4. We denote the resulting set of hard-aligned 240

word pairs as Ahc. 241
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Figure 4: An adversarial example of a hypothesis con-
taining repetitive words.

Transport Distance. A distance matrix D is re-242

quired to compute the final EMD score. For each243

aligned pair (ri, hj) ∈ Ahc, where ~ri· ~hj
‖~ri‖‖ ~hj‖

> δ,244

the distance between ri and hj is computed as fol-245

lows:246

dij = 1.0− ~ri · ~hj
‖~ri‖‖ ~hj‖

· eγ·
|q(i+1)−p(j+1)|

pq (4)247

where dij ∈ D and δ is a confidence threshold248

found via hyper-parameter serach, γ ∈ [−1, 0] is249

a soft-penalization constant. For all the non-hard-250

aligned pairs and aligned pairs with value less than251

δ, the distance dij receives a maximum value of252

1.0. Intuitively, a lower value of dij implies that253

the word needs to travel a shorter distance in the254

transportation problem of EMD. In Equation 4,255

e
γ· |q(i+1)−p(j+1)|

pq works as a penalty where a higher256

position difference multiplied with the negative257

constant γ will results in low dij score. The role of258

γ is explained below.259

Soft-penalization. Existing metrics often im-260

pose hard penalties for words with different or-261

der than the reference sentence (Zhao et al., 2019;262

Echizen-ya et al., 2019). For instance, sentences263

phrased in the passive form obtain a very low score264

in those metrics. Addressing this issue, we intro-265

duce a soft-penalization constant γ = − |j−i|
max(p,q) in266

Equation 4 to handle the passive form of a sentence267

better. Lets consider a reference, "Shakespeare has268

written Macbeth" and the passive form of the sen-269

tence as hypothesis, "The Macbeth is written by270

Shakespeare". The word Shakespeare appears at271

the beginning of the reference and at the end of the272

hypothesis, thus the position difference is larger.273

To the words in such scenario, γ imposes a lower274

penalty as it divides the position difference by the275

length max(p, q).276

Finally, following the optimization constraints277

of Equation 2 we obtain the transportation flow278

F(H,R). For the optimized flow fij ∈ F(H,R),279

the final equation of EMD is as follows:280

EMD(H,R) =
minfij∈F(H,R)

∑p
i=1

∑q
j=1 dijfij

min(m∑, n∑)
(5)281

The semantic similarity between hypothesis and ref-282

erence is denoted asFsem = 1.0−EMD. The nor- 283

malized value of EMD is used to calculate Fsem. 284

3.2 Semantically Enhanced TED 285

To estimate the difference between the syntactic 286

structures of reference and hypothesis, we extend 287

the TED algorithm (Zhang and Shasha, 1989). The 288

original TED algorithm performs edit operations 289

based on an exact match between two nodes in 290

the dependency trees of hypothesis and reference. 291

In this work, we modify the TED algorithm and 292

compute a word embedding-based cosine similar- 293

ity to establish the equivalence of two nodes. Two 294

nodes are considered equal, if the cosine similar- 295

ity of their embedding representations exceeds the 296

threshold θThis allows the semantically enhanced 297

TED to process synonyms and restricts it from un- 298

necessary editing of similar nodes. We call the 299

resulting algorithm TED-SE. The normalized value 300

of TED-SE is denoted as Fted. We compute TED- 301

SE over the lemmatized reference and hypothesis 302

since lemmatized text exhibits improved perfor- 303

mance in such use cases (Kutuzov and Kuzmenko, 304

2019). The lemmatizer and dependency parser 305

from Stanza (Qi et al., 2020) is utilize to obtain the 306

tree representation of the text. More experimental 307

detail such as the tree-transformation is provided 308

in Appendix A.1. 309

3.3 Grammatical Acceptability Classification 310

Linguistic competence assumes that native speak- 311

ers can judge the grammatical acceptability of a 312

sentence. However, system-generated sentences 313

are not always grammatically correct or acceptable. 314

Therefore, we train a binary classifier on the Cor- 315

pus of Linguistic Acceptability (CoLA) (Warstadt 316

et al., 2018), predicting the probability that the hy- 317

pothesis is grammatically acceptable. CoLA is a 318

collection of sentences from the linguistics liter- 319

ature with binary expert acceptability labels con- 320

taining over 10k examples (Warstadt et al., 2018). 321

The classifier is based on BERT-large (Devlin et al., 322

2019) and trained to optimize binary cross-entropy 323

loss. A text sequence is fed as input and as out- 324

put the classifier produces the class membership 325

probability (grammatically acceptable, grammat- 326

ically unacceptable). The model achieves an ac- 327

curacy of 80.6% on the out-of-domain CoLA test 328

set (Warstadt et al., 2018, p. 8). We donote the 329

score from the classifier as the feature Fg, which 330

is used to train a neural network (see §3.4). Model 331

parameters can be found in Appendix A.2. 332
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Settings Metrics BAGEL SFHOTEL
Info Nat Qual Info Nat Qual

BLEU-1 0.225 0.141 0.113 0.107 0.175 0.069
BLEU-2 0.211 0.152 0.115 0.097 0.174 0.071
METEOR 0.251 0.127 0.116 0.163 0.193 0.118
BERTScore 0.267 0.210 0.178 0.163 0.193 0.118
SMD+W2V 0.024 0.074 0.078 0.022 0.025 0.011

Baselines SMD+ELMO+PMEANS 0.251 0.171 0.147 0.130 0.176 0.096
SMD+BERT+MNLI+PMAENS 0.280 0.149 0.120 0.205 0.239 0.147
WMD-1+ELMO+PMEANS 0.261 0.163 0.148 0.147 0.215 0.136
WMD-1+BERT+PMEANS 0.298 0.212 0.163 0.203 0.261 0.182
WMD-1+BERT+MNLI+PMEANS 0.285 0.195 0.158 0.207 0.270 0.183

RoMe (Fasttext) 0.112 0.163 0.132 0.172 0.190 0.231
RoMe RoMe (BERT) 0.160 0.251 0.202 0.212 0.283 0.300

RoMe (ALBERT-base) 0.162 0.259 0.222 0.231 0.295 0.315
RoMe (ALBERT-large) 0.170 0.274 0.241 0.244 0.320 0.327

Table 1: Spearman correlation (ρ) scores computed from the metric scores
with respect to the human evaluation scores for BAGEL and SFHOTEL
datasets. Baseline model’s results are reported form (Zhao et al., 2019). Here,
Info, Nat and Qual referes to informativeness, naturalness, and quality, re-
spectively.

Figure 5: Correlation between the
explored metrics.

3.4 Final Scorer Network333

A feed-forward neural network takes the previously334

computed features as input and learns a function335

f(Fsem;Fted;Fg) in the final step, yielding a final336

output score in the [0, 1] interval. The output score337

is regarded as the overall quality of the hypoth-338

esis. Following a self-supervised paradigm, the339

network is trained on artificially generated training340

samples from the KELM dataset (Agarwal et al.,341

2021). We randomly choose 2500 sentence pairs342

from the KELM dataset and generate 2500 more343

negative samples by randomly augmenting the sen-344

tences using TextAttack (Morris et al., 2020) and345

TextFooler (Jin et al., 2020). Following a similar346

approach, we additionally generate 1000 test sen-347

tence pairs from the KELM dataset. Overall, we348

then have 5000 training and 1000 test examples.349

The network is a simple, two-layered feed-forward350

network optimized with stochastic gradient descent351

using a learning rate of 1e-4.352

4 Experiments and Analysis353

4.1 Data354

To assess RoMe’s overall performance, first, we355

benchmark on two language generation datasets,356

BAGEL (Mairesse et al., 2010) and SFHO-357

TEL (Wen et al., 2015), containing 404 and 796358

data points respectively. Each data point contains359

a meaning representation (MR) and a system gen-360

erated output. Human evaluation scores of these361

datasets are obtained from (Novikova et al., 2017).362

Furthermore, we evaluate dialogue system’s out-363

puts on Stanford in-car dialogues (Eric et al., 2017)364

containing 2,510 data points and the soccer dia-365

logue dataset (Chaudhuri et al., 2019) with 2,990 366

data points. Each data point of these datasets in- 367

cludes a user query, a reference response, and a sys- 368

tem response as a hypothesis. Each of the datasets 369

comes with three system outputs for each of the dia- 370

logue data points. We use the human annotated data 371

provided by (Chaudhuri et al., 2021). Moreover, 372

we evaluate the metric on the system generated 373

outputs from the NLG2017 challenge (Shimorina 374

et al., 2018). 375

Finally, we randomly sample 200 data points 376

from KELM (Agarwal et al., 2021) and perturb 377

them with adversarial text transformation tech- 378

niques, for conducting robustness analysis. Three 379

annotators participated in a data annotation pro- 380

cess (two of them are from a CS and one from a 381

non-CS background), where they annotated the per- 382

turbed data. We provided the annotators with an 383

annotation tool where the tool displays the refer- 384

ence sentence and the system output for each data 385

point. The annotators were asked to choose a value 386

from a range of [1,3], for each of the categories: 387

Fluency, Semantic Correctness, and Grammatical 388

correctness. In this case, the values stand for 1: 389

poor, 2: average, and 3: good. The overall inter- 390

annotator agreement score, κ is 0.78. The annota- 391

tion tool and its interface are discussed in detail in 392

Appendix A.3. 393

4.2 Baselines 394

We select both the word-overlap and embedding- 395

based metrics as strong baselines. For the experi- 396

ment and robustness analysis we choose BLEU (Pa- 397

pineni et al., 2002), METEOR (Banerjee and Lavie, 398

2005), BERTScore (Zhang et al., 2020) and Mover- 399
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Text EMD TED-SE Grammar RoMe

R Munich is located at the southern part of Germany.
0.83 1.0 0.94 0.80H Munich is situated in the south of Germany.

R Tesla motors is founded by Elon Musk.
0.70 0.85 0.96 0.69H Elon Musk has founded Tesla Motors.

R Elon musk has founded tesla motors.
0.01 0.50 0.17 0.11H Elon elon elon elon elon founded tesla tesla tesla.

Table 2: Component-wise qualitative analysis.

Text BLEU BERTScore MoverScore RoMe

R James Craig Watson, who died from peritonitis, discovered 101 Helena.
0.0 0.81 0.54 0.15H The Polish Academy of Science is regionserved.

R 1001 gaussia was formerly known as 1923 oaa907 xc.
0.0 0.79 0.51 0.13H The former name for the former name for 11 gunger is 1923. One of the former name is 1923.

Table 3: Qualitative analysis.

Dialogue dataset Models correlation SentBLEU METEOR BERTScore MoverScore RoMe
Mem2Seq ρ 0.07 0.35 0.40 0.49 0.51

In-car dialogue GLMP ρ 0.04 0.29 0.32 0.31 0.32
DialoGPT ρ 0.17 0.60 0.62 0.73 0.78
Mem2Seq ρ 0.03 0.08 0.08 0.11 0.11

Soccer dialogue GLMP ρ 0.02 0.08 0.03 0.12 0.14
DialoGPT ρ 0.04 0.26 0.31 0.39 0.43

Table 4: Metrics Spearman’s correlation coefficient (ρ) with human judgment
on dialogue datasets.

Approaches Correlation (ρ)
RoMe with EMDstd 64.8

+ EMDalign 66.0
+ EMDsoft 66.9
+ TED-SE 69.1
+ Grammar 70.1

Table 5: Ablation Study.

Score (Zhao et al., 2019). We evaluate the metrics400

on the sentence level to make a fair comparison.401

4.3 Results402

Table 1 shows the performance of different metrics403

on data to language generation dataset (BAGEL404

and SFHOTEL). In both the BAGEL and SFHO-405

TEL, a meaning representation (MR), for instance406

inform(name=’hotel drisco’,price_range=’pricey’)407

is given as a reference sentence where the system408

output is: the hotel drisco is a pricey hotel, in this409

case. Although, RoMe outperformed the baseline410

metrics in evaluating the informativeness, natural-411

ness and quality score, the correlation scores are412

still low with respect to the human judgement, be-413

cause the MR is the reference statement in this414

case. For all the experiments, we take the normal-415

ized human judgement scores. We firstly evaluate416

our model by using Fasttext (Bojanowski et al.,417

2017) word embedding. We notice a significant im-418

provement in results when we replace the Fasttext419

embedding with contextualized word embedding420

obtained from BERT (Devlin et al., 2019). Fur-421

thermore, we experiment with multiple language422

models and finally, we reach to our best performing423

model with ALBERT-large (Lan et al., 2020). In424

all the experiments, we report the results of RoMe,425

using ALBERT-large (Lan et al., 2020). In Ta-426

ble 1, WMD and SDM refer to word mover distance427

and sentence mover distance respectively, used in428

MoverScore. We report the results of WDM and429

SMD from (Zhao et al., 2019).430

Table 4 shows the evaluation results on dialogue431

datasets. In case of in-car dataset, all the non-word- 432

overlap metric achieved a better correlation score 433

than the word-overlap based metrics. Because, in 434

dialogue systems, the generated responses are eval- 435

uated based on the overall semantic meaning and 436

the correctness of the response, the cases where the 437

word-overlap-based metrics failed. Overall, RoMe 438

achieves higher correlation scores in both the in-car 439

and soccer dialogue datasets in evaluating multiple 440

dialogue system outputs. 441

Finally, we evaluate outputs from 9 different 442

systems participated in the NLG2017 challenge 443

and report the correlation scores in Table 6. Al- 444

though, RoMe achieves the best correlation in most 445

of the cases, we also notice a comparable and in 446

some cases better results achieved by the Mover- 447

Score (Zhao et al., 2019). 448

To further delve down into the metrics, a corre- 449

lation graph is plotted in Figure 5. The graph is 450

constructed from the scores of the metrics from the 451

BAGEL dataset. As observed from the correlation 452

graph, we can infer that our proposed metric, RoMe 453

correlates highly with the MoverScore. However, 454

since RoMe handles both the syntactic and seman- 455

tic properties of the text it achieved better results 456

in all the datasets across different NLG tasks. 457

4.4 Ablation Study 458

We conduct an ablation study to investigate the 459

impact of the RoMe’s components on its overall 460

performance. Table 5 shows the incremental im- 461

provement in Spearman’s correlation coefficient, 462

that each of the components brings to the Met- 463
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Metrics BLEU METEOR BERTScore MoverScore RoMe
Systems ρ r τ ρ r τ ρ r τ ρ r τ ρ r τ

ADAPT 0.38 0.39 0.27 0.57 0.58 0.41 0.61 0.72 0.50 0.68 0.73 0.49 0.72 0.70 0.51
Baseline 0.35 0.42 0.26 0.49 0.49 0.33 0.49 0.50 0.35 0.59 0.61 0.43 0.53 0.53 0.37
melbourne 0.32 0.31 0.21 0.35 0.35 0.24 0.33 0.33 0.26 0.40 0.39 0.28 0.44 0.50 0.35
Pkuwriter 0.37 0.38 0.28 0.47 0.47 0.31 0.48 0.53 0.38 0.57 0.56 0.39 0.58 0.56 0.39
tilburg-nmt 0.25 0.20 0.13 0.26 0.26 0.18 0.38 0.39 0.30 0.49 0.50 0.36 0.64 0.68 0.50
tilburg-pipe 0.38 0.41 0.30 0.52 0.43 0.30 0.53 0.48 0.33 0.62 0.50 0.35 0.38 0.42 0.27
tilburg-smt 0.25 0.20 0.13 0.21 0.19 0.13 0.33 0.30 0.25 0.40 0.38 0.27 0.50 0.51 0.36
upf-forge 0.14 0.13 0.08 0.13 0.11 0.08 0.26 0.25 0.19 0.27 0.27 0.18 0.42 0.42 0.30
vietnam 0.73 0.80 0.62 0.87 0.90 0.72 0.81 0.76 0.70 0.90 0.78 0.73 0.84 0.89 0.83

Table 6: Metrics correlation with human judgment on system outputs from the NLG2017 challenge. Here, r:
Pearson correlation co-efficient, ρ: Spearman’s correlation co-efficient, τ : Kendall’s Tau.

Metrics BLEU METEOR BERTScore MoverScore RoMe
Perturbation methods f s g f s g f s g f s g f s g
Entity replacement 0.06 0.04 0.06 0.09 0.09 0.08 0.11 0.07 0.09 0.16 0.13 0.11 0.16 0.19 0.14
Adjective replacement 0.07 0.06 0.07 0.09 0.13 0.11 0.11 0.11 0.13 0.13 0.17 0.16 0.18 0.23 0.18
Random word replacement 0.05 0.06 0.03 0.06 0.06 0.05 0.11 0.10 0.08 0.11 0.13 0.09 0.15 0.15 0.23
Text transformation 0.03 0.01 0.03 0.08 0.09 0.07 0.13 0.15 0.15 0.15 0.18 0.19 0.18 0.19 0.21
Passive form 0.02 0.01 0.04 0.08 0.10 0.08 0.19 0.24 0.21 0.23 0.24 0.22 0.25 0.28 0.28

Table 7: Metrics Spearman correlation score against human judgment on perturbed texts. Here, f : fluency, s:
semantic similarity, g: grammatical correctness.

ric. We randomly choose 100 system-generated464

dialogue utterances from the datasets used in Ta-465

ble 4, since they contain sentences in passive form466

and repetitive words. The correlation of standard467

EMD with the human judgement is denoted as468

"RoMe score with EMDstd". Inclusion of semantic469

word alignment (EMDalign) and soft-penalization470

(EMDsoft) further improved the correlation score.471

Till this part of the ablation, the EMD score was472

directly compared to human judgement without the473

use of neural classifier to obtain the correlation474

score. Moreover, the correlation score improved475

significantly when the semantically enhanced TED476

and grammatical acceptability were introduced as477

features in addition to the EMD score to a neural478

classifier. We hypothesize that the inclusion of lan-479

guage features related to grammar and syntactic480

similarity helped the neural network achieve better481

performance.482

4.5 Qualitative Analysis483

RoMe is developed in a modular fashion, so it may484

be used to generate scores for semantic similarity,485

syntactic similarity, and grammatical acceptabil-486

ity separately. Table 2 shows the component-wise487

score and the final score of RoMe on three example488

data. In the first example, RoMe demonstrates its489

ability of capturing similar sentences by obtaining490

high score. The scores from several components in491

the second example demonstrate RoMe’s ability to492

handle passive form. The final example in Table 2493

demonstrates that RoMe penalizes sentence with494

repetitive word.495

Table 3 shows the performance of the three base-496

lines and RoMe in handling erroneous cases. Al-497

though the first example contain completely differ- 498

ent hypothesis and the second case with repetitive 499

hypothesis both BERTScore and MoverScore ex- 500

hibit high score. On the contrary, BLEU score is 501

unable to handle such scenarios. However, by ob- 502

taining low scores, RoMe demonstrates its ability 503

to understand such cases better. 504

4.6 Robustness Analysis 505

In this section, we design five test cases to stress 506

the models capability. For the analysis purpose, we 507

randomly sample data from KELM (Agarwal et al., 508

2021) and BAGEL (Mairesse et al., 2010). Then, 509

the annotators annotate the sampled data on the fol- 510

lowing criteria: fluency, semantically correctness, 511

grammatically correctness. 512

Case 1: Entity Replacement. We perform In- 513

variance test (INV) from (Ribeiro et al., 2020) to 514

check the metrics’ NER capability in the text qual- 515

ity assessment. In this approach, we replace the 516

entities present in the text partially or fully with 517

other entities in the dataset. For instance, "The 518

population of Germany" gets transformed to "The 519

population of England". 520

Case 2: Adjective Replacement. Similar to the 521

entity replacement, in this case we choose 100 data 522

from the KELM dataset that contain adjective in 523

them. Then we replace the adjectives with a syn- 524

onym and an antonym word to generate two sen- 525

tences from a single data. For instance, the adjec- 526

tive different is replaced with unlike and same. At 527

the end of this process, we obtain 200 data. 528
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Case 3: Random word replacement. We re-529

place words in different positions in the text, with530

a generic token AAA following the adversarial text531

attack method from (Morris et al., 2020). For in-532

stance, the sentence, "x is a cheap restaurant near533

y" is transformed into "x is a cheap restaurant AAA534

AAA". We select the greedy search method with the535

constraints on stop-words modification from the536

TextAttack tool. This approach generates repetitive537

words in the text.538

Case 4: Text transformation. We leverage539

TextFooler (Jin et al., 2020) to replace two words540

in the texts by similar words, keeping the semantic541

meaning and grammar preserved.542

Case 5: Passive Forms. In this case, we ran-543

domly choose 200 data from the KELM (Agarwal544

et al., 2021) dataset where the system generated545

responses are in passive form.546

From the results of robustness analysis in Ta-547

ble 7, it is evident that almost all the metrics obtain548

very low correlation scores with respect to human549

judgment. Word-overlap based metrics such as550

BLEU and METEOR mostly suffer from it. Al-551

though, RoMe achieves higher correlation scores552

in most of the cases, there are still scope for im-553

provement in handling the fluency of the text better.554

Text perturbation techniques used to design the test555

cases often generate disfluent texts. In some cases,556

the texts’ entities or subjects get replaced by words557

from out of the domain. From our observation, we558

hypothesize that handling keywords such as entities559

can lead to a better correlation score.560

5 Related Work561

A potentially good evaluation metric is one that cor-562

relates highly with human judgment. Among the563

unsupervised approaches, BLEU (Papineni et al.,564

2002), METEOR (Banerjee and Lavie, 2005) and565

ROUGE (Lin, 2004) are the most popular evalua-566

tion metrics traditionally used for evaluating NLG567

systems. Although these metrics perform well in568

evaluating machine translation (MT) and summa-569

rization tasks, (Liu et al., 2016) shows that none of570

the word overlap based metrics is close to human571

level performance in dialogue system evaluation572

scenarios. In a different line of work, word embed-573

ding based metrics are introduced for evaluating574

NLG systems (Mikolov et al., 2013; Matsuo et al.,575

2017). Several unsupervised automated metrics576

were proposed that leverage EMD; one of them577

is Word Mover’s distance (WMD) (Kusner et al., 578

2015b). Later, (Matsuo et al., 2017) proposed an 579

evaluation metric, incorporating WMD and word- 580

embedding, where they use word alignment be- 581

tween the reference and hypothesis to handle the 582

word-order problem. Recently, (Echizen-ya et al., 583

2019) introduced an EMD-based metric WE_WPI 584

that utilizes the word-position information to tackle 585

the differences in surface syntax in reference and 586

hypothesis. 587

Several supervised metrics were also proposed 588

for evaluating NLG. ADEM (Lowe et al., 2017) 589

uses a RNN-based network to predict the human 590

evaluation scores. With the recent development of 591

language model-based pre-trained models (Zhang 592

et al., 2020) proposed BERTScore, which uses a 593

pre-trained BERT model for evaluating various 594

NLG tasks such as machine translation and im- 595

age captions. Recently, (Zhao et al., 2019) pro- 596

posed MoverScore, which utilizes contextualized 597

embedding to compute the mover’s score on word 598

and sentence level. A notable difference between 599

MoverScore and BERTScore is that the latter relies 600

on hard alignment compared to soft alignments in 601

the former. Unlike the previous methods, RoMe 602

focuses on handling the sentence’s word repeti- 603

tion and passive form when computing the EMD 604

score. Furthermore, RoMe trains a classifier by 605

considering the sentence’s semantic, syntactic, and 606

grammatical acceptability features to generate the 607

final evaluation score. 608

6 Conclusion 609

We have presented RoMe, an automatic and ro- 610

bust evaluation metric for evaluating a variety of 611

NLG tasks. The key contributions of RoMe include 612

1) EMD-based semantic similarity, where hard 613

word alignment and soft-penalization techniques 614

are employed into the EMD for tackling repeti- 615

tive words and passive form of the sentence, 2) 616

Semantically enhanced TED that computes the 617

syntactic similarity based on the node-similarity 618

of the parsed dependency trees, 3) Grammatical 619

acceptability classifier, which evaluates the text’s 620

grammatical quality, and 4) Robustness analysis, 621

which assess the metric’s capability of handling 622

various form of the text. Both quantitative and 623

qualitative analyses exhibit that RoMe highly cor- 624

relates with human judgment. We intend to extend 625

RoMe by including more languages in the future. 626
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A Appendix821

A.1 Dependency Tree representation for Tree822

Edit Distance calculation823

This section describes the process of preparing a824

dependency tree from a sentence, for computing825

TED-SE. Let us consider a reference statement "the826

aidaluna is operated by aida cruises which are lo-827

cated at rostock." and a hypothesis, "aida cruises,828

which is in rostock, operates aidaluna.". First, a de-829

pendency tree is parsed utilizing the Stanza depen-830

dency parser (Qi et al., 2020) and then converted to831

an adjacency list. The adjacency list contains a key-832

value pair oriented data structure where each key833

corresponds to a node’s index in the tree, and the834

value is a list of edges on which the head node is835

incident. Figure 6 shows the dependency trees and836

their corresponding adjacency lists for the given ref-837

erence and hypothesis. List of nodes and adjacency838

lists are then fed into the TED-SE algorithm to cal-839

culate semantically enhanced tree edit distance as840

described in §3.3.841

A.2 Model Parameters: Grammatical842

acceptability classifier843

Table 8 shows the parameters used in BERT-844

base (Devlin et al., 2019) based binary classifier for845

computing grammatical acceptability (discussed846

in §3.3).

Parameters Values

# of attention heads 12
# of hidden layers 12
Hidden size 768
Hidden layer dropout 0.1
Layer norm epsilon 1e-12
Maximum positional embedding 512
Activation function GELU

Table 8: Training parameters.

847

A.3 Annotation Tool848

For all the annotation processes, we use the annota-849

tion tool shown in Figure 7. The tool is developed850

using Python programming language. Annotators851

can load their data into the tool in JSON format by852

selecting the Load Raw Data button. An example853

annotation step is shown in Figure 7. The reference854

and hypothesis sentences are displayed in differ-855

ent text windows. The annotators were asked to856

annotate the data based on Fluency, Semantically857

correctness and Grammar. Annotators can choose858

a value on a scale of [1,3] for each category, from 859

the corresponding drop-down option. Finally, the 860

annotated text can be saved for evaluation using 861

the save button, which saves the annotated data in 862

JSON format. 863

A.4 Hyper-parameter Settings 864

We use δ = 0.6 and θ = 0.65 in §3.1. Best values 865

are found by a hyper-parameter search from a range 866

of [0,1.0] with an interval of 0.1. RoMe obtained 867

the best result by utilizing ALBERT-large (Lan 868

et al., 2020) model with 18M parameters and 24 869

layers. Furthermore, we use the English word em- 870

bedding of dimension 300 to obtain results from 871

Fasttext (Bojanowski et al., 2017) throughout the 872

paper. We use a singe GPU with 12GBs of memory 873

for all the evaluations. 874
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Figure 6: Dependency trees for reference and hypothesis, pre-processed for the TED calculation.

Figure 7: The annotation tool used by the annotators.
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