
1

A Transform Coding Strategy

for Dynamic Point Clouds
Simone Milani Member, IEEE, Enrico Polo, Simone Limuti

Abstract—The development of real-time 3D sensing devices
and algorithms (e.g., multiview capturing systems, Time-of-Flight
depth cameras, LIDAR sensors), as well as the widespreading of
enhanced user applications processing 3D data, have motivated
the investigation of innovative and effective coding strategies
for 3D point clouds. Several compression algorithms, as well
as some standardization efforts, has been proposed in order to
achieve high compression ratios and flexibility at a reasonable
computational cost.

This paper presents a transform-based coding strategy for
dynamic point clouds that combines a non-linear transform for
geometric data with a linear transform for color data; both
operations are region-adaptive in order to fit the characteristics
of the input 3D data. Temporal redundancy is exploited both
in the adaptation of the designed transform and in predicting
the attributes at the current instant from the previous ones.
Experimental results showed that the proposed solution obtained
a significant bit rate reduction in lossless geometry coding and
an improved rate-distortion performance in the lossy coding of
color components with respect to state-of-the-art strategies.

Index Terms—dynamic point cloud compression, cellular au-
tomata, transform coding, octree, voxel color

I. INTRODUCTION

The recent development of real-time 3D acquisition devices

and algorithms has allowed the inclusion of dynamic three-

dimensional models in a wide range of applications, span-

ning from augmented reality to autonomous navigation. This

availability has also highlighted a new challenging problem

to the attention of researchers: enabling effective and versatile

fruition of such contents. In fact, the amount of generated

data tends to be quite large and heterogeneous, depending

on the acquiring devices or algorithms, as well as on the

target applications. As a matter of fact, several efforts have

been recently entailed to investigate new coding solutions that

enable an effective and versatile compression and transmission

of 3D visual information.

Multiview-plus-depth video sequences are among the first

3D visual signals to be considered. They consist in low-

level 2D video and depth signals from 3D scenes that can

be efficiently compressed using the multiview extensions of

traditional video coding schemes (e.g., MV-HEVC [1]). Such

systems have recently been applied to the compression of light-

field image and video signals, although the efficiency of these

data representations tend to be limited when referring to single

3D objects. For this reason, single dynamic 3D models have

been so far represented using either polygonal meshes [2] or

The authors are with University of Padova, Dept. of Information Engineer-
ing, via Gradenigo 6/B, 35131 Padova, Italy, e-mail: simone.milani@unipd.it,
{enrico.polo,simone.limuti}@studenti.unipd.it. This work has been partially-
supported by the POR-FESR project ”Rebuilding The Past” and by the SID
2018 project ”SartreMR” prot. BIRD187839.

Media server

Base layer

Enhancement layer 1

Enhancement layer 2

Fig. 1. Streaming of a dynamic 3D content in a mixed or augmented reality
application for the sequence longdress.

point clouds, along with their associated color information.

Meshes represent surfaces very efficiently, but they are not

robust to noise and other artifacts, which are typically gener-

ated in live 3D captures. Moreover, the creation of high quality

3D meshes requires significant amounts of calculation because

of polygonal fitting and refining operations.

On the other hand, dynamic point clouds (PCs) provide a

less effective representation of 3D surfaces, which are some-

times approximated by sparse sets of 3D points depending

on the acquisition systems. However, such models are less

sensitive to noise and easier to generate in real time: most

of the 3D sensing devices (e.g., Time-of-Flight sensors [3],

LIDAR [4], etc.) are able to acquire a dynamic point cloud

at significant acquisition rate (about 30 frame/s). From these

premises, recent works have focused their attention on the

compression and visualization of PCs [5], [6]; on Oct. 2017,

MPEG-I committee has started an ongoing standardization

activity aimed at defining a coding format (lossless and lossy)

for dynamic point cloud [7].

The need for versatility and efficiency has focused many

of the investigation efforts towards hierarchical and scalable

coding solutions [8]. The same PC model needs to be deployed

to different terminals with heterogeneous upload and download

capacities (see the example of Fig. 1 reporting the streaming of

a dynamic 3D content in a mixed or augmented reality appli-

cation). Moreover, the original PC can present different levels

of sparsity depending on the characteristics of the acquiring

device or algorithm (as well as on the peculiarities of the object

itself). Such requirements can be satisfied by a scalable coding

solution that compresses the acquired 3D points into a layered

stream enabling at the end terminal an increasingly-refinable

reconstruction of the transmitted models.

2

This paper proposes a transform-based scalable compression

solution for dynamic PCs. The input point cloud is quantized

into a voxel grid, where octants of 2 × 2 × 2 voxels are

processed hierarchically. The main innovation proposed by

the current approach relies on the coding strategy for the

geometry component. Octets of voxels are reversibly trans-

formed by a context-based binary 3D Cellular Automata (CA)

that was tailored on an adaptive binary arithmetic coder and

adapts itself to the processed content. The color attributes

are coded using the a simplified version of the well-known

region-adaptive transform in [9]. The geometry coding strategy

proves to be quite efficient when compared with state-of-the-

art solutions like TMC1 or PCL. Indeed, for a given bit rate,

the reconstructed point clouds present a higher quality at the

expense of a limited increase in the computational load.

In the following, Section II overviews the main recently

published works on voxel coding, while Section III shows

how voxel volumes can be modelled using CA. Section IV

describes the proposed coding solution, whose performance is

measured by the experimental results reported in Section VII.

Section VIII draws the final conclusions.

II. RELATED WORKS

Nowadays, a dynamic 3D model can be represented by a

wide variety of different formats, such as multiview and depth

videos, lighfield datas, dynamic meshgrids or point clouds.

Among these, PCs have proved to be effective in terms of

robustness to noise and effortless processability [10]. This type

of 3D model can be generated by different 3D sensors and

algorithms, such as Time-of-Flight (ToF) or structured-light

depth sensors, laser scanners, LIDARs, etc. Unfortunately,

such representation proves to be highly inefficient in terms

of storage space since a single point cloud model requires

large amount of bits to be stored after its acquisition. To deal

with this, several compression strategies have been analyzed

during the last years.

A few initial solutions adopted a 2D wavelet transform

based scheme [11] or a multi-resolution decomposition of

the 3D points [12]. Nevertheless, the need of adapting the

coded bit stream to heterogeneous devices and transmission

capacities have focused the research efforts towards scalable

solutions [13]. One of the first to be presented was based

on voxelizing the volume occupied by the model and ap-

plying a hierarchical octree decomposition [14]. Such ap-

proaches divide the object volume into a voxel grid, where

the state of each element or voxel g(x, y, z) (located at

coordinates (x, y, z)) depends on whether the voxel contains

points (g(x, y, z) = 1) or not (g(x, y, z) = 0). This voxelized

geometry can then be compressed by octree-based strategies

[14], [6] into several quality layers which allow reconstructing

the original 3D model at different Level-Of-Details (LODs).

In fact, the initial voxel volume g(x, y, z) is divided into

8 equally-sized subvolumes. A flag bit signals in the bit

stream for every subvolume whether it contains some points

to be coded. In case no points can be found, recursion stops.

An example is reported in Fig. 2. This hierarchical division

permits creating a layered bitstream that enables several partial

reconstructions at different resolutions of the original volume

(whenever the decoding process stops at one of the upper

levels of the coding tree). Note also that different parts of the

3D model can be reconstructed at different LODs allowing

a computationally-effective visualization for large point cloud

models [15].

This partitioning is very simple to obtain, requires a limited

computational effort [16], and can be employed to code

different types of data and attributes associated to locations

(x, y, z) such that g(x, y, z) = 1. Examples of side attributes

can be the color information1 ic(x, y, z) [14], [17], normals2

nd(x, y, z) or roll, pitch, yaw data (available in point clouds

acquired by a LIDAR sensor), to mention some of them.

The knowledge of the geometry information g(x, y, z) permits

reducing the amount of bits to be coded for each additional

attribute components [17].

Later approaches have tried to improve the efficiency of

octree decomposition by adopting a dynamic depth adaptation

whenever no further subdivisions are required [18]. Moreover,

computing the statistics of voxel states permit reordering

scanning path of voxels in order to minimize the size of

the coded bit rate. The solution reported in [19] scans voxel

values according to different orders in order to maximize

the probability of long sequences of equal occupancy flags.

Probability can also be used to optimize the entropy coding

algorithm as [20] suggests. Other works combine the octree

solution with graph-based transforms [17], [21] in order to

decorrelate the signal.

In [9], a region-adaptive transform is introduced in order

to effectively compress color information. Transform based

approaches have also been applied to non-discrete point cloud

by adopting volumetric transforms [22].

Whenever multiple PC are acquired along time, it is pos-

sible to exploit the redundancy between temporally-adjacent

acquisitions. Naming gt(x, y, z) the 3D point cloud acquired

at time t and ic,t(x, y, z) the corresponding color attributes,

their values prove to be highly-correlated with those from

previous acquisitions, and therefore, the efficiency of the

coding process could significantly improve. Unfortunately,

using such information to reduce the amount of coded bits has

proved to be a tricky task. Block-based temporal prediction is

quite ineffective when applied to dynamic voxelized models.

The motion of different object parts can be quite complex

(and therefore, hardly-modelled by block displacements), and

the number of occupied voxel can significantly change at

different instants [23]. For these reasons, most of the pro-

posed approaches perform a motion compensation in the 3D

point cloud domain [10], [24] before the voxelization. The

corresponding 3D points at different instants are mapped via

an iterative 3D registration, e.g., using Iterative Closest Point

(ICP) algorithm [25]. Then, the difference is voxelized and

coded. Other solutions perform a sort of soft voxel prediction

by compressing the current voxelized volume via an arithmetic

coding where contexts have been computed on the previous

voxel volume [23].

1The variables ic(x, y, x), with c = R,G,B or c = Y, U, V , denote the
three RGB or YUV color components associated to (x, y, z), respectively.

2In this case, the variable d = x, y, z is associated to the axis.

3

gt
3(u,v,w)

gt
5(u,v,w)

gt
6(u,v,w)

gt
7(u,v,w)

gt
8(u,v,w)

gt
10(u,v,w)

… … …

Fig. 2. Progression of LODs for the sequence longdress.

According to these premises, more efficient coding strate-

gies need to be investigated; preliminary results show that

some effective solutions can be found among transform-based

coding. Transform-based compressors [17], [21], [9] have been

targeting color information since traditional transforms work

well on integer or real data. When dealing with binary values,

the possibilities of energy concentration are largely reduced

and compression becomes harder. The work in [26] introduces

a non-linear reversible transform operating on volumes of

binary data, which are modelled as lattices of Cellular Au-

tomata. The proposed solution extends the previous strategies

designed for binary images [27] and permits obtaining higher

compression gains with respect to existing solutions. Such

approach has been extended to the temporal dimension in

the following paper [28]. The current paper improves the

performance of these solutions by designing spatially and

temporally adaptive transforms tailored on the point cloud data

to be compressed.

III. TRANSFORM-BASED CODING OF BINARY VOXELS

USING A CELLULAR AUTOMATA MODELLING

The proposed solution implements a transform-based coding

schemes using two non-linear transformations of the input vox-

els and attributes. The adopted scheme inherits the hierarchical

architecture of octree coding, i.e., decomposing gt(u, v, n)
and ic,t(u, v, w) into multiple volumes at different spatial

resolutions.

Experimental results showed that it is possible to achieve

significant compression gains by tailoring the adopted trans-

form to the statistics of the data and the final arithmetic

coder. This can be achieved by designing a context-adaptive

transform that changes depending on the configuration of the

neighbouring blocks. The design strategy is one of the major

novelties presented by this work and the analysis reported in

Appendix A proves its optimality with respect to the entropy

measurements of bit statistics.

Naming grt (u, v, w) the voxel volume associated to res-

olution r (or LOD r), it is possible to use the values of

gr−1
t (u, v, w) to code grt (u, v, w) (and analogously, ir−1

c,t can

be used to compress irc,t(u, v, w)). The modelling that pa-

rameterizes such operations will be described in the following

paragraphs.

A. Modelling 3D voxel volumes as Cellular Automata lattices

Assuming that the input point cloud is uniformly-quantized

into regular cells, the voxel volume grt (u, v, w) at instant t

s sΠ

255 1

00

15 17

85
3

Fig. 3. Example of CA block transform.

(u, v, w = 0, . . . , 2r − 1) can be associated to a block cellular

automata (CA) structure. Each voxel/automaton is an atomic

cell whose state can assume two possible values (0 or 1). The

lattice of CA is partitioned into a set of non-overlapping blocks

of size 2×2×2 (Necker neighbourhood); the state of each cell

evolves depending on the values of neighbouring voxels (block

cellular automata). To parameterize this behaviour, we denote

to the configuration of a CA block located at coordinates

(u, v, w)

s(u, v, w) = [s0, . . . , s7] = [grt (m,n, d)](m,n,d)∈N

(where si denotes the state of the i-th automaton in the

neighbourhood N) using an 8-bit integer. Therefore, the

configurations s(u, v, w) span in the range [0, 255]. The evo-

lution of cell states can be defined by a reversible transform

s
Π(u, v, w) = Π(s(u, v, w)), which maps s(u, v, w) into

another state s
Π(u, v, w) (see Fig. 3) and operates indepen-

dently on each neighbourhood. Since Π(·) has to be invertible

(see [29]), the operated transform can be associated to a

permutation of the strings in {0, 1}8, which aims at re-

organizing the order of bits in order to enable a more efficient

compression. This target can be pursued by concentrating

the amount of energy associated to the current block, i.e.,

mimicking the energy-concentration behaviour of a Discrete

Cosine Transform (DCT) or a Discrete Wavelet Transform

(DWT).

Similarly to other block CA (like Critters [30]), after an

initial transform step, the transformed strings are grouped to-

gether into new voxel cubes with halved dimensions. After this

reordering, the transform can be operated again on this new

smaller volume. Assuming that the values gr−1
t (u, v, w) were

decoded before grt (u, v, w), they can be used to enhance the

compression gain for the following LODs. This progression

of LODs is reported in Figure 2.

B. Transform properties

Since the signal g(u, v, w) is binary, we need to adopt a

suitable energy function for each CA block. The binary state

of each automata can be associated to an Ising model (spin up

or down), and therefore, the energy of the CA neighbouring

can be generically modelled by Potts energy equation

Hp(s) = −Jp
∑

<i,j>

δ(si, sj) (1)

where si and sj are two adjacent cells (i.e., belonging to the

same block), and δ(·) is the Kronecker delta function [31].

4

PC

quantiz

Entropy

coding

Generate new

transform

gt
r(u,v,w)

LODs

division

Separable Color

Transf.
ic,t

r(u,v,w)

g’t
r(u,v,w)

i’c,t
r(u,v,w)

gt-1
r(u,v,w)

PCt(x,y,z)

CA

Transf.

Store

LOD

Octet

partitioning

g’t
r-1(u,v,w)

Entropy

coding

Octet

partitioning

Store

frame

ic,t-1
r(u,v,w)

+ -

dc,t
r(u,v,w)

Fig. 4. Block diagrams for the proposed transform coder

The parameter Jp is a coupling constant. In simpler words,

the resulting block energy depends on the number of CA with

the same state.

Since strings s
Π(u, v, w) are entropy-coded progressively,

high compression ratios can be obtained by minimizing the

frequency of change in the bit values. Assuming that n1(s)
and n0(s) respectively refer to the number of states equal to 1
and 0 for s (coordinates u, v, w have been omitted for the sake

of clarity), let us consider the symbol 1 the most probable bit

or MSB. An efficient transform would map the most probable

values s into strings s
Π where the number of MSB (i.e.,

n1(s
Π)) is maximized. This operation leads to long sequences

of constant binary values which can be effectively compressed

by a binary arithmetic coder. Being 0s and 1s equivalent in

the Ising modelling, such operation can be associated to the

maximization of the number of null coefficients operated by

DCT and DWT on natural images.

Considering that the null string is signaled by the previ-

ous LOD (i.e., s(u, v, w) = 0 if the corresponding voxel

gr−1(u′, v′, w′) is 0), it is possible to design the permutation

Π(·) so that some properties are verified:

a) Π(0) = 0;

b) the highly-probable blocks s should be converted to s
Π

s.t. n1(s
Π) is maximized;

c) the least probable blocks s should be converted to s
Π s.t.

n1(s
Π) is minimized.

Note that requirements (a) implies that an empty block

remains empty since it does not have to be coded, while

the other two requirements aim at maximizing the number

of 1s whenever the corresponding block is non null. Such

requirements differ from those adopted in [26], where the

adopted transform was designed to keep the Potts energy of

s and s
Π unaltered in order to allow multiple intermediate

reconstruction levels between one LOD and the following one.

Given these requirements and bit-plane based arithmetic

coder (which will be described in Section V), the proba-

bility mass function P [s] for the symbols s (which can be

obtained for a specific point cloud to be coded or on a set of

training models) completely defines the transform Π(·). The

detailed characteristics of such procedure are reported in the

Appendix A.

In the following section, the whole coding engine will be

described.

IV. A GENERAL OVERVIEW OF THE PROPOSED CODER

The modelling framework described in the previous section

can be used to implement a transform-based dynamic point

cloud coder that employs adaptive non-linear transforms for

both geometry and color attribute coding. Figure III-A reports

a block diagram of the proposed scheme, whose building

blocks will be described in the following sections. The input

point cloud can be seen as a set of attributes (color compo-

nents, normals, etc.) at different three-dimensional locations

(x, y, z), i.e,, a multidimensional function such that

PCt(x, y, z) : R
3 7→ A ∪ empty

where A is [0, 255]3 in case it refers to color components or

[0, 1]3 in case it refers to normals. The symbol empty denotes

that no points are available at those coordinates.

At first, coordinates (x, y, z) are uniformly-quantized into a

three-dimensional voxel grid such that

u = Qx(x) v = Qy(y) w = Qz(z) (2)

where Qx(·), Qy(·), Qz(·) denote the quantization functions

associated to the three different axis. In our implementation,

we considered uniform quantizers such that

Qx(·) =
⌈ x

∆

⌋

= Qy(·) = Qz(·)

where ⌈·⌋ denotes a rounding operation. Assuming that r bits

are assigned to each quantizer, it is possible to generate the

voxel volume gt(u, v, w) sized N ×N ×N , where N = 2r.

Voxel grt (u, v, w) is set to 1 if it exists at least one triplet

(x, y, z) that is quantized into (u, v, w) and whose correspond-

ing value PCt(x, y, z) 6= empty; otherwise, grt (u, v, w) is set

to 0.

5

Partitioning

2x2 octants
CA transf.

Spatial context

creation

Arithmetic

coder

Voxel

subsampling

s(u,v,w) sΠ(u,v,w)

gt
r(u,v,w)

gt
r-1(u,v,w)

S=0?

Fig. 5. Block diagrams for transform coding of geometry.

For non-empty points, the component values PCt(x, y, z) ∈
A are assigned to irc(u, v, w); in case multiple points (x, y, z)
are mapped to the same location (u, v, w), values PCt(x, y, z)
are averaged.

The point cloud P̂Ct can be reconstructed at the decoding

stage by dequantizing (u, v, w) such that

x̂ = u∆ ŷ = v∆ ẑ = w∆ (3)

and assigning

P̂Ct(x̂, ŷ, ẑ)← ı̂rc(u, v, w) (4)

where ı̂rc(u, v, w) is the reconstruction of irc(u, v, w).
Signals gr(u, v, w) and irc(u, v, w) are compressed by the

geometry coding and the color coding modules. These schemes

perform a motion compensation (MC) at first, which exploits

the previously-coded data to enhance the compression perfor-

mance on the current instance or frame. Then, two non-linear

transform coding solutions are entailed.

V. GEOMETRY CODING

In the coding phase, the input voxel volume grt (u, v, w)
is partitioned into 2 × 2 × 2 octants whose values can be

characterized by integers s(u, v, w). These are converted into

the octets

s
Π(u, v, w) =

[

sΠi
]

= Π (s(u, v, w)) ,

whose bits can be compressed by a set of entropy coders.

In fact, binary values sΠi (i = 0, . . . , 7) are stacked into 8
separate binary streams qi. Each stream qi is then compressed

by a context-adaptive binary arithmetic coder, whose contexts

models the probability of the MSB.

Note that s = s
Π = 0 does not need to be coded since the

decoding of the previous LOD gr−1
t (u, v, w) permits inferring

whether the current octant is empty or not. As a matter of fact,

streams qi contain information regarding non-empty octants

only, thus reducing the amount of coded information. The

adopted coding strategy is visualized in Fig. 5.

The efficiency of the adopted scheme is significantly af-

fected by the designed transform, which must fit accurately

the statistics P [s] of the data to be compressed. As a matter

of fact, the use of an adaptive transform proves to be crucial

in the bit rate minimization. This adaptability can be achieved

by introducing a set of contexts that condition the computation

of the octets statistics P [s].

A. Context structure

The design of the CA transform relies on the fact that the

probability distribution P [s] for the current block s(u, v, w)
can be conditioned by the value of the neighbouring voxels.

Previous works have shown how the probability of the occu-

pancy value of a given voxel (or octant) can be conditioned by

the occupancy values of the neighboring voxels (octants) [19].

In our implementation, upper and left voxels are considered

as they have already been coded and reconstructed when

processing grt (u, v, w). More precisely, we considered the

context

ctx(u, v, w) =

























grt (u, v, w − 1)
grt (u, v + 1, w − 1)
grt (u+ 1, v, w − 1)
grt (u+ 1, v + 1, w − 1)
grt (u− 1, v, w + 1)
grt (u− 1, v + 1, w + 1)
grt (u, v − 1, w + 1)
grt (u+ 1, v − 1, w + 1)

.

























(5)

The selected voxel values were identified from a set of

experimental tests on different voxel models to maximize the

coding gain. Given a set of training data or a training model,

the probabilities P [s|ctx] were computed for each context

value (coordinates u, v, w were omitted for the sake of clarity).

The values P [s|ctx] are used to generate the optimal Πctx
using the procedure reported in the Appendix A.

Although transform design requires some additional compu-

tational effort with respect to standard coding procedure, the

temporal correlation among adjacent frames can be exploited

to avoid recomputing the transform at every frame.

B. Extension to time dimension

As it was anticipated in the Introduction, the prediction of

geometry voxels is quite difficult since an accurate matching is

not possible. Nevertheless, temporal correlation was exploited

in the computation of the best transforms Πctx(·). In fact,

the compression performance is maximized whenever the

adopted transforms are tailored to the input data. This implies

estimating Πctx(·) on the current voxel volume and code

Π
−1
ctx(·) in the bitstream in order to allow the decoder to

inverse the coding process and reconstruct the volume. In

order to reduce the amount of coded bits, no information

about Πctx(·) is included in the bitstream; instead, after

coding each frame, the voxel values probability distribution

is computed for each context value. The computed statistics

are used to generate a new set of context-related transforms

Pctx(·) which are going to be used for the following frame.

VI. COLOR CODING

After coding voxels grt (u, v, w), the proposed coding

scheme can re-use this information to drive the compression

of color data. The proposed color coding strategy is very

close to the Region Adaptive Hierarchical Transform (RAHT)

coding strategy [9], where an adaptive separable transform on

blocks of 2 voxels is progressively applied along each axis.

The difference with respect to the solution in [9] relies on

6

Partitioning

2x2 octets

Fast

RAHT

Arithmetic

coder
AC coeff

Bit stream

DC coeff

Decomp?

Y

N
ir

t,c(u,v,w)

gr
t(u,v,w)

ir-1
t,c(u,v,w)

Voxel

subsampling

Fig. 6. Block diagrams for transform coding of color.

the transform coefficients, which in our implementation

have been recomputed so that all the multiplications can

be implemented with multiplication-free operations. After

transforming the couple of voxels, the resulting AC coeffi-

cients are then compressed by an adaptive arithmetic coder,

while DC coefficients are employed to generate the color

information for irc,t(u, v, w). These passages are described in

the following subsections

A. Transform coding using RAHT

Assuming that u = 2m, v = 2n, w = 2o at LOD r, the

adopted transform can be described by the equation




Irc,t(u, v, w)

Irc,t(u+ 1, v, w)



 =
1

K





1 1

1 −1









irc,t(u, v, w)

irc,t(u+ 1, v, w)



 (6)

where we assume that it is operated along the x axis and

grt (u, v, w) = grt (u+1, v, w) = 1. Note that all the multipli-

cations were removed from the transform matrix, which

can be implemented with simple sums. Moreover, the

constant K, which is a rescaling factor and is represented

with a float value in the RAHT coder, is now approximated

by an even integer number in order to implement the whole

transformation with integer register shifts and sums only.

This permits reducing the computational complexity of the

whole approach.

The coefficient Irc,t(u, v, w) is referred as DC coeffi-

cient, while Irc,t(u + 1, v, w) is the AC coefficient. If only

grt (u, v, w) = 1, then the DC coefficient Irc,t(u, v, w) is

irc,t(u, v, w); on the contrary, if only grt (u+1, v, w) = 1 then

Irc,t(u, v, w) = irc,t(u + 1, v, w). In these latter cases, no AC

coefficient is generated. Then, Irc,t(u, v, w) are processed by

the same transform along the y axis and z axis, separating

the resulting DC and AC coefficients at each application.

The final resulting Irc,t(u, v, w) is then sent to LOD r, i.e.,

ir−1
c (m,n, o) = Irc (u, v, w). The transform is then iterated on

ir−1
c,t (m,n, o).

The resulting DC and AC coefficients are then quantized

with quantization step ∆c and coded using an 8-bits arithmetic

coder.

Note that the proposed coding strategy is coupled to the

geometric coding strategy s.t. it is possible to decode a given

LOD for both geometry and color.

Static Dynamic
Format of

coord. values
Attributes

longdress longdress uint10 RGB
soldier soldier uint10 RGB
Ford Ford float32 normals
loot uint10 RGB

redandblack∗ uint10 RGB
queen uint10 RGB

ArcoValentino float32 RGB
PalazzoCarignano float32 RGB
HouseWithoutRoof∗ float32 RGB

Facade15 float32 RGB

TABLE I
STATIC AND DYNAMIC MODELS USED IN EXPERIMENTS.

Model TMC1 Proposed

longdress 1.67 1.13 (−32.34 %)

queen 1.51 1.37 (−11.26 %)

soldier 2.17 1.43 (−34.10 %)

loot 1.53 1.02 (−33.33 %)

Average 1.78 1.24 (−27.73 %)

TABLE II
BIT RATES (IN BPP) FOR TMC1 AND THE PROPOSED GEOMETRY CODER

OBTAINED FROM LOSSLESS COMPRESSION OF DIFFERENT STATIC MODELS

Model TMC1 Proposed

longdress 44.95 29.65 (−34.03 %)

soldier 63.32 41.39 (−34.62 %)

Average 54.13 35.52 (−34.32 %)

TABLE III
BIT RATES (IN MBIT/S) FOR PCL, TMC1 AND THE PROPOSED GEOMETRY

CODER OBTAINED FROM LOSSLESS COMPRESSION OF DIFFERENT

DYNAMIC SEQUENCES.

B. Temporal prediction

Differently from the case of geometry, color prediction can

lead to some bit rate reduction. As anticipated in the Introduc-

tion, point cloud prediction can be operated on PCt(x, y, z)
via ICP alignment of points. This operation proves to be

effective for small motion and requires a significant amount of

resources. A simpler solution consists in operating on the voxel

domain by predicting the current attributes irc,t(u, v, w) from

the previous ones irc,t−1(u, v, w). More precisely, the color

coding engine computes the difference

drc,t(u, v, w) = irc,t(u, v, w)− irc,t−1(u, v, w) (7)

which is then processed by the RAHT transform and the

resulting coefficients are coded in a binary stream as described

before. When grt (u, v, w) = 1 and grt−1(u, v, w) = 0, there is

not a reference color for irc,t(u, v, w) in the previous voxel

frame; the reference is then generated averaging the values of

the non-empty neighbouring voxels within the 3×3×3 block

centered on (u, v, w).

VII. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed strat-

egy, experimental tests were performed on an extensive set of

point clouds generated using different algorithms and devices

(see some examples in Fig. 7). In these tests, we adopted

the configurations and the test sequences specified in [32]

in order to be compliant with the Call-for-Proposal [7]. The

obtained results were compared with the solution in [6], which

7

(a) (b) (c) (d) (e)

Fig. 7. Example of models used in the tests. Models were rotate to allow the reader to better understand their structures. (a) longdress; (b) soldier;
(c) ArcoValentino; (d) Ford; (e) PalazzoCarignano.

is the anchor codec specified in [7] and will be labelled as

PCL, and with the reference codec TMC1 (labelled with same

name). The reference code for PCL can be obtained from [33].

The adopted TMC1 implementation is the reference one

provided by MPEG. Such choice was motivated by the fact

that these count among recent state-of-the-art strategies for

fast point cloud compression (such solutions prove to have a

similar computational load on the hardware platform).

Performances were evaluated on both static and dynamic

models, which are reported in Table I. Models denoted with

∗ are used to compute voxel statistics P [s|ctx] to design

the adopted transform. The compression performance was

measured using the quality metrics reported in [7] and compar-

ing the input point cloud PCt(x, y, z) with its reconstructed

version P̂Ct(x, y, z). More precisely, the color reconstruction

accuracy was measured using the standard PSNR metric.

The similarity between the reconstructed geometry and the

original values are measured by the PSNR D1 metric (which

parameterizes the point-to-point accuracy) and the RMS D2

metric (which parameterizes the point-to-plane accuracy). This

second measure is based on the projection of the point

coordinates with respect to normals to the surface (see [34] for

more details). PSNR is usually reported in dB, while RMS is

adimensional. Bit rates for static models are reported in terms

of bits-per-point (bpp), i.e., the total bit rate divided by the

number of 3D points in the original model. As for dynamic

sequences, bit rates are reported in Mbit/s.

Geometry information can be coded in lossless and lossy

mode with different number of bits. For each geometry coding

set-up, color information was compressed at different quality

changing the quantization step, made exception for the Ford

model and sequence which was acquired using a Lidar sensor.

In this case, information about normals is compressed in place

of color components: values are converted into 8-bit integers

and coded using the same tools for R,G,B values.

A. Lossless coding of geometry

At first, we evaluated the coding performance of geometry

data in lossless mode. To this purpose, we considered the

static models longdress, loot, soldier, and queen,

whose coordinates (x, y, z) are coded using 10 bits. The

adaptive transforms Πctx(·) were computed on the statistics

of redandblack model. Table II reports the coded bit

8 bits 9 bits 10 bits

Model ∆P ∆R ∆P ∆R ∆P ∆R

longdress 1.37 −34.89 3.87 −39.03 6.33 −20.10
queen 3.49 −49.55 6.51 −41.41 4.34 −18.84
soldier 1.66 −51.71 3.09 −39.80 4.68 −24.24

loot 3.06 −56.68 4.65 −43.92 4.87 −25.36
ArcoValentino 0.13 −30.47 0.13 −22.62 0.25 −11.90

PalazzoCarignano 1.09 −54.79 1.07 −47.97 1.19 −36.04
Facade15 1.63 −62.49 1.10 −61.84 0.91 −57.61
Ford100 3.18 −4.75 3.66 −1.93 3.90 1.92

Average 1.95 −43.17 3.01 −37.31 3.31 −24.02

TABLE IV
BJONTEGAARD ∆PSNR AND ∆RATE ON DIFFERENT STATIC MODELS FOR

LOSSY CODING OF COLOR AND GEOMETRY.

rates for the proposed solution and the TMC1 scheme. It

is possible to notice that the proposed strategy permits

reducing the coded bit rate of about 28 % with respect

to TMC1. This coding gain proves to be extremely useful

in reducing the overall bit rate of a complete point cloud

which includes color information as well. Note also that

the compression performance is improved with respect

to our previous coding solutions in [26], [28], where the

compression gain was about 20 % with respect to TMC1.

This fact was possible thanks to a better energy concentration

capacity of the adopted transform (it has been tailored to the

characteristics of the signals), as well as to its optimization

with respect to the structure of the adopted arithmetic coder.

Table III reports the coded bit rates (in Mbits/s) generated

by the proposed and the TMC1 coders for longdress and

soldier sequences. The coders used GOP of 2 frames. It

is possible to notice that the same coding gain was obtained

on dynamic sequences as well.

B. Lossy coding of geometry and color

When geometry information is coded in lossy mode, it

is possible to change the amount nb of bits assigned to

the quantizers Qx(·), Qy(·), Qz(·), similarly to the config-

uration of the PCL coder. This implies that, despite using

the same quantization step ∆c, the reconstruction quality of

the associated color information varies, and it is possible to

draw a PSNR-vs.-rate curve corresponding to a nb value for

both the proposed and the PCL coders. Such curves can be

compared in compact form by computing the Bjontegaard

∆PSNR (here referenced as ∆P) and ∆Rate (here referenced

8

0 2 4 6

bpp

26

27

28

29

30

P
S

N
R

 (
d
B

)

Proposed

PCL

TMC1

(a)

0 1 2 3

bpp

50

55

60

65

P
S

N
R

 D
1
 (

d
B

)

Proposed

PCL

TMC1

(b)

0 1 2 3

bpp

0

0.5

1

1.5

R
M

S
 D

2

Proposed

PCL

TMC1

(c)

0 1 2 3

bpp

28

30

32

34

36

P
S

N
R

 (
d

B
)

Proposed

PCL

TMC1

(d)

0 0.5 1 1.5 2

bpp

50

55

60

65

70

P
S

N
R

 D
1

 (
d

B
)

Proposed

PCL

TMC1

(e)

0 0.5 1 1.5 2

bpp

0

0.5

1

R
M

S
 D

2

Proposed

PCL

TMC1

(f)

0 1 2 3 4

bpp

28

30

32

34

36

P
S

N
R

 (
d
B

)

Proposed

PCL

TMC1

(d)

0 0.5 1 1.5 2

bpp

50

55

60

65

P
S

N
R

 D
1
 (

d
B

)

Proposed

PCL

TMC1

(e)

0 0.5 1 1.5 2

bpp

0

0.5

1

1.5

2

R
M

S
 D

2

Proposed

PCL

TMC1

(f)

0 1 2 3

bpp

16

17

18

19

20

21

P
S

N
R

 (
d
B

)

Proposed

PCL

TMC1

(g)

0 1 2 3

bpp

35

40

45

50

P
S

N
R

 D
1
 (

d
B

)

Proposed

PCL

TMC1

(h)

0 1 2 3

bpp

0

0.005

0.01

0.015

0.02

R
M

S
 D

2

Proposed

PCL

TMC1

(i)

2 2.5 3 3.5 4

bpp

22

24

26

28

P
S

N
R

 (
d
B

)

Proposed

PCL

TMC1

(j)

1 2 3 4 5

bpp

50

55

60

65

P
S

N
R

 D
1

 (
d

B
)

Proposed

PCL

TMC1

(k)

1 2 3 4 5

bpp

40

60

80

100

120

R
M

S
 D

2

Proposed

PCL

(l)

Fig. 8. Coding performance for different static models. Displayed metrics are PSNR on reconstructed color components (first column), PSNR D1 on
geometry (second column), RMS D2 on geometry (third column). Static models are longdress (first row), queen (second row), soldier (third row),
Palazzo_Carignano (fourth row), and Ford_01_vox1mm-0100 (fifth row),

9

0 1 2 3

bov

24

26

28

30

P
S

N
R

 (
d

B
)

Proposed

Prop. geom + TMC1 col.

(a)

0 0.5 1 1.5 2

bov

28

30

32

34

P
S

N
R

 (
d

B
)

Proposed

Prop. geom + TMC1 col.

(b)

0 0.5 1 1.5 2

bov

26

28

30

32

34

36

P
S

N
R

 (
d

B
)

Proposed

Prop. geom. + TMC1 col.

(c)

Fig. 9. Rate-distortion curves of color compression for TMC1 and the proposed solution. Geometry was coded using the CA-based strategy. Graphs display
the results for (a) longdress, (b) soldier, and (c) queen models.

as ∆R) parameters as suggested in [35]. Table IV reports

the ∆R and ∆P values (whose increment are measured

in % and dB, respectively) for different static models.

The reference coder is PCL. It is possible to notice that

the quality improvement increases as the number nbof bits

increases. Conversely, the average bit rate reduction decreases

from 43 % for nb = 8 to 24 % for nb = 10. This is due to

the fact that the designed transform is extremely effective for

dense and convex models g(u, v, w). Such condition makes

the probability distribution P (s) highly biased, and therefore,

it is possible to obtain streams qi with long trails of 1s. This is

mostly verified whenever the number of bits per component is

low. It is also possible to notice that performance gain is lower

for sparse models or models with a lot of noise (see Fig. 7 c-e).

As an example, it is possible to check the results obtained for

Arco_Valentino, Palazzo_Carignano, Facade and

Ford models. In these cases, the probability distribution P (s)
is less biased, and as a result, entropy coding is less effective

on the final bit stream. Considering the compression of dense

models of people, the least improvement has been obtained on

longdress and soldier: this is mainly due to the com-

plexity of texture information which is highly non-stationary,

and therefore, it can not be effectively compacted by the

RAHT transform. As an experimental evidence for this, we

report the rate-distortion curves of color compression on

static models longdress, soldier, and queen for the

TMC1 and the proposed solution (see Fig. 9) with geometry

information coded using the proposed strategy. In this case,

the reconstructed point coordinates are the same, but color

attributes are coded differently. It is possible to notice that

the coding performance of the proposed scheme slightly

improves at low bit rates.

For a given quality level of the geometry component, it is

possible to select the best coding configuration ∆c for color

compression. In our tests, we chose ∆c such that the obtained

(PSNR,rate) point is the closest to the upper left corner of the

PSNR-vs.-rate plot. This generates a rate-distortion point for

each nb value; such conditions are reported in Figure 8, where

the color PSNR, PSNR D1 and RMS D2 values are displayed

as a function of the bit rate. The displayed graphs confirm

that the coding gain is lower for sparse or noisy models (i.e.,

Palazzo_Carignano and Ford). The difference between

PSNRD1-vs.-rate curves (second column) is lower in these

cases due to the highly-complex distribution of 3D points. This

fact is confirmed by the RMS D2 metric (third column) and

Fig. 10. Detail for the models longdress reconstructed at 2 bpp (first
column), soldier ar 1.2 bpp (second column), and queen at 1.4 bpp (third
colum). Original (first row); proposed (second row); PCL (third row); TMC1
(fourth row).

affects the compression performance on color components as

well; as an evidence for this, it is possible to compare Fig. 8(g)

with Fig. 8 (a) and (d).

Figure 10 reports a detail of different reconstructed PC

models using the proposed (second row), TMC1 (third row)

and the PCL (fourth row) coders. It is possible to notice

that the proposed solution is able to reconstruct a denser

and more accurate point clouds with respect to the anchor.

C. Lossy coding of geometry and color for dynamic sequences

Final tests concerned the compression of dynamic se-

quences, where the correlation interlying between temporally-

10

0 50 100

Mbit/s

22

24

26

28

P
S

N
R

 (
d

B
)

Proposed

PCL

TMC1

(a)

0 10 20 30 40

Mbit/s

50

52

54

56

58

60

P
S

N
R

 D
1

 (
d

B
)

Proposed

PCL

TMC1

(b)

0 10 20 30 40

Mbit/s

0

1

2

3

4

R
M

S
 D

2

Proposed

PCL

TMC1

(c)

0 50 100 150 200

Mbit/s

25

30

35

40

P
S

N
R

 (
d

B
)

Proposed

PCL

TMC1

(d)

0 20 40 60

Mbit/s

45

50

55

60

65

P
S

N
R

 D
1

 (
d

B
)

Proposed

PCL

TMC1

(e)

0 20 40 60

Mbit/s

0

1

2

3

R
M

S
 D

2

Proposed

PCL

TMC1

(f)

0 5 10 15

Mbit/s

20

22

24

26

28

30

P
S

N
R

 (
d

B
)

Proposed

PCL

TMC1

(g)

0 2 4 6 8

Mbit/s

45

50

55

60

65

P
S

N
R

 D
1

 (
d

B
)

Proposed

PCL

TMC1

(h)

0 2 4 6 8

Mbit/s

0

100

200

300

400

500

R
M

S
 D

2

Proposed

PCL

TMC1

(i)

Fig. 11. Coding performance for different dynamic models. Displayed metrics are PSNR on reconstructed color components (first column), PSNR D1 on
geometry (second column), RMS D2 on geometry (third column) as a function of total bit rate. Dynamic sequences are longdress (first row), soldier
(second row), and Ford_01 (third row).

adjacent point clouds can be exploited to reduce the final bit

rates. In these tests, we considered GOP of 2 frames (as in

[6]). Figure 11 reports PSNR, PSNR D1 and RMS D2 plots

versus the coded bit rate. The quality of geometry coding

is defined by choosing the number nb, while the associated

quality for color components is selected as described in the

previous paragraph. Experimental results show that at high

bit rates the proposed solution performs better for all the

considered metrics, while the coding gain decreases at low

bit rates. This fact changes for the Ford sequence where no

significant differences can be seen in the RMS D2 metric,

while the Proposed solution is able to reconstruct information

about normals more accurately than the PCL approach.

In order to provide a further clarification about the obtained

results, we report the coded bit rate and the average PSNR and

PSNR D1 metrics for different configurations of the proposed

and TMC1 codec. The results obtained for the sequence

longdress are reported in Table V. The reported results

show that the geometry coding engine reduces the coded bit

rate of approximately 45 % with respect to TMC1 for both

all Intra coding and IP coding. The total coding gain for

both color and geometry components is lower (around 15 %)

since the color compression strategy has a lower efficiency

with respect to the TMC1 solution. This fact is due to the

adopted transform (see eq. (6)) and the associated bit coding

strategy; the total performance could be significantly improved

by adopting TMC1 color coding strategy with the proposed

geometry coding solution.

Final tests compares the proposed solution with the

TMC2 codec [36]. It is possible to notice that the rate-

distortion performance of TMC2 codec is better since many

pre-processing steps that are applied to the input point

cloud optimize it for compression increasing the efficiency

of the codec (Fig. 12). This improvement is payed in

terms of computational complexity since the coding time

for TMC2 is approximately 110 times bigger than the

one required by the proposed solution (see Table VI). It

is possible to notice that, whenever the texture presents

a regular patterns (like in the soldier sequence), the

gap between the presented strategy and TMC2 is much

higher since texture video is coded using well-established

and effective video coding schemes. In case the texture

is more irregular (like in the longdress case), the

difference reduces. Moreover, it is possible to observe

that TMC2 performs poorly on sparse point clouds: the

proposed solution proved to be the best for the Ford_01

11

0 10 20 30 40

Mbit/s

22

23

24

25

26
P

S
N

R
 (

d
B

)

Proposed

TMC2

0 5 10 15 20

Mbit/s

45

50

55

60

P
S

N
R

 D
1

 (
d

B
)

Proposed

TMC2

0 20 40 60

Mbit/s

25

30

35

40

P
S

N
R

 (
d
B

)

Proposed

TMC2

0 10 20 30

Mbit/s

50

55

60

65

70

P
S

N
R

 D
1

 (
d

B
)

Proposed

TMC2

2 4 6 8 10

bov

24

26

28

30

P
S

N
R

 (
d
B

)

Proposed

TMC2

1 2 3 4

bov

50

55

60

65

P
S

N
R

 D
1
 (

d
B

)

Proposed

TMC2

Fig. 12. Rate-distortion curves for the proposed codec and TMC2. Graphs
display the PSNR values for the luma component (first column) and the PSNR
D1 for the geometry (second column). Data are to be referred to longdress
(first row), soldier (second row), Ford_01 (third row).

sequence (where PSNR is to be referred to the information

concerning normals). In fact, TMC2 texture coding was

designed for dense models and the sparsity of a LIDAR

acquisition can not be compressed effectively. As a matter

of fact, the difference in compression gain is utterly

evident for texture compression, while the performance

of geometry coding is not dramatically lower.

D. Computational complexity analysis

The required computational load was evaluated measuring

the encoding time for the lossy compression of dynamic point

cloud sequences longdress and soldier. The encoding

time was obtained averaging the time elapsed for compression

at different bit rates. Tests were performed on a i7 Quad Core

Machine and results are reported in Table VI. It is possible

to notice that the require computational load is comparable

or even lower than that required by the solution in [6]. It

is also worth noting that the encoding time for the proposed

solution is nearly constant; this makes the computational effort

independent from the input signal and easily predictable.

The low complexity is mainly due to the fact that the

adopted transform shows a better energy concentration

with respect to other solutions; this imply that the amount

of processed occupied voxel is lower. Moreover, all the

operations are implemented on binary symbols, and there-

fore, it is possible to implement them with fast arithmetic

coding routines.

The reported data show also the encoding time for the

TMC2 coder. It is possible to notice that the computational

effort is much higher because of the many pre-processing

operations performed by TMC2. This makes the coder not

suitable for real-time compression. On the other hand,

the proposed solution requires a much lower complexity

allowing the creation of a scalable bitstream.

VIII. CONCLUSIONS

The paper presented a transform-based coding approach for

voxelized dynamic point clouds using a hierarchical Cellular

Automata block transform for geometry information and a

region-adaptive transform for color information. Temporal

prediction allows a further reduction of the final bit stream.

Future research works will be devoted to improve the temporal

prediction strategy and introduce intermediate reconstruction

levels between adjacent LODs.

APPENDIX

A compression-efficient permutation Π must be tailored

with respect to a specific probability mass function P [s]. Let us

assume that a probability mass function has been computed on

one or more training voxel volumes. In the transform design,

we need to identify the function Π(·) such that the sum of

the bit streams generated by the arithmetic coders from qi,
i = 1, . . . , 8, is minimal. To this purpose, we can model the

streams of binary symbols qi as independent Bernoulli sources.

Given the probabilities P [s], it is possible to order the

strings sk ∈ {0, 1}
8 \ 0 such that P [sk] ≥ P [sh] if k < h.

Similarly, strings s
Π can be sorted in decreasing order, i.e.,

s
Π

k ≥ s
Π

h if k < h. It is straightforward to verify that mapping

sk into s
Π

k permits satisfying properties (b) and (c) reported in

Section III-B. As an example, symbol 255 will be mapped to

the most probable s, 254 to the second most probable one, and

so on. Such strategy proves to be both simple and effective

since it maximizes the probability of having long trails of

equal symbols in the stream without requiring an excessive

computational power.

It is possible to formally verify that this choice is optimal in

terms of entropy. Let us consider the expected entropy Hk(qi)
for the stream qi at iteration k such that

Hk(qi) = −p
i
k,0 log p

i
k,0 − pik,1 log p

i
k,1 (8)

where

pik,0 =
σi
k,0

σi
k

=

∑k−1
h=0 P (sh)I(s

Π

h,i == 0)
∑k−1

h=0 P (sh)

pik,1 =
σi
k,1

σi
k

=

∑k−1
h=0 P (sh)I(s

Π

h,i == 1)
∑k−1

h=0 P (sh)
.

(9)

Assuming that streams qi are coded separately, the overall

entropy can be modelled by Hk =
∑7

i=0 Hk(qi), whose

partial derivative can be written as

∂H

∂pik,1
= log

σi
k,0

σi
k,1

∂H

∂pik,0
= log

σi
k,1

σi
k,0

(10)

Assigning the 0 symbols (i.e., increasing ∂pik,0 and de-

creasing ∂pik,1) to streams where ∂H/∂pik,1 is maximum

(or conversely, ∂H/∂pik,0 is minimum) makes possible to

minimize the increment of Hk.

This implies that the transform design routine should map

0s to the same streams as much as possible (the transform must

be invertible). As a result, the most probable s are mapped to

s
Π in decreasing order.

12

Parameters TMC1 Proposed

Configuration Nb, ∆c Bit rate PSNR PSNR D1 Bit rate PSNR PSNR D1

longdress
I & P geom.

7, − 1.05 − 48.23 0.57 (−48%) − 48.24
8, − 3.71 − 54.26 2.07 (−44%) − 54.26
9, − 13.23 − 59.52 7.54 (−43%) − 59.52

longdress
All I geom.

7, − 1.25 − 48.23 0.68 (−45%) − 48.24
8, − 4.09 − 54.26 2.28 (−44%) − 54.26
9, − 13.79 − 59.52 7.86 (−43%) − 59.52

longdress
I & P color.

7, 20 4.38 21.60 − 4.02 (−8%) 21.40 −
8, 20 15.09 23.57 − 11.82 (−22%) 23.12 −
9, 20 49.21 26.82 − 40.58 (−17%) 26.64 −

longdress
All I color.

7, 20 5.31 21.57 − 4.87 (−8%) 21.53 −
8, 20 17.87 23.63 − 14.10 (−19%) 23.52 −
9, 20 55.73 26.83 − 45.96 (−17%) 26.81 −

TABLE V
BIT RATE (IN MBIT/S) AND AVERAGE PSNR AND PSNR D1 METRICS (IN DB) FOR DIFFERENT CONFIGURATIONS.

Sequence Proposed PCL TMC2

longdress 604 ms 619 ms 98.25 s
soldier 640 ms 827 ms 72.56 s
Ford_01 560 ms 560 ms 31.30 s

TABLE VI
AVERAGE FRAME ENCODING TIME FOR DIFFERENT SEQUENCES

REFERENCES

[1] Miska M. Hannuksela, Ye Yan, Xuehui Huang, and Houqiang Li,
“Overview of the multiview high efficiency video coding (MV-HEVC)
standard,” Proc. of ICIP 2015, pp. 2154–2158, 2015.

[2] Jingliang Peng, Chang-Su Kim, and C.-C. Jay Kuo, “Technologies for
3D mesh compression: A survey,” Journal of Visual Communication

and Image Representation, vol. 16, no. 6, pp. 688 – 733, 2005.

[3] S.B. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth
Sensor - System Description, Issues and Solutions,” in Proc. of the

2004 Conference on Computer Vision and Pattern Recognition Workshop

(CVPRW 2004), June 27 – July 2, 2004, vol. 3, p. 35.

[4] J. D. Spinhirne, “Micro pulse Lidar,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 31, no. 1, pp. 48–55, Jan 1993.

[5] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, “Real-time compression of point cloud streams,” in 2012

IEEE International Conference on Robotics and Automation, May 2012,
pp. 778–785.

[6] R. Mekuria, K. Blom, and P. Cesar, “Design, implementation, and
evaluation of a point cloud codec for tele-immersive video,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 27,
no. 4, pp. 828–842, April 2017.

[7] MPEG 3DG and Requirements, “Call for proposals for point cloud
compression v2 - doc. n16763,” in ISO/IEC JTC1/SC29/WG11 Coding

of Moving Pictures and Audio Meeting Proceedings, Apr. 2017, files:
w16763 PCC CfP.docx.

[8] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. Chou,
R. Cohen, M. Krivokuca, S. Lasserre, Z. Li, J. Llach, K. Mammou,
R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis,
and V. Zakharchenko, “Emerging MPEG Standards for Point Cloud
Compression,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 9, no. 1, pp. 133–148, mar 2019.

[9] R. L. de Queiroz and P. A. Chou, “Compression of 3D Point Clouds
Using a Region-Adaptive Hierarchical Transform,” IEEE Transactions

on Image Processing, vol. 25, no. 8, pp. 3947–3956, Aug 2016.

[10] D. Thanou, P. A. Chou, and P. Frossard, “Graph-Based Compression
of Dynamic 3D Point Cloud Sequences,” IEEE Transactions on Image

Processing, vol. 25, no. 4, pp. 1765–1778, April 2016.

[11] T. Ochotta and D. Saupe, “Compression of Point-based 3D Models by
Shape-adaptive Wavelet Coding of Multi-height Fields,” in Proceed-

ings of the First Eurographics Conference on Point-Based Graphics,
Aire-la-Ville, Switzerland, Switzerland, 2004, SPBG’04, pp. 103–112,
Eurographics Association.

[12] O. Devillers and P. M. Gandoin, “Geometric compression for interactive
transmission,” in Proceedings Visualization 2000. VIS 2000 (Cat.

No.00CH37145), Oct 2000, pp. 319–326.

[13] R. Schnabel and R. Klein, “Octree-based point-cloud compression,”
in Proceedings of the 3rd Eurographics / IEEE VGTC Conference on

Point-Based Graphics, Aire-la-Ville, Switzerland, Switzerland, 2006,
SPBG’06, pp. 111–121, Eurographics Association.

[14] Y. Huang, J. Peng, C. C. J. Kuo, and M. Gopi, “A generic scheme for
progressive point cloud coding,” IEEE Transactions on Visualization

and Computer Graphics, vol. 14, no. 2, pp. 440–453, March 2008.

[15] O. Martinez-Rubi, S. Verhoeven, M. Van Meersbergen, M. Schtz,
P. Van Oosterom, R. Gonalves, and T. Tijssen, “Taming the beast: Free
and open-source massive point cloud web visualization,” in Proceedings

of Capturing Reality Forum 2015, 23-25 November 2015, Salzburg,

Austria, Nov. 2015.

[16] A. Kuhn and H. Mayer, “Incremental Division of Very Large Point
Clouds for Scalable 3D Surface Reconstruction,” in 2015 IEEE Inter-

national Conference on Computer Vision Workshop (ICCVW), Dec 2015,
pp. 157–165.

[17] C. Zhang, D. Florencio, and C. Loop, “Point cloud attribute compression
with graph transform,” in 2014 IEEE International Conference on Image

Processing (ICIP), Oct 2014, pp. 2066–2070.

[18] K. Wenzel, M. Rothermel, D. Fritsch, and N. Haala, “An out-of-core
octree for massive point cloud processing,” in Proc. of IQmulus 1st

Workshop on Processing Large Geospatial Data, 2014, pp. 53–60.

[19] Y. Huang, J. Peng, C. C. Jay Kuo, and M. Gopi, “A Generic Scheme for
Progressive Point Cloud Coding,” IEEE Transactions on Visualization

and Computer Graphics, vol. 14, no. 2, pp. 440–453, Mar. 2008.

[20] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: an efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189?206, Apr 2013.

[21] P. A. Chou and R. L. de Queiroz, “Gaussian process transforms,” in
2016 IEEE International Conference on Image Processing (ICIP), Sept
2016, pp. 1524–1528.

[22] M. Krivokuca, M. Koroteev, and P. A. Chou, “A volumetric approach
to point cloud compression,” Sept. 2018.

[23] Diogo C. Garcia and Ricardo L. de Queiroz, “Context-Based Octree
Coding For Point-Cloud Video,” in Proc. of ICIP 2017, Sep 2017, pp.
1412–1416.

[24] E. Pavez, P. A. Chou, R. L. de Queiroz, and A. Ortega, “Dynamic
Polygon Cloud Compression,” CoRR, vol. abs/1610.00402, 2016.

[25] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point Cloud
Registration Algorithms for Mobile Robotics,” Found. Trends Robot,
vol. 4, no. 1, pp. 1–104, May 2015.

[26] S. Milani, “Fast Point Cloud Compression Via Reversible Cellular
Automata Block Transform,” in Proc. of ICIP 2017, Sept. 2017, pp.
2050–2054.

[27] L. Cappellari, S. Milani, C. Cruz-Reyes, and G. Calvagno, “Resolution
Scalable Image Coding With Reversible Cellular Automata,” Image

Processing, IEEE Transactions on, vol. 20, no. 5, pp. 1461–1468, May
2011.

[28] S. Limuti, E. Polo, and S. Milani, “A Transform Coding Strategy for
Voxelized Dynamic Point Clouds,” in Proc. of IEEE ICIP 2018, Oct.
2018, pp. 2954–2958.

[29] Jarkko Kari, “Reversibility of 2D cellular automata is undecidable,”
Physica D: Nonlinear Phenomena, vol. 45, no. 1, pp. 379 – 385, 1990.

[30] T. Toffoli and N. Margolus, Cellular Automata Machines: A New

Environment for Modeling, MIT Press, 1987.

13

[31] Franois Graner and James Glazier, “Simulation of biological cell sorting
using a two-dimensional extended Potts model,” Physical review letters,
vol. 69, pp. 2013–2016, 10 1992.

[32] MPEG 3DG and Requirements, “Common test conditions for point
cloud compression - doc. n17229,” in ISO/IEC JTC1/SC29/WG11

Coding of Moving Pictures and Audio Meeting Proceedings, Oct. 2017,
files: N17229 PCC-CTC.docx.

[33] 3DG-PCC team, “Point Cloud Compression Ex-
perimental Software SVN repository,” web site,
2018, http://wg11.sc29.org/svn/repos/MPEG-04/Part16-
Animation Framework eXtension AFX/trunk/3Dgraphics/3DG-
PCC/tags/hobart.

[34] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric dis-
tortion metrics for point cloud compression,” in 2017 IEEE International

Conference on Image Processing (ICIP), Sep. 2017, pp. 3460–3464.
[35] G. Bjontegaard, “Calculation of average PSNR differences between RD-

curves (VCEG-M33),” in presented at the 13th ITU VCEG Meeting,
Austin, TX, USA, Apr. 2 – 4, 2001, VCEG-M33.

[36] K. Mammou, “PCC Test Model Category 2 v0, in ISO/IEC
JTC1/SC29/WG11 Doc. N17248, Macau, China,” 2017.

