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ABSTRACT

Understanding the mechanisms of brain function is greatly advanced by predictive
models. Recent advancements in machine learning further underscore the potency
of prediction for learning optimal representation. However, there remains a gap
in creating a biologically plausible model that explains how the neural system
achieves prediction. In this paper, we introduce a framework employing an energy-
based model (EBM) to capture the nuanced processes of predicting observation
after action within the neural system, encompassing prediction, learning, and
inference. We implement the EBM with a hierarchical structure and integrate
a continuous attractor neural network for memory, constructing a biologically
plausible model. In experimental evaluations, our model demonstrates efficacy
across diverse scenarios. The range of actions includes eye movement, motion in
environments, head turning, and static observation while the environment changes.
Our model not only makes accurate predictions for environments it was trained
on, but also provides reasonable predictions for unseen environments, matching
the performances of machine learning methods in multiple tasks. We hope that
this study contributes to a deep understanding of how the neural system performs
prediction.

1 INTRODUCTION

To survive, humans need to interact with environment through actions, requiring an understanding
of how these actions impact the surroundings. This involves building an internal model in the brain
to represent the outside world Knill & Pouget (2004); Friston & Price (2001). The success of large
language models (LLMs) in understanding token-based worlds also indicates that predicting the
next observation is a good objective in learning representations Radford et al. (2017). However, as
humans living in the physical world, our received observations are high-dimensional and diverse.
This presents a challenge in understanding how the brain predicts the next observation.

The world model Schmidhuber (1990); LeCun (2022) has laid out a basic framework for prediction.
Recently, the machine learning society has made significant progress in predicting high-dimensional
observations through planning in latent spaces Ha & Schmidhuber (2018); Hafner et al. (2019a;
2023); Nguyen et al. (2021). However, these models, not designed for explaining the neural system,
lack consideration for biological realism Chung et al. (2015), and they typically employ biologically
implausible training algorithms such as backpropagation (BP) or backpropagation through time
(BPTT). In the neuroscience society, there are ongoing efforts to model the hippocampal-entorhinal
system as sequential generative models Whittington et al. (2018); George et al. (2023). However,
these approaches either employed a variational method, leading to still requiring BPTT, or assumed
access to the underlying state of the world, which is not realistic to the neural system.

Energy-based models (EBMs) Ackley et al. (1985) provide a framework for inference with sampling
methods and learning with Hebb’s rule. The variability of neuronal responses in the brain has been
explained as Monte Carlo sampling Hoyer & Hyvärinen (2002), which naturally accounts for the
regular firing and other response properties of biological neurons Haefner et al. (2016); Orbán et al.
(2016); Echeveste et al. (2020). Hebb’s rule is a widely observed local learning rule in the neural
system. A recent work Dong & Wu (2023) has shown that hierarchical EBMs are capable of learning
complex probability distributions, suggesting their potential widespread applications in the brain.
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In this paper, we propose a sequential generative model based on hierarchical EBMs to capture
how the brain predicts the next observation after an action (Section 3). In our model (Section 4), a
Markov chain of latent variables is employed, whose conditional probabilities following Gaussian
distributions. This choice helps us bypass the computation of the partition function, leading to
accelerated model convergence. Furthermore, the introduction of error neurons ensures that the
learning process is localized. We also utilized a continuous attractor neural network (CANN) Amari
(1977); Ben-Yishai et al. (1995); Wu et al. (2008) to memorize past events to improve prediction. In
the brain, sensory information undergoes hierarchical processing through the cortex before entering
higher brain regions (such as the IT region and hippocampus) DiCarlo et al. (2012), while CANNs
have been widely used as canonical models for elucidating the memory process in these higher brain
regions Wills et al. (2005). In the experiments (Section 5), we considered visual observations and
constructed various actions to assess model performances. The actions include eye movement, motion
in a virtual environment, motion and head-turning in a real environment, and static observation while
the external world varies. Our model demonstrates effective predictions for the environments it was
trained on, and the model also generates reasonable predictions for unseen environments. In several
tasks, our biologically plausible model has achieved performances on par with machine learning
methods. Key contributions of this work are summarized as follows:

• Energy-based Recurrent State Space Model (RSSM) We introduce a novel framework
for RSSM grounded in energy-based principles. This approach diverges from the conven-
tional variational RSSM Chung et al. (2015); Hafner et al. (2019b) by offering distinct
methodologies for inference, learning, and prediction within the energy-based paradigm.

• Biologically Inspired RSSM Implementation Our implementation leverages hierarchical
EBMs and CANNs to realize the RSSM. The learning mechanism is characterized by its
local properties, both spatially and temporally, without relying on BP or BPTT. Algorithms
for inference and prediction can be implemented through neural dynamics.

• Establishment of a Prediction Error Upper Bound Setting our approach apart from
previous methodologies that employ free energy or the evidence lower bound (ELBO) as
the loss function, we adopt the prediction probability distribution within the latent space for
sampling. This provides a novel perspective on model optimization.

2 RELATED WORK

The world model Schmidhuber (1990); LeCun (2022) laid out a framework for predicting observa-
tions following an agent’s action. Recently, RSSM compresses observations through a variational
autoencoder (VAE) , then performs predictions in the compressed temporal space using temporal
prediction models like RNNs Chung et al. (2015); Hafner et al. (2019b), Transformers Chen et al.
(2022), S4 models Samsami et al. (2024) or continuous Hopfield networks Whittington et al. (2018).
Our model adopts this RSSM framework but innovates by incorporating EBMs instead of VAEs and
utilizing CANNs for temporal predictions. Our model aligns with biological plausibility, departing
from less biologically realistic architectures and training methods.

Active inference Friston et al. (2017); Smith et al. (2022) is another framework which can predict the
observation after an action. These works are unified under the free energy principle framework Friston
(2010), modeling the prediction process as a hidden Markov model (HMM, a special case of the
RSSM), and using the variational message passing algorithm for inference Da Costa et al. (2020);
Parr et al. (2019). We model the entire process as an RSSM with a temporal model (CANN) that can
compress all previous states rather than reliance on the current state alone. Also our model employs
a sampling algorithm, enabling online inference and learning without the need to know the entire
sequence.

Predictive coding networks (PCNs) Rao & Ballard (1999) can be viewed as an implementation of
EBMs, with most current PCN works deal with static inputs Salvatori et al. (2021; 2023); Millidge
et al. (2022), do not involve temporal prediction of the next observation after actions. A recent study,
ActPC Ororbia & Mali (2023), does introduce actions within the Markov process (a special case
of HMM); however, it lacks an encoder-decoder structure, assuming an identity matrix mapping
between observations and latent states. Our model integrates an EBM as the encoder-decoder part.
Furthermore, while their approach utilizes a buffer to store observations directly, our model employs
a CANN to efficiently compress all previous states.
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3 ENERGY-BASED RECURRENT STATE SPACE MODEL

To build an internal model capturing the change of the environment during interaction, the brain
needs to learn to predict the next observation after an action. We consider that the brain employs
an energy-based RSSM as the intrinsic generative model for generating predictions. This section
outlines the model framework encompassing the predicting, learning, and inference processes, with
the detailed neural implementation presented in Section 4.

Problem setup. Consider an action at taken at time t. The brain anticipates the observation ot
the sensory neurons will receive after this action. According to the laws of physics, the world is
Markovian, i.e., the next moment is solely determined by the previous moment. However, our
observation ot and action at reflect only a subset of the world, and we do not have the full knowledge
of the world. To enhance the prediction, the brain can rely on past experiences. Denote Kt =
{o<t, a≤t} the observation-action sequence we have experienced, upon which the brain can build a
memory trace mt to facilitate the next prediction of ot.

Generative model. We consider that the brain utilizes the marginal distribution of the intrinsic
generative model (Figure 1a) to approximate the distribution of the true observation. The joint
distribution at time t is expressed as,

pθ(ot, st|mt) = pθ(ot|st)p(st|mt), (1)

where st are latent variables represented by neuronal responses. We employ the sampling-based
probabilistic representation Hennequin et al. (2014); Dong et al. (2022), assuming that the neural
activity at time t is a sample of the random variable st. pθ(ot|st) is the likelihood function and
p(st|mt) can be regarded as the prior of the latent variable before receiving the observation given
the memory state mt. At the next time step t + 1, the memory is updated following a transition
probability mt+1 ∼ p(mt+1|mt, st, at+1), which contains the information of the past experiences
Kt+1. In this paper, we take this transition probability as a Dirac delta function, which makes our
generative model essentially a recurrent state-space model Hafner et al. (2019b).

Prediction. To predict the upcoming observation after the action at, the brain needs to generate
samples following the marginal distribution pθ(ot|mt). According to the generative model in Eq.(1),
the brain first generates the latent variable ŝt ∼ p(st|mt) and then the observation ôt ∼ pθ(ot|ŝt)
(Figure 1b).

Learning. After receiving the true observation ot ∼ ptrue(ot), the brain will update the generative
model to improve future prediction. The disparity between the prediction and the true observation
can be quantified by the cross-entropyH, expressed as,

H = −Eot∼ptrue(ot) log pθ(ot|mt), (2)

≤ −Eot∼ptrue(ot)Eŝt∼p(st|mt) log pθ(ot|ŝt)︸ ︷︷ ︸
=:L

. (3)

We use an energy-based model with parameters θ to model the likelihood function,

pθ(ot|st) =
exp [−Eθ(ot, st)]

Zθ
, Zθ =

∫
exp [−Eθ(ot, st)] dot. (4)

where Eθ(ot, st) is the energy and Zθ is the partition function, Since calculating the cross-entropy in
Eq.(2) involves complicated integration, which makes it intractable, we choose its upper-bound L
defined in Eq.(3) as our learning objective. Equivalently, -L can be interpreted as the lower bound of
the mutual information between the neural prediction and the observation (see deviation in Appendix
A). The neural system can adopt a gradient-based learning method such as gradient decent, and the
gradient of L is calculated to be (Figure 1b dashed lines),

∇θL = Eŝt∼p(st|mt)

[
Eot∼ptrue(ot)∇θEθ(ot, ŝt)− Eôt∼p(ot|ŝt)∇θEθ(ôt, ŝt)

]
. (5)

Inference & memory update. After updating the likelihood function pθ(ot|st), the brain also needs
to update the neural representation st and the memory representation mt. Specifically, the new
distribution of st becomes,

ppost = argmax
q

Eq log pθ(ot|st)−DKL [q||p(st|mt)] ∝ pθ(ot|st)p(st|mt). (6)
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Figure 1: (a) The directed graphical model of the generative model. Taking t = 2 as an example,
s2 follows the prior, o2 follows the likelihood function, and m3 follows the transition probability.
(b) Taking t = 2 as an example, the brain initially generates a prediction ŝ2 for the neural activity,
followed by producing a prediction ô2 for the observation. Then the network parameters are updated,
as indicated by the dashed lines, and the posterior for the current time step is obtained. At last, the
memory is updated based on action a3 and the sample s2 following the posterior.

Algorithm 1: General process
while still alive do

// from time t to t+ 1
Sample ŝt ∼ p(st|mt), ôt ∼ pθ(ot|ŝt);
Receive ot ∼ ptrue(ot);
Update θ by minimize L using∇θL;
Sample st ∼ ppost(st) ;
Update mt+1 ∼ p(mt+1|mt, st, at+1).

This new distribution reflects that, on one
hand, under this distribution, we can better
predict the true observation, i.e., maximizing
Eq log pθ(ot|st). This target also implies en-
abling st to contain as much information from
ot as possible (refer to the deviation in Appendix
B). Meanwhile, we aim to minimize variation in
the neural representation, i.e., ensuring that the
new distribution remains close to the previous.
To strike a balance between these two objectives,
the new distribution takes the form of the ppost.

The brain can use the sampling-based approach to obtain the distribution of ppost, such as the Langevin
dynamic,

τs
ds

dt
= ∇s log pθ(ot|st) +∇s log p(st|mt) +

√
2τsξ, (7)

where ξ is Gaussian white noise and τs is the time constant. At last, we use the samples of the
distribution ppost(st) to update the memory according to the generative model,

mt+1 ∼ p(mt+1|mt, st, at+1), st ∼ ppost(st). (8)

Algorithm 1 outlines the general procedure by which the neural system continually engages in
prediction, learning and memory updating.

4 A HIERARCHICAL NEURAL NETWORK MODEL

In this section, we propose a hierarchical neural network to implement the above generative model,
and outline the specific dynamics involved in prediction, learning, and inference, as discussed in
Section 3. Approximating the target distribution ptrue(ot), which is diverse and complex, requires
a good representation ability of the model. The hierarchical structure has been demonstrated to
have strong expressive power and is widely adopted in the biological neural systems. Moreover, we
employs a continuous attractor neural network (CANN) to model the memory process. All vectors
below are column vectors, and all multiplications are matrix multiplications.

A hierarchical generative model. Let s0t ∈ Rn0 be the observation variable. There are L layers of
neurons representing the latent variables s1:Lt = {s1t , s2t , ..., sLt }, slt ∈ Rnl . The joint distribution is
a Markov chain,

pθ(s
0:L
t |mt) := p(sLt |mt)

L−1∏
l=0

pθ(s
l
t|sl+1

t ). (9)

4
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Figure 2: (a) In the hierarchical structure, the activity of neurons in the upper layer is the observation
for the neurons in the lower layer. In the case of L = 2, s0t is the observation of s1t , and s1t is the
observation of s2t . The bottom-left box illustrates the connection of the memory-representing CANN
with action neurons and its link to s2 through e2. The top-right box shows the connections between
s0 and s1 through e0. (b) Based on the current memory m1, we imagine the observations we would
receive at each time step after taking a series of actions.

To avoid calculating the deviation of the partition function in the likelihood function, we utilize the
Gaussian distribution, whose partition function is constant,

pθ(s
l
t|sl+1

t ) := N (slt; θ
lf(sl+1

t ), (Λl)−1), (10)

where f(·) is the element-wise activation function and Λl is the inverse of the covariance matrix
called precision matrix. θl ∈ Rnl×nl+1 are parameters which determine the connectivity structure of
the network.

The memory network. Attractor neural networks have been widely used as canonical models for
elucidating the memory process in the neural system Amari (1972); Hopfield (1982). Among these,
CANNs excel in capturing continuous variables, as the underlying state of a temporal sequence is
typically continuous. Therefore, we use the activity of CANN neurons at time t as the memory
mt. The CANN, through its recurrent connections, forms a series of continuous attractors. This
sequence of attractors constitutes a stable low-dimensional manifold, serving as the memory space. In
spatially-related tasks, it is also referred to as a cognitive map O’keefe & Nadel (1979); Samsonovich
& McNaughton (1997). The CANN receives inputs from actions and from the last layer’s latent
neurons for prediction and memory update (see Appendix C for the CANN dynamics). When the
CANN receives inputs from action at and neurons sLt−1, it generates activity mt, which gives rise the
neuronal activity in the last layer according to,

p(sLt |mt) := N (sLt ; mt, (Λ
L)−1). (11)

Prediction. At time t, the neural network first generates the prediction samples ŝ0:Lt from layer L to
0 according to,

ŝLt ∼ p(sLt |mt), ŝlt ∼ p(slt|ŝl+1
t ). (12)

We use the Langevin dynamic to generate predictions,

τs
dsl

dt
= ∇slp(s

l|ŝl+1
t ) +

√
2τsξ = −Λlêlt +

√
2τsξ, (13)

where êlt = slt − θlf(ŝl+1
t ) and êLt = sLt − mt are the value represented by error neurons. We

adopt the idea of predictive coding networks Rao & Ballard (1999); Whittington & Bogacz (2017)
by introducing error neurons, to satisfy Hebb’s rule during learning. The connectivity diagram of
neurons is depicted by the dashed box in Figure 2a.

Learning & inference. After the model receives the observation s0t ∼ ptrue(s
0
t ), for s1 represented

by neurons in layer one, the likelihood function is p(s0t |s1t ) and the prior distribution is p(s1t |ŝ2t ).
Thus, the prediction bound L0

t can be written as,

L0
t := −Es0t∼ptrue(s0t )

Es1t∼p(s1t |ŝ2t ) log p(s
0
t |s1t ) =

1

2

(
ê0t
)T

Λ0ê0t + C0, (14)
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where C0 is the constant. Then, synaptic parameters θ0 are updated to minimize L0
t using gradient

descent,

τθ
dθ0

dt
= −∇θ0L0

t = Λ0ê0tf(ŝ
1
t )

T . (15)

This shows that the synaptic changes are determined solely by local neurons, adhering to Hebb’s
rule. Then neurons in layer one keeps a balance between the likelihood and the prior by inferring the
posterior p1post ∝ p(s0t |s1t )p(s1t |ŝ2t ) through Langevin dynamic,

τs
ds1t
dt

= ∇s1t
log p(s0t |s1t )+∇s1t

p(s1t |ŝ2t )+
√
2τsξ = f ′(s1t )⊙ (θ0)TΛ0e0t −Λ1ê1t +

√
2τsξ, (16)

where e0t = s0t − θ0f(s1t ) and ⊙ is the element-wise product. Then the sample s1t following the
posterior will be used to minimize L1

t and obtain sample s2t ∼ p2post. Each layer will repeat this
process and propagate information downward until the last layer (see second for-loop in Algorithm
2). For random vector sl in layer l. The prediction bound Ll

t is calculated as,

Ll
t := −Esl−1

t ∼pl−1
post

Eslt∼p(slt|ŝ
l+1
t ) log p(s

l−1
t |slt) =

1

2

(
êlt
)T

Λlêlt + Cl, (17)

where Cl is the constant. The posterior plpost of variables in layer l is calculated as,

plpost ∝ p(sl−1
t |slt)p(slt|ŝl+1

t ). (18)

Algorithm 2: Hierarchical neural process
while still alive do

// from time t to t+ 1

Sample ŝLt ∼ p(sLt |mt);
for l← L− 1 to 0 do

Sample ŝlt ∼ p(slt|ŝl+1
t );

Receive observation s0t ;
for l← 0 to L− 1 do

Update θl by dθl

dt = −∇θlLl
t;

Sample sl+1
t ∼ pl+1

post by

τs
dsl+1

t

dt = ∇sl+1
t

log pl+1
post +

√
2τsξ

;

Update mt+1 ∼ p(mt+1|mt, s
L
t , at+1).

After the variables in layer L converge to their
posterior, they serve as inputs to the CANN.
Meanwhile, the action at+1 at time t+ 1 is also
fed into the CANN. The CANN, following its
dynamics, reaches a new steady state with the
neuron activity denoted as mt+1. Subsequently,
the brain utilizes mt+1 as the memory to initiate
a new round of prediction. Algorithm 2 illustrates
the entire process of neural implementation.

Imagination. After our model learns to predict
the next observation, it acquires an intrinsic rep-
resentation of the dynamics of the external en-
vironment. If we want to know the outcome
of a certain action, there is no need to actually
perform the action; instead, we can rely on the
model to predict the observation we would re-
ceive, called imagination. We can continually
make predictions in the latent space, incorporat-
ing them into memory, and forecast observations
after a sequence of actions (Figure 2b).

5 EXPERIMENT

We evaluate our model by selecting four types of action in different environments, including eye
movement, motion in a virtual environment, motion and head-turning in a real environment, and
static observation while the external world varies. To simulate the high-dimensional inputs received
by the brain, all observations in our study are exclusively chosen to be visual inputs. We refer to the
appendix for hyper parameters (Appendix E).

Eye movement refers to changing the direction of the eyeballs to obtain different visual inputs.
It stands as the most frequent actions performed by humans, helping us gather as much visual
information as possible. To avoid dizziness caused by rapid eye movement, neurons in the posterior
parietal cortex encode stimuli that will be seen after planned eye movements Cui & Andersen (2011);
Kuang et al. (2016). Additionally, experiments Seung (1996) suggest that neurons in the medial
vestibular nucleus form a CANN to record eye direction.

We utilized the CIFAR-10 and Fashion-MNIST datasets to simulate the environments observed by
the model. Each image in the dataset is divided into 4 × 4 patches, with each patch serving as an
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Figure 3: Experiments on modeling eye movement. (a) Generation results of the entire image through
initialized memory. The orange and blue areas in the first column indicate the patches used for
initialization and those that need to be predicted. ’Seen’ refers to images that were used during
training, while ’unseen’ refers to images that were not used during training (here, both are the same
images because different models were used). (b) Testing phase: the first is step is initialization,
similar to the training process, involves executing actions, observing the environment, inferring the
latent state, and finally updating the memory. However, unlike training, network weights are not
updated in this step. The second step involves executing random actions and predicting observations
(c) Model tested by memory initialized with K = 4 patches. (d) Model trained on N = 32 images.
When initialized with K = 6 patches , the whole image can be almost completely reconstructed. (e)
The x-axis neuron numbers represent the number of neurons in each layer, with a total of L = 3
layers in the network.

input for a single observation to mimic the human receptive field. After each eye movement, the next
observation becomes the corresponding patch.

During the learning phase (Figure 2a), we randomly generate a sequence of eye movement, and
change the complete image every once in a while. We employed N = 16, 32, 64, 128 images for
each model, resulting in a total of Ntol = 16 × N possible observations. Rows 2-4 of Figure
3a demonstrate the generation results for images encountered during training, while the 5th row
illustrates the generation results for unseen images. Figure 3c shows the mean squared error (MSE)
between the prediction and the ground truth for different network structures (total number of neurons
is the same, L varies), which decreases with training epochs. To increase training efficiency, we used
a batch size of 128, and roughly, the effectiveness of one epoch can be considered as the average
over 128 time steps. Figure 3d depicts the decreases of loss Ll

t for each layer in the L = 3 model
across training epochs. Here, the phenomenon of gradient vanishing is observed, and we plan to
address this by introducing skip connections to deepen the network. Figure 3e displays the impact of
network capacity on performance. When initializing memory with K = 16 patches, a higher number
of neurons corresponds to improved model performance. However, when initializing with K = 8
patches, an excessive number of neurons increases the initialization space, posing a challenge and
resulting in a decline in model performance.

Images N 16 32 64 128

Patches K Ours TDM Ours TDM Ours TDM Ours TDM

4 0.0907 0.1678 0.0834 0.1431 0.0802 0.1281 0.0770 0.1179
8 0.0687 0.1321 0.0629 0.1272 0.0612 0.1130 0.0606 0.0911

16 0.0388 0.0532 0.0336 0.0512 0.0304 0.0482 0.0287 0.0471

Table 1: MSE of predictions calculated on modeling eye movement. We compare our model with
transdreamer Chen et al. (2022) for different Image numbers and initialized patches.
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Figure 4: Experiments on modeling motion and head turning. (a) The prediction results. Arrow labels
indicate the direction of movement actions, while the combination of the head and arrow illustrates
the direction of head-turning actions. (b)(e) The x-axis neuron numbers represent the number of
neurons in each layer, with training using 150 images. (c)(d) In both figures, the total number of
neurons in the model is 3k, and orange stars mark the results when the number of neurons is 10k.

During the testing phase (Figure 3b), we start by randomly initializing the memory. We select K
patches from an image and perform random eye movement on these patches for prediction and
inference without altering the network weights. After 2K steps, the obtained memory becomes the
initialized memory. We then use this memory to envision each patch, generating the whole image.
Although the CIFAR-10 dataset has higher dimensions than Fashion-MNIST, we found that the
model performs better on CIFAR-10. This may be attributed to the fact that CIFAR-10, as a natural
image dataset, exhibits higher correlations between patches, which is more favorable for the model’s
predictive capabilities. We also compared our model’s test results on CIFAR-10 with the commonly
used TransDreamer model (TDM) Chen et al. (2022) for similar tasks in machine learning methods.
The results show that our model achieved better performance with the same number of parameters
(Table 1). In appendix D, we provide more details about the training process and clearer generated
results.

Motion and head-turning alter our spatial position and the orientation of our head, respectively.
Experimental findings reveal neurons encoding position and head orientation in the brain exhibit
structures akin to CANNs Wills et al. (2005); Kim et al. (2017). Notably, place cells, particularly
located in the hippocampus, are believed to be closely associated with spatial cognition and memory
functions Moser et al. (2015).

In our experiments, we employed an agent moving in four directions within the Deeplab map Beattie
et al. (2016), constructing a dataset for a virtual environment using observed images and action
sequences. Additionally, we utilized the Google Street View Static API to capture images by
continuously moving and rotating the viewpoint, creating a dataset for a real environment. Each
environment was associated with datasets of varying sizes. The first and third rows of Figure
4a display observation sequences for the two datasets, while the corresponding action sequences
are illustrated in the two rows of labels. During the training phase, each environment underwent
continuous training using models with distinct structures. After a maximum of 100 epochs, all models
achieved convergence. In the testing phase, for each model, we used a random sequences from
the training phase to initialize memory through continuous prediction inference. Subsequently, we
executed imagination to predict observations for the entire environment. The second and fourth rows
of Figure 4a showcase the results of predictions. Figures 4b and 4e respectively demonstrate the
predictive capabilities of the models for the environments post-training. As evident, an increase in
the number of neurons correlates with enhanced predictive capabilities. Figures 4c and 4d illustrate
that, with the same network size, larger datasets result in diminished model performance.

Static observation while the environment changes. When we take no action, remaining stationary,
the external world can change continuously. For example, when watching a video, our observations
constantly evolve. In such cases, we also need to predict future observations. We conducted
evaluations using the MNIST-rot dataset and TaxiBJ dataset. The MNIST-rot dataset consists of
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sequences with 20 frames each, while the TaxiBJ dataset sequences contain 8 frames. During training,
we utilized N = 128 sequences. In testing, we use sequences that were not seen during training.
For the MNIST-rot dataset, we initialized memory with the first 10 frames and then reproduced the
entire sequence. For the TaxiBJ dataset, memory was initialized with the first 4 frames, and the entire
sequence was reproduced from the beginning (Figure 6 in appendix). We achieved better results than
tPCN on the MNIST-rot dataset (Table 2). And we compared our performance on the TaxiBJ dataset
with BP-based machine learning models, achieving comparable results (Table 3).

Seen Unseen

SeqLen Ours tPCN Ours tPCN

16 3.4e-8 0.012 0.049 0.055
32 3.5e-7 0.018 0.041 0.045
64 2.7e-5 0.012 0.034 0.035

128 5.1e-4 0.011 0.022 0.023
256 0.002 0.011 0.017 0.018
512 0.003 0.009 0.011 0.017

1024 0.004 0.010 0.009 0.015

Table 2: MSE of predictions calculated on
MNIST-rot dataset. We compare our model
with tPCN Tang et al. (2023) for different
sequence lengths.

Model Frame 1 F2 F3 F4

ST-ResNet 0.460 0.571 0.670 0.762
VPN 0.427 0.548 0.645 0.721
FRNN 0.331 0.416 0.518 0.619
Ours 0.458 0.514 0.567 0.633

Table 3: MSE of predictions calculated on Tax-
iBJ dataset. We compare our model with several
popular methods in machine learning, including ST-
ResNet Zhang et al. (2017), VPN Kalchbrenner et al.
(2017), and FRNN Oliu et al. (2018). All compared
models take 4 historical traffic flow images as inputs,
and predict the next 4 images.

6 DISCUSSION

We consider that the brain employs an EBM as an intrinsic generative model to predict the next
observation after action. We utilize a hierarchical neural network to implement this process and
incorporate a CANN as memory to compress past experiences. As a biologically plausible neural
network, our model succeeds in various environments with different actions. This provides insight
into how the brain builds an internal model capturing the dynamics of the environment. Moreover, our
model achieves performances on par with machine learning methods, indicating that our framework
has the potential for further development.

Unlike previous machine learning works Hafner et al. (2020) or predictive coding network approaches
Tang et al. (2023), our framework differs in that we first perform learning and then inference (see
the order in Algorithm 1). In contrast to previous approaches that conduct learning after inference,
this order in our framework leads to a distinct objective function. Our objective is expressed as
Ep(s|m) log p(o|s) (see Eq.(3)), whereas previous works often use Eppost log p(o|s). We experimented
with the latter objective as well, but it resulted in poorer and less robust performance in our model. In
fact, our approach of learning before inference is closer to the autoregressive models used in LLMs.

In the current model, when computing the gradient of the objective function with respect to the model
parameters, we ignore the influence of parameters on memory (see Eq.(5)). This can be understood
as a form of Truncated BPTT. Nevertheless, in experiments related to movement, we found that this
does not affect our long-distance predictions.

Future work. Due to the Markovian nature of our generative model, our framework can seamlessly
integrate with reinforcement learning (RL). By simply defining additional rewards for specific tasks,
we can achieve model-based RL, creating a biologically plausible world model. In our current model,
though direct access to the underlying state is not available, the utilization of CANNs effectively
establishes a prior structure for the underlying state. We have not yet thoroughly investigated the
impact of the environment dynamics on the CANN structure. The two for-loops in Algorithm 2
are executed sequentially. In neural systems, however, all neurons compute simultaneously. It has
been demonstrated that by introducing a modulation function for error neurons, both for-loops can
be unrolled to achieve parallel computation Song et al. (2020). Nevertheless, when using a real
continuously changing environment, we still need to carefully adjust the model’s time constants to
ensure it can maintain synchronized interaction with the real environment. We will explore these
aspects in our future work.
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A LOWER BOUND DEVIATION 1

Firstly, we can prove that,

p(o|s) log p(o|s)− log p(o|s), (19)
= [p(o|s)− 1] log p(o|s), (20)
≥ 0 (21)

Then, the mutual information between sample o ∼ ptrue(o) and s under p distribution is calculated as,

Eo∼ptrue(o)I(o, s|m) = Eo∼ptrue(o)Es,m∼p(o,s,m) log
p(o, s,m)p(m)

p(o,m)p(s,m)
, (22)

= Eo∼ptrue(o)Es,m∼p(o,s,m) log
p(o, s,m)

p(s,m)
+ Eo∼ptrue(o)Em∼p(m) log

p(m)

p(o,m)
,(23)

= Eo∼ptrue(o)Es,m∼p(o,s,m) log p(o|s) + Const, (24)
+
= Eo∼ptrue(o)Em∼p(m)Ep(s|m)p(o|s) log p(o|s), (25)

≥ Em∼p(m)Eo∼ptrue(o)Ep(s|m) log p(o|s). (26)

The relation betweenH and L is written as,

L = H+ Eo∼ptrue(o)DKL [p(s|m)||ppost] . (27)

B LOWER BOUND DEVIATION 2

The mutual information between o and s under q distribution is calculated as,

I(o, s|m) = Eo,s,m∼q(o,s,m) log
q(o, s,m)q(m)

q(o,m)q(s,m)
, (28)

= Eo,s,m∼q(o,s,m) log
q(o, s,m)

q(s,m)
+ Eo,m∼q(o,m) log

q(m)

q(o,m)
, (29)

= Eo,s,m∼q(o,s,m) log q(o|s) + Const, (30)
+
= Eo,s,m∼q(o,s,m) log q(o|s), (31)

≥ Eo,s,m∼q(o,s,m) log q(o|s)− Es∼q(s,m)DKL [q(o|s)||p(o|s)] , (32)

= Eo,m∼q(o,m)Es∼q(s|o,m) log p(o|s). (33)

(34)

C THE CANN DYNAMICS

We use mt ∈ RnL to represent the firing rate of the CANN at time t, and It ∈ RnL to represent the
total synaptic input to the neurons in CANN. According to the integral firing model, the firing rate
can be approximated as,

mt = H(It), (35)
where H(·) is a nonlinear function. The dynamics of It are determined by its own relaxation, recurrent
inputs from other neurons, neural adaptation Vt, and external inputs from sLt and action neurons, as
expressed by the following equation:

τI
dIt
dt

= −It +Wmt − Vt + sLt + at (36)

Here, τI represents the synaptic time constant, and W denotes the recurrent neuronal connections.
W is a randomly generated low-rank matrix, where its norm is controlled by the hyperparameter
α = ∥W∥. The dynamic of Vt is written as,

τV
dVt

dt
= −Vt + βmt (37)

where τV is the adaptation time constant and β is a scalar controlling the adaptation strength.
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D SUPPLEMENTARY FIGURES

Figure 5a illustrates the learning process of the eye movement experiment. Figure 5b presents clearer
generated images, while Figures 5c and 5d depict the changes in MSE and layer losses during the
model training process in the eye movement experiment. Figure 6 showcases the experimental results
from static observations as the environment changes.
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Figure 5: (a) The learning process of the eye movement experiment. (b) Supplement to Figure 3a in
the main text. (c) The dataset used here is CIFAR-10, with a total neuron count of

∑
l nl = 3k being

consistent across models with different layers L. (d) The loss decreases exponentially as the number
of layers increases, with the model trained on N = 64 images.

E HYPER PARAMETERS

Here are the hyperparameters used in the experiment. All programs are run on one NVIDIA RTX
A6000, and we use JAX (CUDA 11) to accelerate the programs. For the experiments depicted in our
figures, each one takes 5-20 minutes, with the best performance on the DeepLab and Google Street
datasets requiring about 10 hours. The code will be open-sourced after publication.

For all stochastic differential equations, we employ the Euler method for simulation with a step size
of dt. Both inference and learning after a single observation were conducted over a total simulation
time of T . In other words, for a time step from t to t + 1, the simulation occurs T/dt times. The
duration of operation for each layer is uniform. All models use the leaky_relu activation function
denoted as f(·). The parameter τs,τI and τV are set to 1 in all models.

In Tables 2 and 3, we used the corresponding parameter settings from the original texts. For the
TransDreamer in Table 1, the parameter settings are as follows:

• Attention head = 8, Dropout = 0.2, Hidden size = 128, Model size = 64, Layers = 3
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Figure 6: Experiments on sequential data. (a) The 1st row shows the ground truth, and the 2nd row
presents the predicted results. We use K = 10 frames to initialize memory in the MNIST-rot dataset.
(b)(c) Detailed experiments on the MNIST-rot dataset under various parameters. (d) Comparison
results with tPCN. (e) Rows 1 and 3 correspond to the ground truth, while Rows 2 and 4 represent
the predictions generated by the model. We use K = 4 frames for the TaxiBJ dataset. (f) Detailed
experiments on the TaxiBJ dataset under different parameters.

DATASET n0 L nl (l > 0) dt T 1/τθ α β EPOCHS

FASHION-MNIST 7× 7
2 1500,1500

0.05 10 0.1
1

0 1253 1000,1000,1000 0.5
4 750,750,750,750 0.1

CIFAR-10 3× 8× 8

2 1500,1500

0.05 10 0.1

1

0 1253 1000,1000,1000 0.5
3 512,256,128 0.5
4 750,750,750,750 0.1

DEEPMIND LAB 3× 80× 60
3 1000,1000,1000 0.05

10 0.01
0.5

0
40

4 750,750,750,750 0.05 0.1 40
4 4000,2000,2000,2500 0.02 0.1 100

GOOGLE STREET 3× 100× 50
3 1000,1000,1000 0.05 5 0.1 0.5

0
40

4 750,750,750,750 0.05 7 0.1 0.1 40
4 4000,2000,2000,2000 0.1 5 0.05 0.1 140

MNIST-ROT 28× 28 3 2000,1000,1000 0.05 10 0.1 0.5 1 100

TAXIBJ 32× 32 3 2000,1000,1000 0.05 10 0.1 0.5 1 200

Table 4: Parameters setting for different models
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