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ABSTRACT

Protein design encompasses a range of challenging tasks, including protein fold-
ing, inverse folding, and protein-protein docking. Despite significant progress
in this domain, many existing methods address these tasks separately, failing to
adequately leverage the joint relationship between protein sequence and three-
dimensional structure. In this work, we propose a novel generative modeling
technique to capture this joint distribution. Our approach is based on a diffusion
model applied on a geometrically-structured latent space, obtained through an en-
coder that produces roto-translational invariant representations of the input protein
complex. It can be used for any of the aforementioned tasks by using the diffusion
model to sample the conditional distribution of interest. Our experiments show
that our method outperforms competitors in protein docking and is competitive
with state-of-the-art for protein inverse folding. Exhibiting a single model that ex-
cels on on both sequence-based and structure-based tasks represents a significant
advancement in the field and paves the way for additional applications.

1 INTRODUCTION

Machine learning-based innovations in the fields of structural and computational biology, especially
the ability to predict protein structure from amino acid sequence (“protein folding”) (Wang et al.,
2017; Jumper et al., 2021) and vice-versa (“inverse folding”) (Dauparas et al., 2022), have led to
groundbreaking advancements in understanding protein structure and function. However, while the
study of individual proteins provides foundational insights, studying protein complexes (systems
with multiple interacting proteins) is imperative to discerning the intricacies of cellular processes
and disease mechanisms. For example, in drug development, one typically tries to design a new
protein that binds to a given target forming a complex (Modell et al., 2016). Protein generation
involves a range of challenging tasks, such as folding, inverse folding, and docking (Kuhlman &
Bradley, 2019). Traditionally, these tasks are considered as stand-alone problems, each addressed
by specially tailored techniques that leverage structure or sequence information (Ferruz et al., 2022).

For instance, protein-protein docking has recently been addressed using diffusions over manifolds
(Ketata et al., 2023) and regression-based models (Evans et al., 2021; McPartlon & Xu, 2023), while
inverse folding has mostly approached using autoregressive models (Dauparas et al., 2022; Hsu et al.,
2022). Moreover, diffusion models designed for protein generation almost always treat the design
of structure and sequence as independent tasks, typically by applying an inverse folding model to
generated structures (Watson et al., 2023; Trippe et al., 2023). Unfortunately, none of these methods
holistically address protein generation. By addressing these tasks individually, these methods do not
adequately leverage the joint relationship of protein sequence and three-dimensional structure.

In this work, we introduce OMNIPROT (fig. 1), a generative model that inherently captures this re-
lationship and can tackle the diverse set of tasks arising in protein generation in a unified way. OM-
NIPROT has two main components: an autoencoder with a geometrically-structured latent space,
and a diffusion model that operates in this latent space. OMNIPROT’s autoencoder is tailored to
protein complexes, leveraging roto-translational invariant features to produce roto-translational in-
variant latent representations that jointly capture sequence and structural information. By designing
the diffusion to operate in this latent space, OMNIPROT can be seamlessly used to address any con-
ditional generative task in protein design in a unified way, from (full-atom) flexible protein-protein
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docking to inverse folding, by simply changing the conditioning information provided to the latent
diffusion model.

We evaluate OMNIPROT on two common tasks from conditional generative protein design, protein-
protein docking and inverse folding. Notably, in protein-protein docking, OMNIPROT attains a
70% DockQ success rate, compared to 63.3% of the second best ML-based approach. In addition,
OMNIPROT achieves a sequence recovery rate of 46.8% on the inverse folding PROTEINMPNN
benchmark (Dauparas et al., 2022), which is close to the 48.8% achieved by PROTEINMPNN, the
state of the art method tailored for this task. We believe OMNIPROT represents a significant step
towards a unified approach for protein generation and design.

Figure 1: OMNIPROT overview. As explained in section 4.4 OMNIPROT provides a unified way
of addressing conditional protein generation tasks (e.g. protein-protein docking, inverse folding,
among others), by simply changing the conditioning features provided to the diffusion model.

2 PRELIMINARIES - DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) represent a
powerful generative modeling technique. Given a target distribution pdata(z), they define a for-
ward process that gradually transforms this distribution into a tractable reference. For instance, the
variance preserving formulation from Song et al. (2020) defines this process using an SDE,

dzt = − 1
2β(t) ztdt+

√
β(t)dw, where t ∈ [0, 1] and z0 ∼ pdata(z). (1)

Essentially, this process takes a dataset of samples from pdata(z) and progressively transforms them
into random noise. Critically, it can be simulated exactly for any time t: Given z0 ∼ pdata we have

zt ∼ pt(zt | z0) = N
(
zt

∣∣∣ z0 e− 1
2

∫ t
0
β(s)ds, I − I e−

∫ t
0
β(s)ds

)
. (2)

For an appropriate choice for β(t) (Song et al., 2020), this shows that samples z1 (obtained by
running eq. (1) up to time t = 1) approximately satisfy z1 ∼ N (0, I). Therefore, new samples from
pdata can be obtained by simulating the time-reversal (Anderson, 1982) of eq. (1), given by

dzt = −β(t)2

(
zt + 2∇ log pt(zt)

)
dt+

√
β(t)dw̄, z1 ∼ N (0, I), (3)

from t = 1 to t = 0. Unfortunately, the “score” ∇ log pt(zt) is often intractable. Diffusion models
address this training a score network sθ(zt, t) to approximate it, minimizing the denoising score
matching objective (Hyvärinen & Dayan, 2005; Vincent, 2011)

L(θ) = Et,z0,zt|z0
[
w(t) ∥sθ(zt, t)−∇zt log pt(zt | z0)∥

2
]
. (4)

Finally, new samples from pdata(z) can be obtained (approximately) by simulating the reverse pro-
cess from eq. (3) using sθ∗(zt, t) ≈ ∇ log pt(zt).
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Conditional diffusion models are a natural extension of the formulation above, in which a diffusion
model is trained to approximate conditional distributions pdata(z |c), where c is the conditioning
variable. In this case, the dataset consists on tuples (z, c), the score network is given by sθ(zt, t, c),
and the reverse process produces samples from pdata(z | c) (for any given c).

3 RELATED WORK – MACHINE LEARNING FOR PROTEIN DESIGN

Conditional protein design represents a broad domain that encompasses multiple tasks, each ad-
dressing distinct yet interconnected aspects of protein structure and sequence generation. This sec-
tion briefly reviews machine learning based approaches for many of these tasks.

Protein folding attempts to predict the 3D conformation of a a protein given its sequence of amino
acids (residues). Deep learning-based methods have recently achieved impressive performance on
this task (Jumper et al., 2021; Lin et al., 2023; Mirdita et al., 2022; Yang et al., 2020). However,
they were originally designed to produce single conformations, failing to model protein flexibility
(Lane, 2023). Recent works tried to bridge this gap (Stein & Mchaourab, 2022), with a promising
direction involving the use of diffusion models to sample multiple conformations (Jing et al., 2023).

Inverse folding aims to predict a protein sequence from its 3D structure. Recent deep learning
methods provide efficient alternatives to physics-based approaches, spanning autoregressive models
(Ingraham et al., 2019; McPartlon et al., 2022; Anand et al., 2022) and other specialized architectures
(Qi & Zhang, 2020; Zhang et al., 2020; Jing et al., 2020; Strokach et al., 2020; Gao et al., 2023; Hsu
et al., 2022). Sequence and structure co-design methods are similarly promising (Shi et al., 2023).

Machine learning has also reached the realm of protein-protein docking, with multiple approaches
introduced to lighten the computational costs of traditional physics-based methods (Chen et al.,
2003; De Vries et al., 2010; Yan et al., 2020). Recently proposed deep learning methods that build
on transformer models (McPartlon & Xu, 2023), diffusion models Ketata et al. (2023), and attention-
based networks (Evans et al., 2021) have achieved impressive performances on this task.

In recent years, diffusion models have been increasingly used for protein generation. Several vari-
ants have been proposed for backbone generation, diffusing over coordinates (Trippe et al., 2023),
inter-residue angles (Wu et al., 2022), or residue frames position and orientation (Lin & AlQuraishi,
2023; Yim et al., 2023). Some methods diffuse over sequence and structure jointly, producing se-
quence and backbone (Lisanza et al., 2023), and side-chain (Anand & Achim, 2022) atoms.

Finally, latent diffusion models (LDMs) have been used for protein sequence synthesis (Jiang et al.,
2023), protein backbone (Fu et al., 2023) and 3D molecule generation (Xu et al., 2023). All meth-
ods employ latent diffusion, using different approaches to construct the continuous latent space to
encode input information (e.g. the latter splits the latent space into invariant and equivariant com-
ponents to encode molecules). These works displayed good performances on their respective tasks,
demonstrating potential benefits of using latent diffusion for generative tasks in structural biology.

4 LATENT DIFFUSION FOR JOINT SEQUENCE-STRUCTURE LEARNING

This section introduces OMNIPROT (fig. 1), a generative model able to jointly capture protein se-
quence and three-dimensional structure. It consists of a latent diffusion model (Rombach et al.,
2022; Vahdat et al., 2021) operating on the geometrically structured latent space of a pre-trained
protein autoencoder. The training of OMNIPROT follows a two-stage approach (Rombach et al.,
2022). First, we train an autoencoder tailored for protein complexes (described in section 4.2), using
roto-translational invariant features (section 4.1). The autoencoder’s latent space effectively captures
both the sequence and structural information of the input protein complex. Second, with the autoen-
coder frozen, we train a diffusion model that operates in this latent space (section 4.3). To showcase
the OMNIPROT’s versatility, section 4.4 delineates its application across various generative protein
design tasks, from inverse folding to protein-protein docking.

4.1 ROTO-TRANSLATIONAL INVARIANT FEATURES FOR PROTEIN COMPLEXES

Given a protein complex, we extract roto-translational invariant features to coarsely characterize its
sequence and structure. These features are then used to train the autoencoder and the latent diffusion.
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We follow the features used by DockGPT (McPartlon & Xu, 2023), which are split into three types:
residue-level (information for each residue i in isolation of other residues, including amino acid
type, sequence position, and backbone angles), intra-chain-pair (information for pairs of residues
i, j in the same chain, including their distance, relative orientation, and sequence separation), and
inter-chain-pair (information for pairs of residues i, j in different chains, including their distance,
relative orientation, contact information, and relative chain information).

For each residue i, or residue pairs i, j, all the aforementioned features are one-dimensional ar-
rays. For instance, the residue-level amino acid type is a one-hot vector over the 20 natural amino
acids, while the inter-chain-pair distance is a one-hot vector obtained by binning distances between
residues into bins of width 2Å. We provide details on how all these features are generated in ap-
pendix B. Given a protein complex with L residues, residue-level features are combined into an
L× cs matrix s, and intra- and inter-chain-pair features are combined into an L× L× cp tensor p.

4.2 AUTOENCODER WITH ROTO-TRANSLATIONAL INVARIANT LATENT SPACE

The first component of OMNIPROT is an autoencoder, consisting of a stochastic encoder (which
maps a protein complex to a roto-translational invariant latent representation that jointly captures
sequence and structure) and a decoder (which reconstructs the input complex, both sequence and
structure, given its latent representation). As detailed in appendix A, the autoencoder is trained
independently of the diffusion, by minimizing a combination of the reconstruction loss (for the
predicted structure) and the cross-entropy loss (for the predicted sequence).

Encoder Eϕ Given a protein complex, the encoder computes the mean and variance of a Gaussian
distribution over the latent space, which is sampled to produce the latent representation. Each layer
in the encoder is given by (we use 8 layers)

si ← PairBiasAtt(s,pi:), (5)

where s and p are the residue-level and pair features, respectively, and PairBiasAtt is the pair-
biased attention layer from Jumper et al. (2021). 1 The mean and log-scale of the Gaussian distribu-
tion are then obtained as

µi ← Linear(si), log σi ← Linear(si). (6)

Finally, the latent representation z (an L× 16 matrix) is obtained as zi = (z̃i−mean(z̃i))/std(z̃i),
where z̃ ∼ N (µ, σ2). This latent representation jointly captures structural and sequence information
for each residue in the input complex.

Decoder Dψ Given a latent representation z, the decoder is designed to reconstruct the input pro-
tein complex (sequence and structure) together with a confidence score for its prediction. We use the
structure module from AlphaFold2 (Jumper et al., 2021), where each residue in the reconstructed
backbone (represented as the frame formed by the N -Cα-C atoms) is identified with a rigid trans-
formation Ti consisting of a translation and a rotation. Using q to denote the L × L × cq tensor
obtained by combining two pair features (sequence separation and relative chain information, see
section 4.1), each layer in the decoder is given by (we use 8 layers)

zi ← IPA(z,T:,qi:), zi ← MLP(zi), Ti ← Ti ◦ BackboneUpdate(zi). (7)

The invariant point attention (IPA) and backbone update operations are described in detail in Jumper
et al. (2021). The side chain angles, amino acid type (logits over the 20 natural amino acids), and
confidence score are then predicted as (for each residue i in the backbone)

anglesi = MLP(zi), aai = Linear(zi), confi = Linear(zi). (8)

4.3 LATENT SPACE DIFFUSION

The second component of OMNIPROT is a conditional diffusion model operating in the autoen-
coder latent space. This diffusion is trained in a second step, after training and freezing the autoen-
coder (Rombach et al., 2022).

1This is a self-attention mechanism (Vaswani et al., 2017) on s, with an extra bias term for the dot-product
affinity between each pair of residues i, j, computed using pij .
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As detailed in section 2, diffusion models define a forward process that gradually diffuses samples
z (in our case latent representations) by running a forward diffusion process (“noising”). Then, they
generate samples by reversing this process (“denoising”). This requires training a score network
sθ(zt, t, c), where c represents conditioning information available to the model. In our case, this may
include any subset of the residue-level and pair-level features described in section 4.1. Critically, as
detailed in section 4.4 (and summarized in table 1), the exact features included in c will depend on
the task being addressed. For instance, for protein-protein docking, c will include all residue-level
and intra-chain-pair features, but no inter-chain-pair features (i.e. no information of interactions
between different chains); for inverse folding, on the other hand, c will only contain features related
to protein structure, without including information regarding amino acid types.

Score network Our score network sθ(zt, t, c) resembles the encoder architecture, with extra up-
dates for the pair features through triangular multiplicative layers (Jumper et al., 2021). Using ut

to denote the L× (16 + cu) matrix obtained by concatenating zt and the residue-level features in c,
and r to denote the L× L× cr tensor obtained by combining pair-level features in c, each layer in
the score network consists of (we use 12 layers)
uti ← PairBiasAtt∗(ut, ri:, tenc), rij ← rij +OutSum(uti,u

t
j), r← r+TriangMult(r),

(9)
where tenc denotes the sinusoidal encoding of t (Vaswani et al., 2017), and PairBiasAtt∗ is a variant
of the pair-biased attention layer (Jumper et al., 2021) that uses tenc to compute attention weights
(appendix D). The final score is obtained through a linear layer scorei = Linear(ui).

4.4 A UNIFIED APPROACH FOR CONDITIONAL PROTEIN GENERATION TASKS

Conditional protein generation using OMNIPROT is done by running the diffusion model (condi-
tioned on a subset of structural and sequence features c) in the latent space, and feeding the resulting
sample through the decoder, which produces both sequence and structure. OMNIPROT can be flex-
ibly used for multiple conditional generative tasks, by simply selecting an appropriate subset of
features (section 4.1) to use at inference time. Table 1 presents a comprehensive summary of var-
ious tasks along with their corresponding feature requirements. Concurrently, fig. E.1 illustrates a
specific example of the OMNIPROT pipeline for protein-protein docking.

Features used as conditioning information c by task
Task Protein Sequence Intra-Chain Geometry Inter-Chain Geometry Residue Contacts
Docking with contacts ✓ ✓ ✓
Docking without contacts ✓ ✓
Folding ✓
Inverse Folding ✓ ✓ ✓

Table 1: Summary of conditional generation tasks addressed by OMNIPROT with the subset of
features (section 4.1) used by each one as conditioning information.

Inverse folding. If c includes features that contain three-dimensional structural information, but
no information about amino acid types, OMNIPROT will sample sequences compatible with the
provided three-dimensional structure, effectively performing inverse folding.

Blind protein-protein docking. If c includes residue-level and intra-chain-pair features, without
any inter-chain-pair features (i.e. no information of interactions between different chains), OM-
NIPROT will sample three-dimensional structures for the full protein complex, effectively perform-
ing flexible (blind) protein-protein docking.

Protein-protein docking with contact information. Additionally, by including some inter-chain
contact points in c (contact information inter-chain-pair features), OMNIPROT will leverage this
information to sample three-dimensional structures for the full protein complex, effectively per-
forming flexible protein-protein docking with contact information. Having such contact information
available from experimental or design constraints is a common scenario, known as integrative mod-
eling, and has long standing in the field (Koukos & Bonvin, 2020).

Protein folding. When working with a single protein, if c does not include any structural-related fea-
tures, OMNIPROT will sample three-dimensional structures compatible with the provided sequence,
effectively performing flexible protein folding.
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4.4.1 OMNIPROT ANALYSIS

After training, OMNIPROT’s sampling process (latent diffusion + decoder) defines a distribution over
protein complexes, structure and sequence. This section briefly studies this distribution’s properties.

Proposition 1. Let (x, s) denote a protein structure and sequence, and p(x, s | c) denote the distribu-
tion defined by OMNIPROT, where c is the conditioning information provided to the diffusion model.
If the decoder initializes backbone frames with a global rotation chosen uniformly at random, then
p(x, s | c) = p(Rx, s | c) for any three-dimensional rotation R.

We prove proposition 1 in appendix C. The proposition states that the joint distribution over se-
quence and structure defined by OMNIPROT, denoted by p(x, s | c), is invariant w.r.t. rotations of
the structure. Furthermore, this holds regardless of the subset of features used as the conditioning
information c. This is a desirable property, as the true data distribution satisfies this invariance. (It
has been observed that methods that enforce invariances and equivariances present in the true data
distribution sometimes yield better generalization (Jumper et al., 2021; Xu et al., 2022).)

Another desirable property satisfied by OMNIPROT’s distribution is its invariance w.r.t. rigid trans-
formations of the structural information included as conditioning information. The relevance of this
can be seen through concrete application examples. For inverse folding, OMNIPROT’s predicted
distribution over sequences should not be affected by rigid transformations of the structural infor-
mation provided as input. For (blind) protein-protein docking, the distribution over full complex
structure should not be affected by rigid transformations of the individual chains’ structures pro-
vided as input. OMNIPROT satisfies these invariances. This follows directly from the fact that it
only relies on roto-translational invariant features (section 4.1), which are unaffected by rigid-body
transformations.

5 EMPIRICAL EVALUATION

Although OMNIPROT is capable of performing any protein generation task, we evaluate it on inverse
folding and protein docking, as these are at the core of conditional protein generation. We first
introduce the datasets and metrics used for each task, and then present our empirical results. In all
tables, we use use bold to denote the best performing method, and underline the second-best.

Protein-protein docking. Our dataset contains all available chains in the Protein Data Bank (PDB,
March 2023, 199k proteins). Splits are generated by performing FoldSeek all-vs-all structural align-
ments of protein binding sites (Berman et al., 2003; van Kempen et al., 2023). This novel split is
introduced to address significant potential data leakage found in the DIPS splits used in previous
rigid docking methods (Ganea et al., 2021; Ketata et al., 2023), where large fractions of the test
data contained structural overlap with the training data. The full detail with further evidence of the
necessity of these new splits are provided in appendix F. Possible test set candidates are selected
from cluster representatives of the clusters with the top 10% highest resolution, which contained at
least one high quality representative protein-protein interaction. Out of these candidates, we ran-
domly chose a subset of 150 dimers, 100 heterodimers and 50 homodimers. The training data (199k
proteins) consists of the remaining data without any quality-based filtering.

We evaluate protein-protein docking methods by measuring differences between predicted and
ground truth structures in terms of root mean square deviation (RMSD), RMSD for interface residues
(I-RMSD), and RMSD for ligand residues (L-RMSD). For RMSD, we report 25th and 50th per-
centiles, and the proportion of predictions with I-RMSD ≤3Å and L-RMSD≤6Å. Further, we re-
port DockQ, which is a composite score of I-RMSD, C-RMSD and Fnat (fraction of recovered
native contacts) (Basu & Wallner, 2016). The continuous DockQ score (range 0 to 1) can be used to
reproduce the Critical Assessment of PRediction of Interactions (CAPRI) classification of Incorrect,
Acceptable, Medium and High quality predictions (Vajda et al., 2002).

Inverse folding. We use the dataset curated for the development of PROTEINMPNN (Dauparas
et al., 2022). It contains protein assemblies in the PDB (Berman et al., 2003) (as of Aug 02, 2021)
clustered by 30% sequence identity using mmseqs2 (Steinegger & Söding, 2017). We evaluate
methods on a test set of 150 monomers selected at random (from the original test set). Additional
information regarding the dataset and data collection can be found in appendices F.2 and G.
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We measure inverse folding performance using using native sequence recovery rate (NSR), and self-
consistency RMSD (sc-RMSD) (Trippe et al., 2023) with ESMFold structures (Lin et al., 2023). The
rationale is that NSR assesses how closely a designed sequence matches the native sequence of an
input backbone structure, and sc-RMSD provides an in-silico estimate of how well sequences encode
structure by measuring the RMSD between predicted and ground-truth backbones. In accordance
with Dauparas et al. (2022); Jing et al. (2021); McPartlon et al. (2022), NSR is reported as the
median (over all structures) of the average percentage of residues recovered correctly. Further, we
report the proportion of predictions with sc-RMSD≤ 2.5Å and ≤5Å.

5.1 AUTOENCODER EVALUATION

We begin our empirical evaluation by studying the autoencoder’s accuracy, as it may limit OM-
NIPROT’s performance on downstream tasks. We do this by simply measuring its capacity to recon-
struct input complexes, both structure and sequence, using the metrics described above. We found
that OMNIPROT’s autoencoder achieves an NSR value of 98±1% for sequence recovery. For struc-
ture recovery, samples from OMNIPROT’s encoder are decoded with an average full-atom Complex
RMSD of 1.3 ± 0.3Å, average I-RMSD is 1.3 ± 0.3Å, and L-RMSD is 2.1 ± 0.5Å. With these
RMSD statistics, the average DockQ score of predicted complexes is 0.75± 0.05Å, which is at the
upper threshold of medium quality. Although recovered structures are of relatively high quality, in
section 5.2, we show that OMNIPROT is capable of generating structures at the lower bound of the
autoencoder’s recovery range. This suggests that improvements to the autoencoder could directly
translate to performance gains on design tasks.

5.2 PROTEIN-PROTEIN DOCKING

We compare OMNIPROT to three machine learning approaches for protein-protein docking, the
regression-based methods EQUIDOCK (Ganea et al., 2021) and DOCKGPT (McPartlon & Xu,
2023), and the diffusion-based method DIFFDOCK-PP (Ketata et al., 2023). We re-trained each
of these methods on the dataset described above. Training details for baselines are provided in
appendix G.

I-RMSD(Å)↓ L-RMSD(Å)↓ DockQ↑

25th 50th %≤ 3Å↑ 25th 50th %≤ 6Å↑ ≥accep. ≥med. ≥high

EQUIDOCK 14.5 18.14 0.0% 29.3 35.0 0.0% 0.0% 0.0% 0.0%
DOCKGPT 0.76 2.13 55.3% 1.86 5.96 50.1% 63.3% 52.0% 31.3%
DIFFDOCK-PP (20)† 2.63 5.01 31.3% 6.1 13.2 24.6% 44.6% 24.0% 4.6%
OMNIPROT (20)† 1.45 1.92 64.7% 2.61 3.82 60.7% 70.0% 56.7% 1.3%

OMNIPROT + 1C (20) † 1.31 1.50 94.0% 2.11 2.73 92.0% 97.3% 90.7% 3.3%

Table 2: Results on 150 protein dimers. Results for four ML-based docking methods are shown
for the test set. Here, we use 25th and 50th to denote 25th and 50th percentile values. Each method
was re-trained and evaluated on the same splits. For diffusion models, the number of sampled poses
is shown in parentheses. In an effort to fairly compare our method with DIFFDOCK-PP, we report
only oracle statistics, denoted with †, which refers to the setting where we can perfectly select the
best pose out of the sampled ones. We distinguish our performance on blind docking (OMNIPROT)
and our performance on site-conditioned docking given one Cα-Cα contact (OMNIPROT + 1C)

Table 2 reports the results achieved by all methods on the 150 dimers in the test set. When reporting
results for generative methods, OMNIPROT and DIFFDOCK-PP, we sample 20 structures per target
and report “oracle” statistics, by selecting the prediction with the lowest RMSD from the ground
truth. Although this biases performance in favor of diffusion models, it provides clear and simple
criteria that is easy to apply across both methods. (Regression based methods are deterministic,
producing a single structure per target.) As an ablation study, we also measure performance for a
varying number of sampled structures (5, 10, 20), with results shown in table H.1.

7



Under review as a conference paper at ICLR 2024

Table 2 shows that OMNIPROT achieves competitive lower-quartile I-RMSD and L-RMSD with
DOCKGPT, and significantly outperforms DIFFDOCK-PP and EQUIDOCK on all metrics. In terms
of DockQ score, OMNIPROT finds the largest fraction of medium or better quality poses, but falls
short of DOCKGPT in terms of high-quality predictions. This is not surprising given that the au-
toencoder has an average DockQ of 0.75 – marginally below the high quality threshold. We expect
improvements to the autoencoder to translate to improvements in OMNIPROT’s performance.

We also evaluate OMNIPROT’s and DIFFDOCK-PP’s performance when generating a different num-
ber of samples per target. Results are shown in table H.1. We observe that OMNIPROT tends
to converge on low-RMSD solutions with significantly less samples than DIFFDOCK-PP. In fact,
OMNIPROT with 5 samples per target significantly outperforms DIFFDOCK-PP with 20 samples
across all metrics. Considering the best pose across five samples, OMNIPROT achieves median or-
acle I-RMSD of 2.37Å and median oracle L-RMSD of 5.53Å. Given the same number of samples,
DIFFDOCK-PP’s median I-RMSD and L-RMSD is 8.67Åand L-RMSD is 19.78Å.

We also assess OMNIPROT’s ability to incorporate binding site information in the form of pairwise
Cα contacts (included as the contact information inter-chain-pair feature). In line with the results
in McPartlon & Xu (2023), we observe that providing even a single inter-chain contact significantly
improves docking performance fig. H.1. In fact, with a single contact, OMNIPROT achieves an oracle
(out of 20 samples), 90% of OMNIPROT’s predictions achieve a medium or high DockQ score.
We remark that the 25-th percentile I-RMSD is roughly equal to the error rate of the autoencoder,
showing again that OMNIPROT’s is performing at the limit imposed by the autoencoder, and that
improvements made to the autoencoder could directly translate to improvements in OMNIPROT’s
performance.

5.3 INVERSE FOLDING

We compare OMNIPROT against PROTEINMPNN (Dauparas et al., 2022), the state of the art method
for inverse folding. Additionally, to assess the utility of jointly encoding sequence and structure in
OMNIPROT’s latent representation, we also compare against OMNIPROT(Seq), a variant of OM-
NIPROT based on an autoencoder trained only on sequence-based features (same architecture).

NSR(%) sc-RMSD

Median↑ Std Median (Å) ↓ %≤ 2.5Å↑ %≤ 5Å↑

PROTEINMPNN 48.8% 0.08 1.82 62.3 % 78.8 %
OMNIPROT(Seq) 43.2% 0.06 2.65 45.8% 65.5 %
OMNIPROT 46.8% 0.06 2.34 53.6 % 69.5 %
Native — — 2.11 59.7% 74.4%

Table 3: Inverse folding results on PDB monomer test targets. Columns show median and stan-
dard deviation of NSR and sc-RMSD statistics for each method (row). For sc-RMSD we show the
percentage of predicted structures below a 2.5Å and 5Å cutoff. We add an additional row (Native)
showing sc-RMSD statistics for native structures.

Table 3 shows median NSR and sc-RMSD for OMNIPROT, OMNIPROT(Seq), and PROTEINMPNN.
Since several authors have reported a correlation between de novo design success rate and RMSD
(Cao et al., 2022; Watson et al., 2023), we also report the fraction of sequences resulting in predicted
structures having at most 2.5Å and 5Å RMSD from native. Overall, we observe that OMNIPROT is
competitive with PROTEINMPNN in terms of NSR, with a median of 46.8% recovery, against PRO-
TEINMPNN’s 48.8%. The performance is similar for sc-RMSD, where OMNIPROT has a median
of 2.34Å compared to 1.82Å for PROTEINMPNN. Interestingly, we also observe that OMNIPROT
outperforms OMNIPROT(Seq) by a noticeable margin, with OMNIPROT(Seq) sequence recovery
dropping 3%, and roughly 15% fewer predicted structures structures falling below a 2.5Å RMSD
cutoff. This shows the benefits of jointly encoding sequence and structure, as done by OMNIPROT,
instead of handling either one in isolation.

A more detailed comparison of sc-RMSD is shown in fig. 2, which contains scatter plots between
OMNIPROT and PROTEINMPNN (fig. 2A), and OMNIPROT against OMNIPROT(Seq) (fig. 2B). Re-
inforcing our previous conclusion regarding the benefits of jointly encoding sequence and structure,
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Figure 2: ESMFold sc-RMSD for OMNIPROT and PROTEINMPNN designed sequences. Each
subfigure shows a scatter plot and histograms of sc-RMSD for 150 monomeric targets from the PDB
dataset. (A) comparison of OMNIPROT (x-axis) and PROTEINMPNN (y-axis). (B) Comparison of
OMNIPROT and OMNIPROT(Seq), trained only on sequence encodings (y-axis).

fig. 2B shows that sequences predicted by OMNIPROT often lead to structures with lower RMSD
than those produced byOMNIPROT(Seq) (better for ≈ 80% of the test set).

Fig. 2A shows that OMNIPROT compares favorably to PROTEINMPNN for roughly 30% of the test
set in terms of sc-RMSD. Some of this difference may be explained by the ability of autoregressive
models to control sampling temperature. It is possible that related techniques for diffusion models,
such as self-attention guidance (Hong et al., 2023) or classifier-free guidance (Ho & Salimans, 2022)
could improve OMNIPROT’s performance on this task. To test this, we explored the use of low
temperature sampling (Ingraham et al., 2022). Results are shown in table H.2, where it can be
observed that using a temperature < 1 is often beneficial for OMNIPROT. Finally, we remark that
NSR and sc-RMSD are both only a proxy for sequence designability. Indeed, PROTEINMPNN
achieves sc-RMSD statistics favorable to ground-truth sequences (see table 3). Although native
sequences obviously encode native structure, when predicted by ESMFold, only 59.7% predicted
structures achieved accuracy below 2.5Å.

Although OMNIPROT slightly under-performs PROTEINMPNN, it offers several advantages. First,
the sequence predictions by OMNIPROT were generated using 150 reverse diffusion steps. This is
in stark contrast to the randomized autoregressive scheme employed by PROTEINMPNN, which
requires independent inference steps for each input residue. In addition, OMNIPROT is capable of
jointly designing sequence and structure in a one-shot, although this is beyond our current scope.

6 CONCLUSION

We introduced OMNIPROT, a method that jointly models protein structure and sequence, and can
address any conditional generative protein task in a unified way. For the scope of this work, we
evaluate it on protein-protein docking and inverse folding, which lie at the core of protein conditional
generation. We compare OMNIPROT against baselines tailored to each of these tasks. We observe
that our approach achieves state of the art performance in protein-protein docking, and competitive
results on inverse folding. To the best of our knowledge, this is the first method to yield (near) state
of the art performance in both tasks simultaneously.

Furthermore, we study the benefits of jointly learning structure and sequence instead of each one
in isolation. We explicitly evaluate this for inverse folding, and observe that jointly modeling both
structure and sequence leads to noticeable performance improvements.
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A AUTOENCODER TRAINING DETAILS

The loss used to train the autoencoder is given by

Lae(ϕ, ψ) = CrossEntropy(Ŝ, S) + FAPE(X̂,Xtrue)+

10−3 ·KL(N (µ, σ2) ∥N (0, I)) + plDDT(X̂Cα, XCα
true), (10)

whereN (µ, σ2) denotes the distribution in the latent space produced by the encoder, X̂a is the full-
atom three-dimensional structure reconstructed by the decoder and indexed by atom type a, and Ŝ is
the reconstructed sequence. The final term plDDT is taken from (Jumper et al. (2021), Supplemental
Algorithm 29) The FAPE loss (Jumper et al., 2021) measures the quality of the produced structure
by aligning predicted per-residue predicted and ground truth rigid frames. To account for limited
or unknown knowledge of binding interfaces in a protein complex, we mask the contact features
Econtact(i, j) when producing the pair representation used as input for the encoder with probability
1/2. Therefore, half of the samples encountered during training do not contain inter-chain contact
information. When these features are not masked, we subsample the number of contacts included as
Ncontact ∼ Geometric(1/3).

B ROTO-TRANSLATIONAL INVARIANT FEATURES

Residue-level features (Eaa(i), Epos(i), and Eangle(θi)) include amino acid type, sequence posi-
tion, and backbone angles, respectively. Eaa(i) encodes the type of residue i (as a one-hot encoding
of the 20 natural amino acids in the autoencoder, or as the residue ESM embedding (Lin et al., 2023)
in the diffusion). Epos(i) encodes the ith residue relative sequence position as a one-hot vector using
ten equal-width bins. Eangle(θi) encodes the backbones torsional angles θi ∈ {ϕi, ψi} as a one-hot
encoding by splitting θ ∈ [−180◦, 180◦] into 18 equal-width bins.

Intra-chain pair features (Edist(i, j), Eangle(θij), and Esep(i, j)) include distance, relative orienta-
tion, and sequence separation, respectively. Edist(i, j) bins the distance between the i-th residue Cα
atom and the j-th residue backbone atom a ∈ {N,Cα, C, Cβ} into six equal-width groups between
2Å and 16Å. Eangle(θij) encodes the angles θij ∈ {ϕij , ψij , ωij} of pairwise residue orientations
(Yang et al., 2020). Esep(i, j) produces a one-hot encoding of relative sequence separation between
residues i and j into 32 classes (McPartlon et al., 2022). The pairwise features for each chain are
stacked to form a block-diagonal input matrix with an additional learned parameter filling the miss-
ing off-diagonal entries.

Inter-chain pair features (Edist(i, j), Eangle(θij), Econtact(i, j), andEchain(i, j)) include distance,
relative orientations, contact information, and relative chain information. Econtact(i, j) is a binary
flag indicating whether the distance between the Cα atoms of residues i and j is less than 10Å.
Echain(i, j) is a three-class one-hot encoding indicating whether the index of the chain containing
residue i is greater than, equal, or less than the index of the chain containing residue j. (The distance
and angle features are generated as explained above for the intra-chain-pair features.)

C PROOF OF PROPOSITION 1

Proof. Without loss of generality, we assume that both the input and output structures have mean
0. This follows from the fact that IPA is translation equivariant, and subtracting the structure’s
center of mass results in an equivalent update to the output. The proposition is a consequence
of the architecture used for OMNIPROT’s decoder. The updates from the invariant point attention
layer (IPA) are invariant to global rigid transformations of the frames, while the backbone update
is equivariant to such transformations. As a result, for a fixed latent representation z, initializing
all frames with the same random rotation and running the decoder is equivalent to initializing the
frames with the identity rotation and applying the random rotation on the decoder’s output. Since
this rotation is chosen uniformly at random, we have p(x, s | z) = p(Rx, s | z) for any R. This is
the key property in the derivation below.

14



Under review as a conference paper at ICLR 2024

Letting z denote the sample produced by the latent diffusion, and pdiff(z | c) its distribution, we have

p(Rx, s | c) =
∫
p(Rx, s, z | c)dz (11)

=

∫
p(Rx, s | z, c) pdiff(z | c)dz (12)

=

∫
p(Rx, s | z) pdiff(z | c)dz (13)

=

∫
p(x, s | z) pdiff(z | c)dz (14)

= p(x, s | c), (15)

where eq. (13) uses the fact that, given z, (x, s) is independent of c (i.e. c is only used to generate z
by running the reverse diffusion; given z, the decoder does not use c in any way.)

D PAIR-BIASED ATTENTION WITH TIME ENCODING

To incorporate continuous time into our diffusion model, we augment the input to self attention
layers using the adaptive layernorm strategy introduced in Peebles & Xie (2023). More concretely,

PairBiasAtt∗(s, p, tenc) = PairBiasAtt(s ◦MLPβ(tenc) +MLPγ(tenc)),p), (16)

where ◦ denotes element-wise multiplication and MLPγ , MLPβ map from the dimension of the
time encoding to the channel dimension of s.

E OMNIPROT PROTEIN-PROTEIN DOCKING

Figure E.1: High-level overview of protein-protein docking with OMNIPROT. As explained
in section 4.4, OMNIPROT protein-protein docking can be performed blind or with additional per-
residue contact information. In both cases conditional features contain ESM2 (3B) protein sequence
language model embeddings (Lin et al., 2022), and intra-chain geometry (information for pairs of
residues in the same chain, including their distance, relative orientation, and sequence separation).
Additional residue features can be included to encode binding site information if available. The
versatility of OMNIPROT can easily be leveraged by changing the conditioning features provided to
the diffusion model (see table 1).
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F DATASETS

F.1 PROTEIN-PROTEIN DOCKING

Most recent protein-protein docking methods have been evaluated on the Docking Benchmark 5
(DB5) (Vreven et al., 2015), and trained with complexes from the from Protein Data Bank (PDB)
(Berman et al., 2003), such that no protein had more than 30% sequence homology to any protein
in the DB5 as proposed by DIPS Townshend et al. (2019). This approach has some limitations.
For instance, the size of DB5 is rather small when compared to DIPS, which means the structural
diversity of the test set may not be representative, and thus sequence similarity is not always a
good proxy to differentiate structurally similar proteins. Even more concerning, however, when
performing interface clustering between train, validation and test set of the frequently used DIPS
splits Ganea et al. (2021); Ketata et al. (2023), we found that a large majority of the test dataset had
structural overlap with the training data set, as evidenced by fig. F.1.

Therefore, to avoid overreporting performance, we train OMNIPROT with splits generated by a struc-
tural interface clustering using FoldSeek all-vs-all alignments on all available chains in the PDB
(March 2023, 199k proteins), focusing on respective protein binding sites (Berman et al., 2003; van
Kempen et al., 2023), and retrain all existing methods on these splits for fair comparison. By using
the Foldseek score for clustering, which linearly combines both 3D-based structure and sequence
substitution scores (van Kempen et al., 2023), our approach combines sequence and structure-based
similarity metrics and restricts them specifically to interfaces. Foldseek stores local alignment posi-
tions and normalizes the alignment scores as TM-score, which is used to filter out alignments with
lower structural similarity (< 0.60 TM-score). Binding site residues were identified based on a cri-
terion of an 6Å Cα distance threshold between chains. A pair of chains was classified as interacting
if there were a minimum of 6 binding residues, and at least 50% were encompassed by the Fold-
seek alignment. Subsequently, a graph representation encoding interface similarity of the interacting
chain pairs, where TM-scores served as the weights for the edges, was used to perform community
clustering to delineate interface clusters.

The test set consists of the cluster representative with the highest resolution for 10% of the clusters,
which contained at least one high quality representative protein-protein interaction (1973 proteins).
All representative PPIs in the test set have a minimum resolution of 4.5A, a minimum of 5 atom
types, a dimeric state, an interface without any missing residues (gaps), either chain with a maximum
of 550 residues and minimum of 25 residues in length, and are solved by X-ray crystallography. The
validation set consists of 190 proteins with the same restrictions, except that they may contain gaps.
The training data consists of the remaining clusters without any quality-based filtering.

Figure F.1: Leakage between training, validation and test splits in the DIPS benchmark set
(Townshend et al., 2019). All-vs-all pairwise structural alignments of respective binding sites per-
formed with Foldseek (van Kempen et al., 2023). (A) TSNE plot of pairwise TM-alignment scores
for all chains in DIPS, showing mixed clusters of train (red), validation (blue), and test (purple). (B)
Bar plot showing the number of Foldseek clusters against members of DIPS (bars from left to right:
only validation, only test, both training and validation, both training and test, or all).
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F.2 INVERSE FOLDING

In generating results for inverse folding we retrained OMNIPROT using the same split as PROTEIN-
MPNN. The data set consists 26,361 clusters are split into training (23,358), validation (1,464),
and testing (1,539) sets. In accordance with PROTEINMPNN, we randomly sub-sample a single se-
quence from each cluster at each training epoch. We restricted the test set to 150 randomly selected
monomers in order to run sc-RMSD experiments with ESMFold. Results for general proteins were
not explored in this work.

G DATA COLLECTION

To evaluate PROTEINMPNN, we use the best-performing model as reported by the authors (Dau-
paras et al., 2022), trained with 0.01Å noise on coordinates. For inference, we use a sampling
temperature of 0.1 and input the backbone coordinates without adding noise.

For protein docking, we retrained each method using the same splits, describe in appendix F.2. All
methods were retrained using the exact parameters described in the corresponding manuscripts. Ad-
ditional instructions for training and inference were gathered through correspondence with the au-
thors of DOCKGPT and DIFFDOCK-PP. THe implementation of DOCKGPT was modified slightly
to use 1Å width bins for pairwise distance features (original paper used 2Åbin-width). This was
done to improve performance on rigid docking.

H EXTENDED RESULTS

We show some additional results for protein docking in table H.1 and fig. H.1, and for Inverse folding
in table H.2. For inverse folding, we experimented with low-temperature sampling as described by
(Ingraham et al. (2022) Appendix, Section B).

I-RMSD↓ L-RMSD↓

25 50 %≤ 3Å↑ 25 50 %≤ 6Å↑

Diffdock-PP (5)† 4.88 8.67 15.3% 11.57 19.78 12.6%
Diffdock-PP (10)† 3.87 6.58 20.0% 9.17 16.49 15.3%
DIFFDOCK-PP (20)† 2.63 5.01 31.3% 6.16 13.20 24.6%
OMNIPROT (5)† 1.65 2.37 53.3% 3.41 5.53 50.7%
OMNIPROT (10)† 1.54 2.05 58.0% 2.72 4.36 54.7%
OMNIPROT (20)† 1.45 1.92 64.7% 2.61 3.82 60.7%

Table H.1: Results for DIFFDOCK-PP and OMNIPROT with varying number of samples For
diffusion models, the number of sampled poses is shown in parentheses. In an effort to fairly com-
pare our method with Diffdock-PP, we report only oracle statistics, denoted with †, which refers to
the setting where we can perfectly select the best pose out of the sampled ones.
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Figure H.1: Protein-Protein Docking with OMNIPROT for three complexes with PDB identifier:
3CNQ, 3E1Z, 3RGF from left to right. Top row shows OMNIPROT Oracle docking predictions (40
sampled poses) with contact information (one simulated inter-link). Bottom row shows OMNIPROT
Oracle docking predictions (40 sampled poses) without additional contact information (blind). The
respective ground truth structures are displayed in gray.

NSR(%)↑ sc-RMSD↓

Median Std Median %≤ 2.5Å↑

PROTEINMPNN (t=0.1) 48.8% 0.08 1.82 62.3 %
OMNIPROT (Seq, λ = 1) 42.3% 0.06 3.00 42.2%
OMNIPROT (Seq, λ = 2) 43.2% 0.06 2.65 45.8%
OMNIPROT (Seq, λ = 4) 44.4% 0.05 2.91 43.1%
OMNIPROT ( λ = 1) 45.3% 0.05 2.44 51.0 %
OMNIPROT ( λ = 2) 46.8% 0.06 2.34 53.6 %
OMNIPROT ( λ = 4) 46.3% 0.06 2.29 53.6%

Table H.2: Inverse Folding Results on PDB test targets, PMPNN Test Set. Results for OM-
NIPROT trained to recover sequence encodings (+Seq) and joint sequence-structure encodings with
varying sampling temperatures λ.
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