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ABSTRACT

In recent years, the merging of vast datasets with powerful computational resources
has led to the emergence of large pre-trained models in the field of deep learning.
However, the common practices often overgeneralize the applicability of these
models, overlooking the task-specific resource constraints. To mitigate this issue,
we propose Cluster-Learngene, which effectively condenses knowledge from
an ancestry model and then initializes descendant models with varying scales of
attention heads. Specifically, our method adaptively clusters attention heads of
each layer in the ancestry model based on their density characteristics and extracts
centroids of attention heads as the learngene. Moreover, we introduce a priority
weight-sharing strategy that expands the learngene to initialize descendant models
with varying scales of attention heads. Through extensive experimentation, we
demonstrate that Cluster-Learngene is not only more efficient compared to other
initialization methods but also customizes models with varying scales of attention
heads according to downstream task resources.

1 INTRODUCTION

The evolution of deep learning has been profoundly influenced by the confluence of expansive data
sources and robust computational capabilities. This collaboration has given rise to large pre-trained
foundation models (Dosovitskiy et al., 2021; Devlin et al., 2019; Radford et al., 2021; Bubeck et al.,
2023), particularly those built upon the Transformer architecture (Vaswani et al., 2017; Dosovitskiy
et al., 2021), such as the Vision Transformers (ViTs) (Dosovitskiy et al., 2021). The pre-trained
foundation models, being widely deployed in various devices like smartphones or edge devices,
serve as the initialization point (Hanin & Rolnick, 2018; Arpit et al., 2019; He et al., 2016; Zhang
et al., 2021; Wang et al., 2022; 2023) for diverse downstream applications. However, this dominant
methodology implicitly assumes that a one-size-fits-all approach, i.e., the entirety of the foundational
model is universally apt for every application, neglecting the specific resource constraints (e.g.,
memory, FLOPs, or latency) inherent to certain downstream tasks. Such an assumption can be
impractical in myriad practical scenarios, especially when deploying models on resource-limited
devices. Furthermore, not all tasks demand the full power of these extensive foundation models.
This naturally raises a pivotal question: Can we extract and harness the condensed part of these
foundation models to achieve a harmonious balance between accuracy and resource efficiency?

To achieve the goal of efficiently initializing models, (Wang et al., 2022; 2023) introduce the innovative
Learngene framework inspired by the observation of genes (cf. Fig. 1 (a)). As showcased in Fig. 1 (b),
Learngene framework is designed in two pivotal stages. In the first stage, the significant knowledge
is condensed from a large ancestry model into a more compact part termed as learngene. In the next
stage, this learngene is inherited to initialize the descendant models of assorted scales. 1 Previous
works (Wang et al., 2022; 2023) predominantly focus on extracting a few integral layers as the
learngene and manually stacking them with the randomly initialized layers.

However, such approaches struggle with inherent limitations: (i) The strategy of extracting certain
integral layers overlooks the potential existence of learngene within these layers, leading to the
preservation of many redundant weights. (ii) The approach of manually stacking the learngene with

1The terms "foundation model" and "ancestry model," as well as "downstream model" and "descendant
model," are interchangeably utilized unless distinctions are explicitly mentioned.
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Figure 1: (a) The ancestry of biological organisms condenses evolutionary information into
information-dense genes to initialize their diverse descendants (Zador, 2019; Hasson et al., 2020). (b)
The Learngene framework condenses the significant knowledge from an ancestry model into a more
compact part termed learngene and then inherited to initialize the descendant models of assorted
scales. (c) The distribution density of attention heads across the different layers of the ancestry model,
which employs the DeiT-B (Touvron et al., 2021). (d) An illustration of our idea.

randomly initialized layers lacks the adaptability to scale the model, preventing the initialization of
downstream models with custom dimensions.

As mentioned earlier, the Learngene framework aims to preserve the most generalizable part of the
ancestry model while eliminating redundant weights that weaken representational capacity. Recent
studies (Raghu et al., 2021; Xie et al., 2023) have visualized the mean attention distance of ViTs,
offering deeper insights into weight redundancy among attention heads across different layers. As
illustrated in Fig. 1 (c), the lower layers focus on both local and global perspectives, leading to a more
sparse density of attention heads. Conversely, the higher layers prioritize a global context, resulting in
a compact density. A notable observation is the repetitive functionality across many attention heads
especially in the higher layers, which inevitably leads to weight redundancy.

Inspired by the above observation, we propose the Cluster-Learngene, an innovative approach that
adaptively extracts the cluster centroids of the attention heads (i.e., head centroids) across each layer
of the ancestry model as learngene. To extract them, we cluster the attention heads within each layer
of the ancestry model based on their density characteristics. As depicted in Fig. 1 (c-d), the attention
heads in the first layer exhibit a sparse density, resulting in five clusters, whereas the attention heads
in the last layer cluster more compactly, forming a single group. Our Cluster-Learngene preserves the
critical parameters containing significant knowledge because the extracted head centroids represent
attention heads with similar semantics.

In the inheriting stage, to expand the learngene into various descendant models, we adopt the
priority weight-sharing. We start by ranking the head centroids based on the size of their respective
clusters, arranging them in descending order of priority. Subsequently, we perform weight-sharing
by distributing these head centroids to initialize the attention heads of the descendant models. If the
number of attention heads in a specific layer aligns perfectly with the number of centroids, they are
evenly shared. However, if they fail to align perfectly, any remaining centroids are shared according
to the remainder.

Our contributions can be summarized as follows: (i) We propose the adaptive clustering of attention
heads to extract head centroids as the learngene, ensuring the preservation of significant knowledge
within the ancestry model. (ii) To achieve the initialization of descendant models with varying scales
of attention heads, we introduce priority weight-sharing that favors head centroids within larger
clusters. (iii) Comprehensive experimental evaluations across datasets of different scales reveal that
Cluster-Learngene not only outperforms traditional initialization strategies but also stands toe-to-toe
with more resource-demanding fine-tuning methodologies.

2 METHODOLOGY

Learngene framework is primarily divided into two phases in Fig. 1 (b): the significant knowledge is
condensed from an ancestry model into a more compact part termed as learngene and then inherited
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to initialize the descendant models of assorted scales. Specifically, in phase 1, our Cluster-Learngene
selects mean attention distance as the density metric and uses it to cluster the head centroids of each
layer in the ancestry model as the learngene, because these head centroids can effectively represent
attention heads with similar semantics. The pseudocode for this phase is presented in Algorithm 1.
In phase 2, Fig. 2 illustrates priority weight-sharing for initializing attention heads in descendant
models. Next, we briefly introduce some preliminaries related to ViTs.

2.1 PRELIMINARY

In the ViT architecture, an input image is first divided into N non-overlapping patches, and each
patch is linearly embedded into a flat vector of size D. The ViT encoder consists of alternating
layers of multi-head self-attention (MSA) and position-wise feed-forward network (FFN) blocks.
Let H denote the total number of heads in each layer. For the hth head, the query Qh ∈ RN×dk ,
key Kh ∈ RN×dk , and value Vh ∈ RN×dv are linearly generated through learned weight matrices
WQ

h ∈ RD×dk , WK
h ∈ RD×dk , and WV

h ∈ RD×dv , where dk and dv are the dimensions of the key
and value vectors, respectively. The SA mechanism of the i-th head can be represented as:

Ah = Attention(Qh,Kh,Vh) = softmax
(
QhK

⊤
h√

dk

)
Vh. (1)

MSA allows the model to jointly attend to information at different positions from different represen-
tational subspaces at different positions:

MultiHead(Q,K,V) = Concat(A1, . . . ,AH)WO, (2)

where WO ∈ RHdv×D is a learned weight matrix. Besides, the FFN can be formulated as:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (3)

where x ∈ RN×D is the input, W1 ∈ RD×dff and W2 ∈ Rdff×D are the weight matrices, and
b1 ∈ Rdff and b2 ∈ RD are the bias vectors. dff is the dimension of the intermediate layer.

2.2 ADAPTIVELY LEARNGENE CLUSTERING

Density metric on attention heads. Given a pre-trained ancestry model with L layers and Ha

attention heads per layer, let the attention weights for the hth head in the lth layer be denoted by
the matrix A(l,h) ∈ RN×N . The element A(l,h)

i,j represents the attention weight from position i to
position j. The distance between any two positions i and j in the sequence can be straightforwardly
defined as |i− j|. Consequently, the distance matrix T ∈ RD×D can be described with Ti,j = |i− j|.
The mean attention distance for the hth head in the lth layer, encapsulating the weighted distance for
each position i across the sequence, is given by:

MeanDist(l,h) =
1

D

D∑
i=1

D∑
j=1

A
(l,h)
i,j × Ti,j . (4)

To deduce this metric for every head across all layers, iterate the above computation for every
l ∈ {1, . . . , L} and h ∈ {1, . . . ,Ha}. As depicted in Fig. 1 and Appendix A, while the lower layers
simultaneously attend to both local and global features, leading to a more dispersed distribution of
attention heads, the higher layers predominantly focus on global aspects, causing a tighter concen-
tration of attention heads. As a result, there is a significant overlap in the semantic representations
among many attention heads, especially in the higher layers, leading to weight redundancy.

Adaptively clustering. Motivated by the empirical observations, we extract cluster centroids (Schu-
bert et al., 2017; Bushra & Yi, 2021; Bhattacharjee & Mitra, 2021) of attention heads in ViTs as the
learngene inherited into the descendant models, thus aggregating similar semantics into the head
centroids. To realize this, we select MeanDist as a density metric for adaptively clustering the
attention heads of the ancestry model at each layer, without setting the number of clusters in advance.
This realization prompts the formulation of the definitions and lemmas, which scaffold our adaptive
clustering approach.

3



Under review as a conference paper at ICLR 2024

Algorithm 1: Pseudocode of Adaptively Learngene Clustering

1 Input: Number of layers in ViT as L, set of attention heads in the lth layer as Sl, radius as Eps,
density threshold as MinHds, and distance function as Dist.

2 Output: The centroids of attention head in all clusters.
3 Initialize all attention heads as unvisited and an empty list for clusters
4 for l = 1, . . . , L do
5 foreach attention head a in Sl do

// Iterate set of attention heads in the lth layer
6 if a is not visited then
7 Mark a as visited, NeighborHds← all attention heads within Eps distance of a

// Initialize neighbors
8 end
9 if number of NeighborHds ≥MinHds then

10 C ← new cluster, Add a to cluster C // Start a new cluster
11 foreach attention head b in NeighborHds do

// Expand neighborhood
12 if b is not visited then
13 Mark b as visited
14 NeighborHds′ ← all attention heads within Eps distance of b
15 end
16 if number of NeighborHds′ ≥MinHds then
17 NeighborHds = NeighborHds ∪NeighborHds′

18 end
19 if b is not yet a member of any cluster then Add b to cluster C
20 end
21 Add C to the list of clusters // Consolidate clusters

22 end
23 else Mark a as noise
24 end
25 end

Definition 1 (Eps-neighborhood of an attention head). The Eps-neighborhood of an attention head
a, denoted as NEps(a), is defined as: NEps(a) = {b ∈ S | Dist(a, b) ≤ Eps}, where Dist(a, b)
denotes the difference in MeanDist values between attention heads a and b. Our approach could
require for each head in a cluster that there are at least a Minimum number of Heads (MinHds) in
an Eps-neighborhood of that head.

Definition 2 (density-reachable). Transitioning from the neighborhood concept, an attention head a
is considered density-reachable from another head b with respect to Eps and MinHds if there is a
sequence of heads a1, . . . , an such that a1 = b, an = a, and each head in this sequence lies within
the Eps-neighborhood of its preceding head.

Definition 3 (density-connected). Broadening our purview, attention heads a and b are labeled
density-connected with respect to Eps and MinHds if there exists an intermediary head o from
which both a and b are density-reachable.

Considering all attention heads in layer l as Sl, a cluster C based on Eps and MinHds is identified
as a non-empty subset of Sl that satisfies the conditions: (i) Maximality: For any heads a and
b in the sequence, if a resides within C and b is density-reachable from a dictated by Eps and
MinHds, then b seamlessly becomes part of C. (ii) Connectivity: Within C, each pairing a, b
maintains a density-connection, anchored by Eps and MinHds. Therefore, upon satisfying these
two conditions, we select all attention heads centrally positioned within the clusters as the learngene,
which is then inherited into the descendant models. The pseudo-code is summarized in Algorithm 1.
The lemma presented below is pivotal in substantiating the correctness of our clustering algorithm.

Lemma 1. Presuming an attention head a belongs to Sl and satisfies the condition |NEps(a)| ≥
MinHds. Then, the set O = {o | o ∈ Sl and o is density-reachable from a with respect to Eps and
MinHds} collectively shapes a cluster.
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Figure 2: Illustration of priority weight-sharing. The darker the color, the larger the cluster size
associated with the head centroid.

2.3 LEARNGENE INHERITING

Expanding self-attention clusters with priority weight-sharing. Building on the aforementioned
method, we extract the head centroids as the learngene. For an ancestry model with L layers, L layers
of head centroids are extracted. The lth layer has cl head centroids of weight A(l,1), . . . ,A(l,cl).
Importantly, the head centroids at each layer are sorted in descending order based on the size of
their respective cluster, i.e., centroids representing more attention heads in the ancestry model are
ranked higher. These head centroids condense significant knowledge and ensure the initialization of
descendant models without performance degradation. Assume the descendant model has Hd attention
heads for each layer. To achieve the desired expansion of heads to initialize the descendant models,
we adopt the priority weight-sharing and Fig. 2 illustrates two scenarios:

• When Hd is divisible by cl: The weights of head centroids are shared Hd

cl
times in sequence. For

instance, centroids of weights A(L,1) and A(L,2) each share their weights across four attention
heads, which are then directly assigned to eight attention heads of the descendant model in layer L.

• When Hd is not divisible by cl: The weights of the head centroids are sequentially shared
⌊
Hd

cl

⌋
times, followed by appending A(l,1), . . . ,A(l,Hd mod cl) at the end. As an illustration, we share the
centroids of weights A(1,1), . . . ,A(1,5) once and then append A(1,1), . . . ,A(1,3), thus initializing
eight attention heads of the descendant model in the first layer.

According to the adjustments in the number of attention heads, the weights WO of the projection
layer are also proportionally pruned and then inherited by the descendant models. 2

Model Variant. For the weights of FFN in the descendant models, we adopt direct inheriting from
the ancestry model or random initialization, and the results are discussed in Experiment 3.2. For
the attention heads in the descendant models, we introduce the hyperparameter ω = Ha

Hd
to denote

the factor by which the number of attention heads is reduced compared to the ancestry model. In
addition to uniformly setting the number of attention heads for each layer with the hyperparameter ω,
we also explore two other possibilities in Experiment 3.3: incrementing and decrementing the count
of attention heads with layer depth.

Complexity Analysis. Comparing the model complexities of all attention heads in the ancestry
model, our approach reduces the model complexity of the initialized attention heads in descendant
models by LHa∑L

1 cl
. Detailed derivations are provided in the Appendix E.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTING

Datasets. To condense the learngene, we employ the ImageNet-1K, a collection of 1.2 million training
images and 50,000 validation images distributed across 1,000 classes as part of the ILSVRC2012
competition Deng et al. (2009). After initializing the descendant models with the Learngene, we
proceed to fine-tune these models on diverse downstream tasks. These tasks include Tiny-ImageNet Le
& Yang (2015), Food-101 Bossard et al. (2014), CUB-200 Wah et al. (2011), CIFAR-10 Krizhevsky
et al. (2009), CIFAR-100 Krizhevsky et al. (2009), and iNaturalist-2019 Tan et al. (2019). 3

2Please see Appendix D for more details.
3Please refer to Appendix B for detailed dataset descriptions.
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Figure 3: Initializing descendant models with varying scales of attention heads. We fine-tune 50
epochs for all models. In (a), the hyperparameter ω takes values ranging from a maximum of 1 to a
minimum of 1

8 (i.e., the number of attention heads in descendant models is eight times that of the
ancestry model). In (b), ω ranges from a maximum of 2 to a minimum of 1

4 . Continuing this pattern,
in (c), ω ranges from a maximum of 4 to a minimum of 1

2 .

3.2× Speedup 2.5× Speedup
2.1× Speedup

Figure 4: Faster convergence. Different points represent results for varying epochs and the
hyperparameter ω is set to 1.0 for our method.

Baselines. Both the ancestry model and descendant models are variants derived from DeiT (Touvron
et al., 2021). In terms of width, there are three types of DeiT: Tiny, Small, and Base. For more training
details and hyperparameters, see Appendix C. We conduct a comparative analysis of our approach for
initializing descendant or downstream models, as follows: (i) Pretraining-Finetuning: This approach
pre-trains DeiT on ImageNet and subsequently fine-tunes the entire model on downstream tasks. (ii)
From-Scratch: We commence with a randomly initialized DeiT model and exclusively train it on the
downstream datasets. (iii) Heuristic-Learngene (Wang et al., 2022): This strategy involves extracting
the last three layers from a DeiT model pre-trained on ImageNet. These layers are then stacked with
randomly initialized lower layers to construct a new model. (iv) Weight-Transformation (Zhang et al.,
2022a): This method employs Weight Transformation to pre-train DeiT on ImageNet, followed by
fine-tuning the entire model to adapt it to specific downstream tasks. (v) Auto-Learngene (Wang et al.,
2023): The first six layers are extracted from the DeiT and then stacked with randomly initialized
higher layers to initialize the descendant models.

3.2 MAIN RESULTS OF MODEL INITIALIZATION

In this section, we validate the capabilities of Cluster-Learngene in efficiently initializing models and
measure model performance with Top-1 accuracy.

Initializing descendant models with varying scales of attention heads. We expand the varying
number of attention heads to initialize the descendant models by adjusting the hyperparameter ω,
catering to downstream resource constraints. As illustrated in Fig. 3, in the case of Tiny-scale
descendant models, when the total number of attention heads is as low as 32, the performance of
Cluster-Learngene is slightly below that of Pretraining-Finetuning. However, as the total number of
attention heads increases, Cluster-Learngene surpasses Pretraining-Finetuning. Particularly notewor-
thy is the improvement of over 3% when there are 288 attention heads because a sufficient number of
attention heads are initialized by the learngene, which holds significant knowledge. Therefore, our
method resolves the limitations of the one-size-fits-all approach seen in Pretraining-Finetuning.

Faster convergence. We provide a detailed comparison of training efficiency between our approach
and From Scratch. As shown in Fig. 4, Cluster-Learngene requires only 3.2 × less training overhead
compared to From Scratch on Tiny-scale descendant models. A key advantage of our approach is
that descendant models initialized with the learngene achieve faster convergence, owing to a superior
initialization point.
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Table 1: Initialization of descendant models
with diverse training samples. The symbol ↑
denotes the performance gap between our ap-
proach and the From-Scratch method. Cluster-
Learngene initializes the descendant model over
50 training epochs. In contrast, From-Scratch
results are achieved after 300 training epochs.
Training data From-Scratch Cluster-Learngene

100% IN-1K 81.80 78.65
50% IN-1K 74.70 76.44(↑1.74)

25% IN-1K 65.73 75.97(↑10.24)

Table 2: Increment or decrement the count of
attention heads. “Decrementing” denotes halv-
ing the number of attention heads in the first four
layers, reducing them by a quarter in the middle
four layers, and maintaining them in the last four
layers relative to the ancestry model. Conversely,
“Incrementing” represents the opposite pattern.

Model Decrementing Incrementing

Tiny 76.56 78.01
Small 79.47 81.29
Base 80.18 81.65

Higher data efficiency. We further conduct experiments on Base-scale descendant models over
different percentages of training data from ImageNet-1K (IN-1K). As shown in Tab. 1, while our
method does not outperform the From-Scratch on the entire dataset, its performance exhibits greater
stability as the amount of training data decreases. For instance, with only 25% of the training data,
Cluster-Learngene outperforms From-Scratch by 10.24%. This higher data efficiency of our method
is attributed to the significant knowledge within the learngene, which helps descendant models
mitigate overfitting, especially in scenarios with limited data.

Efficiently initializing large models on ImageNet. The experimental results in Tab. 3 highlight
several advantages of our approach: (i) When compared to classical initialization methods, our ap-
proach exhibits superior performance. For example, on Base-scale descendant models, From-Scratch
achieves an accuracy of 69.88%, whereas Cluster-Learngene achieves 77.84%. Furthermore, Cluster-
Learngene maintains comparable performance with Pretraining-Finetuning while reducing inherited
parameters by 66% and the inherited count of attention heads by 70.1%. Cluster-Learngene∗ even
outperforms Pretraining-Finetuning by 3.34% with fewer parameters. (ii) Our method inherits fewer
parameters than weight compression methods like Weight-Transformation. On Base-scale descendant
models, Weight-Transformation inherits 44.0 million parameters, whereas our method inherits only
29.1 million parameters. (iii) In comparison to other Learngene methods, our approach efficiently
initializes descendant models with varying scales of attention heads. For instance, on Base-scale de-
scendant models, while Auto-Learngene inherits 42.4 million parameters, Cluster-Learngene inherits
only 29.1 million parameters. Moreover, Cluster-Learngene∗ outperforms Auto-Learngene with an
accuracy of 81.47% compared to 78.04%. This improvement is attributed to the consideration of
redundancy in initializing the internal attention heads of ViT, thus diversifying the representational
capacity of attention heads.

3.3 ANALYSIS AND ABLATION

In this section, we provide further analysis and ablation of Cluster-Learngene. Unless otherwise
specified, we conduct experiments on CIFAR-100 and use Small-scale DeiT as the ancestry model.

Variation in the count of attention head with model depth. Tab. 2 presents two scenarios where the
number of attention heads varies across different layers. Across all descendant model configurations,
“Incrementing” consistently outperforms “Decrementing” by a margin of 1.45% in terms of accuracy.
These findings align with previous research (Michel et al., 2019; Liu et al., 2021), which suggests
that setting more attention heads in higher layers can assist these layers in learning more abstract and
high-level feature representations.

Qualitative visualization. We visualize attention representations to explain which significant
knowledge is inherited by learngene, as shown in Fig. 5. To reduce non-linear effects and enhance
the saliency of the display, we set the power exponent to γ = 0.25. Head centroids from head 1, 2, 4,
and 5 of the first layer in the ancestry model are clustered to initialize head 1 in the descendant model.
Similarly, head centroids from head 3 of the first layer in the ancestry model are used to initialize
head 2 in the descendant model, and so on. Then, weight-sharing is applied to expand head centroids,
e.g., sharing twice to initialize the descendant model.
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Table 3: Trade-off between efficiency and accuracy on ImageNet-1K. The terms “T-Params” and
“I-Params” denote the Total number of parameters and the number of Inherited Parameters in the
downstream/descendant models, respectively. Similarly, “T-Head” and “I-head” refers to the Total
number of attention heads and the Inherited count of attention heads in the downstream/descendant
models. Cluster-Learngene and Cluster-Learngene∗ respectively represent random initialization
and direct inheriting of FFN. The underline denotes our method compared to From-Scratch. The
symbols ↓ and ↑ represent the difference between our method and Pretraining-Finetuning. To verify
the capability of SoLe to provide rapid initialization for the model, we designate a 50-epoch training
period for fine-tuning all models.

Model Method T-Head I-Head T-Params (M) I-Params (M) FLOPs (G) Acc (%)

Pretraining-Finetuning 36 36 5.5 5.5 1.1 66.36
From-Scratch 36 0 5.5 0 1.1 58.93

Tiny Heuristic-Learngene 36 9 5.5 1.3 1.1 62.45
Weight-Transformation 36 18 3 2.9 1.2 65.08

Auto-Learngene 36 18 5.5 2.6 1.1 65.34
Cluster-Learngene 36 27(↓25.0%) 4.2 2(↓63.6%) 0.8(↓27.3%) 65.15
Cluster-Learngene∗ 36 27 4.2 4.2 0.8 71.68(↑5.32)

Pretraining-Finetuning 72 72 21.6 21.6 4.3 75.01
From-Scratch 72 0 21.6 0 4.3 68.41

Heuristic-Learngene 72 18 21.6 5.3 4.3 72.39
Small Weight-Transformation 72 36 11 11 4.3 75.45

Auto-Learngene 72 36 21.6 10.6 4.3 75.90
Cluster-Learngene 72 30(↓58.3%) 16.3 7.5(↓65.3%) 3.2(↓25.6%) 74.67
Cluster-Learngene∗ 72 30 16.3 16.3 3.2 78.72(↑3.71)

Pretraining-Finetuning 144 144 85.6 85.6 16.9 78.13
From-Scratch 144 0 85.6 0 16.9 69.88

Heuristic-Learngene 144 36 85.6 21.2 16.9 75.83
Weight-Transformation 144 72 44.0 44.0 17.0 78.76

Base Auto-Learngene 144 72 85.6 42.4 16.9 78.04
Cluster-Learngene 144 43(↓70.1%) 64.4 29.1(↓66.0%) 12.7(↓24.9%) 77.84
Cluster-Learngene∗ 144 43 64.4 64.4 12.7 81.47(↑3.34)

In the first layer, heads 1, 2, 4, and 5 form the largest cluster, showcasing a predominant concentration
of attention representations along the main diagonal. This representation pattern repeats across
multiple heads. Moreover, the first layer exhibits a diverse range of learned semantics, containing
two other less frequent representation patterns, i.e., the patterns head 3 and head 4. Notably, head 4
captures more abstract and high-level representations, as its attention distribution resembles that of the
final layer. Consequently, the first layer of the learngene captures three critical representation patterns
from the ancestry model, inheriting them into the descendant models. In contrast, the representations
in the final layer of the ancestry model exhibit significant repetition, leading to the clustering of a
single-head centroid for initializing the attention heads of the descendant model.

Transfer learning results for the descendant/downstream models. Tab. 4 illustrates the results of
transfer learning for descendant models trained on various downstream tasks. Our Cluster-Learngene
significantly outperforms both From-Scratch and Weight-Transformation. When compared to other
Learngene methods, such as Auto-Learngene, we observe substantial improvements. Notably, on the
Tiny-ImageNet (Tiny-IN) and iNaturalist-2019 (iNat-2019) datasets, Cluster-Learngene outperforms
Auto-Learngene by 16.75% and 6.89%, respectively. These results highlight the superior capability
of Cluster-Learngene in efficiently initializing descendant models.

Furthermore, on most datasets, the performance of Cluster-Learngene closely matches that of
Pretraining-Finetuning, where the entire model is fine-tuned. Interestingly, on Tiny-ImageNet,
Cluster-Learngene exceeds Pretraining-Finetuning by 11.65% in accuracy. This phenomenon can
be attributed to the more universally significant knowledge within learngene, allowing it to adapt
effectively to various downstream tasks. In contrast, Pretraining-Finetuning, due to its reuse of the
entire model, may lead to negative transfer (Wang et al., 2019; Zhang et al., 2022b) effects from
unfavorable parts of the model in downstream tasks.
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Figure 5: Visualization of attention representations (197 × 197). We perform the following
normalization operation on all attention heads A of the ancestry model and descendant model:(

Ai,j

255

)γ

. The descendant model is trained for 50 epochs, and ω is set to 1
4 .

Table 4: DeiT-Small Results on downstream datasets. “I-Params” means the number of Inherited
parameters in the downstream/descendant models, measured in MB. ↑ represents the performance im-
provement achieved by Cluster-Learngene, when compared to the best method excluding Pretraining-
Finetuning. All results are derived from the 6-layer downstream models.
Method I-Params Tiny-IN Food-101 CUB-200 CIFAR-10 CIFAR-100 iNat-2019

Pretraining-Finetuning 10.5 72.24 87.8 78.13 97.59 84.43 68.48
From-Scratch 0 61.24 74.64 62.75 92.49 73.32 50.79
Heuristic-Learngene 5.6 62.37 77.09 72.64 93.12 78.13 53.21
Weight-Transformation 10.5 64.56 81.79 70.28 93.67 75.98 59.83
Auto-Learngene 10.5 67.14 80.25 73.31 93.58 79.49 59.92
Cluster-Learngene 7.5 83.89(↑16.75) 87.05(↑5.26) 76.84(↑3.53) 96.90(↑3.23) 83.55(↑4.06) 66.81(↑6.89)

4 RELATED WORK

Model Initialization: Over the years, various initialization techniques have been proposed including
the popular random initialization, Xavier initialization (Glorot & Bengio, 2010) and the Kaiming
initialization (He et al., 2016). Recently, the use of pre-trained foundation models has gained
prominence as an initialization strategy before fine-tuning for specific tasks (Dosovitskiy et al., 2021;
Devlin et al., 2019; Radford et al., 2021; Yang et al., 2022; Ni et al., 2022; Bubeck et al., 2023).
However, such an approach necessitates pre-training separate models for each downstream task,
which can lead to substantial computational resource consumption. In contrast, Cluster-Learngene
presents a unique model initialization method that alleviates the need for multiple pre-training steps.

Density-based Clustering: Clustering aims to group similar data points together while separating
dissimilar ones. A wide array of approaches has been explored, including partitioning-based cluster-
ing (Hamerly & Elkan, 2003; Ahmed et al., 2020), hierarchical clustering (Murtagh & Contreras,
2012; Cohen-Addad et al., 2019), and density-based clustering (Kriegel et al., 2011; Schubert et al.,
2017; Bushra & Yi, 2021; Bhattacharjee & Mitra, 2021), and so on. In particular, density-based
clustering operates by taking into account the density and distance relationships between data points
to form clusters. Inspired by this, our method adopts a similar principle by assessing the density of
attention heads to retain essential head centroids that represent significant knowledge.

5 CONCLUSION

In this paper, we propose Cluster-Learngene, a novel approach that involves the adaptive clustering of
attention heads to extract head centroids as the learngene. Subsequently, we adopt the priority weight-
sharing to expand the learngene for initializing descendant models with varying scales of attention
heads, enabling adaptation to diverse downstream resource constraints. Extensive experiments
validate the efficiency and scalability of our initialization method.
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APPENDIX

A MEAN ATTENTION DISTANCE IN DEIT-S AND DEIT-TI

Fig. 6 illustrates the mean attention distance for two other variants of DeiT. In both variants, the
lower layers exhibit a dual focus on both local and global aspects, resulting in a relatively sparse
distribution of attention heads. Conversely, the higher layers prioritize the global context, leading to
a more compact distribution of attention heads. Importantly, many attention heads in these layers
exhibit repetitive functionality, contributing to weight redundancy.

Figure 6: The distribution density of attention heads across the different layers of the ancestry model,
which employs the DeiT-S and DeiT-Ti (Touvron et al., 2021).

B DOWNSTREAM DATASETS

Tab. 5 presents the details of all downstream tasks.

C TRAINING SETTINGS

During the learngene clustering, We set Eps = 10,MinHds = 1. In the learngene inheriting phase,
we train the descendant models on downstream tasks for 500 epochs, including a 10-epoch warm-up

12
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Table 5: Characteristics of the downstream datasets
Dataset # Total #Training #Validation #Testing #Classes

CUB-200-2011 (Wah et al., 2011) 11,788 5,394 600 5,794 200
CIFAR10 (Krizhevsky et al., 2009) 65,000 50,000 5,000 10,000 10
CIFAR100 (Krizhevsky et al., 2009) 65,000 50,000 5,000 10,000 100

Food101 (Bossard et al., 2014) 101,000 75,750 25,250 0 101
Tiny-ImageNet (Le & Yang, 2015) 120,000 100,000 10,000 10,000 200

iNat-2019 (Tan et al., 2019) 268,243 / / / 1010

period, except for iNaturalist-2019, where we train for 100 epochs with a 5-epoch warm-up. The
initial learning rate is set to 5× 10−4 for most tasks, except for Stanford Cars where it is 5× 10−3,
and a weight decay of 0.05. All models are implemented in PyTorch Paszke et al. (2019) and trained
on NVIDIA RTX 3090 GPUs.

D PROJECTION LAYER

According to the adjustments in the number of attention heads, the weights WO of the projection
layer are also proportionally pruned or expanded with the hyperparameter ω and then inherited by
the descendant models. Additionally, we directly inherit the weights of layer normalization, patch
embeddings, and position embeddings in the ancestry model, which constitute only a small fraction
of all weights.

E COMPLEXITY ANALYSIS

For an ancestry model with a total of L layers, each containing Ha attention heads, the total parameters
of its attention heads amount to LHa(2dk + dv)D. Cluster-Learngene condenses each layer of the
ancestry model into cl head centroids. When all these head centroids are inherited by descendant
models through priority weight-sharing, the total parameters of the attention heads in the descendant
models become

∑L
1 cl(2dk + dv)D. Therefore, the relative reduction in model complexity of the

descendant models’ attention heads compared to the ancestry model’s attention heads is given by:

LHa(2dk + dv)D∑L
1 cl(2dk + dv)D

=
LHa∑L

1 cl
(5)
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