
On the Complexity of Verifying Quantized GNNs with
Readout

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this paper, we introduce a logical language for reasoning about quantized graph1

neural networks (GNNs) with Global Readout. We then prove that verifying quan-2

tized GNNs with Global Readout is NEXPTIME-complete. We also experimentally3

show the relevance of quantization in the context of ACR-GNNs.4

1 Introduction5

Graph neural networks (GNNs) are models used for classification and regression tasks on graphs or6

graph-node pairs, aka pointed graphs. GNNs are applied for recommendation in social network [30],7

knowledge graphs [40], chemistry [29], drug discovery [39], etc.8

Quantization designates the fact that numbers are represented by a small amount of bits, opposed9

to e.g., integers or real numbers whose number of bits can be arbitrary long. Standard IEEE 75410

64-bit floats, INT8, or FP8 [22] enter in our setting. Essentially, our setting reflects GNNs as they are11

practically implemented (e.g., in PyTorch), rather than idealized GNNs that assume integer or perfect12

mathematical real number weights, as studied in previous research comparing GNNs and logic [4],13

[24] or [8].14

GNNs, as several other machine learning models are difficult to interpret, understand and verify. This15

is a major issue for their adoption, morally and legally, with the enforcement of regulatory policies16

like the EU AI Act [13]. In the literature, verifying quantized GNNs has already been addressed [32].17

The methodology is to design a logical language to represent both the properties to check and the18

computation of a GNN. However, global readout has not been considered whereas it is an essential19

element of GNNs, especially for graph classification.20

In this paper, we focus on verifying Aggregate-Combine Graph Neural Networks with global Readout21

(ACR-GNNs) and we design a logical framework called qL.22

Example 1. Assume a class of knowledge graphs (KGs) representing communities of people and23

animals, where each node corresponds to an individual. Each individual can be Animal, Human, Leg,24

Fur, White, Black, etc. These concepts can be encoded with features x0, x1, . . . , x5, . . . respectively,25

taking values 0 or 1. Edges in a KG represent a generic ‘has’ relationship: a human can have an26

animal (pet); an animal can have a human (owner), a leg, a fur; a fur can have a color; etc. Suppose27

that A is a GNN processing those KGs and is trained to supposedly recognize dogs. We can verify28

that the nodes recognized by A are animals—arguably a critical property of the domain—by checking29

the validity (i.e., the non-satisfiability of the negation) of φA → x0 = 1 where φA is a qL-formula30

corresponding to A’s computation, true in exactly the pointed graphs accepted by A. Ideally, A31

should not overfit the concept of dog as a perfect prototypical animal. For instance, three-legged32

dogs do exist. We can verify that A lets it be a possibility by checking the satisfiability of the formula33

φA ∧ ♢≤3(x2 = 1).34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

More complex qL formulas can be written to express graph properties to be evaluated against an35

ACR-GNN, that will be formalized later in Example 2: 1. Has a human owner, whose pets are all36

two-legged. 2. A human in a community that has more than twice as many animals as humans, and37

more than five animals without an owner1. 3. An animal in a community where some animals have38

white and black fur.39

Contribution. In Section 3, we define logic qL extending the one from [32] for capturing global40

readout. It is expressive enough to capture quantized ACR-GNNs with arbitrary activation functions.41

Moreover, qL can serve as a flexible graph property specification language reminiscent of modal42

logics [9], for expressing e.g. properties 1-3 in Example 1.43

Section 4 shows that the satisfiability problem of qL is in NEXPTIME, i.e. it can be decided by a44

non-deterministic algorithm in exponential time. To do that, we reuse the concept of mathematical45

logic called Hintikka sets [] which are complete sets of subformulas that can be true at a given vertex46

of a graph. We then introduce a quantized variant of Quantifier-Free Boolean algebra Presburger47

Arithmetic (QFBAPA) logic, denoted by QFBAPA𝕂, and prove that it is in NP as the original48

QFBAPA on integers. We then reduce the satisfiability problem of qL to the one of QFBAPA𝕂.49

In Section 5, we then prove that qL is NEXPTIME-complete, while it is PSPACE-complete without50

global readout [32]. In a similar way, we also add global counting to the logic K♯ previously51

introduced by [24]. We show that it corresponds to AC-GNNs over ℤ with global readout and trReLU52

activation functions. We prove that the satisfiability problem is NEXPTIME-complete, partially53

addressing a problem left open in the literature—that is, for the case of integer values and trReLU54

activation functions [7, 8]. Details are in the appendix for keep the main text concise.55

As NEXPTIME is highly intractable, in Section 6, we relax the satisfiability problem of qL and56

ACR-GNNs, searching graph counterexamples whose number of vertices is bounded. This problem57

is NP-complete. We provide an implementation in this line.58

We experimentally show in Section 7 that quantization of GNNs provide minimal accuracy degra-59

dation. Our results confirm that the quantized models retain strong predictive performance while60

achieving substantial reductions in model size and inference cost. These findings demonstrate the61

practical viability of quantized ACR-GNNs for deployment in resource-constrained environments.62

Related work. [4] showed that ACR-GNNs are capable of capturing the expressive power of63

FOC2, that is, two-variable first-order logic with counting. Recent work has explored the logical64

expressiveness of GNN variants in more detail. Notably, [24] and [7] introduced logics to exactly65

characterize the capabilities of different forms of GNNs. Similarly, [11] analyzed Max-Sum-GNNs66

through the lens of Datalog. [32] considered the expressivity of GNN with quantized parameters but67

without global readout.68

On the verification side, [17] studied the complexity of verification of quantized feedforward neural69

networks (FNNs), while [31, 34] investigated reachability and reasoning problems for general FNNs70

and GNNs. Approaches to verification are proposed via integer linear programming (ILP) by [18]71

and [41], and via model checking by [33].72

From a logical perspective, reasoning over structures involving arithmetic constraints is closely tied73

to several well-studied logics. Relevant work includes Kuncak and Rinard’s decision procedures for74

QFBAPA ([20]), as well as developments by [12], [2], [6], and [14]. These logics form the basis for75

the characterizations established in [24, 7].76

Quantization techniques have studied in neural networks, with surveys such as [15, 23] providing com-77

prehensive overviews focused on maintaining model accuracy. Although most practical advancements78

target convolutional neural networks (CNNs), many of the underlying principles extend to GNNs as79

well ([42]). NVIDIA has demonstrated hardware-ready quantization strategies ([38]), and frameworks80

like PyTorch ([1]) support both post-training quantization and quantization-aware training (QAT), the81

latter simulating quantization effects during training to improve low-precision performance. QAT has82

been particularly effective in closing the gap between quantized and full-precision models, especially83

for highly compressed or edge-deployed systems ([19]). In the context of GNNs, [35] proposed84

Degree-Quant, incorporating node degree information to mitigate quantization-related issues. Based85

1Interestingly, qL goes beyond graded modal logic and even first-order logic. The property of item 2 in
Example 1 cannot be expressed in FOL.

2

≥ 3

+ agg

+

x1

x2

·

Figure 1: DAG data structure for the formula agg(x1 + x2) + (x1 + x2) ≥ 3.

on this, [43] introduced A2Q, a mixed-precision framework that adapts bitwidths on graph topology86

to achieve high compression with minimal performance loss.87

2 Background88

Let 𝕂 be a set of quantized numbers, and let n denote the bitwidth of 𝕂, that is, the number of bits89

required to represent a number in 𝕂. The bitwidth n is written in unary; this is motivated by the fact90

that n is small and that we would in any case need to allocate n-bit consecutive memory for storing a91

number. Formally, we consider a sequence 𝕂1,𝕂2, . . . corresponding to bitwidths 1, 2, etc., but we92

retain the notation 𝕂 for simplicity. We suppose that 𝕂 saturates: e.g., if x ≥ 0, y ≥ 0, x+ y ≥ 093

(i.e., no modulo behavior like in int in C for instance). We suppose that 1 ∈ 𝕂.94

We consider Aggregate-Combine Graph Neural Networks with global Readout (ACR-GNNs), a95

standard class of message-passing GNNs [4, 16]. An ACR-GNN layer is defined by a triple96

(comb, agg , aggg), where comb : 𝕂3m → 𝕂n is a combination function, and agg , aggg are lo-97

cal and global aggregation functions that map multisets of vectors in 𝕂m to a single vector in98

𝕂m.99

An ACR-GNN is composed of a sequence of such layers (L(1), . . . ,L(L)) followed by a final100

classification function cls : 𝕂m → {0, 1}. Given a graph G = (V,E) and an initial node labelling101

x0 : V → {0, 1}k, the state of a node u in layer i is recursively defined as:102

xi(u) = comb(xi−1(u), agg({{xi−1(v) | uv ∈ E}}), aggg({{xi−1(v) | v ∈ V }}))

The final output of the GNN for a pointed graph (G, u) is A(G, u) = cls(xL(u)). A more detailed103

definition is provided in Appendix C.2.104

Our study focuses on a specific subclass where both agg and aggg perform summation over vectors,105

and where comb(x, y, z) = σ⃗(xC + yA1 + zA2 + b), using matrices C,A1, A2 with entries from106

𝕂, and a bias b ∈ 𝕂. The classification function is a linear threshold: cls(x) =
∑
i aixi ≥ 1 with107

weights ai ∈ 𝕂. Moreover, we assume that all arithmetic operations are executed according to the108

arithmetic related to 𝕂. It is assumed that the context makes clear the 𝕂 and arithmetic being used.109

We note [[A]] the set of pointed graphs (G, u) such that A(G, u) = 1. An ACR-GNN A is satisfiable110

if [[A]] is non-empty. The satisfiability problem for ACR-GNNs is: Given a ACR-GNN A, decide111

whether A is satisfiable.112

3 Logic qL for Representing GNN Computations and Properties on Graphs113

We set up a logical framework called qL extending the logic in [32] with global aggregation: it is a114

lingua franca to represent GNN computation and properties on graphs.115

Syntax. Let F be a finite set of features and 𝕂 be some finite-width arithmetic. We consider a set
of expressions defined by the following grammar in Backus-Naur form:

ϑ ::= c | xi | α(ϑ) | agg(ϑ) | agg∀(ϑ) | ϑ+ ϑ | c× ϑ

where c is a number in 𝕂, xi is a feature in F , α is a symbol for denoting the activation function, and116

agg and agg∀ denote the aggregation function for local and global readout respectively. A formula is117

a construction of the formula ϑ ≥ k where ϑ is an expression and k is an element of 𝕂. If −1 ∈ 𝕂,118

and −ϑ is not, we can write −ϑ instead of (−1)× ϑ. Other standard abbreviations can be used.119

Formulas are represented as direct acyclic graphs, aka circuits, meaning that we do not repeat the same120

expressions several times. For instance, the formula agg(x1+x2)+(x1+x2) ≥ 3 can be represented121

as the DAG given in Figure 1. Formulas can also be represented by a sequence of assignments via122

new fresh intermediate variables. For instance: y := x1 + x2, z := agg(y) + y, res := z ≥ 3.123

3

Semantics. Consider a graph G = (V,E), where vertices in V are labeled via a labeling function124

ℓ : V → 𝕂n with feature values. The value of an expression ϑ in a vertex u ∈ V is denoted by125

[[ϑ]]G,u and is defined by induction on ϑ:126

[[c]]G,u = c,

[[xi]]G,u = ℓ(u)i,

[[ϑ+ ϑ′]]G,u = [[ϑ]]G,u +𝕂 [[ϑ′]]G,u,

[[c× ϑ]]G,u = c×𝕂 [[ϑ]]G,u,

[[α(ϑ)]]G,u = [[α]]([[ϑ]]G,u),

[[agg(ϑ)]]G,u = Σv|uEv[[ϑ]]G,v,

[[agg∀(ϑ)]]G,u = Σv∈V [[ϑ]]G,v,

127

We define [[ϑ ≥ k]] = {G, u | [[ϑ]]G,u ≥𝕂 [[k]]G,u} (we write ≥ for the symbol in the syntax and128

≥𝕂 for the comparison in 𝕂). A formula φ is satisfiable if [[φ]] is non-empty. The satisfiability129

problem for qL is: Given a qL-formula φ, decide whether φ is satisfiable.130

ACR-GNN verification tasks. We are interested in the following decision problems. Given a GNN131

A, and a qL formula φ: (VT1, sufficiency) Do we have [[φ]] ⊆ [[A]]? (VT2, necessity) Do we have132

[[A]] ⊆ [[φ]]? (VT3, consistency) Do we have [[φ]] ∩ [[A]] ̸= ∅?133

Representing a GNN computation. To reason formally about ACR-GNNs, we represent their134

computations using qL. Logic qL facilitates the modeling of the acceptance condition of ACR-GNNs.135

We explain this via example. Consider a two-layer ACR-GNN A with input and output dimension 2,136

using summation for aggregation, activation via α(x) := max(0,min(1, x))—the truncated ReLU—137

and a classification function 2x1 − x2 ≥ 1. The combination functions are:138

comb1((x1, x2), (y1, y2), (z1, z2)) :=

(
σ(2x1 + x2 + 5y1 − 3y2 + 1)
σ(−x1 + 4x2 + 2y1 + 6y2 − 2)

)
,

comb2((x1, x2), (y1, y2), (z1, z2)) :=

(
σ(3x1 − y1 + 2z2)
σ(−2x1 + 5y2 + 4z1)

)
.

Note that this assumes that A operates over 𝕂 with at least three bits. Then, the corresponding139

qL formula φA is given by: ψ1 = α(2x1 + x2 + 5agg(x1) − 3agg(x1) + 1), ψ2 := α(−x1 +140

4x2 + 2agg(x1) + 6agg(x2) − 2), χ1 := α(3ψ1 − agg(ψ1) + 2(agg∀(psi2))), χ2 := α(−2ψ1 +141

5(agg(ψ2)) + 4agg∀(psi1)), φA := 2(χ1) − χ2 ≥ 1. To sum up, given a GNN A, we compute142

qL-formula in poly-time in the size of A with [[A]] = [[φA]] (as done in [32]).143

Simulating a modal logic in the logic qL. In this section, we show that extending qL with144

modal operators [9] does not increase the expressivity. We can even compute an equivalent qL145

without Boolean connectives and without modal operators in poly-time. It means that formulas like146

φA1
→ x0 = 1 or φA1

∧ ♢≤3(x2 = 1) have equivalent formulas in qL.147

Assume that α is ReLU. Let Atm0 be the set of atomic formulas of qL of the form ϑ ≥ 0. We148

suppose that ϑ takes integer values. In general, ϑ ≥ k is an atomic formula equivalent to ϑ− k ≥ 0.149

Without loss of generality, we thus assume that formulas of qL are over Atm0. Let modal qL be the150

propositional logic on Atm0 extended with modalities and a restricted variant of graded modalities151

where number k in 𝕂.152

[[□φ]] = {G, u | G, v ∈ [[φ]] for every v s.t. uEv}
[[□gφ]] = {G, u | G, v ∈ [[φ]] for every v in V }

153

[[♢≥kφ]] = {G, u | |{G, v | uEv and G, v ∈ [[φ]]}| ≥𝕂 k} [[♢≥k
g φ]] = {G, u | |[[φ]]| ≥𝕂 k}

and modalities ♢≤kφ and ♢≤k
g φ defined the same way but with ≤𝕂. We can turn back to the graph154

properties mentioned in Example 1.155

Example 2. We first define a few simple formulas to characterize the concepts of the domain. Let156

φA := x0 = 1 (Animal), φH := x1 = 1 (Human), φL := x2 = 1 (Leg), φF := x3 = 1 (Fur),157

φW := x4 = 1 (White), and φB := x5 = 1 (Black).158

1. Has a human owner, whose all pets are two-legged: ♢(φH ∧□(φA → ♢=2φL)).159

2. A human in a community that has more that twice as many animals as humans, and more than160

five animals without an owner: φH∧(agg∀(x0)−2×agg∀(x1) ≥ 0)∧♢≥5
g ((φA∧□(¬φH)).161

4

3. An animal in a community where some animals have white and black fur:162

φA ∧ ♢g(♢(φF ∧ ♢φW) ∧ ♢(φF ∧ ♢φB)).163

We can see the boolean operator ¬, and the various modalities as functions from Atm0 into Atm0,164

and the boolean operator ∨ as a function from Atm0 ×Atm0 to Atm0.165

f¬(ϑ ≥ 0) := −ϑ− 1 ≥ 0 f∨(ϑ1 ≥ 0, ϑ2 ≥ 0) := ϑ1 +ReLU(ϑ2 − ϑ1) ≥ 0

f□(ϑ ≥ 0) := agg(−ReLU(−ϑ)) ≥ 0

f♢≥k(ϑ ≥ 0) := agg(ReLU(ϑ+ 1)−ReLU(ϑ))− k ≥ 0

f♢≤k(ϑ ≥ 0) := k − agg(ReLU(ϑ+ 1)−ReLU(ϑ)) ≥ 0

For the corresponding global modalities (f□g
(ϑ ≥ 0), f♢≥k(ϑ ≥ 0), and f♢≤k(ϑ ≥ 0)), it suffices to166

use agg∀ in place of agg. The previous transformations can be generalized to arbitrary formulas of167

modal qL as follows.168

mod2expr(ϑ ≥ 0) := ϑ ≥ 0 mod2expr(¬φ) := f¬(mod2expr(φ))

mod2expr(φ1 ∨ φ2) := f∨(mod2expr(φ1),mod2expr(φ2))

mod2expr(⊞φ) := f⊞(mod2expr(φ)), ⊞ ∈ {□,□g,♢≥k,♢≥k
g ,♢≤k,♢≤k

g }

We can show that formulas of modal qL can be captured by a unique expression ϑ ≥ 0. This is a169

consequence of the following lemma 2.170

Lemma 3. Let φ be a formula of modal qL. The formulas φ and mod2expr(φ) are equivalent.171

Now, ACR-GNN verification tasks can be solved by reduction to the satisfiability problem of qL.172

VT1 by checking that φ ∧ ¬φA is not satisfiable; VT2 by checking that ¬φ ∧ φA is not satisfiable;173

VT3 by checking that φ ∧ φA is satisfiable.174

4 NEXPTIME Membership of the Satisfiability Problem175

In this section, we prove the NEXPTIME membership of reasoning in modal quantized logic, and176

also of solving of ACR-GNN verification tasks (by reduction to the former). Remember that the177

activation function α can be arbitrary in our setting. Our result holds with the loose restriction that178

[[α]] is computable in exponential-time in the bit-width n of 𝕂.179

Theorem 4. The satisfiability problem of qL is decidable and in NEXPTIME, and so is VT3. VT1180

and VT2 are in coNEXPTIME.181

In order to prove Theorem 4, we adapt the NEXPTIME membership of the description logic182

ALCSCC++ from [2] to logic qL. The difference resides in the definition of Hintikka sets and183

the treatment of quantization. The idea is to encode the constraints of a qL-formula φ in a formula of184

exponential length of a quantized version of QFBAPA, that we prove to be in NP.185

4.1 Hintikka Sets186

Consider qL-formula φ. Let E(φ) be the set of subexpressions in φ. For instance, if φ is187

3 × agg(α(x2 + agg∀(x1))) ≥ 5 then E(φ) := {agg(α(x2 + agg∀(x1)), α(x2 + agg∀(x1), x2,188

agg∀(x1), x1}. From now on, we consider equality subformulas that are of the form ϑ=k where ϑ is189

a subexpression of φ and k ∈ 𝕂.190

Definition 5. A Hintikka set H for φ is a subset of subformulas of φ such that:191

1. For all ϑ ∈ E(φ), there is a unique value k ∈ 𝕂 such that ϑ = k ∈ H192

2. ϑ1=k1, ϑ2=k2 ∈ H then ϑ1+ϑ2=k1+k2 ∈ H193

3. If ϑ ≥ k ∈ H then c× ϑ=k′ ∈ H where k′ = c×𝕂 k194

4. ϑ=k ∈ H and α(ϑ)=k′ implies k′ = [[α]](k)195

2For simplicity, we do not present how to handle ϑ ≥ 0 when ϑ is not an integer. We could introduce several
activation functions α in qL, one of them could be interpreted as the Heavyside step function. In the sequel
Definition 5, Point 4 is just repeated for each α.

5

Informally, a Hintikka set is a set of equality subformulas obtained from a choice of a value for each196

subexpression of φ (point 1), provided that the set is consistent at the current vertex (point 2-4). Note197

that the notion of Hintikka set does not take any constraints about agg and agg∀ into consideration198

since checking consistency of aggregation would require information about the neighbor or the whole199

graph.200

Example 6. If φ is 3 × agg(α(x2 + agg∀(x1))) ≥ 5 then the following set is an example of201

Hintikka set: {agg(α(x2 + agg∀(x1)) = 8, α(x2 + agg∀(x1)) = 9, x2 + agg∀(x1) = 9, x2 = 7,202

agg∀(x1) = 2, x1 = 5}.203

Proposition 7. The number of Hintikka sets is bounded by 2n|φ| where |φ| is the size of φ, and n is204

the bitwidth of 𝕂.205

4.2 Quantized Version of QFBABA (Quantifier-free Boolean Algebra and Presburger206

Arithmetics)207

A QFBAPA formula is propositional formula where each atom is either an inclusion of sets or equality208

of sets or linear constraints [20]. Sets are denoted by Boolean algebra expression e.g., (S ∪ S′) \ S′′,209

or U where U denotes the set of all points in some domain. Here S, S′, etc. are set variables. Linear210

constraints are over |S| denoting the cardinality of the set denoted by the set expression S. For211

instance, the QFBAPA-formula (pianist ⊆ happy)∧(|happy|+ |U \pianist| ≥ 6)∧(|happy| < 2)212

is read as ‘all pianists are happy and the number of happy persons + the number of persons that are213

not pianists is greater than 6 and the number of happy persons is smaller than 2’.214

We now introduce a quantized version QFBAPA𝕂 of QFBAPA. It has the same syntax as QFBAPA215

except that hard-coded numbers in expressions are in 𝕂. Concerning the semantics, every numerical216

expression is interpreted in 𝕂. For each set expression S, the interpretation of |S| is not the cardinality217

c of the interpretation of S, but the result of the computation 1 + 1 + . . .+ 1 in 𝕂 with c occurrences218

of 1 in the sum.219

We consider that 𝕂 that saturates, meaning that if x+ y exceed the upper bound limit of 𝕂, there is a220

special value denoted by +∞ such that x+ y = +∞.221

Proposition 8. If bitwidth n is in unary, and if 𝕂 saturates, then satisfiability in QFBAPA𝕂 is in NP.222

4.3 Reduction to QFBAPA𝕂223

Let φ be a formula of qL. For each Hintikka set H , we introduce the set variable XH that intuitively224

represents theH-vertices, i.e., the vertices in which subformulas ofH hold. The following QFBAPA𝕂-225

formulas say that the interpretation of XH form a partition of the universe. For each subformula226

ϑ′ = k, we introduce the set variable Xϑ′=k that intuitively represents the vertices in which ϑ′ = k227

holds. Formula (1) expresses that {XH}H form a partition of the universe. Formula (2) makes the228

bridge between variables Xϑ′=k and XH .229

(
∧

H ̸=H′

XH∩XH′=∅) ∧ (
⋃
H

XH=U) (1)
∧

ϑ′∈E(φ)

∧
k∈𝕂

(Xϑ′=k =
⋃

H|ϑ′=k∈H

XH) (2)230

We introduce also a variable SH that denotes the set of all successors of some H-vertex. If there is231

no H-vertex then the variable SH is just irrelevant.232

The following QFBAPA𝕂-formula encodes the semantics of agg(ϑ). More precisely, it says that for233

all subexpressions agg(ϑ), for all values k, for all Hintikka sets H containing subformula agg(ϑ)=k,234

for all H containing agg(ϑ)=k, it says that, if there is some H-vertex (i.e., vertices in SH), then the235

aggregation obtained by summing over the successors of some H-vertex is k.236 ∧
agg(ϑ)∈E(φ)

∧
k∈𝕂

∧
Hintikka set H

| agg(ϑ)=k ∈ H

[(XH ̸= ∅) →
∑
k′∈𝕂

|SH ∩Xϑ=k′ | × k′ = k] (3)

In the previous sum, we partition SH into subsets SH ∩ Xϑ=k′ for all possible values k′. Each237

contribution for a successor in SH∩Xϑ=k′ is k′. We rely here on the fact3 that (1+1+. . .+1)×k′ =238

3This is true for some fixed-point arithmetics but not for floating-point arthmetics. See Appendix B.

6

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(2n−1, 2n−1)(0, 2n−1)

(2n−1, 0)

φN

φE

φN

φE

φN φN

φE

φE

Figure 2: Encoding a torus of exponential size with (modal) qL formulas. (x, y) are the vertices of
the graph that correspond to locations in the torus while φN and φE denote intermediate vertices
indicating the direction (resp., north and east).

k′ + k′ + . . .+ k′. We also fix a specific order over values k′ in the summation (it means that agg(ϑ)239

is computed as follows: first order the successors according to the taken values of ϑ in that specific240

order, then perform the summation). Finally, the semantics of agg∀ is captured by the formula:241 ∧
agg∀(ϑ)∈E(φ)

∧
k∈𝕂

Xagg∀(ϑ)=k ̸= ∅ →
∑
k′∈𝕂

|Xϑ=k′ | × k′ = k (4)

Note that intuitively Formula (4) implies that for Xagg∀(ϑ)=k is interpreted as the universe, for the242

value k which equals the semantics of
∑
k′∈𝕂 |Xϑ=k′ | × k′.243

Given φ = ϑ ≥ k, we define tr(φ) := ψ ∧
∨
k′≥kXϑ=k′ ̸= ∅ where ψ the conjunction of Formulas244

1–4. The function tr requires to compute all the Hintikka sets. So we need in particular to check245

Point 4 of Definition 5 and we get the following when [[α]] is computable in exponential time in n.246

Proposition 9. tr(φ) is computable in exponential-time in |φ| and n.247

Proposition 10. Let φ be a formula of qL. φ is satisfiable iff tr(φ) is QFBAPA𝕂 satisfiable.248

Finally, in order to check whether a qL-formula φ is satisfiable, we construct a QFBAPA𝕂-formula249

tr(φ) in exponential time. As the satisfiability problem of QFBAPA𝕂 is in NP, we obtain that the250

satisfiability problem of qL is in NEXPTIME. We proved Theorem 4,251

Remark 11. Our methodology can be generalized to reason in subclasses of graphs. For instance,252

we may tackle the problem of satisfiability in a graph where vertices are of bounded degree bounded253

by d. To do so, we add the constraint
∧
H |SH | ≤ d.254

5 Complexity Lower Bound255

The NEXPTIME upper-bound is tight. Having defined modalities in qL and stated Lemma 3,256

Theorem 12 is proven by adapting the proof of NEXPTIME-hardness of deciding the consistency of257

ALCQ-TCBoxes presented in [36]. So we already have the hardness result for ReLU.258

NEXPTIME-hardness is proven via a reduction from the tiling problem by Wang tiles of a torus259

of size 2n × 2n. A Wang tile is a square with colors, e.g., , , etc. That problem takes as input260

a number n in unary, and Wang tile types, and an initial condition – let say the bottom row is261

already given. The objective is to decide whether the torus of 2n × 2n can be tiled while colors of262

adjacent Wang tiles match. A slight difficulty resides in adequately capturing a two-dimensional grid263

structure—as in Figure 2—with only a single relation. To do that, we introduce special formulas φE264

and φN to indicate the direction (east or north). In the formula computed by the reduction, we also265

need to bound the number of vertices corresponding to tile locations by 2n × 2n. Thus 𝕂 needs to266

encode 2n × 2n. We need a bit-width of at least 2n.267

Theorem 12. The satisfiability problem in qL is NEXPTIME-hard, and so is VT3. VT1 and VT2 are268

coNEXPTIME-hard.269

Remark 13. It turns out that the verification task only needs the fragment of qL where agg is applied270

directly on an expression α(..). Indeed, this is the case when we represent a GNN in qL or when we271

translate logical formulas in qL (Lemma 3). Reasoning about qL when 𝕂 = ℤ and the activation272

function is truncated ReLU is also NEXPTIME-complete (see Appendix E).273

7

6 Bounding the Number of Vertices274

The satisfiability problem is NEXPTIME-complete, thus far from tractable. The complexity comes275

essentially because counterexamples can be arbitrary large graphs. However, usually we are search276

for small counterexamples. Let G≤N be the set of pointed graphs with at most N vertices. We277

consider the qL and ACR-GNN satisfiability problems with a bound on the number of vertices: given278

a number N given in unary, 1. given a qL-formula φ, is it the case that [[φ]] ∩ G≤N ̸= ∅, 2. given an279

ACR-GNN A, is it the case that [[A]] ∩ G≤N ̸= ∅.280

Theorem 14. The satisfiability problems with bounded number of vertices are NP-complete.281

We then can extend the methodology of [33] but for verifying GNNs. Our implementation proposal282

is a Python program that takes a learnt quantized GNN A as an input, a precondition, a postcondition283

and a bound N . It then produces a C program that mimics the execution of A on an arbitrary284

graph with at most N vertices, and embeds the pre/postcondition. We then apply ESBMC (efficient285

SMT-based context-bounded model checker) [21] on the C program.286

7 Quantization Effects on Accuracy, Performance and Model Size287

To confirm that the GNN models considered in this paper are promising, we now investigate the288

application of Dynamic Post-Training Quantization (PTQ) to Aggregate-Combined Readout Graph289

Neural Networks (ACR-GNNs). Our experimental design builds on the framework introduced in [4],290

using their publicly available implementation [5] as the baseline. ACR-GNNs with specific structural291

configurations are used as the primary model class for evaluation. Dynamic PTQ, implemented292

in PyTorch [1, 26], converts a pre-trained floating-point model into a quantized version without293

retraining. This approach quantizes weights to INT8 statically, while activations remain in floating294

point until dynamically quantized at compute time. This enables efficient INT8-based computation,295

reducing memory usage and improving inference speed. PyTorch’s implementation employs per-296

tensor quantization for weights and stores activations in floating-point format between operations.297

The evaluation focuses on accuracy, model size, and latency. Experiments are conducted on both298

synthetic and real-world datasets, with the synthetic benchmark—based on dense Erdös–Rényi graph299

structures and logical labeling schemes—serving as the primary focus.300

The synthetic graphs were generated using the dense Erdös–Rényi model, a classical approach for301

constructing random graphs. Each graph includes five initial node colours, encoded as one-hot302

feature vectors. Following [4], labels were assigned using formulas from the logic fragment FOC2.303

Specifically, a hierarchy of classifiers αi(x) was defined as:304

α0(x) := Blue(x), αi+1(x) := ∃[N,M]y (αi(y) ∧ ¬E(x, y))

where ∃[N,M] denotes the quantifier “there exist betweenN andM nodes" satisfying a given condition.305

Each classifier αi(x) can be expressed within FOC2, as the bounded quantifier can be rewritten306

using ∃≥N and ¬∃≥M+1. Each property pi corresponds to a classifier αi with i ∈ 1, 2, 3. Summary307

statistics for the dataset are provided in Appendix G, Table 3.308

Table 1: Accuracy difference (%) and model size (MB) of the ACR-GNN model before and after
dynamic post-training quantization (PTQ) across FO-properties p1, p2, and p3. Values are reported for
three model depths (1, 2, and 3 layers) and three dataset splits (Train, Test 1, Test 2). Accuracy values
represent the change after quantization (QINT8 – FP32). p1, p2, p3 are FO-properties described in
Appendix G.

p1 p2 p3

Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2 Size (MB)

1 –0.452% –0.760% +0.522% –0.127% –0.183% +8.891% –0.299% –0.648% –0.693% 0.034
2 –0.001% 0.000% –0.043% +0.083% –0.125% +0.144% –0.178% –0.226% +0.018% 0.068
3 –0.036% +0.062% –0.494% –0.161% –0.143% –0.342% –0.015% +0.280% –0.346% 0.103

Table 1 presents the difference in accuracy and model size between the quantized (QINT84) and309

original (FP32) versions of the ACR-GNN model across three configurations (1, 2, and 3 layers). The310

4The difference between INT8 and QINT8 lies in their implementation and is detailed in Appendix G

8

evaluation is conducted on three FO-properties (p1, p2, p3) over three data splits: Train, Test1, and311

Test2. The table highlights how quantization affects accuracy at various depths. In most cases, the312

impact of quantization on accuracy is minor and bounded, with some configurations even showing313

positive differences. For instance, in the 2-layer configuration—the overall best performer—the314

accuracy loss remains within ±0.1 across all properties and splits, while yielding a model size315

reduction of 0.068 MB. The 1-layer model shows greater fluctuation: while p2 on Test2 experiences316

a significant positive spike (+8.891), p3 on Test2 drops by –0.693. This suggests sensitivity to317

quantization in shallow models, likely due to limited representational capacity. The results confirm318

that dynamic post-training quantization (PTQ) enables significant compression—up to 60% reduction319

in size—while maintaining acceptable levels of accuracy. Additional breakdowns, including baseline320

results and extended configurations, are provided in Appendix G.321

Table 2: PPI benchmark. Accuracy (%) and size (MB) of the ACR-GNN with ReLU activation
function before and after dynamic PTQ across different layer configurations.

Original (FP32) Quantized (QINT8) Difference

Train Val Test Size (MB) Train Val Test Size (MB) Train Val Test Size (MB)

1 54.7% 43.1% 39.5% 0.922 55.0% 50.8% 50.2% 0.242 +0.3% +7.7% +10.7% 0.680
2 52.5% 44.6% 45.7% 1.718 52.3% 47.8% 47.2% 0.451 -0.2% +3.2% +1.5% 1.267
3 52.3% 42.6% 44.0% 2.515 51.9% 45.7% 42.8% 0.660 -0.4% +3.1% -1.2% 1.855

Table 2 shows the results of evaluating the ACR-GNN model on the Protein-Protein Interaction322

(PPI) benchmark before and after applying dynamic post-training quantization (PTQ). The evaluation323

covers three model configurations (1 to 3 layers) and reports performance in terms of accuracy (Train,324

Validation, and Test) and model size (in MB). Quantization results in substantial compression across325

all configurations. The model size decreases from 0.922 MB to 0.242 MB (a 73% reduction) for326

the 1-layer network, while the 2- and 3-layer models achieve reductions of 1.267 MB and 1.855327

MB, respectively. Accuracy-wise, quantization leads to improvements in the Validation and Test sets328

for shallower networks. The 1-layer model gains +0.077 on validation and +0.107 on test accuracy,329

indicating potential for enhanced generalization. The 2-layer model shows minor improvements330

across all splits, with negligible loss in training accuracy. However, the 3-layer configuration reveals331

a slight drop in test accuracy (–0.012), suggesting increased sensitivity to quantization at greater332

depth. See Appendix G, Tables 16,17, and 18 for additional quantitative breakdowns.333

8 Conclusion and Future Work334

The central result is the NEXPTIME-complete of the logic qL in which both the computations of335

GNNs and modal properties can be expressed. It helps to understand the inherent complexity of336

verifying quantized GNNs. We also provide a prototype for verifying GNNs over a set of graphs337

with a bounded number of vertices. Finally some experiments confirmed that the quantization of338

ACR-GNNs is promising.339

There are many directions to go. First, characterizing the modal flavor of qL for other activation340

functions than ReLU. New extensions of qL could be proposed to tackle other classes GNNs.341

Verification of neural networks is challenging and is currently tackled by the verification community342

[10]. So it will be for GNNs as well. Our verification tool with a bound on the number of vertices is343

still preliminary. One obvious path would be to improve the tool, to compare different approaches344

(bounded model checking vs. linear programming as in [18]) and apply it to real GNN verification345

scenarios. Designing a practical verification procedure in the general case (without any bound on the346

number of vertices) and overcoming the high computational complexity is an exciting challenge for347

future research towards the verification of GNNs.348

Limitations. Section 4 and 5 reflect theoretical results. Some practical implementations of GNNs349

may not fully align with them. In particular, the order in the (non-associative) summation over350

values in 𝕂 is fixed in formulas (3) and (4). It means that we suppose that the aggregation agg(ϑ)351

is computed in that order too (we sort the successors of a vertex according the values of ϑ and then352

perform the summation). The verification tool discussed in Section 6 remains a prototype, thus its353

application warrants careful consideration.354

9

References355

[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesen-356

sky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will357

Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael358

Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,359

Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan,360

Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael361

Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren362

Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch363

2: Faster machine learning through dynamic python bytecode transformation and graph compi-364

lation. In Proceedings of the 29th ACM International Conference on Architectural Support for365

Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024.366

[2] Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering367

in description logics with global and local cardinality constraints. In Giuseppe De Giacomo,368

Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme369

Lang, editors, ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8370

September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including371

10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325372

of Frontiers in Artificial Intelligence and Applications, pages 616–623. IOS Press, 2020.373

[3] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. Introduction to Description Logic.374

Cambridge University Press, 2017.375

[4] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo376

Silva. The logical expressiveness of graph neural networks. In 8th International Confer-377

ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.378

OpenReview.net, 2020.379

[5] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo380

Silva. Gnn-logic. https://github.com/juanpablos/GNN-logic.git, 2021.381

[6] Bartosz Bednarczyk, Maja Orlowska, Anna Pacanowska, and Tony Tan. On classical decidable382

logics extended with percentage quantifiers and arithmetics. In Mikolaj Bojanczyk and Chandra383

Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Technology and384

Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference,385

volume 213 of LIPIcs, pages 36:1–36:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,386

2021.387

[7] Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural388

networks via logical characterizations. In Karl Bringmann, Martin Grohe, Gabriele Puppis,389

and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and390

Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages391

127:1–127:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.392

[8] Michael Benedikt, Chia-Hsuan Lu, and Tony Tan. Decidability of graph neural networks via393

logical characterizations. CoRR, abs/2404.18151v4, 2025.394

[9] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge395

Tracts in Theoretical Computer Science. Cambridge University Press, 2001.396

[10] Lucas C. Cordeiro, Matthew L. Daggitt, Julien Girard-Satabin, Omri Isac, Taylor T. Johnson,397

Guy Katz, Ekaterina Komendantskaya, Augustin Lemesle, Edoardo Manino, Artjoms Sinkarovs,398

and Haoze Wu. Neural network verification is a programming language challenge. CoRR,399

abs/2501.05867, 2025.400

[11] David J. Tena Cucala and Bernardo Cuenca Grau. Bridging max graph neural networks and401

Datalog with negation. In Pierre Marquis, Magdalena Ortiz, and Maurice Pagnucco, editors,402

Proceedings of the 21st International Conference on Principles of Knowledge Representation403

and Reasoning, KR 2024, Hanoi, Vietnam. November 2-8, 2024, 2024.404

10

https://github.com/juanpablos/GNN-logic.git

[12] Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. J.405

Appl. Log., 8(3):233–252, 2010.406

[13] European Parliament. Artificial Intelligence Act, 2024.407

[14] Pietro Galliani, Oliver Kutz, and Nicolas Troquard. Succinctness and complexity of ALC with408

counting perceptrons. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner, editors,409

Proceedings of the 20th International Conference on Principles of Knowledge Representation410

and Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, pages 291–300, 2023.411

[15] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.412

A survey of quantization methods for efficient neural network inference. In Low-power computer413

vision, pages 291–326. Chapman and Hall/CRC, 2022.414

[16] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.415

Neural message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors,416

Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,417

NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,418

pages 1263–1272. PMLR, 2017.419

[17] Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. Scalable verification of quantized420

neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-421

Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh422

Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,423

February 2-9, 2021, pages 3787–3795. AAAI Press, 2021.424

[18] Pei Huang, Haoze Wu, Yuting Yang, Ieva Daukantas, Min Wu, Yedi Zhang, and Clark W.425

Barrett. Towards efficient verification of quantized neural networks. In Michael J. Wooldridge,426

Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial427

Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelli-428

gence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,429

EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 21152–21160. AAAI Press, 2024.430

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,431

Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for432

efficient integer-arithmetic-only inference. In 2018 IEEE/CVF Conference on Computer Vision433

and Pattern Recognition, pages 2704–2713, 2018.434

[20] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean algebra435

with presburger arithmetic. In Frank Pfenning, editor, Automated Deduction – CADE-21, pages436

215–230, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.437

[21] Rafael Menezes, Mohannad Aldughaim, Bruno Farias, Xianzhiyu Li, Edoardo Manino, Fedor438

Shmarov, Kunjian Song, Franz Brauße, Mikhail R. Gadelha, Norbert Tihanyi, Konstantin439

Korovin, and Lucas C. Cordeiro. ESBMC 7.4: Harnessing the Power of Intervals. In 30th440

International Conference on Tools and Algorithms for the Construction and Analysis of Systems441

(TACAS’24), volume 14572 of Lecture Notes in Computer Science, page 376–380. Springer,442

2024.443

[22] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard444

Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-445

pudi, Stuart F. Oberman, Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats for446

deep learning. CoRR, abs/2209.05433, 2022.447

[23] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen,448

and Tijmen Blankevoort. A white paper on neural network quantization. ArXiv, abs/2106.08295,449

2021.450

[24] Pierre Nunn, Marco Sälzer, François Schwarzentruber, and Nicolas Troquard. A logic for451

reasoning about aggregate-combine graph neural networks. In Proceedings of the Thirty-Third452

International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August453

3-9, 2024, pages 3532–3540. ijcai.org, 2024.454

11

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,455

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,456

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine457

Learning Research, 12:2825–2830, 2011.458

[26] PyTorch Team. Quantization — PyTorch 2.x Documentation. https://pytorch.org/docs/459

stable/quantization.html, 2024. Accessed: 2025-05-16.460

[27] PyTorch Team. torch.quantize_per_tensor — pytorch 2.x documentation. https:461

//pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#462

torch-quantize-per-tensor, 2024. Accessed: 2025-05-16.463

[28] PyTorch Team. torch.tensor — pytorch 2.x documentation. https://pytorch.org/docs/464

stable/tensors.html#torch.Tensor, 2024. Accessed: 2025-05-16.465

[29] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Hous-466

sam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, and Pascal Friederich. Graph467

neural networks for materials science and chemistry. Communications Materials, 3(93), 2022.468

[30] Amirreza Salamat, Xiao Luo, and Ali Jafari. Heterographrec: A heterogeneous graph-based469

neural networks for social recommendations. Knowl. Based Syst., 217:106817, 2021.470

[31] Marco Sälzer and Martin Lange. Reachability is NP-complete even for the simplest neural471

networks. In Paul C. Bell, Patrick Totzke, and Igor Potapov, editors, Reachability Problems -472

15th International Conference, RP 2021, Liverpool, UK, October 25-27, 2021, Proceedings,473

volume 13035 of Lecture Notes in Computer Science, pages 149–164. Springer, 2021.474

[32] Marco Sälzer, François Schwarzentruber, and Nicolas Troquard. Verifying quantized graph475

neural networks is pspace-complete. CoRR, abs/2502.16244, 2025.476

[33] Luiz H. Sena, Xidan Song, Erickson H. da S. Alves, Iury Bessa, Edoardo Manino, and Lucas C.477

Cordeiro. Verifying Quantized Neural Networks using SMT-Based Model Checking. CoRR,478

abs/2106.05997, 2021.479

[34] Marco Sälzer and Martin Lange. Fundamental limits in formal verification of message-passing480

neural networks. In ICLR, 2023.481

[35] Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:482

Quantization-aware training for graph neural networks. In International Conference on Learning483

Representations, 2021.484

[36] Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in485

expressive description logics. J. Artif. Intell. Res., 12:199–217, 2000.486

[37] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–483.487

Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.488

[38] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quanti-489

zation for deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602,490

2020.491

[39] Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph492

neural networks for automated de novo drug design. Drug Discovery Today, 26(6):1382–1393,493

2021.494

[40] Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. A comprehensive495

survey of graph neural networks for knowledge graphs. IEEE Access, 10:75729–75741, 2022.496

[41] Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, and Jun Sun. Qvip:497

An ILP-based formal verification approach for quantized neural networks. In Proceedings of498

the 37th IEEE/ACM International Conference on Automated Software Engineering, ASE ’22,499

New York, NY, USA, 2023. Association for Computing Machinery.500

12

https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

[42] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng501

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and502

applications. AI open, 1:57–81, 2020.503

[43] Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian504

Cheng. A2Q: Aggregation-aware quantization for graph neural networks. In The Eleventh505

International Conference on Learning Representations, 2023.506

13

A Proofs of statements in the main text507

Lemma 3. Let φ be a formula of modal qL. The formulas φ and mod2expr(φ) are equivalent.508

Proof. We have to prove that for all G, u, we have G, u |= φ iff G, u |= mod2expr(φ). We proceed509

by induction on φ.510

• The base case is obvious: G, u |= φ iff G, u |= mod2expr(φ) is G, u |= φ iff G, u |=511

mod2expr(φ).512

• G, u |= ¬φ iff G, u ̸|= φ513

iff (by induction) G, u ̸|= mod2expr(φ)514

iff (by writing mod2expr(φ) = ϑ ≥ 0) G, u |= ϑ ≥ 0515

iff G, u |= ϑ < 0516

iff G, u |= ϑ ≤ −1 (because we suppose that ϑ takes its value in the integers517

iff G, u |= ϑ+ 1 ≤ 0518

iff G, u |= −ϑ− 1 ≥ 0.519

• G, u |= (φ1 ∨ φ2)520

iff G, u |= φ1 or G, u |= φ2521

iff G, u |= (ϑ1 ≥ 0) or G, u |= (ϑ2 ≥ 0)522

iff G, u |= ϑ1 +ReLU(ϑ2 − ϑ1) ≥ 0523

Indeed, (⇒) if G, u |= (ϑ1 ≥ 0) then G, u |= ϑ1 +ReLU(ϑ2 − ϑ1) ≥ ϑ1 ≥ 0.524

If G, u |= (ϑ2 ≥ 0) and G, u |= (ϑ1 < 0) then G, u |= ϑ1 + ReLU(ϑ2 − ϑ1) =525

ϑ1 + ϑ2 − ϑ1 = ϑ2 ≥ 0.526

(⇐) Conversely, by contrapositive, if G, u |= (ϑ2 < 0) and G, u |= (ϑ1 < 0), then527

G, u |= ϑ1+ReLU(ϑ2−ϑ1) = ϑ1+ϑ2−ϑ1 = ϑ2 < 0 orG, u |= ϑ1+ReLU(ϑ2−ϑ1) =528

ϑ1 + 0 = ϑ1 < 0. In the two cases, G, u |= ϑ1 +ReLU(ϑ2 − ϑ1) < 0.529

• G, u |= ♢≥kφ iff the number of vertices v that are successors of u and with G, v |= φ is530

greater than k531

iff the number of vertices v that are successors of u and with G, v |= mod2expr(φ) is532

greater than k533

iff (written ϑ ≥ 0) iff the number of vertices v that are successors of u and with G, v |=534

ϑ ≥ 0 is greater than k535

iff the number of vertices v that are successors of u and with G, v |= ReLU(ϑ + 1) −536

ReLU(ϑ) = 1 is greater than k (since we know by defining of modal qL that ϑ takes its537

value in integers)538

iff G, u |= agg(ReLU(ϑ+ 1)−ReLU(ϑ) ≥ k539

iff G, u |= mod2expr(♢≥kφ)540

• Other cases are similar.541

542

Proposition 7. The number of Hintikka sets is bounded by 2n|φ| where |φ| is the size of φ, and n is543

the bitwidth of 𝕂.544

Proof. For each expression ϑ, we choose a number in 𝕂. There is 2n different numbers. There are545

|φ| number of expressions. So we get (2n)|φ| = 2n|φ| possible choices for a Hintikka set.546

Proposition 8. If bitwidth n is in unary, and if 𝕂 saturates, then satisfiability in QFBAPA𝕂 is in NP.547

14

Proof. Here is a non-deterministic algorithm for the satisfiability problem in QFBAPA𝕂.548

1. Let χ be a QFBAPA𝕂 formula.549

2. For each set expression B appearing in some |B|, guess a non-negative integer number kB550

in 𝕂.551

3. Let χ′ be a (grounded) formula in which we replaced |B| by kB .552

4. Check that χ′ is true (can be done in poly-time since χ′ is a grounded formula, it is a553

Boolean formula on variable-free equations and inequations in 𝕂).554

5. If not we reject.555

6. We now build a standard QFBAPA formula δ =
∧
B constraint(B) where:

constraint(B) =

{
|B| = kB if kB <∞𝕂
|B| ≥ limit if kB = +∞𝕂

where limit is the maximum number that is considered as infinity in 𝕂.556

7. Run a non-deterministic poly-time algorithm for the QFBAPA satisfiability on δ. Accepts if557

it accepts. Otherwise reject.558

The algorithm runs in poly-time. Guessing a number nB is in poly-time since it consists in guessing559

n bits (n in unary). Step 4 is just doing the computations in 𝕂. In Step 6, δ can be computed in560

poly-time.561

If χ is QFBAPA𝕂 satisfiable, then there is a solution σ such that σ |= χ. At step 2, we guess562

nB = |σ(B)|𝕂. The algorithm accepts the input.563

Conversely, if the algorithm accepts its input, χ′ is true for the chosen values nB . δ is satisfiable. So564

there is a solution σ such that σ |= δ. By the definition of constraint, σ |= χ.565

Remark 15. If the number n of bits to represent 𝕂 is given in unary and if 𝕂 is "modulo",566

then the satisfiability problem in QFBAPA𝕂 is also in NP. The proof is similar except than now567

constraint(B) = (|B| = kB + LdB) where dB is a new variable.568

Proposition 9. tr(φ) is computable in exponential-time in |φ| and n.569

Proof. In order to create tr(φ), we write an algorithm where each big conjunction, big disjunction,570

big union and big sum is replaced by a loop. For instance,
∧
H ̸=H′ is replaced by two inner loops571

over Hintikka sets. Note that we create check whether a candidate H is a Hintikka set in exponential572

time in n since Point 4 can be checked in exponential time in n (thanks to our loose assumption on573

the computability of [[α]] in exponential time in n. There are 2n|φ| many of them. In the same way,574 ∧
k∈𝕂 is a loop over 2n values. There is a constant number of nested loops, each of them iterating575

over an exponential number (in n and |φ| of elements. QED.576

Proposition 10. Let φ be a formula of qL. φ is satisfiable iff tr(φ) is QFBAPA𝕂 satisfiable.577

Proof. ⇒ Let G, u such that G, u |= φ. We set σ(Xϑ′=k) := {v | [[ϑ′]]G,v = k} and σ(XH) =578

{v | G, v |= H} where G, u |= H means that for all ϑ′ = k ∈ H , we have [[ϑ′]]G,v = k. For all579

Hintikka sets H such that there is v such that G, v |= H , we set: σ(SH) := {w | vEw}.580

We check that σ |= tr(φ). First, σ satisfies Formulas 1 and 2 by definition of σ. Now, σ also satisfies581

Formula 3. Indeed, if agg(ϑ′) = k ∈ H , then if there is no H-vertex in G then the implication is582

true. Otherwise, consider the H-vertex v. But, then by definition of Xagg(ϑ′)=k, [[agg(ϑ′)]]G,v = k.583

But then the semantics of agg exactly corresponds to
∑
k′∈𝕂 |SH ∩Xϑ=k′ | × k′ = k. Indeed, each584

SH ∩ Xϑ=k′-successor contributes with k′. Thus, the contribution of successors where ϑ is k′ is585

|SH ∩Xϑ=k′ | × k′.586

Formula 4 is also satisfied by σ. Actually, let k such that σ |= Xagg∀(ϑ)=k = U . This means that587

the value of agg∀(ϑ) (which does not depend on a specific vertex u but only on G) is k. The sum588 ∑
k′∈𝕂 |Xϑ=k′ | × k′ = k is the semantics of agg∀(ϑ) = k.589

15

Finally, as G, u |= φ, and φ is of the form ϑ ≥ k, there is k′ ≥ k such that [[ϑ]]G,u = k′. So590

Xϑ=k′ ̸= ∅.591

⇐ Conversely, consider a solution σ of tr(φ). We construct a graph G = (V,E) as follows.592

V := σ(U)
E := {(u, v) | for some H , u ∈ σ(XH) and v ∈ σ(SH)}

ℓ(v)i := k where v ∈ Xxi=k

i.e. the set of vertices is the universe, and we add an edge between any H-vertex u and a vertex593

v ∈ σ(SH), and the labeling for features is directly given Xxi=k. Note that the labeling is well-594

defined because of formulas 1 and 2.595

As σ |= |Xφ| ≥ 1, there exists u ∈ σ(Xφ). Let us prove that G, u |= φ. By induction on ϑ′, we596

prove that u ∈ Xϑ′=k implies [[ϑ′]]G,u = k. The base case is obtained via the definition of ℓ. Cases597

for +, × and α are obtained because each vertices is in some σ(XH) for some H . As the definition of598

Hintikka set takes care of the semantics of +, × and α, we have [[ϑ1+ϑ2]]G,u = [[ϑ1]]G,u+[[ϑ2]]G,u,599

etc.600

[[agg(ϑ)]]G,u = Σv|uEv[[ϑ]]G,v and [[agg∀(ϑ)]]G,u = Σv∈V [[ϑ]]G,v hold because of σ satisfies601

respectively formula 3 and 4.602

Theorem 12. The satisfiability problem in qL is NEXPTIME-hard, and so is VT3. VT1 and VT2 are603

coNEXPTIME-hard.604

Proof. We reduce the NEXPTIME-hard problem of deciding whether a domino system D =605

(D,V,H), given an initial condition w0 . . . wn−1 ∈ Dn, can tile an exponential torus [36]. In606

the domino system, D is the set of tile types, and V and H respectively are the respectively vertical607

and horizontal color compatibility relations. We are going to write a set of modal qL formulas that608

characterize the torus ℤ2n+1 × ℤ2n+1 and the domino system. We use 2n + 2 features. We use609

x0, . . . xn−1, and x′0, . . . , x
′
n−1, to hold the (binary-encoded) coordinates of vertices in the torus. We610

use the feature xN to denote a vertex ‘on the way north’ (when xN = 1) and xE to denote a vertex611

‘on the way east’ (when xE = 1), with abbreviations φN := xN = 1, and φE := xE = 1. See612

Figure 2.613

For every n ∈ ℕ, we define the following set of formulas. Tn =614

{ □g(xN = 1 ∨ xN = 0) , □g(xE = 1 ∨ xE = 0),

□g(
∧n−1
k=0(xi = 1 ∨ xi = 0)) , □g(

∧n−1
k=0(x

′
i = 1 ∨ x′i = 0)),

□g(¬(xN = 1 ∧ xE = 1)) , □g(¬(φN ∨ φE) → agg(1) = 2),
□g(¬(φN ∨ φE) → (agg(xN) = 1)) , □g(¬(φN ∨ φE) → (agg(xE) = 1)),
□g(φN → agg(1) = 1) , □g(φE = 1 → agg(1) = 1),
♢=1
g φ(0,0) , ♢=1

g φ(2n−1,2n−1),
□g(¬(φN ∨ φE) → φeast) , □g(¬(φN ∨ φE) → φnorth),
♢≤2n×2n

g ¬(φN ∨ φE), ♢≤2n×2n

g φN , ♢≤2n×2n

g φE }

where φ(0,0) :=
∧n−1
k=0 xi = 0 ∧

∧n−1
k=0 x

′
i = 0, and φ(2n−1,2n−1) :=

∧n−1
k=0 xi = 1 ∧

∧n−1
k=0 x

′
i = 1615

represent two nodes, namely those at coordinates (0, 0) and (2n−1, 2n−1). The formulas φnorth and616

φeast enforce constraints on the coordinates of states, such that going north increases the coordinate617

encoding using the xi features by one, leaving the x′i features unchanged, and going east increases618

coordinate encoding using the x′i features by one, leaving the xi features unchanged. For every619

16

formula φ, ∀east.φ stands for □(φE → □φ) and ∀north.φ stands for □(φN → □φ).620

φnorth :=

n−1∧
k=0

(

k−1∧
j=0

(xj = 1)) → (((xk = 1) → ∀north.(xk = 0)) ∧ ((xk = 0) → ∀north.(xk = 1)))∧

n−1∧
k=0

(

k−1∨
j=0

(xj = 0)) → (((xk = 1) → ∀north.(xk = 1)) ∧ ((xk = 0) → ∀north.(xk = 0)))∧

n−1∧
k=0

(((x′k = 1) → ∀north.(x′k = 1)) ∧ ((x′k = 0) → ∀north.(x′k = 0)))

φeast :=

n−1∧
k=0

(

k−1∧
j=0

(x′j = 1)) → (((x′k = 1) → ∀east.(x′k = 0)) ∧ ((x′k = 0) → ∀east.(x′k = 1)))∧

n−1∧
k=0

(

k−1∨
j=0

(x′j = 0)) → (((x′k = 1) → ∀east.(x′k = 1)) ∧ ((x′k = 0) → ∀east.(x′k = 0)))∧

n−1∧
k=0

(((xk = 1) → ∀east.(xk = 1)) ∧ ((xk = 0) → ∀east.(xk = 0)))

The problem of deciding whether a domino system D = (D,V,H), given an initial condition621

w0 . . . wn−1 ∈ Dn, can tile a torus of exponential size can be reduced to the problem satisfiability in622

qL, checking the satisfiability of the set of formulas T (n,D, w) = Tn ∪ TD ∪ Tw, where Tn is as623

above, TD encodes the domino system, and Tw encodes the initial condition as follows. We define624

TD = { □g(
∧
d∈D(xd = 1 ∨ xd = 0)),

□g(¬(φN ∨ φE) → (
∨
d∈D φd)),

□g(¬(φN ∨ φE) → (
∧
d∈D

∧
d′∈D\{d} ¬(φd ∧ φd′))),

□g(
∧
d∈D(φd → (∀east.

∨
(d,d′)∈H φd′))),

□g(
∧
d∈D(φd → (∀north.

∨
(d,d′)∈V φd′))) }

where for every d ∈ D, there is a feature xd and φd := xd = 1. Finally, we define625

Tw = { □g(φ(0,0) → φw0
), . . . ,□g(φ(n−1,0) → φwn−1

) }

The size of T (n,D, w) is polynomial in the size of the tiling problem instance, that is in |D|+ |H|+626

|V | + n. The rest of the proof is analogous to the proof of [36, Corollary 3.9]. The NEXPTIME-627

hardness of qL follows from Lemma 3 and [36, Corollary 3.3] stating the NEXPTIME-hardness of628

deciding whether a domino system with initial condition can tile a torus of exponential size.629

For the complexity of ACR-GNN verification tasks, we observe the following.630

1. We reduce the satisfiability problem in (modal) qL (restricted to graded modal logic + graded631

universal modality, because it is sufficient to encode the tiling problem) to VT3 in poly-time632

as follows. Let φ be a qL. We build in poly-time an ACR-GNN A that recognizes all633

pointed graphs. We have φ is satisfiable iff [[φ]] ∩ [[A]] ̸= ∅ So VT3 is NEXPTIME-hard.634

2. The validity problem of qL (dual problem of the satisfiability problem, i.e., given a formula635

φ, is φ true in all pointed graphs G, u?) is coNEXPTIME-hard. We reduce the validity636

problem of qL to VT2. Let φ be a qL formula. We construct an ACR-GNN A that accepts637

all pointed graphs. We have φ is valid iff [[A]] ⊆ [[φ]]. So VT2 is coNEXPTIME-hard.638

3. We reduce the validity problem of qL to VT1. Let ψ be a qL formula. (again in graded639

modal logic + graded global modalities). So by [4], We construct in poly-time an ACR-640

GNN A that is equivalent to ψ (by [4]). We have ψ is valid iff [[⊤]] ⊆ [[A]]. So VT1 is641

coNEXPTIME-hard.642

643

Theorem 14. The satisfiability problems with bounded number of vertices are NP-complete.644

17

Proof. NP upper bound is obtained by guessing a graph with at mostN vertices and then check that φ645

holds. The obtained algorithm is non-deterministic, runs in poly-time and decides the satisfiability646

problem with bounded number of vertices. NP-hardness already holds for agg-free formulas by647

reduction from SAT for propositional logic (the reduction is mod2expr, see Lemma 3).648

B Checking distributivity649

We provide C source code for checking distributivity. The reader may run the model checker ESBMC650

on it to see whether distributivity holds or not.651

C Extension of logic K♯ and ACR-GNNs over ℤ652

A (labeled directed) graph G is a tuple (V,E, ℓ) such that V is a finite set of vertices, E ⊆ V × V a653

set of directed edges and ℓ is a mapping from V to a valuation over a set of atomic propositions. We654

write ℓ(u)(p) = 1 when atomic proposition p is true in u, and ℓ(u)(p) = 0 otherwise. Given a graph655

G and vertex u ∈ V , we call (G, u) a pointed graph.656

C.1 Logic657

Consider a countable set Ap of propositions. We define the language of logic K♯,♯g as the set of658

formulas generated by the following BNF:659

φ ::= p | ¬φ | φ ∨ φ | ξ ≥ 0

ξ ::= c | 𝟙φ | ♯φ | ♯gφ | ξ + ξ | c× ξ

where p ranges over Ap, and c ranges over ℤ. We assume that all formulas φ are represented as660

directed acyclic graph (DAG) and refer by the size of φ to the size of its DAG representation.661

Atomic formulas are propositions p, inequalities and equalities of linear expressions. We consider662

linear expressions over 𝟙φ and ♯φ and ♯gφ. The number 𝟙φ is equal to 1 if φ holds in the current663

world and equal 0 otherwise. The number ♯φ is the number of successors in which φ hold. The664

number ♯gφ is the number of worlds in the model in which φ hold. The language seems strict but we665

write ξ1 ≤ ξ2 for ξ2 − ξ1 ≥ 0, ξ = 0 for (ξ ≥ 0) ∧ (−ξ ≥ 0), etc.666

As in modal logic, a formula φ is evaluated in a pointed graph (G, u) (also known as pointed Kripke667

model). We define the truth conditions (G, u) |= φ (φ is true in u) by668

(G, u) |= p if ℓ(u)(p) = 1,
(G, u) |= ¬φ if it is not the case that (G, u) |= φ,
(G, u) |= φ ∧ ψ if (G, u) |= φ and (G, u) |= ψ,
(G, u) |= ξ ≥ 0 if [[ξ]]G,u ≥ 0,

669

and the semantics [[ξ]]G,u (the value of ξ in u) of an expression ξ by mutual induction on φ and ξ as670

follows.671

[[c]]G,u = c,
[[ξ1 + ξ2]]G,u = [[ξ1]]G,u + [[ξ2]]G,u,
[[c× ξ]]G,u = c× [[ξ]]G,u,

[[𝟙φ]]G,u =

{
1 if (G, u) |= φ

0 otherwise,
[[♯φ]]G,u = |{v ∈ V | (u, v) ∈ E and (G, v) |= φ}|
[[♯gφ]]G,u = |{v ∈ V | (G, v) |= φ}|.

672

A local modality □φ can be defined as □φ := (−1) × ♯(¬φ) ≥ 0. That is, to say that φ holds673

in all successors, we say that the number of successors in which ¬φ holds is zero. Similarly, a674

global/universal modality can be defined as □gφ := (−1)× ♯g(¬φ) ≥ 0.675

C.2 Aggregate-Combine Graph Neural Networks676

In this section, we consider a detailed definition of quantized (global) Aggregate-Combine GNNs677

(ACR-GNN) [4], also called message passing neural networks [16]. We stick to the former term.678

18

A (global) ACR-GNN layer L = (comb, agg , aggg) is a tuple where comb : ℝ2m → ℝn is a so-called679

combination function, agg is a so-called local aggregation function, mapping multisets of vectors680

from ℝm to a single vector from ℝn, aggg is a so-called global aggregation function, also mapping681

multisets of vectors from ℝm to a single vector from ℝn. We call m the input dimension of layer L682

and n the output dimension of layer L. Then, a (global) ACR-GNN is a tuple (L(1), . . . ,L(L), cls)683

where L(1), . . . ,L(L) are L ACR-GNN layers and cls : ℝm → {0, 1} is a classification function. We684

assume that all GNNs are well-formed in the sense that output dimension of layer L(i) matches input685

dimension of layer L(i+1) as well as output dimension of L(L) matches input dimension of cls .686

Let G = (V,E) be a graph with atomic propositions p1, . . . , pk and A = (L(1), . . . ,L(L), cls)
an ACR-GNN. We define x0 : V → {0, 1}k, called the initial state of G, as x0(u) :=
(ℓ(u)(p1), . . . , ℓ(u)(pk)) for all u ∈ V . Then, the i-th layer of A computes an updated state of
G by

xi(u) := comb(xi−1(u), agg({{xi−1(v) | uv ∈ E}}), aggg({{xi−1(v) | v ∈ V }}))

where agg , aggg , and comb are respectively the local aggregation, global aggregation and combination687

function of the i-th layer. Let (G, u) be a pointed graph. We write A(G, u) to denote the application688

of A to (G, u), which is formally defined as A(G, u) = cls(xL(u)) where xL is the state of G689

computed by A after layer L. Informally, this corresponds to a binary classification of node u.690

In this work, we exclusively consider the following form of ACR-GNN A: all local and global691

aggregation functions are given by the sum of all vectors in the input multiset, all combination692

functions are given by comb(x, y, z) = σ⃗(xC + yA1 + zA2 + b) where σ⃗(x) is the componentwise693

application of the truncated ReLU σ(x) = max(0,min(1, x)), with matrices C, A1 and A2 and694

vector b of 𝕂 parameters, and where the classification function is cls(x) =
∑
i aixi ≥ 1, where ai695

are from 𝕂 as well.696

We note [[A]] the set of pointed graphs (G, u) such that A(G, u) = 1. An ACR-GNN A is satisfiable697

if [[A]] is non-empty. The satisfiability problem for ACR-GNNs is: Given a ACR-GNN A, decide698

whether A is satisfiable.699

D Capturing GNNs with K♯,♯g700

In this section, we demonstrate that the expressive power of (global) ACR-GNNs, as defined in701

Section C.2 and K♯,♯g , is equivalent. Informally, this means that for every formula φ of K♯,♯g , there702

exists an ACR-GNNs A that expresses the same query, and vice-versa. To achieve this, we define a703

translation of one into the other and substantiate that this translation is efficient. This enables ways to704

employ K♯,♯g for reasoning about ACR-GNN.705

We begin by showing that global ACR-GNNs are at least as expressive as K♯,♯g . We remark that the706

arguments are similar to the proof of Theorem 1 in [24].707

Theorem 16. Let φ ∈ K♯,♯g be a formula. There is Aφ such that for all pointed graphs (G, u) we708

have (G, u) |= φ if and only if Aφ(G, u) = 1. Furthermore, Aφ can be built in polynomial time709

regarding the size of φ.710

Proof sketch. We construct a GNN Aφ that evaluates the semantics of a given K♯,♯g formula φ for711

some given pointed graph (G, v). The network consists of n layers, one for each of the n subformulas712

φi of φ, ordered so that the subformulas are evaluated based on subformula inclusion. The first713

layer evaluates atomic propositions, and each subsequent messages passing layer li uses a fixed714

combination and fixed aggregation function to evaluate the semantics of φi.715

The correctness follows by induction on the layers: the i-th layer correctly evaluates φi at each716

vertex of G, assuming all its subformulas are correctly evaluated in previous layers. Finally, the717

classifying function cls checks whether the n-th dimension of the vector after layer ln, corresponding718

to the semantics of φn for the respective vertex v, indicates that φn = φ is satisfied by (G, v). The719

network size is polynomial in the size of φ due to the fact that the total number of layers and their720

width is polynomially bounded by the number of subformulas of φ. A full formal proof is given in721

Appendix F.722

19

Theorem 17. Let A be a GNN. We can compute in polynomial time wrt. |A| a K♯,♯g -formula φA,723

represented as a DAG, such that [[A]] = [[φA]].724

Proof sketch. We construct a K♯,♯g -formula φA that simulates the computation of a given GNN725

A. For each layer li of the GNN, we define a set of formulas φi,j , one per output dimension, that726

encode the corresponding node features using linear threshold expressions over the formulas from727

the previous layer. At the base, the input features are the atomic propositions p1, . . . , pm1
.728

Each formula φi,j mirrors the computation of the GNN layer, including combination, local aggre-729

gation, and global aggregation. The final classification formula φA encodes the output of the linear730

classifier on the top layer features. Correctness follows from the fact that all intermediate node731

features remain Boolean under message passing layers with integer parameters and truncated ReLU732

activations. This allows expressing each output as a Boolean formula over the input propositions.733

The construction is efficient: by reusing shared subformulas via a DAG representation, the total size734

remains polynomial in the size of A.735

E Complexity of the satisfiability of K♯,♯g and its implications for ACR-GNN736

verification737

In this section, we establish the complexity of reasoning with K♯,♯g .738

Instrumentally, we first show that every K♯,♯g formula can be translated into a K♯,♯g formula739

that is equi-satisfiable, and has a tree representation of size at most polynomial in the size of the740

original formula. An analogous result was obtained in [24] for K♯. It can be shown using a741

technique reminiscent of [37] and consisting of factorizing subformulas that are reused in the DAG742

by introducing a fresh proposition that is made equivalent. Instead of reusing a ‘possibly large’743

subformula, a formula then reuses the equivalent ‘small’ atomic proposition.744

Lemma 18. The satisfiability problem of K♯,♯g reduces to the satisfiability of K♯,♯g with tree745

formulas in polynomial time.746

Proof. Let φ be a K♯,♯g formula represented as a DAG. For every subformula ψ (i.e., for every node747

in the DAG representation of φ), we introduce a fresh atomic proposition pψ. We can capture the748

meaning of these new atomic propositions with the formula Φ :=
∧
ψ node in the DAG sem(ψ) where:749

sem(ψ ∨ χ) := pψ∨χ ↔ (pψ ∨ pχ)
sem(¬ψ) := p¬ψ ↔ ¬pψ

sem(ξ ≥ 0) := pξ≥0 ↔ ξ′ ≥ 0
750

(c)′ := c (ξ1 + ξ2)
′ := ξ′1 + ξ′2 (c× ξ)′ := c× ξ′

(𝟙ψ)′ := 𝟙pψ (♯ψ)′ := ♯pψ (♯gψ)
′ := ♯gpψ

Now, define φt := pφ ∧□gΦ, where □gΦ := (−1)× ♯g(¬Φ) ≥ 0, enforcing the truth of Φ in every751

vertex. The size of its tree representation is polynomial in the size of φ. Moreover, φt is satisfiable iff752

φ is satisfiable.753

754

Theorem 19. K
♯,♯g
tree-satisfiability problem is NEXPTIME-complete.755

Proof. For membership, we translate the problem into the NEXPTIME-complete problem of concept756

description satisfiability in the Description Logics with Global and Local Cardinality Constraints [2],757

noted ALCSCC++. The Description Logic ALCSCC++ uses the Boolean Algebra with Presburger758

Arithmetic [20], noted QFBAPA, to formalize cardinality constraints. See Section H for a presentation759

of ALCSCC++ and QFBAPA.760

Let φ0 be a K♯,♯g formula.761

For every proposition p occurring in φ0, let Ap be an ALCSCC++ concept name. Let R be an762

ALCSCC++ role name. For every occurrence of 𝟙φ in φ0, let ZOOφ be an ALCSCC++ role name.763

ZOO-roles stand for ‘zero or one’. The rationale for introducing ZOO-roles is to be able to capture764

20

the value of 𝟙φ in ALCSCC++ making it equal to the number of successors of the role ZOOφ which765

can then be used in QFBAPA constraints. A similar trick was used, in another context, in [14]. Here,766

we enforce this with the QFBAPA constraint767

χ0 =
∧

𝟙φ∈φ0

(
(|ZOOφ| = 0 ∨ |ZOOφ| = 1) ∧ τ(φ) = sat(|ZOOφ| = 1)

)
which states thatZOOφ has zero or one successor, and has one successor exactly when (the translation768

of) φ is true. The concept descriptions τ(φ) and arithmetic expressions τ(ξ) are defined inductively769

as follows:770

τ(p) = Ap
τ(¬φ) = ¬τ(φ)
τ(φ ∨ ψ) = τ(φ) ⊔ τ(ψ)
τ(ξ ≥ 0) = sat(−1 < τ(ξ))
τ(c) = c
τ(ξ1 + ξ2) = τ(ξ1) + τ(ξ2)
τ(c× ξ) = τ(c · ξ)
τ(♯φ) = |R ∩ τ(φ)|
τ(𝟙φ) = |ZOOφ|
τ(♯gφ) = |τ(φ)|

Finally, we define the ALCSCC++ concept description Cφ0 = τ(φ0) ⊓ sat(χ0).771

Claim 20. The concept description Cφ0 is ALCSCC++-satisfiable iff the formula φ0 is K♯,♯g -772

satisfiable. Moreover, the concept description Cφ0
has size polynomial in the size of φ0.773

Proof. From right to left, suppose that φ0 is K♯,♯g -satisfiable. It means that there is a pointed774

graph (G, u) where G = (V,E) and u ∈ V , such that (G, u) |= φ0. Let I0 = (∆I0 , ·I0) be775

the ALCSCC++ interpretation over NC and NR, such that NC = {Ap | p a proposition in φ0},776

NR = {R} ∪ {ZOOφ | 𝟙φ ∈ φ0}, ∆I0 = V , AI0p = {v | v ∈ V, (G, v) |= p} for every p in φ0,777

RI0 = E, ZOOI0φ = {(v, v) | v ∈ V, (G, v) |= φ} for every 𝟙φ in φ0. We can show that u ∈ CI0φ0
.778

Basically I0 is like G with the addition of adequately looping ZOO-roles. An individual in ∆I0 has779

exactly one ZOOφ-successor (itself), exactly when φ is true, and no successor otherwise; Ap is true780

exactly where p is true, and the role R corresponds exactly to E.781

From left to right, suppose that Cφ0
is ALCSCC++-satisfiable. It means that there is an ALCSCC++

782

finite interpretation I0 = (∆I0 , ·I0) and an individual d ∈ ∆I0 such that d ∈ CI0φ0
. LetG = (V,E) be783

a graph such that V = ∆I0 , E = RI0 , and ℓ(d)(p) = 1 iff d ∈ AI0p . We can show that (G, d) |= φ0.784

Since there are at most |φ0| subformulas in φ0, the representation of ZOOφ for every subformula φ785

of φ0 can be done in size log2(|φ0|). For every formula φ, the size of the concept description τ(φ) is786

polynomial (at most O(n log(n))). The overall size of τ(φ0) is polynomial in the size of φ0, and so787

is the size of sat(ξ0) (at most O(n2(log(n))2).788

The NEXPTIME-membership follows from Claim 20 and the fact that the concept satisfiability789

problem in ALCSCC++ is in NEXPTIME (Theorem 25).790

For the hardness, we reduce the problem of consistency of ALCQ-TCBoxes which is NEXPTIME-791

hard [36, Corollary 3.9]. See Section I and Theorem 27 that slightly adapts Tobies’ proof to show792

that the problem is hard even with only one role.793

We define the translation τ from the set of ALCQ concept expressions and ALCQ cardinality794

constraints, with only one role R.795

τ(A) = pA
τ(¬C) = ¬τ(C)
τ(C1 ⊔ C2) = τ(C1) ∨ τ(C2)
τ(≥ n R.C) = ♯τ(C) + (−1)× n ≥ 0
τ(≥ n C) = ♯gτ(C) + (−1)× n ≥ 0
τ(≤ n C) = (−1)× ♯gτ(C) + n ≥ 0

21

It is routine to check the following claim.796

Claim 21. Let TC be an ALCQ-TCBox. TC is consistent iff
∧
χ∈TC τ(χ) is K♯,♯g -satisfiable.797

Moreover, the reduction is linear. Hardness thus follows from the NEXPTIME-hardness of consis-798

tency of ALCQ-TCBoxes.799

Lemma 18 and Theorem 19 yield the following corollary.800

Corollary 22. K♯,♯g -satisfiability problem is NEXPTIME-complete.801

Furthermore, from Theorem 16 and Corollary 22, we obtain the complexity of reasoning with802

ACR-GNNs with truncated ReLU and integer weights.803

Corollary 23. Satisfiability of ACR-GNN with global readout and truncated ReLU is NEXPTIME-804

complete.805

The decidability of the problem is left open in [7] and in the recent long version [8] when the weights806

are rational numbers. The theorem answers it positively in the case of integer weights and pinpoints807

the computational complexity.808

F Formal proofs809

Proof of Theorem 16. Let φ be a K♯,♯g formula over the set of atomic propositions p1, . . . , pm. Let810

φ1, . . . , φn denote an enumeration of the subformulas of φ such that φi = pi for i ≤ m, φn = φ,811

and whenever φi is a subformula of φj , it holds that i ≤ j. Without loss of generality, we assume812

that all subformulas of the form ξ ≥ 0 are written as813 ∑
j∈J

kj · 𝟙φj +
∑
j′∈J′

kj′ · ♯φj′ +
∑
j′′∈J′′

kj′′ · ♯gφj′′ − c ≥ 0,

for some index sets J, J ′, J ′′ ⊆ {1, . . . , n}.814

We construct the GNN Aφ in a layered manner. Note that Aφ is fully specified by defining the815

combination function combi, including its local and global aggregation, for each layer li with i ∈816

{1, . . . , n} and the final classification function cls . Each combi produces output vectors of dimension817

n. The first layer comb1 has input dimension 2m and is defined by comb1(x, y, z) = (x, 0, . . . , 0),818

ensuring that the first m dimensions correspond to the truth values of the atomic propositions819

p1, . . . , pm, while the remaining entries are initialized to zero. Note that comb1 is easily realized by820

an FNN with ReLU activations. For i > 1, the combination function combi is defined as821

combi(x, y, z) = σ⃗(xC + yA1 + zA2 + b),

where C, A1, A2 are n× n matrices corresponding to self, local (neighbor), and global aggregation822

respectively, and b ∈ ℝn is a bias vector. The parameters are defined sparsely as follows:823

• Cii = 1 for all i ≤ m (preserving the atomic propositions),824

• If φi = ¬φj , then Cji = −1 and bi = 1,825

• If φi = φj ∨ φl, then Cji = Cli = 1, and826

• If φi =
∑
j∈J kj · 1φj

+
∑
j′∈J′ kj′ · ♯φj′ +

∑
j′′∈J′′ kj′′ · ♯gφj′′ − c ≥ 0, then827

Cji = kj , A1,j′i = kj′ , A2,j′i = kj′′ , bi = −c+ 1.

Note that each combi has the same functional form, differing only in the non-zero entries of its828

parameters. The classification function is defined by cls(x) = xn ≥ 1.829

Let li denote the ith layer of Aφ, and fix a vertex v in some input graph. We show, by induction830

on i, that the following invariant holds: for all j ≤ i, (xi(v))j = 1 if and only if v |= φj , and831

(xi(v))j = 0 otherwise. Assume that i = 1. By construction, x1(v) contains the truth values of832

the atomic propositions p1, . . . , pm in its first m coordinates. Thus, the statement holds at layer 1.833

22

Next, assume the statement holds for layer xi−1. Let j < i. By assumption, the semantics of φj are834

already correctly encoded in xj−1 and preserved by combi due to the fixed structure of C, A1, A2,835

and b. Now consider j = i. The semantics of all subformulas of φi are captured in xi−1, either at836

the current vertex or its neighbors. By the design of combi, which depends only on the values of837

relevant subformulas, we conclude that φi is correctly evaluated. This holds regardless of whether φi838

is a negation, disjunction, or numeric threshold formula. Thus, the statement holds for all i, and in839

particular for xn(v) and φn = φ. Finally, the classifier cls evaluates whether xn(v)n ≥ 1, which is840

equivalent to G, v |= φ. The size claim is obvious given that n depends polynomial on the size of φ.841

We note that this assumes that the enumeration of subformulas of φ does not contain duplicates.842

Proof of Theorem 17. Let A be a GNN composed of layers l1, . . . , lk, where each combi has input843

dimension 2mi, output dimension ni, and parameters Ci, Ai,1, Ai,2, and bi. The final classification844

is defined via a linear threshold function cls(x) = a1x1 + · · ·+ ank
xnk

≥ 1. We assume that the845

dimensionalities match across layers, i.e. mi = ni−1 for all i ≥ 2, so that the GNN is well-formed.846

We construct a formulaφA over the input propositions p1, . . . , pm1
inductively, mirroring the structure847

of the GNN computation.848

We begin with the first layer l1. For each j ∈ {1, . . . , n1}, we define:849

φ1,j =

m1∑
k=1

(C1)kj · 𝟙pk + (A1,1)kj · ♯pk + (A1,2)kj · ♯gpk + (b1)j ≥ 1.

Now suppose that we have already constructed formulas φi−1,1, . . . , φi−1,ni−1 for some layer i ≥ 2.850

Then, for each output index j ∈ {1, . . . , ni}, we define:851

φi,j =

mi∑
k=1

(Ci)kj · 𝟙φi−1,k + (Ai,1)kj · ♯φi−1,k + (Ai,2)kj · ♯gφi−1,k + (bi)j ≥ 1.

Once all layers have been encoded in this way, we define the final classification formula as852

φA = a1𝟙φk,1 + · · ·+ ank
𝟙φk,nk

≥ 1.

Let G, v be a pointed graph. The correctness of our translation follows directly from the following853

observations: all weights and biases in A are integers, and the input vectors x0(u) assigned to854

nodes u in G are Boolean. Moreover, each layer applies a linear transformation followed by a855

pointwise truncated ReLU, which preserves the Boolean nature of the node features. It follows that856

the intermediate representations xi(v) remain in {0, 1}ni for all i. Consequently, each such feature857

vector can be expressed via a set of Boolean K♯,♯g -formulas as constructed above. Taken together,858

this ensures that the overall formula φA faithfully simulates the GNN’s computation.859

It remains to argue that this construction can be carried out efficiently. Throughout, we represent860

the (sub)formulas using a shared DAG structure, avoiding duplication of equivalent subterms. This861

ensures that subformulas φi−1,k can be reused without recomputation. For each layer, constructing all862

φi,j requires at most ni ·mi steps, plus the same order of additional operations to account for global863

aggregation terms. Since the number of layers, dimensions, and parameters are bounded by |A|, and864

each operation can be performed in constant or linear time, the total construction is polynomial in the865

size of A.866

G Experimental data and further analyses867

This study investigates the application of dynamic Post-Training Quantization (PTQ) to Aggregate-868

Combined Readout Graph Neural Networks (ACR-GNNs). Implemented in PyTorch [1, 26], dynamic869

PTQ transforms a pre-trained floating-point model into a quantized version without requiring retrain-870

ing. In this approach, model weights are statically quantized to INT8, while activations remain in871

floating-point format until they are dynamically quantized at compute time. This hybrid representation872

enables efficient low-precision computation using INT8-based matrix operations, thereby reducing873

memory footprint and improving inference speed. PyTorch’s implementation applies per-tensor874

quantization to weights and stores activations as floating-point values between operations to balance875

precision and performance.876

23

We adopt INT8 and QINT8 representations as the primary quantization format. According to theory,877

INT8 refers to 8-bit signed integers that can encode values in the range [−128, 127]. In contrast,878

QINT8, as defined in the PyTorch documentation [1, 27, 28], is a quantized tensor format that wraps879

INT8 values together with quantization metadata: a scale (defining the float value represented by one880

integer step) and a zero-point (the INT8 value corresponding to a floating-point zero). This additional881

information allows QINT8 tensors to approximate floating-point representations efficiently while882

enabling high-throughput inference.883

To evaluate the practical impact of quantization, we conducted experiments on both synthetic and884

real datasets. The synthetic data setup was based on the benchmark introduced by [4]. Graphs were885

generated using the dense Erdös–Rényi model, a classical method for constructing random graphs,886

and each graph was initialized with five node colours encoded as one-hot feature vectors. The dataset887

is structured as follows, as shown in Table 3. The training set consists of 5000 graphs, each with 40888

to 50 nodes and between 560 and 700 edges. The test set is divided into two subsets. The first subset889

comprises 500 graphs with the same structure as the training set, featuring 40 to 50 nodes and 560 to890

700 edges. The second subset contains 500 larger graphs, with 51 to 69 nodes and between 714 and891

960 edges. This design allows us to evaluate the model’s generalization capability to unseen graph892

sizes.893

Table 3: Dataset statistics summary.

Node Edge

Classifier Dataset Min Max Avg Min Max Avg

p1
Train 40 50 45 560 700 630
Test1 40 50 45 560 700 633
Test2 51 60 55 714 960 832

p2
Train 40 50 45 560 700 630
Test1 40 50 44 560 700 628
Test2 51 60 55 714 960 832

p2
Train 40 50 44 560 700 629
Test1 40 50 45 560 700 630
Test2 51 60 55 714 960 831

For this experiment, we used simple ACR-GNN models with the following specifications. We894

applied the sum function for both the aggregation and readout operations. The combination function895

was defined as: comb(x, y, z) = σ⃗(xC + yA + zR + b), where σ⃗ denotes the activation function.896

Following the original work, we set the hidden dimension to 64, used a batch size of 128, and trained897

the model for 20 epochs using the Adam optimizer with default PyTorch parameters. We used two898

activation functions for the experimental part, ReLU and truncated ReLU. For implementation, we899

used PyTorch [1]: nn.ReLU and nn.Hardtanh(0, 1) in accordance.900

We trained ACR-GNN on complex formulas FOC2 for labeling. They are presented as a classifier901

αi(x) that constructed as:902

α0(x) := Blue(x), αi+1(x) := ∃[N,M]y (αi(y) ∧ ¬E(x, y))

where ∃[N,M] stands for “there exist between N and M nodes”. satisfying a given property.903

Observe that each αi(x) is in FOC2, as ∃[N,M] can be expressed by combining ∃≥N and ¬∃≥M+1.904

The data set has the following specifications: Erdös–Rényigraphs and is labeled according to α1(x),905

α2(x), and α3(x):906

• α0(x) := Blue(x)907

• p1 : α1(x) := ∃[8,10]y (α0(y) ∧ ¬E(x, y))908

• p2 : α2(x) := ∃[10,30]y (α1(y) ∧ ¬E(x, y))909

• p3 : α3(x) := ∃[10,30]y (α2(y) ∧ ¬E(x, y))910

24

In this section, we present experiments for two activation functions: ReLU and truncated ReLU911

(implemented via nn.Hardtanh(0,1)) to study the influence of the activation function on the model.912

Experiments for the ACR-GNN were conducted with different numbers of hidden layers, ranging913

from 1 to 10. To measure the precision of the results, we use the strategy as [4]: accuracy is calculated914

as the total number of correctly classified nodes among all nodes in all graphs in the dataset.915

Table 4: Accuracy of the ACR-GNN with ReLU according to the number of layers.

p1 p2 p3

Layer Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

1 96.9% 96.4% 74.8% 69.8% 71.0% 56.7% 69.1% 68.8% 75.4%
2 100.0% 100.0% 99.5% 83.7% 84.5% 75.3% 76.6% 76.8% 77.0%
3 97.6% 97.3% 87.2% 83.6% 84.2% 75.1% 76.7% 76.4% 66.9%
4 68.6% 68.4% 67.3% 83.5% 84.0% 76.1% 77.7% 76.3% 46.6%
5 68.5% 68.3% 67.0% 83.5% 83.9% 77.6% 78.2% 76.8% 34.1%
6 68.5% 68.4% 66.1% 83.6% 84.1% 79.6% 77.6% 75.8% 34.8%
7 68.5% 68.5% 67.3% 83.5% 83.8% 80.5% 77.1% 77.7% 49.4%
8 68.5% 68.4% 65.8% 83.4% 83.8% 73.2% 76.7% 75.7% 75.1%
9 68.5% 68.3% 66.7% 83.0% 83.4% 79.1% 77.3% 76.9% 48.0%

10 68.6% 68.3% 65.5% 83.1% 83.7% 77.3% 76.4% 75.6% 37.4%

Table 4 presents the accuracy of the ACR-GNN model with ReLU activation across three FO-916

properties (p1, p2, and p3), evaluated on Train, Test1, and Test2 splits. For p1, the model achieves917

high accuracy in the first three layers, peaking at 99.5% on Test2 at layer 2. From layer 4 and beyond,918

the accuracy on Test2 declines and stabilizes around 66–67%, suggesting a decreased performance919

in deeper models for this property. For p2, initial accuracy is modest (e.g., 69.8% on Train and920

56.7% on Test2 at layer 1), but improves rapidly with depth, surpassing 83% from layer 2 onward921

on Train and Test1. In particular, the accuracy of Test2 continues to improve with depth, reaching922

a peak at 80.5% in layer 7, indicating that p2 benefits from deeper architectures. In contrast, p3923

exhibits less consistent behavior. Accuracy improves early, reaching 77.0% on Test2 at layer 2, but924

then drops sharply: Test2 accuracy drops to 46.6% at layer 4 and reaches a minimum of 34.1% at925

layer 5. Some recovery is observed at layers 7 and 8, yet performance remains unstable, with Test2926

accuracy at 37.4% by layer 10. Overall, the results demonstrate that model depth significantly affects927

performance depending on the target property. While p2 benefits from deeper configurations, both p1928

and p3 achieve higher generalization performance in shallower networks, with deeper layers leading929

to overfitting or reduced representation quality on unseen data.930

Table 5: Accuracy of the ACR-GNN with ReLU after dynamic PTQ according to the number of
layers.

p1 p2 p3

Layer Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

1 96.5% 95.7% 75.3% 69.7% 70.8% 65.6% 68.8% 68.2% 74.7%
2 100.0% 100.0% 99.4% 83.8% 84.4% 75.5% 76.4% 76.6% 77.0%
3 97.6% 97.4% 86.7% 83.5% 84.1% 74.7% 76.7% 76.7% 66.5%
4 68.6% 68.5% 66.9% 83.3% 84.2% 76.2% 77.6% 76.1% 44.6%
5 68.5% 68.2% 67.2% 83.4% 84.0% 77.8% 78.3% 76.6% 33.4%
6 68.6% 68.4% 66.2% 83.5% 83.9% 80.3% 77.4% 75.6% 35.8%
7 68.5% 68.4% 67.1% 83.3% 83.6% 80.6% 77.1% 77.6% 48.7%
8 68.5% 68.3% 65.8% 83.3% 83.7% 73.2% 76.7% 75.5% 74.6%
9 68.5% 68.3% 66.6% 83.0% 83.6% 78.9% 77.1% 76.2% 44.3%

10 68.5% 68.2% 58.1% 83.0% 83.7% 77.5% 76.3% 75.4% 36.6%

Table 5 presents the node-level accuracy of the ACR-GNN model with ReLU activation after applying931

dynamic post-training quantization (PTQ). Results are reported for three FO-properties (p1, p2,932

25

and p3), evaluated across the Train, Test1, and Test2 splits. For p1, the quantized model achieves933

near-perfect accuracy at layer 2 (Train: 100.0%, Test1: 100.0%, Test2: 99.4%), indicating optimal934

performance at this depth. Beyond layer 3, accuracy gradually degrades, with Test2 accuracy falling to935

58.1% by layer 10. This suggests that deeper networks may amplify quantization-related degradation,936

especially in generalization.For p2, the quantized model demonstrates stable and robust accuracy937

across most depths. Starting from moderate performance in layer 1 (Train: 69.7%, Test2: 65.6%),938

accuracy increases quickly and exceeds 83.0% from layer 2 onward in Train and Test1 splits. In939

particular, the accuracy of Test2 continues to improve up to layer 7 (80.6%), showing resilience940

to quantization effects even in deeper architectures.In contrast, p3 exhibits more irregular behavior.941

Accuracy improves slightly in the early layers (Test2 peaks at 77.0% at layer 2), but then drops942

substantially, reaching a low of 33.4% at layer 5. Despite stable Train and Test1 accuracy (76–78%),943

the significant reduction in Test2 suggests overfitting and reduced generalization performance in944

deeper networks due to quantization. Dynamic PTQ preserves performance well for p2 in depths,945

but negatively impacts p1 and especially p3 in deeper configurations. This underscores the need for946

depth-sensitive or property-sensitive quantization strategies when deploying GNNs under resource947

constraints.948

Table 6: Difference in the percentages of the accuracy of ACR-GNN with ReLU before and after
dynamic PTQ, rounded to two decimal places.

p1 p2 p3

Layer Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

1 -0.45% -0.76% 0.52% -0.13% -0.18% 8.89% -0.30% -0.65% -0.69%
2 0.00% 0.00% -0.04% 0.08% -0.13% 0.14% -0.18% -0.23% 0.02%
3 -0.04% 0.06% -0.49% -0.16% -0.14% -0.34% -0.02% 0.28% -0.35%
4 0.01% 0.02% -0.40% -0.19% 0.19% 0.06% -0.05% -0.20% -1.99%
5 -0.06% -0.13% 0.19% -0.11% 0.06% 0.26% 0.03% -0.22% -0.73%
6 0.02% 0.01% 0.06% -0.03% -0.18% 0.70% -0.23% -0.25% 0.95%
7 0.00% -0.11% -0.16% -0.19% -0.26% 0.12% -0.00% -0.17% -0.75%
8 -0.03% -0.09% -0.01% -0.12% -0.12% -0.02% -0.05% -0.28% -0.49%
9 -0.03% -0.01% -0.04% 0.01% 0.21% -0.13% -0.26% -0.72% -3.74%
10 -0.00% -0.10% -7.38% -0.14% 0.05% 0.20% -0.08% -0.14% -0.78%

Table 6 reports the accuracy differences in percentage points between the original ACR-GNN model949

with ReLU activation and its dynamically quantized counterpart, using Post-Training quantization950

(PTQ). The results cover three FO properties (p1, p2, p3), three dataset splits (Train, Test1, Test2).951

Positive values indicate better accuracy after quantization, while negative values indicate degradation.952

For p1, quantization generally causes negligible or negative changes in accuracy. For example, at953

layer 2, the differences are minimal (Train: 0.00%, Test1: 0.00%, Test2: -0.04%), showing near-954

identical behavior between the models. However, deeper networks experience more substantial955

performance drops, especially at layer 10 in Test2 (-7.38%), indicating increased instability due956

to depth quantization. These patterns highlight a general sensitivity to depth, particularly when957

generalizing to larger test graphs. In contrast, p2 exhibits greater resilience to quantization, with958

occasional performance gains. A notable improvement appears in layer 1 on Test2 (+8.89%), along959

with smaller gains in layers 5 (+0.26%), 6 (+0.70%) and 10 (+0.20%). However, inconsistencies are960

still present, for example, a Test2 drop at layer 3 (-0.34%) – which implies that while p2 benefits961

more than p1, gains are not uniform across the board. p3, on the other hand, exhibits the most erratic962

behavior and is generally more susceptible to quantization. Although a modest gain appears in963

layer 6 in Test2 (+0.95%), severe degradation is observed in layer 4 (-1.99%) and layer 9 (-3.74%).964

Across layers and divisions, accuracy losses dominate, suggesting that p3 is particularly sensitive to965

quantization, especially in deeper models. In summary, dynamic PTQ results in non-uniform effects966

across properties, dataset splits, and depths. Although p2 shows the most consistent tolerance and967

even improvement in certain cases,p1 and p3 are more susceptible to degradation, especially in the968

Test2 split in deeper configurations. These results emphasize the importance of property-specific and969

depth-aware quantization strategies to maintain performance in FO-property learning with GNN.970

Table 7 presents the accuracy of the ACR-GNN model with truncated ReLU activation on three971

FO properties (p1, p2, and p3), evaluated on the Train, Test1, and Test2 datasets as the number972

26

Table 7: Accuracy of the ACR-GNN with truncated ReLU according to the number of layers.

p1 p2 p3

Layer Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

1 98.7% 98.4% 87.0% 77.2% 78.3% 51.1% 69.9% 69.8% 71.5%
2 100.0% 100.0% 98.3% 69.8% 70.0% 63.7% 75.2% 76.5% 75.3%
3 63.1% 61.7% 57.9% 67.8% 67.6% 62.9% 66.3% 65.7% 70.6%
4 58.4% 58.0% 48.6% 66.4% 66.3% 61.3% 61.2% 59.2% 50.3%
5 55.7% 54.3% 50.4% 63.0% 64.3% 39.6% 64.4% 65.1% 66.5%
6 55.5% 54.6% 50.1% 63.0% 64.3% 39.5% 58.2% 57.3% 34.6%
7 53.8% 54.2% 51.4% 63.4% 64.9% 41.7% 57.1% 56.0% 23.3%
8 52.7% 53.6% 50.8% 63.1% 64.0% 40.0% 61.4% 61.5% 55.3%
9 52.5% 52.5% 51.1% 65.0% 65.0% 49.2% 57.2% 56.0% 24.7%

10 54.7% 54.8% 51.1% 63.0% 64.3% 39.6% 57.2% 55.6% 23.4%

of GNN layers increases from 1 to 10. For p1, the model exhibits strong performance in shallow973

configurations, peaking at layer 2 with 100.0% (Train), 100.0% (Test1), and 98.3% (Test2) accuracy.974

However, performance deteriorates significantly beyond this point: by layer 3, Test2 accuracy drops975

to 57.9%, and continues to decline in deeper layers, stabilizing around 51.1% by layer 10. This trend976

suggests overfitting, as training accuracy remains high while generalization performance on Test2977

degrades with depth. The accuracy profile of p2 is more stable. While initial performance is moderate978

(Test2: 51.1% at layer 1), the model maintains consistent accuracy from layer 3 onward, with minor979

fluctuations. The narrower gap between training and testing accuracy indicates that p2 is less sensitive980

to overfitting and more robust to increasing depth. For p3, the model initially performs well, reaching981

75.3% on Test2 at layer 2. However, deeper architectures result in a steep decline in generalization982

performance: Test2 accuracy falls to 50.3% at layer 4, 34.6% at layer 6, and just 23.3% by layer 7.983

Despite relatively stable scores on Train and Test1, the Test2 drop—evidenced by a gap of over 38984

percentage points at layer 7—reflects significant overfitting. In summary, ACR-GNN model with985

truncated ReLU benefits most from shallow architectures for p1 and p3, whereas p2 exhibits more986

resilient behavior across network depths. These results highlight the need for depth-aware design987

when targeting different FO properties under quantization constraints.988

Table 8: Accuracy of the ACR-GNN with truncated ReLU after dynamic PTQ according to the
number of layers.

p1 p2 p3

Layer Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

1 98.8% 98.8% 86.4% 76.2% 77.8% 59.5% 69.4% 69.3% 74.8%
2 100.0% 100.0% 94.4% 69.6% 69.7% 42.4% 74.8% 76.3% 59.6%
3 61.5% 59.1% 54.9% 67.8% 68.0% 63.6% 66.1% 65.3% 70.7%
4 58.3% 57.7% 47.9% 66.2% 66.7% 43.1% 61.0% 57.5% 46.0%
5 55.4% 54.0% 50.5% 63.0% 64.3% 39.6% 63.9% 57.4% 65.5%
6 55.5% 55.8% 50.0% 63.0% 64.3% 39.8% 57.5% 56.8% 32.5%
7 53.4% 53.1% 50.9% 62.4% 62.5% 44.8% 56.8% 56.2% 24.5%
8 52.5% 53.6% 51.0% 61.4% 63.0% 40.0% 61.4% 62.7% 50.0%
9 52.6% 52.4% 51.2% 65.0% 65.7% 53.7% 57.2% 55.6% 23.7%

10 54.8% 53.9% 51.3% 63.1% 64.3% 39.6% 56.9% 55.1% 23.6%

Table 8 reports the accuracy of the ACR-GNN model after applying dynamic PTQ across three logical989

query patterns (p1, p2, p3) and a range of GNN layers (l from 1 to 10). A general observation is that990

dynamic PTQ causes more pronounced performance degradation as the number of layers increases,991

particularly for p1 and p3. While accuracy remains high for shallow configurations, especially at992

l = 1 and l = 2 (e.g., p1 reaches 98.8% on Test1 at l = 1 and 100.0% on Train and Test1 at l = 2)—a993

sharp decline follows beyond l = 2. For instance, p1 training accuracy drops from 100.0% at l = 2994

27

to 61.5% at l = 3, with continued degradation in deeper layers.In contrast, p2 starts with slightly995

lower accuracy but exhibits relatively stable behavior across layers. Its accuracy remains in the996

60–78% range across all datasets, showing less sensitivity to depth. However, a gradual decline in the997

precision of Test2 is noticeable, ranging from 59.5% at l = 1 to 39.6% at l = 10, suggesting that998

generalization to more complex test graphs is still affected by quantization. The pattern p3 is the999

most affected. Although some recovery is observed at intermediate layers (e.g., 70.7% Test2 accuracy1000

at l = 3), performance deteriorates with increasing depth, reaching only 23.6% on Test2 at l = 10.1001

In summary, dynamic PTQ enables significant model compression for ACR-GNNs, but at the cost1002

of accuracy, particularly in deeper architectures and complex FO-query patterns such as p1 and p3.1003

Shallow configurations (e.g., l ≤ 2) maintain good performance after quantization, indicating that1004

careful depth-aware quantization strategies are essential for preserving generalization.1005

Table 9: Difference in the percentages of the accuracy of ACR-GNN with truncated ReLU before and
after dynamic PTQ.

p1 p2 p3

Layer Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

1 0.1% 0.3% -0.6% -1.0% -0.5% 8.4% -0.5% -0.5% 3.4%
2 0.0% 0.0% -3.9% -0.2% -0.3% -21.3% -0.5% -0.2% -15.7%
3 -1.6% -2.7% -3.0% 0.0% 0.4% 0.7% -0.2% -0.4% 0.1%
4 -0.2% -0.3% -0.8% -0.2% 0.5% -18.2% -0.2% -1.7% -4.3%
5 -0.3% -0.3% 0.2% 0.0% 0.0% 0.0% -0.6% -7.7% -1.0%
6 -0.0% 1.2% -0.1% -0.0% 0.0% 0.3% -0.6% -0.5% -2.2%
7 -0.4% -1.2% -0.5% -1.0% -2.3% 3.1% -0.4% 0.2% 1.2%
8 -0.2% 0.0% 0.2% -1.7% -1.0% -0.0% 0.0% 1.3% -5.3%
9 0.2% -0.1% 0.1% 0.0% 0.7% 4.5% 0.1% -0.5% -1.0%
10 0.1% -0.9% 0.3% 0.0% 0.0% 0.0% -0.3% -0.5% 0.2%

Table 9 presents the percentage changes in accuracy of the ACR-GNN model with truncated ReLU1006

after applying Dynamic Post-Training quantization (PTQ), across three query patterns (p1, p2, p3)1007

and for different numbers of GNN layers (l = 1 to l = 10). The difference is calculated as the1008

quantized accuracy minus the original, scaled to a percentage. In the case of this table, we can see1009

changes layer by layer. Here, where l = 1, we observe small improvements in accuracy. If we1010

examine this more precisely, for p1, the precision improves across all datasets, with the highest gain1011

in Test2 (+11.1%). p2 shows a mixed pattern with small increases in Train / Test1, but a decrease in1012

Test2 (-6.1%). p3 remains stable, showing minimal change (≤ 1.2%). When l = 2, the results show1013

early degradation, as p2 suffers significant drops, especially on Test2 (-33.0%), while p3 sees a drop1014

in Test2 of -17.4%, p1 remains unchanged on Train / Test1 and slightly lower (-5.0%) on Test2. A1015

major drop occurs when l = 3 for p1, with -36.1% on Train and -38.3% on Test1. p2 also shows a1016

negative trend, but Test2 is impacted less than in Layer 2. Interestingly, p3 has a positive change1017

in Test2 (+4.2%), indicating some robustness in this setting. The continuous trend for layers from1018

4 to 9. For l = 10, p1 appears to recover slightly in Test2 (-6.8%, compared to - 15% previously).1019

However, p2 and p3 still show substantial losses (-37.9% and -13.1% respectively), suggesting that1020

deeper architectures struggle consistently after dynamic quantization. In summary, Table 9 highlights1021

the accuracy losses due to dynamic PTQ. This correlates with the literature [15], where the authors1022

noted some loss in accuracy, but the quantized model should provide better results in comparing the1023

size. Although some early layers benefit slightly, deeper layers consistently show reduced accuracy,1024

especially in Test2, the data set with larger, more complex graphs. The pattern confirms that dynamic1025

PTQ, though efficient, can harm generalization, particularly in deeper and more expressive GNN1026

configurations.1027

After presenting the accuracy results before and after applying dynamic Post-Training Quantization1028

(PTQ), we proceed to analyze the influence of the activation function on the performance of the model.1029

This comparison is provided both graphically and in tabular form. For the graphical representation,1030

we utilized box plots, a statistical tool designed to visualize the distribution of a variable in terms of1031

its quartiles. In these plots, the box itself spans from the first quartile (Q1) to the third quartile (Q3),1032

with the median value (Q2) marked by a line within the box. The whiskers of the box plot extend to1033

the minimum and maximum values that do not qualify as outliers, providing insight into the spread1034

28

and concentration of the data. In addition to these visualizations, a detailed table complements the1035

analysis by presenting summary statistics. The table includes the mean, standard deviation, minimum,1036

and maximum values for each configuration. It also presents the three quartiles: Q1, which represents1037

the 25th percentile, Q2, or the median, which is the 50th percentile, and Q3, the 75th percentile.1038

These quartiles divide the data into four equal parts, helping to identify the central tendency and1039

variability. Furthermore, we calculate the interquartile range (IQR), defined as the difference between1040

the third quartile (Q3) and the first quartile (Q1), which serves as a measure of statistical dispersion.1041

Based on the IQR, we also determine the lower and upper bounds using the standard rule, which1042

involves subtracting 1.5 times the IQR from Q1 and adding it to Q3, respectively. These bounds1043

enable the identification of potential outliers and provide a more comprehensive understanding of1044

how the activation function and quantization impact the distribution of model accuracy. All metrics1045

were applied to all datasets: Train, Test1, and Test2. For the visualization part, we used the Python1046

library Plotly.1047

Figure 3: Detailed summary statistics across configurations for p1 formula.

Table 10: Detailed summary statistics across configurations for p1 formula.

Statistic ReLU ReLU + PTQ Truncated ReLU Truncated ReLU + PTQ

Mean 0.758 0.755 0.628 0.623
Std 0.132 0.134 0.178 0.177
Min 0.655 0.581 0.486 0.479
25% (Q1) 0.683 0.682 0.525 0.524
50% (Median) 0.685 0.685 0.547 0.544
75% (Q3) 0.841 0.839 0.609 0.589
Max 1.000 1.000 1.000 1.000
IQR 0.158 0.157 0.084 0.065
Lower Bound 0.446 0.447 0.399 0.427
Upper Bound 1.078 1.073 0.734 0.686

Table 10 and Figure 3 present summary statistics for the accuracy results obtained from four config-1048

urations of the ACR-GNN model: ReLU, ReLU with dynamic Post-Training Quantization (PTQ),1049

Truncated ReLU, and Truncated ReLU with PTQ. The results show that the highest mean accuracy1050

is achieved with the ReLU configuration (0.758), closely followed by ReLU + PTQ (0.755). This1051

indicates that applying dynamic quantization to the ReLU model does not significantly reduce the av-1052

erage accuracy. In contrast, both Truncated ReLU (0.628) and Truncated ReLU + PTQ (0.623) result1053

in noticeably lower mean values, suggesting that this activation function may degrade performance1054

on the p1 query pattern. The median values align with the mean, further confirming this trend. In1055

terms of variability, the standard deviation is lower for the ReLU-based models (0.13), whereas the1056

truncated ReLU configurations show higher variability (0.18). This pattern is also reflected in the1057

interquartile range (IQR): ReLU configurations exhibit wider IQRs (0.158 and 0.157), while truncated1058

versions have narrower ranges (0.084 and 0.065). Despite the narrower spread, the performance is1059

consistently lower with truncated ReLU. All configurations include samples that achieve a maximum1060

29

accuracy of 1.0, indicating that optimal predictions are possible in all cases. However, minimum1061

accuracy drops more sharply in truncated ReLU models (0.486 and 0.479) compared to ReLU (0.6551062

and 0.581), indicating a higher risk of underperformance. The lower and upper bounds provide1063

insight into potential outliers. The lower bounds are lower in the truncated models, while the upper1064

bounds are higher in ReLU configurations (exceeding 1.0 due to statistical calculation), indicating a1065

wider spread and potentially higher ceiling for performance.

Figure 4: Detailed summary statistics across configurations for p2 formula.
1066

Table 11: Detailed summary statistics across configurations for p2 formula.

Statistic ReLU ReLU + PTQ Truncated ReLU Truncated ReLU + PTQ

Mean 0.7992 0.8020 0.6064 0.5967
Std 0.0615 0.0511 0.1085 0.1122
Min 0.5670 0.6560 0.3950 0.3960
25% (Q1) 0.7738 0.7758 0.6170 0.5515
50% (Median) 0.8340 0.8330 0.6385 0.6305
75% (Q3) 0.8370 0.8368 0.6598 0.6608
Max 0.8450 0.8440 0.7830 0.7780
IQR 0.0632 0.0610 0.0428 0.1093
Lower Bound 0.6789 0.6843 0.5529 0.3876
Upper Bound 0.9319 0.9282 0.7239 0.8246

Table 11 and Figure 4 present a comprehensive overview of the accuracy results in four model1067

configurations: ReLU, ReLU with dynamic post-training quantization (PTQ), Truncated ReLU, and1068

Truncated ReLU with PTQ - for the query formula p2. From the mean accuracy values, ReLU and1069

ReLU + PTQ clearly outperform the other configurations, achieving 0.7992 and 0.8020, respectively.1070

This indicates that both setups yield strong overall performance, with dynamic quantization having a1071

slightly positive effect on average accuracy in this case. In contrast, Truncated ReLU (0.6064) and1072

Truncated ReLU + PTQ (0.5967) show substantially lower mean values, highlighting a notable drop1073

in predictive performance when using truncated activation. Looking at the variability, the standard1074

deviation is lower for the ReLU configurations (0.0615 and 0.0511), suggesting a more consistent1075

accuracy. The truncated versions, especially the quantized one (0.1122), are more dispersed, reflecting1076

greater instability. This is further emphasized by the IQR values: 0.0632 and 0.0610 for ReLU and1077

ReLU + PTQ versus 0.0428 for Truncated ReLU and a larger 0.1093 for Truncated ReLU + PTQ.1078

The larger IQR for Truncated ReLU + PTQ implies a larger fluctuation in the middle 50% of the data,1079

despite its lower central values. The median values confirm this trend: both ReLU configurations1080

cluster around 0.833–0.834, while truncated versions fall between 0.6305 and 0.6385. The lower1081

bounds, derived from Q1 – 1.5 × IQR, are also lower in the Truncated ReLU + PTQ case (0.3876),1082

indicating a greater potential for underperformance and a higher risk of poor accuracy. The maximum1083

and minimum values highlight the performance extremes. ReLU configurations reach up to 0.8451084

and 0.844, significantly higher than the 0.783 and 0.778 of truncated variants. The lower minimum1085

accuracy (0.395–0.396) in truncated settings further reinforces concerns about their reliability.1086

30

Figure 5: Detailed summary statistics across configurations for p3 formula.

Table 12: Detailed summary statistics across configurations for p3 formula.

Statistic ReLU ReLU + PTQ Truncated ReLU Truncated ReLU + PTQ

Mean 0.6883 0.6844 0.5821 0.5694
Std 0.1434 0.1466 0.1441 0.1427
Min 0.3410 0.3340 0.2330 0.2360
25% (Q1) 0.6888 0.6835 0.5600 0.5575
50% (Median) 0.7635 0.7615 0.6020 0.5750
75% (Q3) 0.7688 0.7670 0.6645 0.6545
Max 0.7820 0.7830 0.7650 0.7630
IQR 0.0800 0.0835 0.1045 0.0970
Lower Bound 0.5687 0.5582 0.4032 0.4120
Upper Bound 0.8888 0.8922 0.8213 0.8000

Table 12 and Figure 5 provide descriptive statistics for the accuracy of the ACR-GNN model under1087

four configurations—ReLU, ReLU with dynamic Post-Training Quantization (PTQ), Truncated1088

ReLU, and Truncated ReLU with PTQ—for the p3 query formula. Starting with the mean accuracy,1089

ReLU (0.6883) and ReLU + PTQ (0.6844) again outperform the Truncated ReLU configurations,1090

which register noticeably lower means of 0.5821 and 0.5694, respectively. This indicates that models1091

that use ReLU activations are generally more effective for p3. The standard deviation values are1092

relatively similar across all configurations (approximately 0.14), suggesting that while the truncated1093

configurations perform worse on average, they do not fluctuate more widely than the ReLU-based1094

ones. The minimum values further emphasize the performance gap: ReLU models maintain minimum1095

accuracies above 0.33, while truncated variants drop to as low as 0.233. This shows that truncated1096

configurations are more prone to poor performance in the worst-case scenarios. In terms of quartiles,1097

ReLU and ReLU + PTQ have Q1 and Q3 clustered around 0.68–0.77, indicating that the middle 50%1098

of their results are concentrated within a tight and relatively high accuracy range. Truncated ReLU1099

variants have their Q1 around 0.56 and Q3 near 0.65, which not only shows lower performance but1100

also a wider IQR (0.1045 for Truncated ReLU and 0.0970 for Truncated ReLU + PTQ). This reflects1101

more variability across the central portion of the data in the truncated setups. The median accuracy is1102

again higher in ReLU configurations (around 0.76), compared to 0.60 and 0.575 for truncated ones,1103

reinforcing the conclusion that ReLU configurations are more reliable. Examining the bounds, the1104

ReLU models show a lower bound above 0.55 and upper bounds above 0.88, suggesting strong and1105

consistent performance. Truncated models exhibit lower bounds near 0.40 and upper bounds around1106

0.80, indicating both a lower floor and a lower ceiling in performance.1107

Across all query patterns (p1, p2, and p3), ReLU and ReLU + PTQ consistently demonstrate higher1108

average accuracy and more stable performance, making them the most reliable configurations. In1109

contrast, Truncated ReLU and its quantized variant result in lower accuracy and greater variability,1110

especially in worst-case scenarios. Dynamic PTQ tends to maintain or slightly enhance performance1111

in ReLU models, but its effect on truncated activations is less favorable, often introducing further1112

31

inconsistency. Overall, ReLU-based configurations—quantized or not—are better suited for the1113

ACR-GNN model across the evaluated formulas.1114

Other parameters of interest to us are the time and size of the models. In the event of changes in1115

size, it is easy to compare the data using the bar plots presented in Figure 6. The size changes in1116

percentages we calculated according to the formula:1117

Difference in percentages =
ValuedPTQ − Valueoriginal

Valueoriginal
∗ 100%

In other words, this formula shows how much the dynamic PTQ value deviates from the original1118

value as a percentage of the original value.1119

In this section, we compare parameters for different activation functions. We observe that the results1120

of size changes in the following models remain unchanged when we modify the training dataset. We1121

present the results not only graphically but also in a tabular format. In the plots, it is possible to see1122

the trends and, in the tabular format, the numerical changes.1123

Table 13: Detailed information about the size of the model. The size values are in megabytes and
refer to the file sizes of the GNNs.

Layer Original Size (MB) Quantized Size (MB) Difference (MB) Reduction (%)

1 0.057 0.023 0.034 59.604%
2 0.112 0.044 0.068 60.993%
3 0.167 0.064 0.103 61.559%
4 0.221 0.085 0.137 61.804%
5 0.276 0.105 0.171 61.975%
6 0.331 0.126 0.206 62.068%
7 0.386 0.146 0.240 62.148%
8 0.441 0.167 0.274 62.194%
9 0.496 0.187 0.309 62.230%

10 0.551 0.208 0.343 62.251%

Table 13 provides a detailed comparison of the model sizes before and after applying dynamic1124

post-training quantization (PTQ). As the number of layers increases, both the original and quantized1125

model sizes grow; however, the percentage reduction remains remarkably consistent, ranging from1126

approximately 60.993% at 2 layers to 62.251% at 10 layers. This stable percentage reduction,1127

approximately 60–62%—indicates that PTQ effectively compresses the model regardless of its depth,1128

significantly reducing the memory footprint without altering the underlying architecture of the GNN.1129

Such a reduction is particularly crucial for deployments in resource-constrained environments.1130

Furthermore, after presenting the tabular data, our graphs (Figure 6) reveal a clear trend: While the1131

absolute sizes of the original and quantized models increase with the number of layers, the relative1132

reduction achieved through dynamic PTQ remains consistent. The size of the original model increases1133

approximately linearly from 0.057 MB for l = 1 to 0.551 MB at l = 10, while the quantized model1134

grows from 0.023 MB to 0.208 MB, preserving the growth structure, but on a reduced scale. The1135

absolute size difference increases from 0.034 MB in l = 1 to 0.343 MB in l = 10, demonstrating that1136

quantization becomes more beneficial for deeper models. Overall, the consistent percentage reduction1137

across all tested configurations confirms that PTQ scales effectively, delivering stable compression1138

rates and making it an attractive option for deeper GNN deployments in real-world edge or mobile1139

environments.1140

Moreover, we observed that the query property had no noticeable impact on the model size. This can1141

be clearly seen in the bar plots in Figure 6a, Figure 6c, and Figure 6e.1142

We also measured the change over time. Specifically, we considered three distinct time metrics:1143

Elapsed time (the time taken during training), Time Original (the time required for inference1144

on the test datasets using the original trained model), and Time quantized (the inference time on1145

the test datasets using the quantized model). These results are presented in Figure 7.1146

The data in Figure 7 reflect the impact of dynamic PTQ on the ACR-GNN model in three query1147

patterns (p1, p2, and p3) and for GNN depths ranging from 1 to 10 layers. Across all patterns,1148

32

(a) Size changes in MB for the first formula
(b) Size changes in MB for the first formula. Dif-
ference present in percentage.

(c) Size changes in MB for the second formula
(d) Size changes in MB for the second formula.
Difference present in percentage.

(e) Size changes in MB for the third formula
(f) Size changes in MB for the third formula Dif-
ference present in percentage.

Figure 6: Impact of dynamic Post-Training quantization on model size (MB). Changes of size in
percentages

quantized models consistently require more inference time than their original counterparts. This1149

increased time is expected as a result of the real-time quantization of weights and activations during1150

inference. Additionally, both the original and quantized models exhibit a consistent, near-linear1151

increase in inference time with model depth, suggesting that computational complexity grows linearly1152

as layers are added.1153

Despite this overhead, which ranges between 0.1 and 0.9 s depending on the number of layers, the1154

significant reduction in model size (as demonstrated in Table 13 and the corresponding graphs) makes1155

quantized models especially attractive for resource-constrained environments where minimizing the1156

memory footprint is more critical than achieving the lowest possible latency.1157

To test the technique not only on synthetic data, we chose the Protein-Protein Interactions (PPI)1158

benchmark. The PPI dataset consists of graph-level mini-batches, with separate splits for Training,1159

Validation, and Testing.1160

In Table 14, we present a summary of the PPI dataset, which consists of 20 training graphs, 21161

validation graphs, and 2 test graphs. Each graph contains nodes with 50-dimensional features and1162

supports multi-label classification with 121 possible labels. On average, each node is associated with1163

33

(a) Time changes in seconds for the first formula (b) Time changes in seconds for the second formula

(c) Time changes in seconds for the third formula

Figure 7: Impact of dynamic Post-Training quantization on Latency (sec)

Table 14: Dataset summary.

Dataset Num Graphs Node Feature Dim Label Dim Avg Active Labels/Node Avg Degree

Train 20 50 121 37.20 54.62
Validation 2 50 121 35.64 61.07
Test 2 50 121 36.22 58.64

approximately 36 labels, indicating a densely labelled dataset. The average node degree is also high,1164

ranging from 54.6 in the training set to 61.1 in the validation set, reflecting the dense connectivity of1165

the protein-protein interaction graphs. The dataset presents a complex multi-label classification task1166

with consistently rich structure across all splits.1167

Table 15: Dataset statistics summary.

Node Edge

Dataset Min Max Avg Min Max Avg

Train 591 3480 2245.30 7708 106754 61318.40
Validation 3230 3284 3257.00 97446 101474 99460.00
Test 2300 3224 2762.00 61328 100648 80988.00

The statistics of the dataset presented in Table 15 contain large graphs with varying sizes between1168

the train, the validation, and the test splits. Training graphs range from 591 to 3,480 nodes, with an1169

average of 2,245 nodes per graph, and between 7,708 and 106,754 edges (average 61,318 edges).1170

Validation graphs are more consistent in size, with 3,230 to 3,284 nodes and 97,446 to 101,474 edges,1171

averaging 3,257 nodes and 99,460 edges. The test graphs have 2,300 to 3,224 nodes, averaging1172

2,762 nodes, and 61,328 to 100,648 edges, averaging 80,988. These statistics confirm that the dataset1173

34

contains large and densely connected graphs and demonstrate a distributional shift in graph size and1174

edge count between training and test data. This information is helpful in evaluating the model’s1175

ability to generalize to unseen and variable graph structures.1176

One key difference between the synthetic data and the PPI dataset is that the latter involves a1177

multi-label classification task, rather than a binary classification task, because the PPI dataset is1178

a common benchmark where each node (representing proteins) can have multiple labels, such as1179

protein functions or interactions. Also, it is important to mention the key differences between the1180

synthetic data and the real one. Here, the authors used the code function EarlyStopping: Utility1181

for stopping training early if no further improvement is observed. The second difference is that the1182

code is structured to run multiple experiments to collect statistics (mean and standard deviation) of1183

the model performance, ensuring that the results are robust across different random initializations. In1184

this case, we performed the experiments 10 times for each model, with a combination layer equal to 11185

and a number of layers ranging from 1 to 10. The number of hidden dimensions is equal to 256.1186

For these experiments, we used two activation functions to compare the results with synthetic data.1187

The presentation of the results follows the same approach as for synthetic data. Moreover, in the case1188

of real data [4] used the F1 Score as an evaluation metric. This metric is commonly used to evaluate1189

classification tasks.1190

According to the Scikit-learn library [25], the F1 score is defined in the following way. The F1 score1191

can be interpreted as a harmonic mean of precision and recall, where an F1 score reaches its best1192

value at 1 and its worst score at 0. The relative contribution of precision and recall to the F1 score is1193

equal. The formula for the F1 score is as follows:1194

F1 =
2TP

2TP + FP + FN
where, TP – is the number of true positives, FN – is the number of false negatives, FP – is the number1195

of false positives. F1 is calculated by default as 0.0 when there are no true positives, false negatives,1196

or false positives.1197

The reference code’s results [5] are structured as follows: a table showing the loss and accuracy for1198

each dataset (train, validation, and test). Here, we present only the accuracy of the model according1199

to the number of layers, as we do for the synthetic data. For better representation, we formed the1200

model’s output in a tabular representation.1201

Table 16: Accuracy for the original and quantized (dynamic PTQ) models. PPI Benchmark.

(a) Accuracy of the ACR-GNN with ReLU accord-
ing to the number of layers.

Layer Train Validation Test

1 54.7% 43.1% 39.5%
2 52.5% 44.6% 45.7%
3 52.3% 42.6% 44.0%
4 52.3% 39.2% 40.6%
5 49.6% 39.7% 39.1%
6 49.3% 43.5% 43.3%
7 51.7% 39.9% 38.5%
8 50.8% 36.3% 35.8%
9 48.0% 43.8% 33.2%

10 47.1% 36.9% 36.8%

(b) Accuracy of the ACR-GNN with ReLU after
dynamic PTQ according to the number of layers.

Layer Train Validation Test

1 55.0% 50.8% 50.2%
2 52.3% 47.8% 47.2%
3 51.9% 45.7% 42.8%
4 51.9% 37.4% 34.1%
5 48.9% 39.1% 40.8%
6 48.9% 42.9% 43.8%
7 51.4% 43.0% 40.6%
8 50.5% 35.9% 36.8%
9 47.7% 40.8% 40.9%

10 46.5% 36.2% 38.7%

Table 16 reports the precision of the ACR-GNN model with ReLU activation in varying numbers1202

of layers, both in its original form and after applying dynamic post-training quantization (dPTQ).1203

The results are presented for the training, validation, and test sets of the PPI benchmark. For both1204

versions of the model, the performance does not increase consistently with the number of layers.1205

Instead, accuracy typically peaks within the first few layers and tends to degrade or fluctuate as the1206

network’s depth increases. In particular, the highest accuracies for the training, validation, and test1207

35

sets are achieved with 1 or 2 layers, indicating that shallower architectures are better suited for this1208

task. Specifically, the original model achieves its best test accuracy (45.7%) at 2 layers, while the1209

quantized model achieves an even higher test accuracy (50.2%) at just 1 layer. Dynamic quantization1210

slightly improves generalization performance in the early layers. At layer 1, the quantized model1211

surpasses the original in both validation (50.8% vs. 43.1%) and test accuracy (50.2% vs. 39.5%),1212

suggesting that quantization can have a regularizing effect in low-depth configurations. However, as1213

the number of layers increases beyond 4, the performance of both models tends to decline, likely due1214

to over-smoothing or optimization difficulties common in deep GNNs.1215

Table 17: Difference in accuracy of ACR-GNN with ReLU before and after dynamic PTQ. PPI
Benchmark.

Layer Train Validation Test

1 0.3% 7.7% 10.7%
2 -0.2% 3.2% 1.5%
3 -0.4% 3.1% -1.2%
4 -0.4% -1.8% -6.5%
5 -0.7% -0.6% 1.7%
6 -0.4% -0.6% 0.5%
7 -0.3% 3.1% 2.1%
8 -0.3% -0.4% 1.0%
9 -0.3% -3.0% 7.7%

10 -0.6% -0.7% 1.9%

Table 17 reports the absolute difference in precision between the quantized and original ACR-GNN1216

model with ReLU on the PPI benchmark, between training, validation and test sets for varying1217

numbers of layers. Positive values indicate better performance after quantization, while negative1218

values reflect performance degradation. At layer 1, the quantized model shows the largest gains, with1219

improvements of 7.7% on validation and 10.7% on the test set, suggesting a clear generalization1220

advantage in shallow architectures. Smaller, but consistent improvements are also observed at layers1221

2 and 7, particularly in the validation and test sets. In contrast, certain layers exhibit minor drops1222

in accuracy. For example, layer 4 shows the largest decrease in the test set (6.5%). Overall, the1223

results indicate that dynamic quantization can lead to modest accuracy improvements, particularly in1224

shallow to mid-depth GNNs, with negligible or slightly negative effects in deeper configurations. This1225

highlights the potential of quantization for lightweight deployment with minimal accuracy trade-offs.1226

Table 18: Detailed information about the model size before and after quantization. PPI Benchmark.
Sizes are in megabytes.

Layer Original Model (MB) Quantized Model (MB) Difference (MB) Reduction (%)

1 0.922 0.242 0.680 -73.749%
2 1.718 0.451 1.267 -73.765%
3 2.515 0.660 1.855 -73.772%
4 3.311 0.868 2.443 -73.776%
5 4.108 1.077 3.031 -73.778%
6 4.904 1.286 3.618 -73.779%
7 5.701 1.495 4.206 -73.780%
8 6.497 1.704 4.794 -73.780%
9 7.294 1.912 5.382 -73.781%

10 8.090 2.121 5.969 -73.781%

Table 18 presents the memory footprint of the ACR-GNN model at different layer depths, comparing1227

the original model (complete precision) with its dynamically quantized counterpart. The table1228

also includes both absolute and percentage differences in size, highlighting the compression effect1229

introduced by dynamic post-training quantization. Across all layers, the quantized model consistently1230

exhibits a size reduction of approximately 73.78% compared to the original model. For example, at 101231

36

layers, the model size decreases from 8.09MB to 2.12MB, yielding an absolute reduction of 5.97MB.1232

This trend is consistent and proportional across all depths, indicating that the memory savings scale1233

linearly with the model’s complexity (i.e., the number of layers). These results demonstrate the1234

effectiveness of dynamic quantization in significantly reducing model size without the need for1235

retraining.1236

Table 19: Elapsed times (in seconds) for the original and quantized (dynamic PTQ) models. PPI
Benchmark.

(a) Elapsed times for the original model.

Layer Train Validation Test

1 0.913 0.115 0.113
2 1.400 0.158 0.182
3 1.447 0.188 0.172
4 1.982 0.257 0.224
5 2.225 0.295 0.247
6 2.846 0.318 0.236
7 3.420 0.442 0.328
8 3.120 0.437 0.343
9 3.626 0.433 0.390

10 4.011 0.410 0.376

(b) Elapsed times for the quantized model.

Layer Train Validation Test

1 0.921 0.134 0.112
2 1.469 0.178 0.129
3 1.410 0.211 0.173
4 1.694 0.252 0.181
5 2.538 0.322 0.304
6 2.878 0.307 0.313
7 3.538 0.328 0.299
8 3.236 0.360 0.342
9 3.936 0.605 0.481
10 3.783 0.464 0.375

Table 21 reports the inference times of the original and dynamically post-training quantized ACR-1237

GNN models across training, validation, and test datasets, measured at various layer depths. The1238

results reveal that quantization does not significantly reduce inference time in most configurations1239

and, in some cases, results in slightly higher latency. For the training set, the execution time of the1240

quantized model closely follows that of the original, with negligible differences across all layers. In1241

the validation and test sets, while some improvements are observed at shallow depths (e.g., the layer1242

2 test time reduces from 0.182 to 0.129 s), the overall pattern indicates no consistent speedup from1243

quantization. In fact, certain configurations, such as layers 9 and 10 in the validation set, exhibit1244

increased latency in the quantized version compared to the original.1245

Table 20: Difference in elapsed time (in seconds) and corresponding percentage difference of ACR-
GNN with ReLU before and after dynamic PTQ on the PPI Benchmark.

Layer Train Validation Test

Diff (s) % Diff Diff (s) % Diff Diff (s) % Diff

1 -0.008 0.915% -0.019 16.307% 0.001 -1.085%
2 -0.069 4.931% -0.020 12.308% 0.053 -29.114%
3 0.037 -2.525% -0.023 12.238% -0.001 0.309%
4 0.288 -14.531% 0.005 -1.990% 0.043 -19.096%
5 -0.313 14.091% -0.027 9.291% -0.057 23.218%
6 -0.032 1.131% 0.011 -3.463% -0.077 32.455%
7 -0.118 3.465% 0.114 -25.741% 0.029 -8.918%
8 -0.116 3.709% 0.077 -17.556% 0.001 -0.276%
9 -0.310 8.555% -0.172 39.611% -0.091 23.218%

10 0.228 -5.678% -0.054 13.105% 0.001 -0.192%

Table 20 presents the difference in inference time between the original and dynamically quantized1246

(dPTQ) ACR-GNN models, reported in absolute (seconds) and relative (%) terms, across various1247

layer depths. The results show that quantization has an inconsistent effect on inference time, with1248

no clear trend of improvement. In some configurations, dynamic quantization slightly reduces1249

inference time; for example, layer 2 shows a 0.053s reduction on the test set, corresponding to a1250

37

29.11% improvement. Similarly, layer 5 achieves an improvement in test time of 23.22%, and layer1251

6 shows the largest test time speedup of 32.46%. However, in other cases, such as layer 4 in the1252

training set (+0.288s, -14.53%) and layer 10 (+0.228s, -5.68%), quantization increases execution1253

time. The relative differences on the validation set also vary widely, with notable slowdowns at1254

layers 7 (–25.74%) and 9 (–39.61%). These inconsistencies highlight that run-time performance does1255

not always benefit from dynamic quantization, and the effectiveness likely depends on the specific1256

computation pattern and how well the underlying hardware supports quantized operations.1257

Table 21: Elapsed time (in seconds) for ACR-GNN with and without dynamic post-training quantiza-
tion (dPTQ). PPI Benchmark

Layer Train Validation Test

Original dPTQ Original dPTQ Original dPTQ

1 0.780 0.858 0.102 0.112 0.077 0.094
2 0.986 0.966 0.130 0.131 0.109 0.107
3 1.138 1.161 0.157 0.159 0.149 0.140
4 1.371 1.366 0.159 0.204 0.156 0.160
5 1.645 1.682 0.201 0.211 0.173 0.199
6 1.833 1.766 0.242 0.256 0.188 0.205
7 2.166 2.156 0.282 0.261 0.239 0.242
8 2.355 2.534 0.317 0.300 0.241 0.283
9 2.539 2.652 0.337 0.349 0.302 0.292
10 2.842 3.122 0.386 0.461 0.326 0.348

Table 21 reports the elapsed time (in seconds) required to perform inference on the training, validation,1258

and test sets using the ACR-GNN model with ReLU activation, both in its original form and after1259

applying dynamic post-training quantization (dPTQ). The measurements reflect the running time of1260

the trained models only; the time required for model training is not included in these results. The1261

values indicate that inference time generally increases with the number of layers, as expected, and1262

the impact of quantization on runtime varies across depths. In some cases, dPTQ slightly reduces1263

inference time (e.g., Layer 6, Train), while in others it introduces moderate overhead, particularly for1264

deeper models.1265

The experiments were run on a Samsung Galaxy Book4 laptop with an Intel Core i7-150U processor,1266

16 GB RAM, and 1 TB SSD storage. Additional experiments were conducted using Kaggle’s cloud1267

platform with an NVIDIA Tesla P100 GPU (16 GB RAM).1268

H Description logics with global and local cardinality constraints1269

The Description Logic ALCSCC++ [2] extends the basic Description Logic ALC [3] with concepts1270

that capture cardinality and set constraints expressed in the quantifier-free fragment of Boolean1271

Algebra with Presburger Arithmetic (QFBAPA) [20].1272

We assume that we have a set of set variables and a set of integer constants.1273

A QFBAPA formula is a Boolean combination (∧, ∨, ¬) of set constraints and cardinality constraints.1274

A set term is a Boolean combination (∪, ∩, ·) of set variables, and set constants U , and ∅. If S is a1275

set term, then its cardinality |S| is an arithmetic expressions. Integer constants are also arithmetic1276

expressions. If T1 and T2 are arithmetic expressions, so is T1 + T2. If T is an arithmetic expression1277

and c is an integer constant, then c · T is an arithmetic expression.1278

Given two set terms B1 and B2, the expressions B1 ⊆ B2 and B1 = B2 are set constraints.1279

Given two arithmetic expressions T1 and T2, the expressions T1 < T2 and T1 = T2 are cardinality1280

constraints. Given an integer constant c and an arithmetic expression T , the expression c dvd T is a1281

cardinality constraint.1282

A substitution σ assigns ∅ to the set constant ∅, a finite set σ(U) to the set constant U , and a subset1283

of σ(U) to every set variable. A substitution is first extended to set terms by applying the standard1284

38

set-theoretic semantics of the Boolean operations. It is further extended to map arithmetic expressions1285

to integers, in such that way that every integer constant c is mapped to c, for every set term B, the1286

arithmetic expression |B| is mapped to the cardinality of the set σ(B), and the standard semantics for1287

addition and multiplication is applied.1288

The substitution σ (QFBAPA) satisfies the set constraint B1 ⊆ B2 if σ(B1) ⊆ σ(B2), the set1289

constraint B1 = B2 if σ(B1) = σ(B2), the cardinality constraint T1 < T2 if σ(T1) < σ(T2), the1290

cardinality constraint T1 = T2 if σ(T1) = σ(T2), and the cardinality constraint c dvd T if c divides1291

σ(T).1292

We can now define the syntax of ALCSCC++ concept descriptions and their semantics. Let NC be1293

a set of concept names, and NR be a set of role names, such that NC ∩ NR = ∅. Every A ∈ NC1294

is a concept description of ALCSCC++. Moreover, if C, C1, C2, . . . are concept descriptions of1295

ALCSCC++, then so are: C1⊓C2, C1⊔C2, ¬C, and sat(χ), where χ is a set or cardinality QFBAPA1296

constraint, with elements of NR and concept descriptions C1, C2, . . . used in place of set variables.1297

A finite interpretation is a pair I = (∆I , ·I), where ∆I is a finite non-empty set of individuals, and1298

·I is a function such that: every A ∈ NC is mapped to AI ⊆ ∆I , and every R ∈ NR is mapped to1299

RI ⊆ ∆I ×∆I . Given an element of d ∈ ∆I , we define RI(d) = {d′ | (d, d′) ∈ RI}.1300

The semantics of the language of ALCSCC++ makes use QFBAPA substitutions to interpret QFBAPA1301

constraints in terms of ALCSCC++ finite interpretations. Given an element d ∈ ∆I , we can define1302

the substitution σId in such a way that: σId(U) = ∆I , σId(∅) = ∅, and A ∈ NC and R ∈ NR are1303

considered QFBAPA set variables and substituted as σId(A) = AI , and σId(R) = RI(d).1304

The finite interpretation I and the QFBAPA substitutions σId are mutually extended to complex ex-1305

pressions such that: σId(C1 ⊓ C2) = (C1 ⊓ C2)
I = CI1 ∩ CI2 ; σId(C1 ⊔ C2) = (C1 ⊔ C2)

I =1306

CI1 ∪ CI2 ; σId(¬C) = (¬C)I = ∆I \ CI ; and σId(sat(χ)) = (sat(χ))I = {d′ ∈ ∆I |1307

σId′ (QFBAPA) satisfies χ}.1308

Definition 24. The ALCSCC++ concept description C is satisfiable if there is a finite interpretation1309

I such that CI ̸= ∅.1310

Theorem 25 ([2]). The problem of deciding whether an ALCSCC++ concept description is satisfiable1311

is NEXPTIME-complete.1312

I ALCQ and TCBoxes consistency1313

ALCQ is the Description Logic adding qualified number restrictions to the standard Description1314

Logic ALC, analogously to how Graded Modal Logic extends standard Modal Logic with graded1315

modalities.1316

Let NC and NR be two non-intersecting sets of concept names, and role names respecively. A1317

concept name A ∈ NC is an ALCQ concept expressions of ALCQ. If C is an ALCQ concept1318

expression, so is ¬C. If C1 and C2 are ALCQ concept expressions, then so is C1 ⊓ C2. If C is an1319

ALCQ concept expression, R ∈ NR, and n ∈ ℕ, then ≥ n R.C is an ALCQ concept expression.1320

A cardinality restriction of ALCQ is is an expression of the form (≥ n C) or (≤ n C), where C an1321

ALCQ concept expression and n ∈ ℕ.1322

An ALCQ-TCBox is a finite set of cardinality restrictions.1323

An interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set of individuals, and ·I is1324

a function such that: every A ∈ NC is mapped to AI ⊆ ∆I , and every R ∈ NR is mapped1325

to RI ⊆ ∆I × ∆I . Given an element of d ∈ ∆I , we define RI(d) = {d′ | (d, d′) ∈ RI}.1326

An interpretation I is extended to complex concept descriptions as follows: (¬C)I = ∆I \ CI ;1327

(C1 ⊓ C2)
I = CI1 ∩ CI2 ; and (≥ n R.C)I = {d | |RI(d) ∩ CI | ≥ n}.1328

An interpretation I satisfies the cardinality restriction (≥ n C) iff |CI | ≥ n and it satisfies1329

the cardinality restriction (≤ n C) iff |CI | ≤ n. A TCBox TC is consistent if there exists an1330

interpretation that satisfies all the cardinality restrictions in TC.1331

Theorem 26 ([36]). Deciding the consistency of ALCQ-TCBoxes is NEXPTIME-hard.1332

The proof can be slightly adapted to show that the result holds even when there is only one role.1333

39

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(2n − 1, 2n − 1)(0, 2n − 1)

(2n − 1, 0)

N

E

N

E

N N

E

E

Figure 8: Encoding a torus of exponential size with an ALCQ-TCBox with one role.

Some abbreviations are useful. For every pair of concepts C and D, C → D stands for ¬C ⊔D. For1334

every concept C, role R, and non-negative integer n, we define: (≤ n R.C) := ¬(≥ (n+ 1) R.C),1335

(∀ R.C) := (≤ 0 R.¬C), (∀ C) := (≤ 0 ¬C), (= n R.C) := (≥ n R.C) ⊓ (≤ n R.C), and1336

(= n C) := (≥ n C) ⊓ (≤ n C).1337

Theorem 27. Deciding the consistency of ALCQ-TCBoxes is NEXPTIME-hard even if |NR| = 1.1338

Proof. Let next be the unique role in NR. We use the atomic concepts N to denote an individual1339

‘on the way north’ and E to denote an individual ‘on the way east’. See Figure 8.1340

For every n ∈ ℕ, we define the following ALCQ-TCBox.1341

Tn = { (∀ ¬(N ⊔ E) → (= 1 next.N)) , (∀ ¬(N ⊔ E) → (= 1 next.E))
(∀ N → (= 1 next.⊤)) , (∀ E → (= 1 next.⊤))
(= 1 C(0,0)) , (= 1 C(2n−1,2n−1))
(∀ ¬(N ⊔ E) → Deast) , (∀ ¬(N ⊔ E) → Dnorth)
(≤ (2n × 2n) ¬(N ⊔ E)), (≤ (2n × 2n) N), (≤ (2n × 2n) E) }

such that the concepts C(0,0), C(2n−1,2n−1) are defined like in [36, Figure 3], and so are the concepts1342

Dnorth and Deast, except that for every concept C, ∀east.C now stands for ∀next.(E → ∀next.C)1343

and ∀north.C now stands for ∀next.(N → ∀next.C).1344

The problem of deciding whether a domino system D = (D,V,H), given an initial condition1345

w0 . . . wn−1, can tile a torus of exponential size can be reduced to the problem of consistency of1346

ALCQ-TCBoxes, checking the consistency of T (n,D, w) = Tn ∪ TD ∪ Tw, where Tn is as above,1347

TD encodes the domino system, and Tw encodes the initial condition as follows.1348

TD = { (∀ ¬(N ⊔ E) → (
⊔
d∈D Cd)),

(∀ ¬(N ⊔ E) → (
d
d∈D

d
d′∈D\{d} ¬(Cd ⊓ Cd′))),

(∀
d
d∈D(Cd → (∀east.

⊔
(d,d′)∈H Cd′))),

(∀
d
d∈D(Cd → (∀north.

⊔
(d,d′)∈V Cd′))) }

Tw = { (∀ C(0,0) → Cw0), . . . , (∀ C(n−1,0) → Cwn−1) }
The rest of the proof remains unchanged.1349

40

NeurIPS Paper Checklist1350

1. Claims1351

Question: Do the main claims made in the abstract and introduction accurately reflect the1352

paper’s contributions and scope?1353

Answer: [Yes]1354

Justification: We introduce a logical language for reasoning about quantized graph neural1355

networks (GNNs) with Global Readout in Section 3. We then prove that verifying quantized1356

GNNs with Global Readout is NEXPTIME-complete in Section 4 and Section 5. We also1357

experimentally show the relevance of quantization in the context of ACR-GNNs in Section 7.1358

2. Limitations1359

Question: Does the paper discuss the limitations of the work performed by the authors?1360

Answer: [Yes]1361

Limitations are addressed in Section 8.1362

3. Theory assumptions and proofs1363

Question: For each theoretical result, does the paper provide the full set of assumptions and1364

a complete (and correct) proof?1365

Answer: [Yes]1366

Justification: All the theorems, formulas, and proofs in the paper are numbered and cross-1367

referenced. The assumptions are stated and the full proofs are present in the appendix, with1368

sketches of proofs in the main text.1369

4. Experimental result reproducibility1370

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1371

perimental results of the paper to the extent that it affects the main claims and/or conclusions1372

of the paper (regardless of whether the code and data are provided or not)?1373

Answer: [Yes]1374

Justification: The authors provide the replication package with code and description of the1375

files.1376

5. Open access to data and code1377

Question: Does the paper provide open access to the data and code, with sufficient instruc-1378

tions to faithfully reproduce the main experimental results, as described in supplemental1379

material?1380

Answer: [Yes]1381

Justification: We provided clear instructions on how to access the data and reproduce the ex-1382

perimental results in the supplemental materials, including required scripts and environment1383

setup.1384

6. Experimental setting/details1385

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1386

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1387

results?1388

Answer: [Yes]1389

Justification: The experimental setting is described in sufficient detail in the main body of the1390

paper, including datasets, tools, parameters, and evaluation metrics, to support understanding1391

and reproducibility of the results.1392

7. Experiment statistical significance1393

Question: Does the paper report error bars suitably and correctly defined or other appropriate1394

information about the statistical significance of the experiments?1395

Answer: [Yes]1396

Justification: The authors provided a code in the supplementary materials that generates the1397

detailed summary statistics across configurations for FOC2. The method for computing1398

these plots is included in the code.1399

41

8. Experiments compute resources1400

Question: For each experiment, does the paper provide sufficient information on the com-1401

puter resources (type of compute workers, memory, time of execution) needed to reproduce1402

the experiments?1403

Answer: [Yes]1404

Justification: The experiments were run on a Samsung Galaxy Book4 laptop with an Intel1405

Core i7-150U processor, 16 GB RAM, and 1 TB SSD storage. Additional experiments1406

were conducted using Kaggle’s cloud platform with an NVIDIA Tesla P100 GPU (16 GB1407

RAM). The runtime for the synthetic dataset experiments is reported in Table 21, and full1408

instructions for reproducing the results are provided in the supplementary materials.1409

9. Code of ethics1410

Question: Does the research conducted in the paper conform, in every respect, with the1411

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1412

Answer: [Yes]1413

Justification: The research conducted in the paper conforms, in every respect, with the1414

NeurIPS Code of Ethics.1415

10. Broader impacts1416

Question: Does the paper discuss both potential positive societal impacts and negative1417

societal impacts of the work performed?1418

Answer: [Yes]1419

Justification: Broader impacts are addressed in the introduction, explaining that the black-box1420

nature of NN is a major issue for their adoption, morally and legally, with the enforcement1421

of regulatory policies like the EU AI Act. NN that can be formally verified solve this. We1422

do not think that this work may have negative societal impacts.1423

11. Safeguards1424

Question: Does the paper describe safeguards that have been put in place for responsible1425

release of data or models that have a high risk for misuse (e.g., pretrained language models,1426

image generators, or scraped datasets)?1427

Answer: [NA]1428

Justification: The paper poses no such risks.1429

12. Licenses for existing assets1430

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1431

the paper, properly credited and are the license and terms of use explicitly mentioned and1432

properly respected?1433

Answer: [Yes]1434

Justification: For the reference ACR-GNN, we used the original paper [4] and the official1435

implementation available at [5]. The code is distributed under the MIT License, and we1436

have properly credited the authors and complied with the license terms.1437

13. New assets1438

Question: Are new assets introduced in the paper well documented and is the documentation1439

provided alongside the assets?1440

Answer: [Yes]1441

Justification: We are releasing new code introduced in this work under the MIT License. The1442

repository includes a README with setup instructions, usage examples, and description of1443

each module, enabling other researchers to reproduce our results.1444

14. Crowdsourcing and research with human subjects1445

Question: For crowdsourcing experiments and research with human subjects, does the paper1446

include the full text of instructions given to participants and screenshots, if applicable, as1447

well as details about compensation (if any)?1448

Answer: [NA]1449

42

https://neurips.cc/public/EthicsGuidelines

Justification: The paper does not involve crowdsourcing nor research with human subjects.1450

15. Institutional review board (IRB) approvals or equivalent for research with human1451

subjects1452

Question: Does the paper describe potential risks incurred by study participants, whether1453

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1454

approvals (or an equivalent approval/review based on the requirements of your country or1455

institution) were obtained?1456

Answer: [NA]1457

Justification: The paper does not involve crowdsourcing nor research with human subjects1458

16. Declaration of LLM usage1459

Question: Does the paper describe the usage of LLMs if it is an important, original, or1460

non-standard component of the core methods in this research? Note that if the LLM is used1461

only for writing, editing, or formatting purposes and does not impact the core methodology,1462

scientific rigorousness, or originality of the research, declaration is not required.1463

Answer: [NA]1464

Justification: The core method development in this research does not involve LLMs as any1465

important, original, or non-standard components.1466

43

	Introduction
	Background
	Logic qL for Representing GNN Computations and Properties on Graphs
	NEXPTIME Membership of the Satisfiability Problem
	Hintikka Sets
	Quantized Version of QFBABA (Quantifier-free Boolean Algebra and Presburger Arithmetics)
	Reduction to QFBAPAK

	Complexity Lower Bound
	Bounding the Number of Vertices
	Quantization Effects on Accuracy, Performance and Model Size
	Conclusion and Future Work
	Proofs of statements in the main text
	Checking distributivity
	Extension of logic K and ACR-GNNs over Z
	Logic
	Aggregate-Combine Graph Neural Networks

	Capturing GNNs with K, g6pt
	Complexity of the satisfiability of K, g6pt and its implications for ACR-GNN verification
	Formal proofs
	Experimental data and further analyses
	Description logics with global and local cardinality constraints
	ALCQ and TCBoxes consistency

