AW N =

On the Complexity of Verifying Quantized GNNs with
Readout

Anonymous Author(s)
Affiliation
Address

email

Abstract

In this paper, we introduce a logical language for reasoning about quantized graph
neural networks (GNNs) with Global Readout. We then prove that verifying quan-
tized GNNs with Global Readout is NEXPTIME-complete. We also experimentally
show the relevance of quantization in the context of ACR-GNNs.

1 Introduction

Graph neural networks (GNN5s) are models used for classification and regression tasks on graphs or
graph-node pairs, aka pointed graphs. GNNs are applied for recommendation in social network [30],
knowledge graphs [40]], chemistry [29], drug discovery [39], etc.

Quantization designates the fact that numbers are represented by a small amount of bits, opposed
to e.g., integers or real numbers whose number of bits can be arbitrary long. Standard IEEE 754
64-bit floats, INTS, or FP8 [22] enter in our setting. Essentially, our setting reflects GNNs as they are
practically implemented (e.g., in PyTorch), rather than idealized GNNs that assume integer or perfect
mathematical real number weights, as studied in previous research comparing GNNs and logic [4],
[24] or [8].

GNNs, as several other machine learning models are difficult to interpret, understand and verify. This
is a major issue for their adoption, morally and legally, with the enforcement of regulatory policies
like the EU AI Act [13]]. In the literature, verifying quantized GNNs has already been addressed [32].
The methodology is to design a logical language to represent both the properties to check and the
computation of a GNN. However, global readout has not been considered whereas it is an essential
element of GNNss, especially for graph classification.

In this paper, we focus on verifying Aggregate-Combine Graph Neural Networks with global Readout
(ACR-GNNG5) and we design a logical framework called ¢L.

Example 1. Assume a class of knowledge graphs (KGs) representing communities of people and
animals, where each node corresponds to an individual. Each individual can be Animal, Human, Leg,
Fur, White, Black, etc. These concepts can be encoded with features xq, 1, ...,Ts, ... respectively,
taking values 0 or 1. Edges in a KG represent a generic ‘has’ relationship: a human can have an
animal (pet); an animal can have a human (owner), a leg, a fur; a fur can have a color; etc. Suppose
that A is a GNN processing those KGs and is trained to supposedly recognize dogs. We can verify
that the nodes recognized by A are animals—arguably a critical property of the domain—by checking
the validity (i.e., the non-satisfiability of the negation) of o 4 — xo = 1 where @ 4 is a qL-formula
corresponding to A’s computation, true in exactly the pointed graphs accepted by A. Ideally, A
should not overfit the concept of dog as a perfect prototypical animal. For instance, three-legged
dogs do <e§ist. We can verify that A lets it be a possibility by checking the satisfiability of the formula
AN O (zg =1).

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35
36
37
38
39

40
41
42
43

44
45
46
47
48
49

50
51
52
53
54
55

56
57
58

59
60
61
62

63
64
65
66
67
68

69
70
71
72

73
74
75
76

77
78
79
80
81
82
83
84
85

More complex qL formulas can be written to express graph properties to be evaluated against an
ACR-GNN, that will be formalized later in Example[2} 1. Has a human owner, whose pets are all
two-legged. 2. A human in a community that has more than twice as many animals as humans, and
more than five animals without an ownerﬂ 3. An animal in a community where some animals have

white and black fur.

Contribution. In Section[3] we define logic ¢£ extending the one from [32] for capturing global
readout. It is expressive enough to capture quantized ACR-GNNs with arbitrary activation functions.
Moreover, gL can serve as a flexible graph property specification language reminiscent of modal
logics [9]], for expressing e.g. properties 1-3 in Example I}

Section 4] shows that the satisfiability problem of ¢ is in NEXPTIME, i.e. it can be decided by a
non-deterministic algorithm in exponential time. To do that, we reuse the concept of mathematical
logic called Hintikka sets [] which are complete sets of subformulas that can be true at a given vertex
of a graph. We then introduce a quantized variant of Quantifier-Free Boolean algebra Presburger
Arithmetic (QFBAPA) logic, denoted by QFBAPA|, and prove that it is in NP as the original
QFBAPA on integers. We then reduce the satisfiability problem of gL to the one of QFBAPA.

In Section[5] we then prove that ¢£ is NEXPTIME-complete, while it is PSPACE-complete without
global readout [32]. In a similar way, we also add global counting to the logic K* previously
introduced by [24]]. We show that it corresponds to AC-GNNs over Z with global readout and trReLU
activation functions. We prove that the satisfiability problem is NEXPTIME-complete, partially
addressing a problem left open in the literature—that is, for the case of integer values and trReLU
activation functions [7, 18]]. Details are in the appendix for keep the main text concise.

As NEXPTIME is highly intractable, in Section [6] we relax the satisfiability problem of ¢£ and
ACR-GNNS, searching graph counterexamples whose number of vertices is bounded. This problem
is NP-complete. We provide an implementation in this line.

We experimentally show in Section[7]that quantization of GNNs provide minimal accuracy degra-
dation. Our results confirm that the quantized models retain strong predictive performance while
achieving substantial reductions in model size and inference cost. These findings demonstrate the
practical viability of quantized ACR-GNNs for deployment in resource-constrained environments.

Related work. [4] showed that ACR-GNNs are capable of capturing the expressive power of
FOC,, that is, two-variable first-order logic with counting. Recent work has explored the logical
expressiveness of GNN variants in more detail. Notably, [24] and [[7] introduced logics to exactly
characterize the capabilities of different forms of GNNs. Similarly, [[11] analyzed Max-Sum-GNNs
through the lens of Datalog. [32] considered the expressivity of GNN with quantized parameters but
without global readout.

On the verification side, [[17] studied the complexity of verification of quantized feedforward neural
networks (FNNs), while [31}134] investigated reachability and reasoning problems for general FNNs
and GNNs. Approaches to verification are proposed via integer linear programming (ILP) by [[18]
and [41]], and via model checking by [33]].

From a logical perspective, reasoning over structures involving arithmetic constraints is closely tied
to several well-studied logics. Relevant work includes Kuncak and Rinard’s decision procedures for
QFBAPA ([20]), as well as developments by [12], [2], [6], and [[14]. These logics form the basis for
the characterizations established in [24!, [7].

Quantization techniques have studied in neural networks, with surveys such as [[15| 23] providing com-
prehensive overviews focused on maintaining model accuracy. Although most practical advancements
target convolutional neural networks (CNNs), many of the underlying principles extend to GNNs as
well ([42]]). NVIDIA has demonstrated hardware-ready quantization strategies ([38]), and frameworks
like PyTorch ([1]) support both post-training quantization and quantization-aware training (QAT), the
latter simulating quantization effects during training to improve low-precision performance. QAT has
been particularly effective in closing the gap between quantized and full-precision models, especially
for highly compressed or edge-deployed systems ([[19]]). In the context of GNNs, [35] proposed
Degree-Quant, incorporating node degree information to mitigate quantization-related issues. Based

nterestingly, ¢£ goes beyond graded modal logic and even first-order logic. The property of itemin
Example [I] cannot be expressed in FOL.

86
87

88

89
90
91
92
93
94

95
96
97
98
99

100
101
102

103
104

105
106
107
108
109
110
111
112

113

114
115

116
17
118
119

120
121
122
123

/+ 479 o
v
) 43\% 2y

Figure 1: DAG data structure for the formula agg(z1 + z2) + (1 + x2) > 3.

on this, [43] introduced A2, a mixed-precision framework that adapts bitwidths on graph topology
to achieve high compression with minimal performance loss.

2 Background

Let K be a set of quantized numbers, and let n denote the bitwidth of K, that is, the number of bits
required to represent a number in [K. The bitwidth n is written in unary; this is motivated by the fact
that n is small and that we would in any case need to allocate n-bit consecutive memory for storing a
number. Formally, we consider a sequence K1, Ko, ... corresponding to bitwidths 1, 2, etc., but we
retain the notation K for simplicity. We suppose that K saturates: e.g.,ifx >0,y >0,z +y >0
(i.e., no modulo behavior like in int in C for instance). We suppose that 1 € K.

We consider Aggregate-Combine Graph Neural Networks with global Readout (ACR-GNNSs), a
standard class of message-passing GNNs [4, [16]. An ACR-GNN layer is defined by a triple
(comb, agg, aggy), where comb : K3™ — K" is a combination function, and agg, agg, are lo-
cal and global aggregation functions that map multisets of vectors in K™ to a single vector in
K™.

An ACR-GNN is composed of a sequence of such layers (L(l), e ,E(L)) followed by a final
classification function ¢ls : K™ — {0, 1}. Given a graph G = (V, F) and an initial node labelling
xg : V — {0, 1}*, the state of a node u in layer i is recursively defined as:

zi(u) = comb(zi—1(u), agg({{zi—1(v) | uwv € E}}), aggy({{zi-1(v) [v € V}}))

The final output of the GNN for a pointed graph (G, u) is A(G,u) = cls(xr(u)). A more detailed
definition is provided in Appendix [C.2]

Our study focuses on a specific subclass where both agg and agg, perform summation over vectors,
and where comb(x,y, z) = ¢(zC + yA; + zAs + b), using matrices C, Ay, A5 with entries from
IS, and a bias b € K. The classification function is a linear threshold: cis(z) =), a;z; > 1 with
weights a; € K. Moreover, we assume that all arithmetic operations are executed according to the
arithmetic related to K. It is assumed that the context makes clear the KK and arithmetic being used.
We note [[A]] the set of pointed graphs (G, u) such that A(G,u) = 1. An ACR-GNN A is satisfiable
if [[A]] is non-empty. The satisfiability problem for ACR-GNNs is: Given a ACR-GNN A, decide
whether A is satisfiable.

3 Logic gL for Representing GNN Computations and Properties on Graphs

We set up a logical framework called ¢£ extending the logic in [32] with global aggregation: it is a
lingua franca to represent GNN computation and properties on graphs.

Syntax. Let I be a finite set of features and KK be some finite-width arithmetic. We consider a set
of expressions defined by the following grammar in Backus-Naur form:

O u=cla;|a?)|agg(¥) | agge(d) | +3 [ecxd

where c is a number in K, x; is a feature in F', « is a symbol for denoting the activation function, and
agg and aggy denote the aggregation function for local and global readout respectively. A formula is
a construction of the formula ¥} > k£ where ¥ is an expression and & is an element of K. If —1 € K,
and —1 is not, we can write —¢ instead of (—1) x ¢J. Other standard abbreviations can be used.

Formulas are represented as direct acyclic graphs, aka circuits, meaning that we do not repeat the same
expressions several times. For instance, the formula agg(x1 +x2)+ (21 +x2) > 3 can be represented
as the DAG given in Figure[I] Formulas can also be represented by a sequence of assignments via
new fresh intermediate variables. For instance: y := 21 + x2, 2 := agg(y) + y,res := z > 3.

124
125
126

127

128
129
130

131
132
133

134
135

136
137
138

139
140
141
142
143

144
145
146
147

148
149
150
151
152

153

154
155

156
157
158

159
160
161

Semantics. Consider a graph G = (V, E), where vertices in V' are labeled via a labeling function
¢V — K" with feature values. The value of an expression ¢ in a vertex u € V is denoted by
[[Y]G,« and is defined by induction on ©:

[= ¢, [le x M = ¢ X [Meus
leillew = fu), [[a(®)]l¢.u = [0,
19+ g = [Olg.n -+ [0996w = SopurollN o
" " " [lagge(Nlcu = Svev([V 6.,

We define [0 > k]| = {G,u | [W]]a,u >k [[F]]lgu} (We write > for the symbol in the syntax and
> for the comparison in K). A formula ¢ is satisfiable if [[¢]] is non-empty. The satisfiability
problem for qL is: Given a ¢L-formula ¢, decide whether ¢ is satisfiable.

ACR-GNN verification tasks. We are interested in the following decision problems. Given a GNN
A, and a ¢£ formula ¢: (vT1, sufficiency) Do we have [[¢]] C [[A]]? (VT2, necessity) Do we have
[[A]] € [[¢]]? (vT3, consistency) Do we have [[¢]] N [[A]] # 0?

Representing a GNN computation. To reason formally about ACR-GNNs, we represent their
computations using ¢L. Logic ¢/L facilitates the modeling of the acceptance condition of ACR-GNNs.

We explain this via example. Consider a two-layer ACR-GNN .4 with input and output dimension 2,
using summation for aggregation, activation via a(z) := max(0, min(1, z))—the truncated ReLU—
and a classification function 2z; — x5 > 1. The combination functions are:

o(2x1 + 2+ 5y —3y2 + 1
combn((ar). on,). (r.220) o= (00 T2 0 =)

o(3r1 —y1 + 22
comby((21,22), (Y1, 92), (21, 22)) := (a(—(lel +y51yz T 4221)>

Note that this assumes that .4 operates over K with at least three bits. Then, the corresponding
gL formula ¢ 4 is given by: ¥ = a(2x1 + z2 + bagg(x1) — 3agg(x1) + 1), ¥ == a(—xz1 +
Az + 2agg(w1) + 6agg(ze) — 2), x1 = a(31 — agg(¥1) + 2(aggy(psiz))), x2 = a(—2¢1 +
5(agg(2)) + 4aggy(psil)), wa := 2(x1) — x2 > 1. To sum up, given a GNN A, we compute
gL-formula in poly-time in the size of A with [[A]] = [[¢.]] (as done in [32]).

Simulating a modal logic in the logic ¢£. In this section, we show that extending ¢£ with
modal operators [9] does not increase the expressivity. We can even compute an equivalent ¢L
without Boolean connectives and without modal operators in poly-time. It means that formulas like
oA, = 2o =1lorypa, AOS3(z2 = 1) have equivalent formulas in ¢L.

Assume that « is ReLLU. Let Atmg be the set of atomic formulas of ¢£ of the form ¢ > 0. We
suppose that ¢ takes integer values. In general, ¥ > k is an atomic formula equivalent to 4 — k& > 0.
Without loss of generality, we thus assume that formulas of ¢L are over Atmg. Let modal gL be the
propositional logic on Atm extended with modalities and a restricted variant of graded modalities
where number £ in K.

[O¢]] = {G,u| G,v € [[¢]] for every v s.t. uEv}
[Oy¢ll ={G,u| G,v € [[¢]] forevery vin V'}

[0=F¢ll = {G,u| {G,v | uEvand G,v € [[el]}| 2k k} [[07"¢]] = {G,u | [[[e]]] =k K}

and modalities $="¢ and {5*¢ defined the same way but with <j. We can turn back to the graph
properties mentioned in Example 1

Example 2. We first define a few simple formulas to characterize the concepts of the domain. Let
pa = x9 = 1 (Animal), pg = x1 = 1 (Human), o1, == xo2 = 1 (Leg), pr = x3 = 1 (Fur),
ow = x4 = 1 (White), and vp := x5 = 1 (Black).

1. Has a human owner, whose all pets are two-legged: O(pr A O(pa — 07 2¢01L)).
2. A human in a community that has more that twice as many animals as humans, and more than
five animals without an owner: @ N(aggy(xo)—2x aggy(z1) > 0)AOT5 ((aAD(—pm)).

162
163

164
165

167
168

169
170

171

172
173
174

175

176
177
178
179

181

182
183
184
185

187
188
189

191

192
193
194
195

3. An animal in a community where some animals have white and black fur:
a A Og(Oler A Opw) A O(pr A Qpp)).

We can see the boolean operator —, and the various modalities as functions from Atmg into Atmy,
and the boolean operator V as a function from Atmg x Atmg to Atmy.

fﬁ(ﬁ Z 0) =9 -1 Z 0 f\/(191 Z 0,192 Z 0) = 191 + ReLU(ﬁz — 191) Z 0
(¥ 2 0) := agg(—ReLU(=¥)) = 0
fozr(¥ > 0) :=agg(ReLU(Y+ 1) — ReLU(¥)) —k >0

()

For the corresponding global modalities (/g (¥ >0), fo=r(¥ > 0),and fo<r () > 0)), it suffices to
use aggy in place of agg. The previous transformations can be generalized to arbitrary formulas of
modal gL as follows.

mod2expr(¥ > 0) := 9 >0 mod2expr(—p) := f-(mod2expr(p))
mod2expr(v1 V 2) := fy(mod2expr(p1), mod2expr(ps))
mod2expr(By) := fm(mod2expr(p)), Be {D,Dg,Ozk,Ong,OSk,OgSk}

We can show that formulas of modal gL can be captured by a unique expression ¢ > 0. This is a
consequence of the following lemmaEf

Lemma 3. Let ¢ be a formula of modal qL. The formulas ¢ and mod2expr(p) are equivalent.

Now, ACR-GNN verification tasks can be solved by reduction to the satisfiability problem of ¢.L.
VT1 by checking that ¢ A = 4 is not satisfiable; VT2 by checking that ~¢ A @ 4 is not satisfiable;
VT3 by checking that ¢ A @ 4 is satisfiable.

4 NEXPTIME Membership of the Satisfiability Problem

In this section, we prove the NEXPTIME membership of reasoning in modal quantized logic, and
also of solving of ACR-GNN verification tasks (by reduction to the former). Remember that the
activation function « can be arbitrary in our setting. Our result holds with the loose restriction that
[[«]] is computable in exponential-time in the bit-width n of K.

Theorem 4. The satisfiability problem of qL is decidable and in NEXPTIME, and so is VT3. VT1
and VT2 are in coNEXPTIME.

In order to prove Theorem [d] we adapt the NEXPTIME membership of the description logic
ALCSCCTT from [2] to logic ¢£. The difference resides in the definition of Hintikka sets and
the treatment of quantization. The idea is to encode the constraints of a ¢£-formula ¢ in a formula of
exponential length of a quantized version of QFBAPA, that we prove to be in NP.

4.1 Hintikka Sets

Consider gL-formula ¢. Let E(p) be the set of subexpressions in ¢. For instance, if ¢ is
3 x agg(a(az + agge(r1))) > 5 then E(p) := {agg(alzs + aggs(e1)), a(ws + aggy(x1). 2,
aggy(x1), z1}. From now on, we consider equality subformulas that are of the form 9=k where ¥ is
a subexpression of ¢ and k € K.

Definition 5. A Hintikka set H for ¢ is a subset of subformulas of such that:

1. Forall V¥ € E(p), there is a unique value k € K such thaty = k € H
2. V1=k1,99=ko € H then 91+092=k1+ky € H

3. If9>ke Hthencx 9=k' € Hwhere k' = c Xk k

4. 9=k € H and o(9)=Fk' implies k' = [[a]] (k)

?For simplicity, we do not present how to handle © > 0 when © is not an integer. We could introduce several
activation functions « in ¢£, one of them could be interpreted as the Heavyside step function. In the sequel
Deﬁnition@ Point 4 is just repeated for each a.

196
197
198
199
200

201
202
203

204
205

211

214

215
216
217
218
219

220
221

222

223

224
225
226
227
228
229

230

231
232

233
234

236

237
238

Informally, a Hintikka set is a set of equality subformulas obtained from a choice of a value for each
subexpression of ¢ (point 1), provided that the set is consistent at the current vertex (point 2-4). Note
that the notion of Hintikka set does not take any constraints about agg and aggy into consideration
since checking consistency of aggregation would require information about the neighbor or the whole
graph.

Example 6. If ¢ is 3 X agg(a(xa + aggy(x1))) > b5 then the following set is an example of
Hintikka set: {agg(a(z2 + aggy(z1)) = 8, a2 + aggy(r1)) = 9,22 + aggy(x1) = 9,22 = 7,
aggy(z1) = 2,21 = 5}.

Proposition 7. The number of Hintikka sets is bounded by 2""¢! where || is the size of @, and n is
the bitwidth of K.

4.2 Quantized Version of QFBABA (Quantifier-free Boolean Algebra and Presburger
Arithmetics)

A QFBAPA formula is propositional formula where each atom is either an inclusion of sets or equality
of sets or linear constraints [20]]. Sets are denoted by Boolean algebra expression e.g., (S U S’) \ S”,
or U where U denotes the set of all points in some domain. Here S, S, etc. are set variables. Linear
constraints are over |S| denoting the cardinality of the set denoted by the set expression S. For
instance, the QFBAPA-formula (pianist C happy) A (|happy| + U \ pianist| > 6) A (|happy| < 2)
is read as ‘all pianists are happy and the number of happy persons + the number of persons that are
not pianists is greater than 6 and the number of happy persons is smaller than 2’.

We now introduce a quantized version QFBAPA; of QFBAPA. It has the same syntax as QFBAPA
except that hard-coded numbers in expressions are in K. Concerning the semantics, every numerical
expression is interpreted in K. For each set expression .S, the interpretation of |\S| is not the cardinality
c of the interpretation of .S, but the result of the computation 1 + 1+ ...+ 1 in K with ¢ occurrences
of 1 in the sum.

We consider that K that saturates, meaning that if x 4 y exceed the upper bound limit of K, there is a
special value denoted by +oco such that x + y = +oo0.

Proposition 8. If bitwidth n is in unary, and if K saturates, then satisfiability in QF BAPA is in NP.

4.3 Reduction to QFBAPA

Let o be a formula of ¢£. For each Hintikka set H, we introduce the set variable X g that intuitively
represents the H-vertices, i.e., the vertices in which subformulas of H hold. The following QFBAPA-
formulas say that the interpretation of Xy form a partition of the universe. For each subformula
9" = k, we introduce the set variable X/, that intuitively represents the vertices in which 9’ = k
holds. Formula (1) expresses that { X } ; form a partition of the universe. Formula (2) makes the
bridge between variables Xy/—; and X .

(N\ XunXp=0)A(JXua=t) O AN A= U X)) @
H

H#H' 9 €B(p) keK H|9'=kcH

We introduce also a variable Sy that denotes the set of all successors of some H-vertex. If there is
no H-vertex then the variable Sg is just irrelevant.

The following QFBAPA-formula encodes the semantics of agg(9). More precisely, it says that for
all subexpressions agg (1), for all values k, for all Hintikka sets H containing subformula agg(¥)=Fk,
for all H containing agg(¥)=k, it says that, if there is some H-vertex (i.e., vertices in Sg), then the
aggregation obtained by summing over the successors of some H-vertex is k.

/\ /\ /\ [(Xu #0) = Z |SH N Xg—p| X k' = k] 3)

agg(V)EE(p) kEK Hintikka set H ke
| agg(¥)=k € H

In the previous sum, we partition Sy into subsets Sy N Xy—; for all possible values k’. Each
contribution for a successor in Sy N Xy—x is k’. We rely here on the facﬂ that (14+1+...+1)xk' =

3This is true for some fixed-point arithmetics but not for floating-point arthmetics. See Appendix

239
240
241

242

243

244

245
246

247

248

249
250
251

252
253
254

255

257
258

259
260
261
262
263
264

266
267

268

270
271
272
273

0,1) ——fPel—m>(1,1)

3
(0,0) m——9E}F—(1,0) (2"~1,0)

Figure 2: Encoding a torus of exponential size with (modal) ¢£ formulas. (x,y) are the vertices of
the graph that correspond to locations in the torus while ¢ and ¢ g denote intermediate vertices
indicating the direction (resp., north and east).

K + k' + ...+ Kk'. We also fix a specific order over values &’ in the summation (it means that agg(1)
is computed as follows: first order the successors according to the taken values of ¥ in that specific
order, then perform the summation). Finally, the semantics of aggy is captured by the formula:

A N Xaggy@y=t #0 = > [Xop| x K =k)

aggy (9)EE(p) keK k'eK

Note that intuitively Formula (4) implies that for X is interpreted as the universe, for the

aggy (9)=k
value k which equals the semantics of),y [Xo—p| x K.

Given o = 9 > k, we define tr(p) := ¢ A \/k,>k Xy—p # () where 9 the conjunction of Formulas
1-4. The function tr requires to compute all the Hintikka sets. So we need in particular to check
Point 4 of Definition |5|and we get the following when [[«]] is computable in exponential time in 7.

Proposition 9. tr(p) is computable in exponential-time in || and n.

Proposition 10. Let ¢ be a formula of gL. ¢ is satisfiable iff tr(y) is QFBAPA satisfiable.

Finally, in order to check whether a ¢£-formula ¢ is satisfiable, we construct a QFBAPA-formula
tr(y) in exponential time. As the satisfiability problem of QFBAPA is in NP, we obtain that the
satisfiability problem of ¢£ is in NEXPTIME. We proved Theorem 4]

Remark 11. Our methodology can be generalized to reason in subclasses of graphs. For instance,
we may tackle the problem of satisfiability in a graph where vertices are of bounded degree bounded
by d. To do so, we add the constraint |\ ;; |Sg| < d.

5 Complexity Lower Bound

The NEXPTIME upper-bound is tight. Having defined modalities in ¢£ and stated Lemma
Theorem[I2]is proven by adapting the proof of NEXPTIME-hardness of deciding the consistency of
ALC Q-TcBoxes presented in [36]. So we already have the hardness result for ReLU.

NEXPTIME-hardness is proven via a reduction from the tiling problem by Wang tiles of a torus
of size 2" x 2. A Wang tile is a square with colors, e.g., E, é, etc. That problem takes as input
a number n in unary, and Wang tile types, and an initial condition — let say the bottom row is
already given. The objective is to decide whether the torus of 2™ x 2™ can be tiled while colors of
adjacent Wang tiles match. A slight difficulty resides in adequately capturing a two-dimensional grid
structure—as in Figure 2}—with only a single relation. To do that, we introduce special formulas g
and ¢ to indicate the direction (east or north). In the formula computed by the reduction, we also
need to bound the number of vertices corresponding to tile locations by 2™ x 2". Thus K needs to
encode 2" x 2". We need a bit-width of at least 2n.

Theorem 12. The satisfiability problem in qL is NEXPTIME-hard, and so is VT3. VT1 and VT2 are
coNEXPTIME-hard.

Remark 13. It turns out that the verification task only needs the fragment of L where agg is applied
directly on an expression o(..). Indeed, this is the case when we represent a GNN in qL or when we
translate logical formulas in gL (Lemma[3). Reasoning about ¢L£ when K = Z and the activation
function is truncated ReLU is also NEXPTIME-complete (see Appendix[E).

274

275
276
277
278
279
280

281

282
283
284
285
286

287

289
290
291
292
293
294
295
296
297
298
299
300

301
302
303
304

305
306
307
308

309
310

6 Bounding the Number of Vertices

The satisfiability problem is NEXPTIME-complete, thus far from tractable. The complexity comes
essentially because counterexamples can be arbitrary large graphs. However, usually we are search
for small counterexamples. Let G=V be the set of pointed graphs with at most N vertices. We
consider the ¢£ and ACR-GNN satisfiability problems with a bound on the number of vertices: given
anumber N given in unary, 1. given a ¢£-formula ¢, is it the case that [[¢]] N GSN # (), 2. given an
ACR-GNN A, is it the case that [[A]] N GSV # ().

Theorem 14. The satisfiability problems with bounded number of vertices are NP-complete.

We then can extend the methodology of [33] but for verifying GNNs. Our implementation proposal
is a Python program that takes a learnt quantized GNN 4 as an input, a precondition, a postcondition
and a bound N. It then produces a C program that mimics the execution of .4 on an arbitrary
graph with at most N vertices, and embeds the pre/postcondition. We then apply ESBMC (efficient
SMT-based context-bounded model checker) [21] on the C program.

7 Quantization Effects on Accuracy, Performance and Model Size

To confirm that the GNN models considered in this paper are promising, we now investigate the
application of Dynamic Post-Training Quantization (PTQ) to Aggregate-Combined Readout Graph
Neural Networks (ACR-GNNSs). Our experimental design builds on the framework introduced in [4]],
using their publicly available implementation [5]] as the baseline. ACR-GNNs with specific structural
configurations are used as the primary model class for evaluation. Dynamic PTQ, implemented
in PyTorch [l [26]], converts a pre-trained floating-point model into a quantized version without
retraining. This approach quantizes weights to INTS statically, while activations remain in floating
point until dynamically quantized at compute time. This enables efficient INT8-based computation,
reducing memory usage and improving inference speed. PyTorch’s implementation employs per-
tensor quantization for weights and stores activations in floating-point format between operations.
The evaluation focuses on accuracy, model size, and latency. Experiments are conducted on both
synthetic and real-world datasets, with the synthetic benchmark—based on dense Erdos—Rényi graph
structures and logical labeling schemes—serving as the primary focus.

The synthetic graphs were generated using the dense Erdos—Rényi model, a classical approach for
constructing random graphs. Each graph includes five initial node colours, encoded as one-hot
feature vectors. Following [4]], labels were assigned using formulas from the logic fragment FOC,.
Specifically, a hierarchy of classifiers a; () was defined as:

ao(z) := Blue(z), a;t1(z) = EI[N’M]y (ai(y) A —E(z,y))

where 3 denotes the quantifier “there exist between /N and M nodes" satisfying a given condition.
Each classifier «; @R can be expressed within FOCs, as the bounded quantifier can be rewritten
using 32 and —~32M+1, Each property p; corresponds to a classifier o; with i € 1,2, 3. Summary
statistics for the dataset are provided in Appendix [G] Table

[NV, M]

Table 1: Accuracy difference (%) and model size (MB) of the ACR-GNN model before and after
dynamic post-training quantization (PTQ) across FO-properties p;, p2, and ps. Values are reported for
three model depths (1, 2, and 3 layers) and three dataset splits (Train, Test 1, Test 2). Accuracy values
represent the change after quantization (QINTS8 — FP32). py, p2, p3 are FO-properties described in

Appendix

P1 P2 P3
Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2 Size (MB)
-0.452% -0.760% +0.522% -0.127% -0.183% +8.891% —-0.299% -0.648% —0.693% 0.034

-0.001% 0.000% -0.043% +0.083% -0.125% +0.144% -0.178% -0.226% +0.018% 0.068
-0.036% +0.062% -0.494% -0.161% -0.143% -0.342% -0.015% +0.280% -0.346% 0.103

W N = | 3

Table |1| presents the difference in accuracy and model size between the quantized (QINTEﬂ) and
original (FP32) versions of the ACR-GNN model across three configurations (1, 2, and 3 layers). The

*The difference between INT8 and QINTS lies in their implementation and is detailed in Appendix

311
312
313
314
315
316
317
318
319
320
321

322

324
325
326
327
328
329
330
331
332
333

334

335
336
337
338
339

340
341
342
343
344
345
346
347

349
350
351

353
354

evaluation is conducted on three FO-properties (p1, p2, p3) over three data splits: Train, Testl, and
Test2. The table highlights how quantization affects accuracy at various depths. In most cases, the
impact of quantization on accuracy is minor and bounded, with some configurations even showing
positive differences. For instance, in the 2-layer configuration—the overall best performer—the
accuracy loss remains within £0.1 across all properties and splits, while yielding a model size
reduction of 0.068 MB. The 1-layer model shows greater fluctuation: while ps on Test2 experiences
a significant positive spike (+8.891), ps on Test2 drops by —0.693. This suggests sensitivity to
quantization in shallow models, likely due to limited representational capacity. The results confirm
that dynamic post-training quantization (PTQ) enables significant compression—up to 60% reduction
in size—while maintaining acceptable levels of accuracy. Additional breakdowns, including baseline
results and extended configurations, are provided in Appendix

Table 2: PPI benchmark. Accuracy (%) and size (MB) of the ACR-GNN with ReLLU activation
function before and after dynamic PTQ across different layer configurations.

Original (FP32) Quantized (QINTS) Difference
Train Val Test Size (MB) Train Val Test Size (MB) Train Val Test Size (MB)
1 547% 43.1% 39.5% 0.922 55.0% 50.8% 50.2% 0.242 +03% +7.7% +10.7% 0.680
2 525% 44.6% 45.7% 1.718 523% 47.8% 47.2% 0.451 -02% +32% +1.5% 1.267
3 523% 42.6% 44.0% 2.515 519% 457% 42.8% 0.660 -04% +3.1% -12% 1.855

Table [2] shows the results of evaluating the ACR-GNN model on the Protein-Protein Interaction
(PPI) benchmark before and after applying dynamic post-training quantization (PTQ). The evaluation
covers three model configurations (1 to 3 layers) and reports performance in terms of accuracy (Train,
Validation, and Test) and model size (in MB). Quantization results in substantial compression across
all configurations. The model size decreases from 0.922 MB to 0.242 MB (a 73% reduction) for
the 1-layer network, while the 2- and 3-layer models achieve reductions of 1.267 MB and 1.855
MB, respectively. Accuracy-wise, quantization leads to improvements in the Validation and Test sets
for shallower networks. The 1-layer model gains +0.077 on validation and +0.107 on test accuracy,
indicating potential for enhanced generalization. The 2-layer model shows minor improvements
across all splits, with negligible loss in training accuracy. However, the 3-layer configuration reveals
a slight drop in test accuracy (-0.012), suggesting increased sensitivity to quantization at greater
depth. See Appendix |G| Tables and [I8] for additional quantitative breakdowns.

8 Conclusion and Future Work

The central result is the NEXPTIME-complete of the logic ¢£ in which both the computations of
GNNs and modal properties can be expressed. It helps to understand the inherent complexity of
verifying quantized GNNs. We also provide a prototype for verifying GNNs over a set of graphs
with a bounded number of vertices. Finally some experiments confirmed that the quantization of
ACR-GNNS is promising.

There are many directions to go. First, characterizing the modal flavor of ¢L for other activation
functions than ReLU. New extensions of ¢£ could be proposed to tackle other classes GNNs.
Verification of neural networks is challenging and is currently tackled by the verification community
[10]. So it will be for GNNs as well. Our verification tool with a bound on the number of vertices is
still preliminary. One obvious path would be to improve the tool, to compare different approaches
(bounded model checking vs. linear programming as in [18]]) and apply it to real GNN verification
scenarios. Designing a practical verification procedure in the general case (without any bound on the
number of vertices) and overcoming the high computational complexity is an exciting challenge for
future research towards the verification of GNNs.

Limitations. Section[]and [5|reflect theoretical results. Some practical implementations of GNNs
may not fully align with them. In particular, the order in the (non-associative) summation over
values in K is fixed in formulas (3) and . It means that we suppose that the aggregation agg(1)
is computed in that order too (we sort the successors of a vertex according the values of J and then
perform the summation). The verification tool discussed in Section [6|remains a prototype, thus its
application warrants careful consideration.

355

356
357
358
359
360
361
362
363
364
365
366

367
368
369
370
371
372
373

374

376
377
378

380
381

382
383
384
385
386
387

388
389
390
391
392

393
394

395
396

397
398
399
400

401
402
403
404

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesen-
sky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael
Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren
Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch
2: Faster machine learning through dynamic python bytecode transformation and graph compi-
lation. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024.

Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering
in description logics with global and local cardinality constraints. In Giuseppe De Giacomo,
Alejandro Catald, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarin, and Jérdme
Lang, editors, ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325
of Frontiers in Artificial Intelligence and Applications, pages 616-623. I0S Press, 2020.

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. Introduction to Description Logic.
Cambridge University Press, 2017.

Pablo Barcel6, Egor V. Kostylev, Mikaél Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

Pablo Barcel6, Egor V. Kostylev, Mikaél Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. Gnn-logic. https://github.com/juanpablos/GNN-logic.git, 2021.

Bartosz Bednarczyk, Maja Orlowska, Anna Pacanowska, and Tony Tan. On classical decidable
logics extended with percentage quantifiers and arithmetics. In Mikolaj Bojanczyk and Chandra
Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference,
volume 213 of LIPIcs, pages 36:1-36:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2021.

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural
networks via logical characterizations. In Karl Bringmann, Martin Grohe, Gabriele Puppis,
and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and
Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages
127:1-127:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024.

Michael Benedikt, Chia-Hsuan Lu, and Tony Tan. Decidability of graph neural networks via
logical characterizations. CoRR, abs/2404.18151v4, 2025.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

Lucas C. Cordeiro, Matthew L. Daggitt, Julien Girard-Satabin, Omri Isac, Taylor T. Johnson,
Guy Katz, Ekaterina Komendantskaya, Augustin Lemesle, Edoardo Manino, Artjoms Sinkarovs,
and Haoze Wu. Neural network verification is a programming language challenge. CoRR,
abs/2501.05867, 2025.

David J. Tena Cucala and Bernardo Cuenca Grau. Bridging max graph neural networks and
Datalog with negation. In Pierre Marquis, Magdalena Ortiz, and Maurice Pagnucco, editors,
Proceedings of the 21st International Conference on Principles of Knowledge Representation
and Reasoning, KR 2024, Hanoi, Vietham. November 2-8, 2024, 2024.

10

https://github.com/juanpablos/GNN-logic.git

405
406

407

408
409
410
411

414

424

434

444

454

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. J.

Appl. Log., 8(3):233-252, 2010.

European Parliament. Artificial Intelligence Act, 2024.

Pietro Galliani, Oliver Kutz, and Nicolas Troquard. Succinctness and complexity of ALC with
counting perceptrons. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner, editors,
Proceedings of the 20th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, pages 291-300, 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pages 291-326. Chapman and Hall/CRC, 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 1263-1272. PMLR, 2017.

Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. Scalable verification of quantized
neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 3787-3795. AAAI Press, 2021.

Pei Huang, Haoze Wu, Yuting Yang, leva Daukantas, Min Wu, Yedi Zhang, and Clark W.
Barrett. Towards efficient verification of quantized neural networks. In Michael J. Wooldridge,
Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 21152-21160. AAAI Press, 2024.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2704-2713, 2018.

Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean algebra
with presburger arithmetic. In Frank Pfenning, editor, Automated Deduction — CADE-21, pages
215-230, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Rafael Menezes, Mohannad Aldughaim, Bruno Farias, Xianzhiyu Li, Edoardo Manino, Fedor
Shmarov, Kunjian Song, Franz Braufle, Mikhail R. Gadelha, Norbert Tihanyi, Konstantin
Korovin, and Lucas C. Cordeiro. ESBMC 7.4: Harnessing the Power of Intervals. In 30th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’24), volume 14572 of Lecture Notes in Computer Science, page 376-380. Springer,
2024.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard
Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-
pudi, Stuart F. Oberman, Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats for
deep learning. CoRR, abs/2209.05433, 2022.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. ArXiv, abs/2106.08295,
2021.

Pierre Nunn, Marco Silzer, Francois Schwarzentruber, and Nicolas Troquard. A logic for
reasoning about aggregate-combine graph neural networks. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August
3-9, 2024, pages 3532-3540. ijcai.org, 2024.

11

455
456
457
458

459
460

461
462
463

464

466
467
468

469
470

471
472
473
474

475
476

477
478
479

480
481

482

484

485
486

487
488

489
490
491

492
493
494

495
496

497

499
500

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

[26] PyTorch Team. Quantization — PyTorch 2.x Documentation. https://pytorch.org/docs/
stable/quantization.html, 2024. Accessed: 2025-05-16.

[27] PyTorch Team. torch.quantize_per_tensor — pytorch 2.x documentation. https:
//pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#
torch-quantize-per-tensor, 2024. Accessed: 2025-05-16.

[28] PyTorch Team. torch.tensor — pytorch 2.x documentation. https://pytorch.org/docs/
stable/tensors.html#torch.Tensor, 2024. Accessed: 2025-05-16.

[29] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Hous-
sam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, and Pascal Friederich. Graph
neural networks for materials science and chemistry. Communications Materials, 3(93), 2022.

[30] Amirreza Salamat, Xiao Luo, and Ali Jafari. Heterographrec: A heterogeneous graph-based
neural networks for social recommendations. Knowl. Based Syst., 217:106817, 2021.

[31] Marco Silzer and Martin Lange. Reachability is NP-complete even for the simplest neural
networks. In Paul C. Bell, Patrick Totzke, and Igor Potapov, editors, Reachability Problems -
15th International Conference, RP 2021, Liverpool, UK, October 25-27, 2021, Proceedings,
volume 13035 of Lecture Notes in Computer Science, pages 149-164. Springer, 2021.

[32] Marco Silzer, Frangois Schwarzentruber, and Nicolas Troquard. Verifying quantized graph
neural networks is pspace-complete. CoRR, abs/2502.16244, 2025.

[33] Luiz H. Sena, Xidan Song, Erickson H. da S. Alves, Iury Bessa, Edoardo Manino, and Lucas C.
Cordeiro. Verifying Quantized Neural Networks using SMT-Based Model Checking. CoRR,
abs/2106.05997, 2021.

[34] Marco Silzer and Martin Lange. Fundamental limits in formal verification of message-passing
neural networks. In ICLR, 2023.

[35] Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2021.

[36] Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in
expressive description logics. J. Artif. Intell. Res., 12:199-217, 2000.

[37] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466—483.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[38] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quanti-
zation for deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602,
2020.

[39] Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph
neural networks for automated de novo drug design. Drug Discovery Today, 26(6):1382—-1393,
2021.

[40] Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. A comprehensive
survey of graph neural networks for knowledge graphs. IEEE Access, 10:75729-75741, 2022.

[41] Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, and Jun Sun. Qvip:
An ILP-based formal verification approach for quantized neural networks. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering, ASE *22,
New York, NY, USA, 2023. Association for Computing Machinery.

12

https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

501
502
503

504
505
506

[42] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. Al open, 1:57-81, 2020.

[43] Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian

Cheng. A2Q: Aggregation-aware quantization for graph neural networks. In The Eleventh
International Conference on Learning Representations, 2023.

13

507

508

509
510

511
512

513

514

515

517

518

519

520

521

522

524

525
526

527
528
529

530
531

532
533

534
535

536
537
538

539

540

541

542

543
544

545
546

547

A Proofs of statements in the main text
Lemma 3. Ler ¢ be a formula of modal qL. The formulas © and mod2expr(p) are equivalent.

Proof. We have to prove that for all G, u, we have G, u |= ¢ iff G, u = mod2expr(p). We proceed
by induction on ¢.

* The base case is obvious: G,u = ¢ iff G,u | mod2expr(p) is G,u = ¢ iff G,u =
mod2expr(yp).

s GouE—piff Giu £ ¢
iff (by induction) G, u = mod2expr(p)
iff (by writing mod2expr(¢) =9 > 0) G,u =9 > 0
iff Gul=9 <0
iff G,u =19 < —1 (because we suppose that ¢ takes its value in the integers
iff Gul=0+1<0
iff Gyu = —9 — 1> 0.
* Giul=(p1Vp2)
iff G,ul=p10or Gyu = o
iff G,ul= (91 >0)orG,u = (Y2 > 0)
iff G,u =191 + ReLU (92 — ¥1) >0
Indeed, (=) if G,u = (¥ > 0) then G,u =91 + ReLU (92 — ¥1) > 1 > 0.

If Giu = (92 > 0) and G,u = (Y1 < 0) then G,u = 91 + ReLU (V2 — ¥1) =
U1 4+ 92 — 91 =199 > 0.

(<) Conversely, by contrapositive, if G,u = (¥2 < 0) and G,u = (%1 < 0), then
G,u): ¥ +R€LU(1927’L91) =Y14+02—91 =093 < 0orG,u ': sl +R€LU(’L927191) =
Y1 + 0 =91 <0. In the two cases, G,u =191 + ReLU (92 — 1) < 0.

» G,u = OZFp iff the number of vertices v that are successors of u and with G, v |= ¢ is
greater than k

iff the number of vertices v that are successors of u and with G,v |= mod2expr(yp) is
greater than k

iff (written ¢ > 0) iff the number of vertices v that are successors of u and with G,v =
¥ > 0 is greater than k

iff the number of vertices v that are successors of u and with G,v |= ReLU (¢ + 1) —
ReLU(¥) = 1 is greater than k (since we know by defining of modal ¢£ that ¥ takes its
value in integers)

iff G,u = agg(ReLU (Y + 1) — ReLU (V) > k
iff G, u = mod2expr(O=Fy)

¢ Other cases are similar.

O

Proposition 7. The number of Hintikka sets is bounded by 2™%¢! where || is the size of @, and n is
the bitwidth of K.

Proof. For each expression 1J, we choose a number in K. There is 2" different numbers. There are
|o| number of expressions. So we get (2)!¢ = 271#l possible choices for a Hintikka set. O

Proposition 8. If bitwidth n is in unary, and if K saturates, then satisfiability in QFBAPA is in NP.

14

548

549

550
551

552

553
554

555

556

557
558

559
560
561

562
563

564
565

566
567
568

569

571

572
573
574

576

577

578
579
580

581
582
583
584
585
586

587

588
589

Proof. Here is a non-deterministic algorithm for the satisfiability problem in QFBAPA.

1. Let x be a QFBAPA formula.

2. For each set expression B appearing in some | B|, guess a non-negative integer number k
in K.

3. Let x’ be a (grounded) formula in which we replaced | B| by k.

4. Check that x’ is true (can be done in poly-time since X’ is a grounded formula, it is a
Boolean formula on variable-free equations and inequations in K).

5. If not we reject.
6. We now build a standard QFBAPA formula § = A ; constraint(B) where:

. |B|=/€Bifk}B<OOK
t t(B) =
constrawn () {|B| > limit if kB = 400K

where [imit is the maximum number that is considered as infinity in K.

7. Run a non-deterministic poly-time algorithm for the QFBAPA satisfiability on d. Accepts if
it accepts. Otherwise reject.

The algorithm runs in poly-time. Guessing a number n g is in poly-time since it consists in guessing
n bits (n in unary). Step 4 is just doing the computations in K. In Step 6, § can be computed in
poly-time.

If x is QFBAPA satisfiable, then there is a solution o such that o = x. At step 2, we guess
np = |o(B)|k. The algorithm accepts the input.

Conversely, if the algorithm accepts its input, x’ is true for the chosen values np. d is satisfiable. So
there is a solution o such that o = ¢. By the definition of constraint, o = x. O

Remark 15. If the number n of bits to represent K is given in unary and if K is "modulo”,
then the satisfiability problem in QFBAPAy is also in NP. The proof is similar except than now
constraint(B) = (|B| = kp + Ldp) where dp is a new variable.

Proposition 9. tr(p) is computable in exponential-time in || and n.

Proof. In order to create tr(y), we write an algorithm where each big conjunction, big disjunction,
big union and big sum is replaced by a loop. For instance, A ~p 18 replaced by two inner loops
over Hintikka sets. Note that we create check whether a candidate I is a Hintikka set in exponential
time in n since Point 4 can be checked in exponential time in n (thanks to our loose assumption on
the computability of [[a]] in exponential time in n2. There are 2™/*| many of them. In the same way,
Akec is aloop over 2™ values. There is a constant number of nested loops, each of them iterating
over an exponential number (in 7 and || of elements. QED. O

Proposition 10. Ler p be a formula of qL. ¢ is satisfiable iff tr(¢) is QFBAPA satisfiable.

Proof. Let G,u such that G, u |= ¢. We set 0(Xy =) := {v | []]go =k} and 0(X) =
{v | G,v = H} where G,u = H means that for all ¥/ = k € H, we have [[¢']]g,, = k. For all
Hintikka sets H such that there is v such that G,v |= H, we set: 0(Sy) := {w | vEw}.

We check that o = tr(¢p). First, o satisfies Formulas 1 and 2 by definition of 0. Now, o also satisfies
Formula 3. Indeed, if agg(?) = k € H, then if there is no H-vertex in G then the implication is
true. Otherwise, consider the H-vertex v. But, then by definition of X, 4(9)—. [[agg(¥')]]c,. = k.

But then the semantics of agg exactly corresponds to) 0, [Sr N Xy—x/| x k" = k. Indeed, each
St N Xy—p-successor contributes with &’. Thus, the contribution of successors where ¥ is k' is
|SH N Xﬁ:k’| x k'

Formula 4 is also satisfied by o. Actually, let k such that o = Xaggy(9)=k = U. This means that

the value of aggy(¢) (which does not depend on a specific vertex u but only on G) is k. The sum
> ek | Xo=k| x k' = k is the semantics of aggy(9) = k.

15

590
591

592

593

595

596

598
599
600

601
602

603
604

605
606
607
608
609
610
611
612
613

614

615
616
617
618
619

Finally, as G,u |= ¢, and ¢ is of the form ¢ > k, there is ¥’ > k such that [[J]]g.. = k'. So
Xo—pr # 0

Conversely, consider a solution o of tr(y). We construct a graph G = (V, E) as follows.

Vi=ol)
E := {(u,v) | forsome H, u € 0(Xpy)andv € o(Sy)}
£(v); ==k where v € X ,—p

i.e. the set of vertices is the universe, and we add an edge between any H-vertex v and a vertex
o(Sy), and the labeling for features is directly given X,,—;. Note that the labeling is well-
defined because of formulas 1 and 2.

As o |= | X,| > 1, there exists u € o(X,,). Let us prove that G, u = ¢. By induction on 9’, we
prove that u € X =, implies [[(']]c,.. = k. The base case is obtained via the definition of ¢. Cases
for +, x and « are obtained because each vertices is in some o (X) for some H. As the definition of
Hintikka set takes care of the semantics of +, X and «, we have [[¥1 +92]]¢.v = [[V1]]eu+ [[P2]] G us
etc.

[lagg(Nlau = BojueslVlcw and [[aggy(V)]]au = Lwvev[[¥]]a, hold because of o satisfies
respectively formula 3 and 4. O

Theorem 12. The satisfiability problem in qL is NEXPTIME-hard, and so is VT3. VT1 and VT2 are
coNEXPTIME-hard.

Proof. We reduce the NEXPTIME-hard problem of deciding whether a domino system D =
(D,V, H), given an initial condition wq...w,—1 € D™, can tile an exponential torus [36]. In
the domino system, D is the set of tile types, and V' and H respectively are the respectively vertical
and horizontal color compatibility relations. We are going to write a set of modal ¢£ formulas that
characterize the torus Z2"*1 x Z2"*! and the domino system. We use 2n + 2 features. We use
Zgy ... Tp—1,and xy, ..., x} 4, to hold the (binary-encoded) coordinates of vertices in the torus. We
use the feature zy to denote a vertex ‘on the way north’ (when zy = 1) and 2 g to denote a vertex
‘on the way east’ (when xp = 1), with abbreviations ¢ := zxy = 1, and pg := zgp = 1. See
Figure[2]

For every n € N, we define the following set of formulas. T}, =

{ Dg(.%‘N—l\/LL'N—O) R Dg(:cE—l\/xE:),
Oy (Ap=o (@ = 1V z; = 0)) ; O, (Ar g (2 =1V}, =0)),
Oy(~(zny =1AzE =1))) Og(=(en V @E) — agg(l) = 2),
Oy(=(pn Ver) = (agg(zn) =1)) O,(=(en V ¢r) = (agg(zr) = 1)),
Og(pn — agg(1) = 1) : Og(pr =1 — agg(l) = 1),
05 00,0) 05 w@n—12n-1),
Dq((N 4 QOE) — ()OGGSt)) . Dq(:‘(‘pN \ L)OE) — @north)v
052 % ~(on v o), 05T gy, 0E gy)

where ©(0.0) 1= Ajo @i = 0A Aj—g @i = 0,and @an 1901y = Aj_g @i = LA AfZg 2 = 1
represent two nodes, namely those at coordinates (0, 0) and (2 —1, 2™ —1). The formulas @y, or-t5, and
peast €nforce constraints on the coordinates of states, such that going north increases the coordinate
encoding using the x; features by one, leaving the z; features unchanged, and going east increases
coordinate encoding using the z; features by one, leaving the z; features unchanged. For every

16

s20 formula ¢, Veast.p stands for O(pr — Oy) and Vnorth.y stands for J(ony — Op).

n—1 k—1
enoren =\ (/\ (&; = 1)) = (((xx = 1) = Vnorth.(z), = 0)) A ((z), = 0) — Ynorth.(zx = 1)))A
k=0 j=0
n—1 k-1
(\/ (z; =0)) = ((zx = 1) = Ynorth.(x, = 1)) A ((z, = 0) = Vnorth.(z, = 0)))A
k=0 j=0
n—1

k=0
n—1 k-1
Peast = [\ (/\ (zj =1)) = (((z}, = 1) = Veast.(z}, = 0)) A ((z}, = 0) = Veast.(z}, = 1)))A
k=0 j=0
n—1 k-1
(\ (5 =0)) = (((z}, = 1) = Veast.(x}, = 1)) A ((z}, = 0) = Veast.(z}, = 0)))A
k=0 j=0

62t The problem of deciding whether a domino system D = (D, V, H), given an initial condition
622 wWp...wnp—1 € D", can tile a torus of exponential size can be reduced to the problem satisfiability in
623 gL, checking the satisfiability of the set of formulas T'(n, D, w) = T,, U Tp U T,,, where T, is as
624 above, T’p encodes the domino system, and 73, encodes the initial condition as follows. We define

Tp={ Og(Agep(a=1Vaqs=0)),
Dg(_'(gp]v v @E) — (\/deD @d))v
Oy (=(en vV oE) = (Naep Awep\iay ~(0a A pa))),
Dg(/\deD(de — (Veast. \/(d,d’)eH wa))),
Og(Agep(a = (Ynorth.\ 4 ey ea))) }

625 where for every d € D, there is a feature x4 and ¢4 := x4 = 1. Finally, we define

Ty = { Dg(‘p(O,O) — (ng)a ceey Dg(@(n—l,o) - Spwn_l) }

626 The size of T'(n, D, w) is polynomial in the size of the tiling problem instance, that is in |D| + |H| +
627 |V| + n. The rest of the proof is analogous to the proof of [36 Corollary 3.9]. The NEXPTIME-
628 hardness of ¢£ follows from Lemma [3|and [36, Corollary 3.3] stating the NEXPTIME-hardness of
620 deciding whether a domino system with initial condition can tile a torus of exponential size.

630 For the complexity of ACR-GNN verification tasks, we observe the following.

631 1. We reduce the satisfiability problem in (modal) ¢£ (restricted to graded modal logic + graded
632 universal modality, because it is sufficient to encode the tiling problem) to VT3 in poly-time
633 as follows. Let ¢ be a ¢£. We build in poly-time an ACR-GNN A that recognizes all
634 pointed graphs. We have ¢ is satisfiable iff [[¢]] N [[A]] # 0 So vT3 is NEXPTIME-hard.

635 2. The validity problem of ¢£ (dual problem of the satisfiability problem, i.e., given a formula
636 p, is ¢ true in all pointed graphs G, u?) is coONEXPTIME-hard. We reduce the validity
637 problem of ¢ to VT2. Let ¢ be a ¢L formula. We construct an ACR-GNN A that accepts
638 all pointed graphs. We have ¢ is valid iff [[A]] C [[¢]]. So VT2 is coNEXPTIME-hard.

639 3. We reduce the validity problem of ¢L to vT1. Let) be a ¢£ formula. (again in graded
640 modal logic + graded global modalities). So by [4], We construct in poly-time an ACR-
641 GNN A that is equivalent to ¢ (by [4]). We have ¢ is valid iff [[T]] C [[A]]. So VT is
642 coNEXPTIME-hard.

643 O

644 Theorem 14. The satisfiability problems with bounded number of vertices are NP-complete.

17

645
646
647
648

649

650
651

652

653
654
655
656

657

658
659

660

662
663
664
665
666

667
668

669

670
671

672

673
674
675

676

677
678

Proof. NP upper bound is obtained by guessing a graph with at most N vertices and then check that ¢
holds. The obtained algorithm is non-deterministic, runs in poly-time and decides the satisfiability
problem with bounded number of vertices. NP-hardness already holds for agg-free formulas by
reduction from SAT for propositional logic (the reduction is mod2expr, see Lemma [3). O

B Checking distributivity

We provide C source code for checking distributivity. The reader may run the model checker ESBMC
on it to see whether distributivity holds or not.

C Extension of logic K* and ACR-GNNs over Z

A (labeled directed) graph G is a tuple (V, E, £) such that V' is a finite set of vertices, E CV x V a
set of directed edges and ¢ is a mapping from V' to a valuation over a set of atomic propositions. We
write £(u)(p) = 1 when atomic proposition p is true in u, and £(u)(p) = 0 otherwise. Given a graph
G and vertex u € V, we call (G, u) a pointed graph.

C.1 Logic

Consider a countable set Ap of propositions. We define the language of logic K %% as the set of
formulas generated by the following BNF:

pu=plop|leVel[£>0
Eu=cllo|te |ty |E+ElexE

where p ranges over Ap, and c ranges over Z. We assume that all formulas are represented as
directed acyclic graph (DAG) and refer by the size of ¢ to the size of its DAG representation.

Atomic formulas are propositions p, inequalities and equalities of linear expressions. We consider
linear expressions over 1 and fip and f,. The number Ty is equal to 1 if ¢ holds in the current
world and equal 0 otherwise. The number f¢ is the number of successors in which ¢ hold. The
number f,¢ is the number of worlds in the model in which ¢ hold. The language seems strict but we
write & < & for s — & >0, =0for (€ > 0) A (=€ > 0), etc.

As in modal logic, a formula ¢ is evaluated in a pointed graph (G, «) (also known as pointed Kripke
model). We define the truth conditions (G, u) |= ¢ (¢ is true in) by

(G,u) =p it L(u)(p) =1,
G,u) E —¢ if itis not the case that (G, u
(G,u) EoAy if (Gyu) = pand (G, u)

and the semantics [[¢]],., (the value of € in w) of an expression & by mutual induction on ¢ and £ as
follows.

) E e,
P,

o e
6t llen = [ellow + [Ellow:

exllow . =cx [Elcw

e,y s

el ={veV|(uv) € Eand (G,v) o}
bdllen =HveV](Go) E o)l

A local modality O can be defined as Oy := (—1) x f(—¢) > 0. That is, to say that ¢ holds
in all successors, we say that the number of successors in which —p holds is zero. Similarly, a
global/universal modality can be defined as O, := (—1) x f,(—¢) > 0.

C.2 Aggregate-Combine Graph Neural Networks

In this section, we consider a detailed definition of quantized (global) Aggregate-Combine GNN’s
(ACR-GNN) [4], also called message passing neural networks [[16]. We stick to the former term.

18

679
680
681
682
683
684
685
686

687
688
689
690

691
692
693
694
695
696

697
698
699

701
702
703
704
705

706
707

708
709
710

711
712
713
714
715

716
77
718
719
720
721
722

A (global) ACR-GNN layer L = (comb, agg, agg,) is a tuple where comb : R2™ — R™ is a so-called
combination function, agg is a so-called local aggregation function, mapping multisets of vectors
from R™ to a single vector from R", agg, is a so-called global aggregation function, also mapping
multisets of vectors from R™ to a single vector from R"™. We call m the input dimension of layer £
and n the output dimension of layer £. Then, a (global) ACR-GNN is a tuple (L), ... LT cls)
where L) ..., £(F) are I, ACR-GNN layers and cls : R™ — {0, 1} is a classification function. We
assume that all GNNs are well-formed in the sense that output dimension of layer £(*) matches input
dimension of layer £(*+1) as well as output dimension of £(%) matches input dimension of cls.

Let G = (V, E) be a graph with atomic propositions p1,...,pr and A = (L1, ... LT cls)
an ACR-GNN. We define 7o : V — {0,1}*, called the initial state of G, as xo(u) =
(L(u)(p1),...,4(u)(pr)) for all u € V. Then, the i-th layer of A computes an updated state of
G by

i(u) := comb(zi—1(u), agg({{zi1(v) | wv € E}}), agge({{zi-1(v) [v € V}}))

where agg, agg,, and comb are respectively the local aggregation, global aggregation and combination
function of the i-th layer. Let (G,) be a pointed graph. We write A(G,) to denote the application
of A to (G, u), which is formally defined as A(G,u) = cls(x(u)) where zp, is the state of G
computed by A after layer L. Informally, this corresponds to a binary classification of node w.

In this work, we exclusively consider the following form of ACR-GNN A: all local and global
aggregation functions are given by the sum of all vectors in the input multiset, all combination
functions are given by comb(z,y, z) = ¢(xC + yA; + zAs + b) where ¢(z) is the componentwise
application of the rruncated ReLU o(x) = max(0,min(1l,z)), with matrices C, A; and A and
vector b of IK parameters, and where the classification function is cls(z) =), a;x; > 1, where a;
are from K as well.

We note [[A]] the set of pointed graphs (G, u) such that A(G,u) = 1. An ACR-GNN A is satisfiable
if [[A]] is non-empty. The satisfiability problem for ACR-GNNss is: Given a ACR-GNN A, decide
whether A is satisfiable.

D Capturing GNNs with K%

In this section, we demonstrate that the expressive power of (global) ACR-GNN:s, as defined in
Sectionand K Mg, is equivalent. Informally, this means that for every formula ¢ of K mg, there
exists an ACR-GNNs A that expresses the same query, and vice-versa. To achieve this, we define a
translation of one into the other and substantiate that this translation is efficient. This enables ways to
employ K %9 for reasoning about ACR-GNN.

We begin by showing that global ACR-GNNss are at least as expressive as K “%9 . We remark that the
arguments are similar to the proof of Theorem 1 in [24].

Theorem 16. Let p € K %9 be a formula. There is A, such that for all pointed graphs (G, u) we
have (G,u) |= ¢ if and only if A,(G,w) = 1. Furthermore, A, can be built in polynomial time
regarding the size of .

Proof sketch. We construct a GNN A, that evaluates the semantics of a given K % formula o for
some given pointed graph (G, v). The network consists of . layers, one for each of the n subformulas
o; of ¢, ordered so that the subformulas are evaluated based on subformula inclusion. The first
layer evaluates atomic propositions, and each subsequent messages passing layer /; uses a fixed
combination and fixed aggregation function to evaluate the semantics of ;.

The correctness follows by induction on the layers: the ¢-th layer correctly evaluates ¢; at each
vertex of (G, assuming all its subformulas are correctly evaluated in previous layers. Finally, the
classifying function cls checks whether the n-th dimension of the vector after layer [,,, corresponding
to the semantics of ,, for the respective vertex v, indicates that ¢,, = ¢ is satisfied by (G, v). The
network size is polynomial in the size of ¢ due to the fact that the total number of layers and their
width is polynomially bounded by the number of subformulas of ¢. A full formal proof is given in
Appendix [O

19

723
724

725
726
727
728

729
730
731
732
733
734
735

736

737

738

739
740
741
742
743
744

745
746

747
748
749

750

751
752
753

754

755

756
757

759

760

761

762
763
764

Theorem 17. Ler A be a GNN. We can compute in polynomial time wrt. |A| a K big -formula ¢ 4,
represented as a DAG, such that [[A]] = [[¢]]-

Proof sketch. We construct a K %% _formula (.4 that simulates the computation of a given GNN
A. For each layer [; of the GNN, we define a set of formulas ¢; ;, one per output dimension, that
encode the corresponding node features using linear threshold expressions over the formulas from
the previous layer. At the base, the input features are the atomic propositions pi, ..., Dy, -

Each formula ¢; ; mirrors the computation of the GNN layer, including combination, local aggre-
gation, and global aggregation. The final classification formula ¢ 4 encodes the output of the linear
classifier on the top layer features. Correctness follows from the fact that all intermediate node
features remain Boolean under message passing layers with integer parameters and truncated ReLU
activations. This allows expressing each output as a Boolean formula over the input propositions.
The construction is efficient: by reusing shared subformulas via a DAG representation, the total size
remains polynomial in the size of A. O

E Complexity of the satisfiability of /*% and its implications for ACR-GNN
verification

In this section, we establish the complexity of reasoning with K Big

Instrumentally, we first show that every K %5 formula can be translated into a K*%s formula
that is equi-satisfiable, and has a tree representation of size at most polynomial in the size of the
original formula. An analogous result was obtained in [24] for K*. It can be shown using a
technique reminiscent of [37] and consisting of factorizing subformulas that are reused in the DAG
by introducing a fresh proposition that is made equivalent. Instead of reusing a ‘possibly large’
subformula, a formula then reuses the equivalent ‘small’ atomic proposition.

Lemma 18. The satisfiability problem of K “%9 reduces to the satisfiability of K M9 with tree
formulas in polynomial time.

Proof. Let pbea K “* formula represented as a DAG. For every subformula % (i.e., for every node
in the DAG representation of), we introduce a fresh atomic proposition p,,. We can capture the
meaning of these new atomic propositions with the formula ® := /\1/1 node in the DAG S€M(1) where:

sem (¥ V X) = pyvx < (Dy V Dy)
sem (=) 1= p_y <> Py
sem(€>0) :=peso < & >0

(@ =c (a+&)=8g+& (cx§) =cx¢
(19) == Tpy (#)" = tpy (8,9)" = 4py
Now, define ¢; := p, A Oy ®, where O, := (—1) x f,(~®) > 0, enforcing the truth of ® in every
vertex. The size of its tree representation is polynomial in the size of . Moreover, ¢ is satisfiable iff
(is satisfiable.

O

Theorem 19. Kf;i‘;—satisﬁability problem is NEXPTIME-complete.
Proof. For membership, we translate the problem into the NEXPTIME-complete problem of concept
description satisfiability in the Description Logics with Global and Local Cardinality Constraints [2],
noted ALCSCC'™. The Description Logic ALCSCC™™ uses the Boolean Algebra with Presburger
Arithmetic [20], noted QFBAPA, to formalize cardinality constraints. See Sectionfor a presentation
of ALCSCC™™ and QFBAPA.

Let ¢p be a K %% formula.
For every proposition p occurring in ¢, let A, be an ALCSCC™ concept name. Let R be an

ALCSCCT™ role name. For every occurrence of T¢ in g, let ZOO,, be an ALCSCCT™ role name.
Z00-roles stand for ‘zero or one’. The rationale for introducing ZOO-roles is to be able to capture

20

765
766
767

768
769
770

771

772
773

774
775
776
777
778
779

781

782

784

785
786
787
788

789
790

791
792
793

794

the value of T¢ in ALCSCC™ making it equal to the number of successors of the role ZOO,, which
can then be used in QFBAPA constraints. A similar trick was used, in another context, in [14]. Here,
we enforce this with the QFBAPA constraint

xo= /\ ((1Z00,| =0V |Z00,| = 1) AT(p) = sat(|Z00,| = 1))
Teo€po
which states that ZOO,, has zero or one successor, and has one successor exactly when (the translation

of) ¢ is true. The concept descriptions 7(y) and arithmetic expressions 7 () are defined inductively
as follows:

?(p) Ap

7(—p) = —7(p)
TeVvey) = T(p)UT()
T(E>0) = sat(—1<7(¢))
7(c) = ¢

T+ &) = 7(&)+7(&)
T(ex§) = T(c-§

T(te = [RN7T(p)|
T(Tp) = |ZOO,|
T(8,) = [7(»)|

Finally, we define the ALCSCC™™ concept description C,, = T(i00) Msat(xo).

Claim 20. The concept description Cy, is ALCSCC ™ -satisfiable iff the formula g is K%
satisfiable. Moreover, the concept description C,, has size polynomial in the size of po.

Proof. From right to left, suppose that g is K %9 _satisfiable. It means that there is a pointed
graph (G,u) where G = (V,E) and u € V, such that (G, u) = ¢o. Let Iy = (Afo .10} be
the ALCSCCT™ interpretation over N¢ and N, such that No = {A, | p a proposition in ¢},
Nr ={R}U{ZOO, | Tp € o}, Alo =V, Al> = {v | v € V,(G,v) | p} for every p in ¢,
Rl> = E, ZOOL = {(v,v) | v € V,(G,v) |= ¢} for every T¢p in . We can show that u € CL0.
Basically 1Y is like G with the addition of adequately looping ZOO-roles. An individual in A has
exactly one ZOO,,-successor (itself), exactly when ¢ is true, and no successor otherwise; A,, is true
exactly where p is true, and the role R corresponds exactly to E.

From left to right, suppose that C, is ALCSCC **_satisfiable. It means that there is an ALCSCCT™
finite interpretation Iy = (A0, -10) and an individual d € Ao such that d € C’é%. LetG = (V, E) be
a graph such that V' = Ao, E = R0 and {(d)(p) = 1iff d € Al>. We can show that (G, d) = q.

Since there are at most || subformulas in g, the representation of ZOO,, for every subformula ¢
of g can be done in size log, (|pg|). For every formula ¢, the size of the concept description 7(¢) is
polynomial (at most O(nlog(n))). The overall size of 7(g) is polynomial in the size of ¢, and so
is the size of sat(&p) (at most O(n?(log(n))?).

The NEXPTIME-membership follows from Claim [20] and the fact that the concept satisfiability
problem in ALCSCC™™ is in NEXPTIME (Theorem 25)).

For the hardness, we reduce the problem of consistency of ALC Q-TcBoxes which is NEXPTIME-
hard [36, Corollary 3.9]. See Section[[Jand Theorem [27]that slightly adapts Tobies’ proof to show
that the problem is hard even with only one role.

We define the translation 7 from the set of ALCQ concept expressions and ALCQ cardinality
constraints, with only one role R.

7(A) = pa

7(=C) = -z(C)

7(CiUCy) = 7(Ch) Vvz(Cy)

7(> nRC) = tr(C)+(-1)xn>0
1> nC) = 4r(0)+ (1) xn>0
(<nC) = (=) xfr(C)+n>0

796

797

798

799

800

801

802
803

804
805

806
807
808

809

810
811
812

814

815
816
817
818
819

821

822
823

824

825

826

827

829

830

832
833

It is routine to check the following claim.

Claim 21. Let TC be an ALCQ-TcBox. TC is consistent iff \ crc T(X) is K%%a _satisfiable.

Moreover, the reduction is linear. Hardness thus follows from the NEXPTIME-hardness of consis-
tency of ALC Q-TBoxes. O

Lemma|[18|and Theorem[19]yield the following corollary.

Corollary 22. K bt -satisfiability problem is NEXPTIME-complete.

Furthermore, from Theorem [16] and Corollary we obtain the complexity of reasoning with
ACR-GNNs with truncated ReLLU and integer weights.

Corollary 23. Satisfiability of ACR-GNN with global readout and truncated ReLU is NEXPTIME-

complete.

The decidability of the problem is left open in [[7] and in the recent long version [§] when the weights
are rational numbers. The theorem answers it positively in the case of integer weights and pinpoints
the computational complexity.

F Formal proofs

Proof of Theorem[I6] Let p be a K %9 formula over the set of atomic propositions p1, . .., Pp,. Let
Y1, .., Py denote an enumeration of the subformulas of ¢ such that ¢; = p; forv < m, ¢, = @,
and whenever ¢; is a subformula of ¢, it holds that 7 < j. Without loss of generality, we assume
that all subformulas of the form £ > 0 are written as

Dok Vit Yk cber D ke tgpgr —c 20,
jed jred jredr
for some index sets J, J', J” C {1,...,n}.

We construct the GNN A, in a layered manner. Note that A, is fully specified by defining the
combination function comb;, including its local and global aggregation, for each layer [; with i €
{1,...,n} and the final classification function cls. Each comb; produces output vectors of dimension
n. The first layer comnb; has input dimension 2m and is defined by comb; (z,y, z) = («,0,...,0),
ensuring that the first m dimensions correspond to the truth values of the atomic propositions
D1, - - -, Pm, While the remaining entries are initialized to zero. Note that comb; is easily realized by
an FNN with ReLLU activations. For 7 > 1, the combination function comb; is defined as

comb;(z,y,z) = ¢(xC + yAi + zAs + b),

where C, Ay, A are n X n matrices corresponding to self, local (neighbor), and global aggregation
respectively, and b € R"™ is a bias vector. The parameters are defined sparsely as follows:

* C;; = 1forall i < m (preserving the atomic propositions),

e If o, = —pj, then Cj; = —1and b; = 1,

e If o; = ¢; V ¢y, then Cy; = Cj; =1, and

C Ui =2 sk Yoy + 2 ey ki By + 2 jue g Ky - Bopyr — ¢ 2 0, then

Ciji =kj, Airji=ky, Asji=kyp, bj=—-c+1

Note that each comb; has the same functional form, differing only in the non-zero entries of its
parameters. The classification function is defined by cls(z) = x,, > 1.

Let I; denote the ith layer of A, and fix a vertex v in some input graph. We show, by induction
on ¢, that the following invariant holds: for all j < 4, (z;(v)); = 1if and only if v = ¢;, and
(xi(v)); = 0 otherwise. Assume that ¢ = 1. By construction, z(v) contains the truth values of
the atomic propositions pq, . . ., pp, in its first m coordinates. Thus, the statement holds at layer 1.

22

834
835
836
837
838
839
840
841
842

843
844
845
846

847

849

850
851

852

853

855
856
857

858
859

860
861
862
863

865
866

867

868
869
870
871
872
873
874
875
876

Next, assume the statement holds for layer x;_;. Let j < ¢. By assumption, the semantics of ¢; are
already correctly encoded in x;_; and preserved by comb; due to the fixed structure of C, A;, As,
and b. Now consider j = 4. The semantics of all subformulas of ¢, are captured in x;_1, either at
the current vertex or its neighbors. By the design of comb;, which depends only on the values of
relevant subformulas, we conclude that ¢; is correctly evaluated. This holds regardless of whether ¢;
is a negation, disjunction, or numeric threshold formula. Thus, the statement holds for all 7, and in
particular for x,,(v) and ¢,, = ¢. Finally, the classifier cls evaluates whether z,,(v),, > 1, which is
equivalent to G, v |= . The size claim is obvious given that n depends polynomial on the size of .
We note that this assumes that the enumeration of subformulas of ¢ does not contain duplicates. [

Proof of Theorem[I7] Let Abe a GNN composed of layers l1, .. ., [;, where each comb; has input
dimension 2m;, output dimension n;, and parameters Cj, A; 1, A; 2, and b;. The final classification
is defined via a linear threshold function c¢ls(z) = a1z, + - - - + Gp, Tn, > 1. We assume that the
dimensionalities match across layers, i.e. m; = n;_1 for all ¢ > 2, so that the GNN is well-formed.

We construct a formula ¢ _4 over the input propositions p1, . . . , prm, inductively, mirroring the structure
of the GNN computation.

We begin with the first layer [;. For each j € {1,...,n;}, we define:

mq

015 = (C1)ij - Ipk + (A11)kj - o + (A12)ks - Hopr + (b1); > 1.

k=1
Now suppose that we have already constructed formulas ;1 1,...,®i—1,n, , for some layer i > 2.
Then, for each output index j € {1,...,n;}, we define:
Pij = Z(Ci)kj Apimr g+ (Ai)kg - Bpi-1.k + (Ai2)ks - Bopi-1,6 + (bi); > 1.
k=1

Once all layers have been encoded in this way, we define the final classification formula as

va=a1lors+ -+ anTopn, > 1.

Let GG, v be a pointed graph. The correctness of our translation follows directly from the following
observations: all weights and biases in .4 are integers, and the input vectors x((u) assigned to
nodes u in G are Boolean. Moreover, each layer applies a linear transformation followed by a
pointwise truncated ReLU, which preserves the Boolean nature of the node features. It follows that
the intermediate representations x;(v) remain in {0, 1}™ for all i. Consequently, each such feature

vector can be expressed via a set of Boolean K “%3 formulas as constructed above. Taken together,
this ensures that the overall formula ¢ 4 faithfully simulates the GNN’s computation.

It remains to argue that this construction can be carried out efficiently. Throughout, we represent
the (sub)formulas using a shared DAG structure, avoiding duplication of equivalent subterms. This
ensures that subformulas ¢;_1 ;, can be reused without recomputation. For each layer, constructing all
;.5 Tequires at most n; - m; steps, plus the same order of additional operations to account for global
aggregation terms. Since the number of layers, dimensions, and parameters are bounded by |.4|, and
each operation can be performed in constant or linear time, the total construction is polynomial in the
size of A. O

G Experimental data and further analyses

This study investigates the application of dynamic Post-Training Quantization (PTQ) to Aggregate-
Combined Readout Graph Neural Networks (ACR-GNNs). Implemented in PyTorch [1} 26]], dynamic
PTQ transforms a pre-trained floating-point model into a quantized version without requiring retrain-
ing. In this approach, model weights are statically quantized to INTS8, while activations remain in
floating-point format until they are dynamically quantized at compute time. This hybrid representation
enables efficient low-precision computation using INT8-based matrix operations, thereby reducing
memory footprint and improving inference speed. PyTorch’s implementation applies per-tensor
quantization to weights and stores activations as floating-point values between operations to balance
precision and performance.

23

877
878
879
880
881
882
883

884
885
886
887
888
889
890
891

893

894
895
896
897
898
899
900

901

903

904

905
906

907

908

909

910

We adopt INT8 and QINTS representations as the primary quantization format. According to theory,
INTS refers to 8-bit signed integers that can encode values in the range [—128,127]. In contrast,
QINTS, as defined in the PyTorch documentation [1 27, 28]}, is a quantized tensor format that wraps
INTS values together with quantization metadata: a scale (defining the float value represented by one
integer step) and a zero-point (the INT8 value corresponding to a floating-point zero). This additional
information allows QINTS tensors to approximate floating-point representations efficiently while
enabling high-throughput inference.

To evaluate the practical impact of quantization, we conducted experiments on both synthetic and
real datasets. The synthetic data setup was based on the benchmark introduced by [4]. Graphs were
generated using the dense Erdos—Rényi model, a classical method for constructing random graphs,
and each graph was initialized with five node colours encoded as one-hot feature vectors. The dataset
is structured as follows, as shown in Table[3] The training set consists of 5000 graphs, each with 40
to 50 nodes and between 560 and 700 edges. The test set is divided into two subsets. The first subset
comprises 500 graphs with the same structure as the training set, featuring 40 to 50 nodes and 560 to
700 edges. The second subset contains 500 larger graphs, with 51 to 69 nodes and between 714 and
960 edges. This design allows us to evaluate the model’s generalization capability to unseen graph
sizes.

Table 3: Dataset statistics summary.

Node Edge
Classifier Dataset Min Max Avg Min Max Avg

Train 40 50 45 560 700 630
D1 Testl 40 50 45 560 700 633
Test2 51 60 55 714 960 832

Train 40 50 45 560 700 630
D2 Testl 40 50 44 560 700 628
Test2 51 60 55 714 960 832

Train 40 50 44 560 700 629
D2 Testl 40 50 45 560 700 630
Test2 51 60 55 714 960 831

For this experiment, we used simple ACR-GNN models with the following specifications. We
applied the sum function for both the aggregation and readout operations. The combination function
was defined as: comb(x,y,z) = &(zC + yA + zR + b), where & denotes the activation function.
Following the original work, we set the hidden dimension to 64, used a batch size of 128, and trained
the model for 20 epochs using the Adam optimizer with default PyTorch parameters. We used two
activation functions for the experimental part, ReLU and truncated ReLU. For implementation, we
used PyTorch [[1]: nn.ReLU and nn.Hardtanh (0, 1) in accordance.

We trained ACR-GNN on complex formulas FOC, for labeling. They are presented as a classifier
a;(x) that constructed as:

ap(z) := Blue(z), ajy1 () := My (ai(y) A —E(z,y))
where 3V-M] stands for “there exist between N and M nodes”. satisfying a given property.

Observe that each () is in FOCs, as 31N:M] can be expressed by combining 32~ and -32M+1,

The data set has the following specifications: Erdos—Rényigraphs and is labeled according to a4 (z),
as(x), and az(x):

* ag(x) := Blue(z)

* p1:oa(x) =350y (ag(y) A —~E(z,y))
* p2: ao(x) = 30y (a4 (y) A —~E(x,y))
* p3: ag(x) = 303y (as(y) A —~E(z,y))

24

911
912

913
914
915

916
917
918
919
920
921

922
923
924
925
926
927
928
929
930

931
932

In this section, we present experiments for two activation functions: ReLU and truncated ReLLU
(implemented via nn . Hardtanh (0, 1)) to study the influence of the activation function on the model.

Experiments for the ACR-GNN were conducted with different numbers of hidden layers, ranging
from 1 to 10. To measure the precision of the results, we use the strategy as [4]]: accuracy is calculated
as the total number of correctly classified nodes among all nodes in all graphs in the dataset.

Table 4: Accuracy of the ACR-GNN with ReLU according to the number of layers.

n b2 b3
Layer Train Test1 Test2 Train Testl Test2 Train Testl Test2

96.9% 96.4% 7148% 698% T1.0% 56.7% 69.1% 68.8% 75.4%
100.0% 100.0% 99.5% 83.7% 84.5% 753% 76.6% 76.8% 77.0%
97.6% 973% 87.2% 83.6% 842% 7T51% 76.7% 764% 66.9%
68.6% 68.4% 613% 83.5% 84.0% T761% T1.7% 763% 46.6%
68.5% 683% 671.0% 83.5% 839% T7.6% 782% 7T6.8% 34.1%
68.5% 68.4% 66.1% 83.6% 84.1% T19.6% T1.6% T58% 34.8%
68.5% 685% 613% 83.5% 83.8% 805% T7.1% 7T1.7% 49.4%
68.5% 68.4% 658% 83.4% 838% 732% T76.7% 157% 15.1%
68.5% 683% 606.7% 83.0% 83.4% 791% T13% T769% 48.0%
68.6% 683% 655% 83.1% 83.7% T73% 764% 75.6% 37.4%

S0 OTRAU W —

Table [presents the accuracy of the ACR-GNN model with ReLU activation across three FO-
properties (p1, p2, and p3), evaluated on Train, Testl, and Test2 splits. For p;, the model achieves
high accuracy in the first three layers, peaking at 99.5% on Test2 at layer 2. From layer 4 and beyond,
the accuracy on Test2 declines and stabilizes around 66—-67%, suggesting a decreased performance
in deeper models for this property. For ps, initial accuracy is modest (e.g., 69.8% on Train and
56.7% on Test2 at layer 1), but improves rapidly with depth, surpassing 83% from layer 2 onward
on Train and Testl. In particular, the accuracy of Test2 continues to improve with depth, reaching
a peak at 80.5% in layer 7, indicating that p, benefits from deeper architectures. In contrast, ps3
exhibits less consistent behavior. Accuracy improves early, reaching 77.0% on Test2 at layer 2, but
then drops sharply: Test2 accuracy drops to 46.6% at layer 4 and reaches a minimum of 34.1% at
layer 5. Some recovery is observed at layers 7 and 8, yet performance remains unstable, with Test2
accuracy at 37.4% by layer 10. Overall, the results demonstrate that model depth significantly affects
performance depending on the target property. While py benefits from deeper configurations, both p;
and ps achieve higher generalization performance in shallower networks, with deeper layers leading
to overfitting or reduced representation quality on unseen data.

Table 5: Accuracy of the ACR-GNN with ReLU after dynamic PTQ according to the number of
layers.

h b2 b3
Layer Train Test1 Test2 Train Testl Test2 Train Testl Test2

96.5% 957% 753% 69.7% 70.8% 65.6% 68.8% 68.2% T4.7%
100.0% 100.0% 99.4% 83.8% 84.4% 755% 76.4% 76.6% 77.0%
97.6% 974% 86.7% 83.5% 84.1% 7T47% 76.7% 76.7% 66.5%
68.6% 685% 66.9% 833% 842% T162% T1.6% 7T6.1% 44.6%
68.5% 682% 6712% 83.4% 84.0% 7T7.8% 783% 7T76.6% 33.4%
68.6% 68.4% 662% 83.5% 839% 803% T7.4% T75.6% 35.8%
68.5% 68.4% 671.1% 833% 83.6% 80.6% 7T7.1% 7T7.6% 48.7%
68.5% 683% 658% 833% 837% T132% T16.7% T155% T4.6%
68.5% 683% 66.6% 83.0% 83.6% T89% T1.1% T62% 44.3%
68.5% 682% 58.1% 83.0% 83.7% T7.5% 763% 754% 36.6%

S0 OTRU W —

Table 5] presents the node-level accuracy of the ACR-GNN model with ReLU activation after applying
dynamic post-training quantization (PTQ). Results are reported for three FO-properties (p1, pa,

25

933
934
935
936
937
938
939
940
941
942
943
944

946
947
948

949
950
951
952
953

955
956
957
958
959
960

962
963
964
965
966
967
968
969
970

971
972

and ps3), evaluated across the Train, Testl, and Test2 splits. For p;, the quantized model achieves
near-perfect accuracy at layer 2 (Train: 100.0%, Testl: 100.0%, Test2: 99.4%), indicating optimal
performance at this depth. Beyond layer 3, accuracy gradually degrades, with Test2 accuracy falling to
58.1% by layer 10. This suggests that deeper networks may amplify quantization-related degradation,
especially in generalization.For po, the quantized model demonstrates stable and robust accuracy
across most depths. Starting from moderate performance in layer 1 (Train: 69.7%, Test2: 65.6%),
accuracy increases quickly and exceeds 83.0% from layer 2 onward in Train and Test1 splits. In
particular, the accuracy of Test2 continues to improve up to layer 7 (80.6%), showing resilience
to quantization effects even in deeper architectures.In contrast, ps exhibits more irregular behavior.
Accuracy improves slightly in the early layers (Test2 peaks at 77.0% at layer 2), but then drops
substantially, reaching a low of 33.4% at layer 5. Despite stable Train and Testl accuracy (76-78%),
the significant reduction in Test2 suggests overfitting and reduced generalization performance in
deeper networks due to quantization. Dynamic PTQ preserves performance well for ps in depths,
but negatively impacts p; and especially ps in deeper configurations. This underscores the need for
depth-sensitive or property-sensitive quantization strategies when deploying GNNs under resource
constraints.

Table 6: Difference in the percentages of the accuracy of ACR-GNN with ReLU before and after
dynamic PTQ, rounded to two decimal places.

b1 P2 b3
Layer Train Test 1 Test 2 Train Test 1 Test 2 Train Test 1 Test 2

1 -0.45% -0.76% 0.52% -0.13% -0.18% 8.89% -0.30% -0.65% -0.69%
2 0.00% 0.00% -0.04% 0.08% -0.13% 0.14% -0.18% -0.23% 0.02%
3 -0.04% 0.06% -0.49% -0.16% -0.14% -034% -0.02% 0.28% -0.35%
4 0.01% 0.02% -040% -0.19% 0.19% 0.06% -0.05% -0.20% -1.99%
5 -0.06% -0.13% 0.19% -0.11% 0.06% 0.26% 0.03% -0.22% -0.73%
6 0.02% 0.01% 0.06% -0.03% -0.18% 0.70% -0.23% -0.25% 0.95%
7 0.00% -0.11% -0.16% -0.19% -0.26% 0.12% -0.00% -0.17% -0.75%
8 -0.03% -0.09% -0.01% -0.12% -0.12% -0.02% -0.05% -0.28% -0.49%
9 -0.03% -001% -0.04% 0.01% 021% -0.13% -0.26% -0.72% -3.74%
10 -0.00% -0.10% -7.38% -0.14% 0.05% 020% -0.08% -0.14% -0.78%

Table[6]reports the accuracy differences in percentage points between the original ACR-GNN model
with ReLU activation and its dynamically quantized counterpart, using Post-Training quantization
(PTQ). The results cover three FO properties (p1, p2, p3), three dataset splits (Train, Test1, Test2).
Positive values indicate better accuracy after quantization, while negative values indicate degradation.
For p;, quantization generally causes negligible or negative changes in accuracy. For example, at
layer 2, the differences are minimal (Train: 0.00%, Testl: 0.00%, Test2: -0.04%), showing near-
identical behavior between the models. However, deeper networks experience more substantial
performance drops, especially at layer 10 in Test2 (-7.38%), indicating increased instability due
to depth quantization. These patterns highlight a general sensitivity to depth, particularly when
generalizing to larger test graphs. In contrast, p, exhibits greater resilience to quantization, with
occasional performance gains. A notable improvement appears in layer 1 on Test2 (+8.89%), along
with smaller gains in layers 5 (+0.26%), 6 (+0.70%) and 10 (+0.20%). However, inconsistencies are
still present, for example, a Test2 drop at layer 3 (-0.34%) — which implies that while py benefits
more than p;, gains are not uniform across the board. ps, on the other hand, exhibits the most erratic
behavior and is generally more susceptible to quantization. Although a modest gain appears in
layer 6 in Test2 (+0.95%), severe degradation is observed in layer 4 (-1.99%) and layer 9 (-3.74%).
Across layers and divisions, accuracy losses dominate, suggesting that ps is particularly sensitive to
quantization, especially in deeper models. In summary, dynamic PTQ results in non-uniform effects
across properties, dataset splits, and depths. Although ps shows the most consistent tolerance and
even improvement in certain cases,p; and p3 are more susceptible to degradation, especially in the
Test2 split in deeper configurations. These results emphasize the importance of property-specific and
depth-aware quantization strategies to maintain performance in FO-property learning with GNN.

Table [/] presents the accuracy of the ACR-GNN model with truncated RelLU activation on three
FO properties (p1, p2, and p3), evaluated on the Train, Testl, and Test2 datasets as the number

26

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

989
990
991

993
994

Table 7: Accuracy of the ACR-GNN with truncated ReLLU according to the number of layers.

h b2 b3
Layer Train Test1 Test2 Train Testl Test2 Train Testl Test2

98.7% 98.4% 87.0% T7.2% 783% 51.1% 699% 69.8% 71.5%
100.0% 100.0% 98.3% 69.8% 70.0% 63.7% 752% 76.5% 75.3%
63.1% 61.7% 579% 67.8% 67.6% 629% 663% 657% 70.6%
584% 58.0% 48.6% 664% 663% 613% 61.2% 592% 50.3%
557% 543% 50.4% 63.0% 643% 39.6% 644% 651% 66.5%
555% 54.6% 50.1% 63.0% 643% 395% 582% 573% 34.6%
538% 542% 514% 63.4% 649% 41.7% 57.1% 56.0% 23.3%
527% 53.6% 50.8% 63.1% 64.0% 40.0% 61.4% 61.5% 55.3%
525% 525% 51.1% 65.0% 65.0% 492% 572% 56.0% 24.7%
547% 548% 51.1% 63.0% 643% 39.6% 572% 55.6% 23.4%

SOV OTRAU W —

of GNN layers increases from 1 to 10. For p;, the model exhibits strong performance in shallow
configurations, peaking at layer 2 with 100.0% (Train), 100.0% (Test1), and 98.3% (Test2) accuracy.
However, performance deteriorates significantly beyond this point: by layer 3, Test2 accuracy drops
to 57.9%, and continues to decline in deeper layers, stabilizing around 51.1% by layer 10. This trend
suggests overfitting, as training accuracy remains high while generalization performance on Test2
degrades with depth. The accuracy profile of p» is more stable. While initial performance is moderate
(Test2: 51.1% at layer 1), the model maintains consistent accuracy from layer 3 onward, with minor
fluctuations. The narrower gap between training and testing accuracy indicates that ps is less sensitive
to overfitting and more robust to increasing depth. For p3, the model initially performs well, reaching
75.3% on Test2 at layer 2. However, deeper architectures result in a steep decline in generalization
performance: Test2 accuracy falls to 50.3% at layer 4, 34.6% at layer 6, and just 23.3% by layer 7.
Despite relatively stable scores on Train and Testl, the Test2 drop—evidenced by a gap of over 38
percentage points at layer 7—reflects significant overfitting. In summary, ACR-GNN model with
truncated ReLLU benefits most from shallow architectures for p; and ps, whereas po exhibits more
resilient behavior across network depths. These results highlight the need for depth-aware design
when targeting different FO properties under quantization constraints.

Table 8: Accuracy of the ACR-GNN with truncated ReLLU after dynamic PTQ according to the
number of layers.

n P2 b3
Layer Train Test1 Test2 Train Testl Test2 Train Testl Test?2

988% 988% 86.4% T162% T1.8% 59.5% 69.4% 69.3% T4.8%
100.0% 100.0% 94.4% 69.6% 69.7% 42.4% 748% 763% 59.6%
61.5% 59.1% 549% 67.8% 68.0% 63.6% 66.1% 653% 70.7%
583% 577% 479% 662% 66.7% 43.1% 61.0% 57.5% 46.0%
554% 54.0% 50.5% 63.0% 64.3% 39.6% 639% 57.4% 65.5%
555% 558% 50.0% 63.0% 643% 398% 575% 56.8% 32.5%
534% 53.1% 509% 62.4% 62.5% 448% 56.8% 562% 24.5%
525% 53.6% 51.0% 61.4% 63.0% 40.0% 61.4% 62.7% 50.0%
526% 52.4% 512% 65.0% 657% 53.7% 572% 55.6% 23.7%
548% 539% 513% 63.1% 643% 39.6% 569% 55.1% 23.6%

SOV OTR U W —

Table[§|reports the accuracy of the ACR-GNN model after applying dynamic PTQ across three logical
query patterns (p1, p2, p3) and a range of GNN layers (I from 1 to 10). A general observation is that
dynamic PTQ causes more pronounced performance degradation as the number of layers increases,
particularly for p; and p3. While accuracy remains high for shallow configurations, especially at
l=1and! =2 (e.g., p; reaches 98.8% on Testl at! = 1 and 100.0% on Train and Testl atl = 2)—a
sharp decline follows beyond [= 2. For instance, p; training accuracy drops from 100.0% at [= 2

27

995
996
997
998
999
1000
1001
1002
1003
1004
1005

1006
1007
1008
1009
1010
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

1022
1023
1024
1025
1026
1027

1028
1029
1030
1031
1032
1033
1034

to 61.5% at | = 3, with continued degradation in deeper layers.In contrast, py starts with slightly
lower accuracy but exhibits relatively stable behavior across layers. Its accuracy remains in the
60-78% range across all datasets, showing less sensitivity to depth. However, a gradual decline in the
precision of Test2 is noticeable, ranging from 59.5% at | = 1 to 39.6% at [= 10, suggesting that
generalization to more complex test graphs is still affected by quantization. The pattern pg is the
most affected. Although some recovery is observed at intermediate layers (e.g., 70.7% Test2 accuracy
at [= 3), performance deteriorates with increasing depth, reaching only 23.6% on Test2 at [= 10.
In summary, dynamic PTQ enables significant model compression for ACR-GNNSs, but at the cost
of accuracy, particularly in deeper architectures and complex FO-query patterns such as p; and ps.
Shallow configurations (e.g., ! < 2) maintain good performance after quantization, indicating that
careful depth-aware quantization strategies are essential for preserving generalization.

Table 9: Difference in the percentages of the accuracy of ACR-GNN with truncated ReLU before and
after dynamic PTQ.

b1 b2 b3
Layer Train Test1 Test2 Train Testl Test2 Train Testl Test2

1 01% 03% -06% -1.0% -05% 84% -05% -05% 3.4%

2 00% 00% -39% -02% -03% -213% -05% -02% -15.7%
3 -1.6% -27% -3.0% 0.0% 0.4% 07% -02% -04% 0.1%

4 -02% -03% -08% -02% 05% -182% -02% -1.7% -4.3%
5 -03% -03% 02% 0.0% 0.0% 0.0% -06% -717% -1.0%
6 -0.0% 12% -0.1% -0.0% 0.0% 03% -06% -05% -22%
7
8
9

-04% -12% -05% -1.0% -23% 3.1% -04% 0.2% 1.2%
-02% 00% 02% -17% -1.0% -00% 00% 13% -53%
02% -01% 0.1% 00% 07% 45% 01% -05% -1.0%
10 0.1% -09% 03% 00% 00% 00% -03% -05% 0.2%

Table [9] presents the percentage changes in accuracy of the ACR-GNN model with truncated ReLU
after applying Dynamic Post-Training quantization (PTQ), across three query patterns (p1, p2, p3)
and for different numbers of GNN layers (I = 1 to [= 10). The difference is calculated as the
quantized accuracy minus the original, scaled to a percentage. In the case of this table, we can see
changes layer by layer. Here, where [= 1, we observe small improvements in accuracy. If we
examine this more precisely, for p;, the precision improves across all datasets, with the highest gain
in Test2 (+11.1%). po shows a mixed pattern with small increases in Train / Test1, but a decrease in
Test2 (-6.1%). p3 remains stable, showing minimal change (< 1.2%). When [= 2, the results show
early degradation, as py suffers significant drops, especially on Test2 (-33.0%), while p3 sees a drop
in Test2 of -17.4%, p; remains unchanged on Train / Test1 and slightly lower (-5.0%) on Test2. A
major drop occurs when [= 3 for p;, with -36.1% on Train and -38.3% on Testl. ps also shows a
negative trend, but Test2 is impacted less than in Layer 2. Interestingly, p3 has a positive change
in Test2 (+4.2%), indicating some robustness in this setting. The continuous trend for layers from
410 9. For [= 10, p; appears to recover slightly in Test2 (-6.8%, compared to - 15% previously).
However, ps and ps still show substantial losses (-37.9% and -13.1% respectively), suggesting that
deeper architectures struggle consistently after dynamic quantization. In summary, Table 0] highlights
the accuracy losses due to dynamic PTQ. This correlates with the literature [15]], where the authors
noted some loss in accuracy, but the quantized model should provide better results in comparing the
size. Although some early layers benefit slightly, deeper layers consistently show reduced accuracy,
especially in Test2, the data set with larger, more complex graphs. The pattern confirms that dynamic
PTQ, though efficient, can harm generalization, particularly in deeper and more expressive GNN
configurations.

After presenting the accuracy results before and after applying dynamic Post-Training Quantization
(PTQ), we proceed to analyze the influence of the activation function on the performance of the model.
This comparison is provided both graphically and in tabular form. For the graphical representation,
we utilized box plots, a statistical tool designed to visualize the distribution of a variable in terms of
its quartiles. In these plots, the box itself spans from the first quartile (Q1) to the third quartile (Q3),
with the median value (Q2) marked by a line within the box. The whiskers of the box plot extend to
the minimum and maximum values that do not qualify as outliers, providing insight into the spread

28

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

and concentration of the data. In addition to these visualizations, a detailed table complements the
analysis by presenting summary statistics. The table includes the mean, standard deviation, minimum,
and maximum values for each configuration. It also presents the three quartiles: Q1, which represents
the 25th percentile, Q2, or the median, which is the 50th percentile, and Q3, the 75th percentile.
These quartiles divide the data into four equal parts, helping to identify the central tendency and
variability. Furthermore, we calculate the interquartile range (IQR), defined as the difference between
the third quartile (Q3) and the first quartile (Q1), which serves as a measure of statistical dispersion.
Based on the IQR, we also determine the lower and upper bounds using the standard rule, which
involves subtracting 1.5 times the IQR from Q1 and adding it to Q3, respectively. These bounds
enable the identification of potential outliers and provide a more comprehensive understanding of
how the activation function and quantization impact the distribution of model accuracy. All metrics
were applied to all datasets: Train, Testl, and Test2. For the visualization part, we used the Python
library Plotly.

Accuracy Distribution Across Activation Functions and Quantization Settings for p, formula

Metric

1
* . - O Tain
. O Testi
9 0 Test2
. .
0.8
0.7

QQQ QQ%

pawd o PiQ (o0 RS W7
ey peated e
e Teuf ,\,nra‘@ R

°

Accuracy

Config

Figure 3: Detailed summary statistics across configurations for p; formula.

Table 10: Detailed summary statistics across configurations for p; formula.

Statistic ReLU ReLU + PTQ Truncated ReLU Truncated ReLU + PTQ
Mean 0.758 0.755 0.628 0.623
Std 0.132 0.134 0.178 0.177
Min 0.655 0.581 0.486 0.479
25% (Q1) 0.683 0.682 0.525 0.524
50% (Median) 0.685 0.685 0.547 0.544
75% (Q3) 0.841 0.839 0.609 0.589
Max 1.000 1.000 1.000 1.000
IQR 0.158 0.157 0.084 0.065
Lower Bound 0.446 0.447 0.399 0.427
Upper Bound 1.078 1.073 0.734 0.686

Table[T0and Figure [3] present summary statistics for the accuracy results obtained from four config-
urations of the ACR-GNN model: ReLU, ReLU with dynamic Post-Training Quantization (PTQ),
Truncated ReLLU, and Truncated ReL.U with PTQ. The results show that the highest mean accuracy
is achieved with the ReLU configuration (0.758), closely followed by ReLU + PTQ (0.755). This
indicates that applying dynamic quantization to the ReLU model does not significantly reduce the av-
erage accuracy. In contrast, both Truncated ReLU (0.628) and Truncated ReLU + PTQ (0.623) result
in noticeably lower mean values, suggesting that this activation function may degrade performance
on the p; query pattern. The median values align with the mean, further confirming this trend. In
terms of variability, the standard deviation is lower for the ReLU-based models (0.13), whereas the
truncated ReLU configurations show higher variability (0.18). This pattern is also reflected in the
interquartile range (IQR): ReLU configurations exhibit wider IQRs (0.158 and 0.157), while truncated
versions have narrower ranges (0.084 and 0.065). Despite the narrower spread, the performance is
consistently lower with truncated ReLU. All configurations include samples that achieve a maximum

29

1061
1062
1063
1064
1065

1066

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

accuracy of 1.0, indicating that optimal predictions are possible in all cases. However, minimum
accuracy drops more sharply in truncated ReLU models (0.486 and 0.479) compared to ReLU (0.655
and 0.581), indicating a higher risk of underperformance. The lower and upper bounds provide
insight into potential outliers. The lower bounds are lower in the truncated models, while the upper
bounds are higher in ReLU configurations (exceeding 1.0 due to statistical calculation), indicating a
wider spread and potentially higher ceiling for performance.

Accuracy Distribution Across Activation Functions and Quantization Settings for p; formula

Metric
[Tain

. = . == .o . ot
v : ' & = ==

—_— e —— ——

Accuracy

W TQ
y et +¥
gt ol

Config

Figure 4: Detailed summary statistics across configurations for p, formula.

Table 11: Detailed summary statistics across configurations for p, formula.

Statistic ReLU ReLU+PTQ Truncated ReLU Truncated ReLU + PTQ
Mean 0.7992 0.8020 0.6064 0.5967
Std 0.0615 0.0511 0.1085 0.1122
Min 0.5670 0.6560 0.3950 0.3960
25% (Q1) 0.7738 0.7758 0.6170 0.5515
50% (Median) 0.8340 0.8330 0.6385 0.6305
75% (Q3) 0.8370 0.8368 0.6598 0.6608
Max 0.8450 0.8440 0.7830 0.7780
IQR 0.0632 0.0610 0.0428 0.1093
Lower Bound 0.6789 0.6843 0.5529 0.3876
Upper Bound 0.9319 0.9282 0.7239 0.8246

Table [T1] and Figure [present a comprehensive overview of the accuracy results in four model
configurations: ReLU, ReLLU with dynamic post-training quantization (PTQ), Truncated ReLU, and
Truncated ReLLU with PTQ - for the query formula p,. From the mean accuracy values, ReLLU and
ReLU + PTQ clearly outperform the other configurations, achieving 0.7992 and 0.8020, respectively.
This indicates that both setups yield strong overall performance, with dynamic quantization having a
slightly positive effect on average accuracy in this case. In contrast, Truncated ReL.U (0.6064) and
Truncated ReLU + PTQ (0.5967) show substantially lower mean values, highlighting a notable drop
in predictive performance when using truncated activation. Looking at the variability, the standard
deviation is lower for the ReLU configurations (0.0615 and 0.0511), suggesting a more consistent
accuracy. The truncated versions, especially the quantized one (0.1122), are more dispersed, reflecting
greater instability. This is further emphasized by the IQR values: 0.0632 and 0.0610 for ReLU and
ReLU + PTQ versus 0.0428 for Truncated ReLU and a larger 0.1093 for Truncated ReLLU + PTQ.
The larger IQR for Truncated ReLU + PTQ implies a larger fluctuation in the middle 50% of the data,
despite its lower central values. The median values confirm this trend: both ReL.U configurations
cluster around 0.833—0.834, while truncated versions fall between 0.6305 and 0.6385. The lower
bounds, derived from Q1 — 1.5 x IQR, are also lower in the Truncated ReLU + PTQ case (0.3876),
indicating a greater potential for underperformance and a higher risk of poor accuracy. The maximum
and minimum values highlight the performance extremes. ReLU configurations reach up to 0.845
and 0.844, significantly higher than the 0.783 and 0.778 of truncated variants. The lower minimum
accuracy (0.395-0.396) in truncated settings further reinforces concerns about their reliability.

30

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

1108
1109
1110
1111
1112

Aceuracy Distribution Across Activation Functions and Quantization Settings for p; formula

= b = B Tein

[Testt

0.7 @ Testz
0.6

Accuracy
°

L P
oo e
e

Config

Figure 5: Detailed summary statistics across configurations for p3 formula.

Table 12: Detailed summary statistics across configurations for ps formula.

Statistic ReLU ReLU+PTQ Truncated ReLU Truncated ReLU + PTQ
Mean 0.6883 0.6844 0.5821 0.5694
Std 0.1434 0.1466 0.1441 0.1427
Min 0.3410 0.3340 0.2330 0.2360
25% (Q1) 0.6888 0.6835 0.5600 0.5575
50% (Median) 0.7635 0.7615 0.6020 0.5750
75% (Q3) 0.7688 0.7670 0.6645 0.6545
Max 0.7820 0.7830 0.7650 0.7630
IQR 0.0800 0.0835 0.1045 0.0970
Lower Bound 0.5687 0.5582 0.4032 0.4120
Upper Bound 0.8888 0.8922 0.8213 0.8000

Table[12]and Figure[5|provide descriptive statistics for the accuracy of the ACR-GNN model under
four configurations—ReLU, ReLLU with dynamic Post-Training Quantization (PTQ), Truncated
ReLU, and Truncated ReLU with PTQ—for the ps query formula. Starting with the mean accuracy,
ReLU (0.6883) and ReLLU + PTQ (0.6844) again outperform the Truncated ReLU configurations,
which register noticeably lower means of 0.5821 and 0.5694, respectively. This indicates that models
that use ReLU activations are generally more effective for ps. The standard deviation values are
relatively similar across all configurations (approximately 0.14), suggesting that while the truncated
configurations perform worse on average, they do not fluctuate more widely than the ReLU-based
ones. The minimum values further emphasize the performance gap: ReLU models maintain minimum
accuracies above 0.33, while truncated variants drop to as low as 0.233. This shows that truncated
configurations are more prone to poor performance in the worst-case scenarios. In terms of quartiles,
ReLU and ReLU + PTQ have Q1 and Q3 clustered around 0.68-0.77, indicating that the middle 50%
of their results are concentrated within a tight and relatively high accuracy range. Truncated ReLU
variants have their Q1 around 0.56 and Q3 near 0.65, which not only shows lower performance but
also a wider IQR (0.1045 for Truncated ReLLU and 0.0970 for Truncated ReLLU + PTQ). This reflects
more variability across the central portion of the data in the truncated setups. The median accuracy is
again higher in ReLU configurations (around 0.76), compared to 0.60 and 0.575 for truncated ones,
reinforcing the conclusion that ReLU configurations are more reliable. Examining the bounds, the
ReLU models show a lower bound above 0.55 and upper bounds above 0.88, suggesting strong and
consistent performance. Truncated models exhibit lower bounds near 0.40 and upper bounds around
0.80, indicating both a lower floor and a lower ceiling in performance.

Across all query patterns (p1, p2, and p3), ReLU and ReLU + PTQ consistently demonstrate higher
average accuracy and more stable performance, making them the most reliable configurations. In
contrast, Truncated ReLU and its quantized variant result in lower accuracy and greater variability,
especially in worst-case scenarios. Dynamic PTQ tends to maintain or slightly enhance performance
in ReLU models, but its effect on truncated activations is less favorable, often introducing further

31

1113
1114

1115
1116
1117

1118
1119

1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

1141
1142

1143
1144
1145
1146

1147
1148

inconsistency. Overall, ReLU-based configurations—quantized or not—are better suited for the
ACR-GNN model across the evaluated formulas.

Other parameters of interest to us are the time and size of the models. In the event of changes in
size, it is easy to compare the data using the bar plots presented in Figure[6] The size changes in
percentages we calculated according to the formula:

ValuedeQ — Valueorigmal N 100%

Difference in percentages =
Valueom’ginal

In other words, this formula shows how much the dynamic PTQ value deviates from the original
value as a percentage of the original value.

In this section, we compare parameters for different activation functions. We observe that the results
of size changes in the following models remain unchanged when we modify the training dataset. We
present the results not only graphically but also in a tabular format. In the plots, it is possible to see
the trends and, in the tabular format, the numerical changes.

Table 13: Detailed information about the size of the model. The size values are in megabytes and
refer to the file sizes of the GNNG.

Layer Original Size (MB) Quantized Size (MB) Difference (MB) Reduction (%)

1 0.057 0.023 0.034 59.604%
2 0.112 0.044 0.068 60.993%
3 0.167 0.064 0.103 61.559%
4 0.221 0.085 0.137 61.804%
5 0.276 0.105 0.171 61.975%
6 0.331 0.126 0.206 62.068%
7 0.386 0.146 0.240 62.148%
8 0.441 0.167 0.274 62.194%
9 0.496 0.187 0.309 62.230%
10 0.551 0.208 0.343 62.251%

Table [13] provides a detailed comparison of the model sizes before and after applying dynamic
post-training quantization (PTQ). As the number of layers increases, both the original and quantized
model sizes grow; however, the percentage reduction remains remarkably consistent, ranging from
approximately 60.993% at 2 layers to 62.251% at 10 layers. This stable percentage reduction,
approximately 60—-62%—indicates that PTQ effectively compresses the model regardless of its depth,
significantly reducing the memory footprint without altering the underlying architecture of the GNN.
Such a reduction is particularly crucial for deployments in resource-constrained environments.

Furthermore, after presenting the tabular data, our graphs (Figure[6)) reveal a clear trend: While the
absolute sizes of the original and quantized models increase with the number of layers, the relative
reduction achieved through dynamic PTQ remains consistent. The size of the original model increases
approximately linearly from 0.057 MB for [= 1 to 0.551 MB at [= 10, while the quantized model
grows from 0.023 MB to 0.208 MB, preserving the growth structure, but on a reduced scale. The
absolute size difference increases from 0.034 MB in [= 1 to 0.343 MB in [= 10, demonstrating that
quantization becomes more beneficial for deeper models. Overall, the consistent percentage reduction
across all tested configurations confirms that PTQ scales effectively, delivering stable compression
rates and making it an attractive option for deeper GNN deployments in real-world edge or mobile
environments.

Moreover, we observed that the query property had no noticeable impact on the model size. This can
be clearly seen in the bar plots in Figure[6al Figure[6c] and Figure

We also measured the change over time. Specifically, we considered three distinct time metrics:
Elapsed time (the time taken during training), Time Original (the time required for inference
on the test datasets using the original trained model), and Time quantized (the inference time on
the test datasets using the quantized model). These results are presented in Figure [7]

The data in Figure [/| reflect the impact of dynamic PTQ on the ACR-GNN model in three query
patterns (p1, p2, and p3) and for GNN depths ranging from 1 to 10 layers. Across all patterns,

32

1149
1150
1151
1152
1153

1154
1155
1156
1157

1158
1159
1160

1161
1162
1163

Size Change (%) After Qi ion for Key p1: a1 (x) : = 3% ly(aqly) A -E(x, y)) (Comb Layer 1) [acrgnn]
595

—e size Change (%)

Size Change After Quantization for Key p1:ay(x): = 3 1%y (ac(y) A ~E(x,) [acrgnn]

B size of original model
3 size of quantized model

-60.0

605

size

610

size Change

615

-62.0

1 2 3 a 7 H H 10

H 5
Number of Layers

6
Number of Layers . . .
’ (b) Size changes in MB for the first formula. Dif-
(a) Size changes in MB for the first formula ference present in percentage.
Size Change After Q ion for Key p2 :ay(x): = 31 Py (ay(y) A ~E(x, y)) [acrgnn] 51525 Scnange (%) After Qu for Key p2: a5(x) : =39%2%)y(a;(y) ~E(x,y)) (Comb Layer 1) [acrgnn]

B size of original model —e— size Change (%)
3 size of quantized model

-60.0

605

size.

610

size Change

615

620

1 2 H a 7 H H 10

s 6
Number of Layers.

Number of Layers

(d) Size changes in MB for the second formula.
(c) Size changes in MB for the second formula Difference present in percentage.

Size Change After Q ion for Key p3:as(x): = 31y (ay(y) A ~E(x, y)) [acrgnn] Size Change (%) After Quanti for Key p3: as(x) : = 3% 2ly(a,(y) A ~E(x,y)) (Comb Layer 1) [acrgnn]
595

B size of original model —e— size Change (%)
3 size of quantized model

-60.0

-605

size

-610

size Change

615

Number of Layers

et (f) Size changes in MB for the third formula Dif-
(e) Size changes in MB for the third formula ference present in percentage.

Figure 6: Impact of dynamic Post-Training quantization on model size (MB). Changes of size in
percentages

quantized models consistently require more inference time than their original counterparts. This
increased time is expected as a result of the real-time quantization of weights and activations during
inference. Additionally, both the original and quantized models exhibit a consistent, near-linear
increase in inference time with model depth, suggesting that computational complexity grows linearly
as layers are added.

Despite this overhead, which ranges between 0.1 and 0.9 s depending on the number of layers, the
significant reduction in model size (as demonstrated in Table[T3|and the corresponding graphs) makes
quantized models especially attractive for resource-constrained environments where minimizing the
memory footprint is more critical than achieving the lowest possible latency.

To test the technique not only on synthetic data, we chose the Protein-Protein Interactions (PPI)
benchmark. The PPI dataset consists of graph-level mini-batches, with separate splits for Training,
Validation, and Testing.

In Table [T4] we present a summary of the PPI dataset, which consists of 20 training graphs, 2
validation graphs, and 2 test graphs. Each graph contains nodes with 50-dimensional features and
supports multi-label classification with 121 possible labels. On average, each node is associated with

33

1164
1165
1166
1167

1168
1169
1170
171
1172
1173

Time Change for Key p2 : @y(x) : =31 ®ly(ay(y) A =E(x,) (comb_layer 1) [acrgnn]

Time Change for Key pl:a;(x): =3 %y(aoly) A -E(x,y)) (comb_layer 1) [acrgnn]

B Elapsed Time
3 Time Original
B Time Quantized

]

Number of Layers

Time Change

8 10

Ll b B |H| M ‘H | N |

2
Number of Layers

(a) Time changes in seconds for the first formula (b) Time changes in seconds for the second formula

Time Change for Key p3: as(x) : =3%%*ly(a,(y) A ~E(x,) (comb_layer 1) [acrgnn]

Time Change

wIL] IM | ‘ ‘ |

Number of Layers

(c) Time changes in seconds for the third formula

Figure 7: Impact of dynamic Post-Training quantization on Latency (sec)

Table 14: Dataset summary.

Dataset Num Graphs Node Feature Dim Label Dim Avg Active Labels/Node Avg Degree

Train 20 50 121 37.20 54.62
Validation 2 50 121 35.64 61.07
Test 2 50 121 36.22 58.64

approximately 36 labels, indicating a densely labelled dataset. The average node degree is also high,
ranging from 54.6 in the training set to 61.1 in the validation set, reflecting the dense connectivity of
the protein-protein interaction graphs. The dataset presents a complex multi-label classification task
with consistently rich structure across all splits.

Table 15: Dataset statistics summary.

Node Edge
Dataset Min Max Avg Min Max Avg
Train 591 3480 2245.30 7708 106754 61318.40
Validation 3230 3284 3257.00 97446 101474 99460.00
Test 2300 3224 2762.00 61328 100648 80988.00

The statistics of the dataset presented in Table [I3]contain large graphs with varying sizes between
the train, the validation, and the test splits. Training graphs range from 591 to 3,480 nodes, with an
average of 2,245 nodes per graph, and between 7,708 and 106,754 edges (average 61,318 edges).
Validation graphs are more consistent in size, with 3,230 to 3,284 nodes and 97,446 to 101,474 edges,
averaging 3,257 nodes and 99,460 edges. The test graphs have 2,300 to 3,224 nodes, averaging
2,762 nodes, and 61,328 to 100,648 edges, averaging 80,988. These statistics confirm that the dataset

34

1174
1175
1176

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186

1187
1188
1189
1190

1191
1192
1193
1194

1195
1196
1197

1198
1199
1200
1201

1202
1203
1204
1205
1206
1207

contains large and densely connected graphs and demonstrate a distributional shift in graph size and
edge count between training and test data. This information is helpful in evaluating the model’s
ability to generalize to unseen and variable graph structures.

One key difference between the synthetic data and the PPI dataset is that the latter involves a
multi-label classification task, rather than a binary classification task, because the PPI dataset is
a common benchmark where each node (representing proteins) can have multiple labels, such as
protein functions or interactions. Also, it is important to mention the key differences between the
synthetic data and the real one. Here, the authors used the code function EarlyStopping: Utility
for stopping training early if no further improvement is observed. The second difference is that the
code is structured to run multiple experiments to collect statistics (mean and standard deviation) of
the model performance, ensuring that the results are robust across different random initializations. In
this case, we performed the experiments 10 times for each model, with a combination layer equal to 1
and a number of layers ranging from 1 to 10. The number of hidden dimensions is equal to 256.

For these experiments, we used two activation functions to compare the results with synthetic data.
The presentation of the results follows the same approach as for synthetic data. Moreover, in the case
of real data [4] used the F1 Score as an evaluation metric. This metric is commonly used to evaluate
classification tasks.

According to the Scikit-learn library [25]], the F1 score is defined in the following way. The F1 score
can be interpreted as a harmonic mean of precision and recall, where an F1 score reaches its best
value at 1 and its worst score at 0. The relative contribution of precision and recall to the F1 score is
equal. The formula for the F1 score is as follows:
2TP
Fl= ———————
2TP + FP + FN

where, TP — is the number of true positives, FN — is the number of false negatives, FP — is the number
of false positives. F1 is calculated by default as 0.0 when there are no true positives, false negatives,
or false positives.

The reference code’s results [S] are structured as follows: a table showing the loss and accuracy for
each dataset (train, validation, and test). Here, we present only the accuracy of the model according
to the number of layers, as we do for the synthetic data. For better representation, we formed the
model’s output in a tabular representation.

Table 16: Accuracy for the original and quantized (dynamic PTQ) models. PPI Benchmark.

(a) Accuracy of the ACR-GNN with ReL.U accord- (b) Accuracy of the ACR-GNN with ReLU after
ing to the number of layers. dynamic PTQ according to the number of layers.
Layer Train Validation Test Layer Train Validation Test
1 54.7% 43.1% 39.5% 1 55.0% 50.8% 50.2%
2 52.5% 44.6% 45.7% 2 52.3% 47.8% 47.2%
3 52.3% 42.6% 44.0% 3 51.9% 45.7% 42.8%
4 52.3% 39.2% 40.6% 4 51.9% 37.4% 34.1%
5 49.6% 39.7% 39.1% 5 48.9% 39.1% 40.8%
6 49.3% 43.5% 43.3% 6 48.9% 42.9% 43.8%
7 51.7% 39.9% 38.5% 7 51.4% 43.0% 40.6%
8 50.8% 36.3% 35.8% 8 50.5% 35.9% 36.8%
9 48.0% 43.8% 33.2% 9 47.7% 40.8% 40.9%
10 47.1% 36.9% 36.8% 10 46.5% 36.2% 38.7%

Table [I§ reports the precision of the ACR-GNN model with ReLU activation in varying numbers
of layers, both in its original form and after applying dynamic post-training quantization (dPTQ).
The results are presented for the training, validation, and test sets of the PPI benchmark. For both
versions of the model, the performance does not increase consistently with the number of layers.
Instead, accuracy typically peaks within the first few layers and tends to degrade or fluctuate as the
network’s depth increases. In particular, the highest accuracies for the training, validation, and test

35

1208
1209
1210
1211
1212
1213
1214
1215

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

1227
1228
1229
1230
1231

sets are achieved with 1 or 2 layers, indicating that shallower architectures are better suited for this
task. Specifically, the original model achieves its best test accuracy (45.7%) at 2 layers, while the
quantized model achieves an even higher test accuracy (50.2%) at just 1 layer. Dynamic quantization
slightly improves generalization performance in the early layers. At layer 1, the quantized model
surpasses the original in both validation (50.8% vs. 43.1%) and test accuracy (50.2% vs. 39.5%),
suggesting that quantization can have a regularizing effect in low-depth configurations. However, as
the number of layers increases beyond 4, the performance of both models tends to decline, likely due
to over-smoothing or optimization difficulties common in deep GNNs.

Table 17: Difference in accuracy of ACR-GNN with ReLLU before and after dynamic PTQ. PPI
Benchmark.

Layer Train Validation Test

0.3% 7.7% 10.7%
-0.2% 3.2% 1.5%
-0.4% 3.1% -1.2%
-0.4% -1.8% -6.5%
-0.7% -0.6% 1.7%
-0.4% -0.6% 0.5%
-0.3% 3.1% 2.1%
-0.3% -0.4% 1.0%
-0.3% -3.0% 7.7%
-0.6% -0.7% 1.9%

=3 =JeCIEN o RV RN SR

Table|17|reports the absolute difference in precision between the quantized and original ACR-GNN
model with ReLU on the PPI benchmark, between training, validation and test sets for varying
numbers of layers. Positive values indicate better performance after quantization, while negative
values reflect performance degradation. At layer 1, the quantized model shows the largest gains, with
improvements of 7.7% on validation and 10.7% on the test set, suggesting a clear generalization
advantage in shallow architectures. Smaller, but consistent improvements are also observed at layers
2 and 7, particularly in the validation and test sets. In contrast, certain layers exhibit minor drops
in accuracy. For example, layer 4 shows the largest decrease in the test set (6.5%). Overall, the
results indicate that dynamic quantization can lead to modest accuracy improvements, particularly in
shallow to mid-depth GNNs, with negligible or slightly negative effects in deeper configurations. This
highlights the potential of quantization for lightweight deployment with minimal accuracy trade-offs.

Table 18: Detailed information about the model size before and after quantization. PPI Benchmark.
Sizes are in megabytes.

Layer Original Model (MB) Quantized Model (MB) Difference (MB) Reduction (%)

1 0.922 0.242 0.680 -73.749%
2 1.718 0.451 1.267 -73.765%
3 2.515 0.660 1.855 -713.772%
4 3.311 0.868 2.443 -13.776%
5 4.108 1.077 3.031 -713.778%
6 4.904 1.286 3.618 -73.779%
7 5.701 1.495 4.206 -73.780%
8 6.497 1.704 4.794 -73.780%
9 7.294 1.912 5.382 -73.781%
10 8.090 2.121 5.969 -73.781%

Table[T8] presents the memory footprint of the ACR-GNN model at different layer depths, comparing
the original model (complete precision) with its dynamically quantized counterpart. The table
also includes both absolute and percentage differences in size, highlighting the compression effect
introduced by dynamic post-training quantization. Across all layers, the quantized model consistently
exhibits a size reduction of approximately 73.78 % compared to the original model. For example, at 10

36

1232
1233
1234
1235
1236

1237
1238
1239
1240
1241
1242
1243
1244
1245

1246
1247
1248
1249
1250

layers, the model size decreases from 8.09MB to 2.12MB, yielding an absolute reduction of 5.97MB.
This trend is consistent and proportional across all depths, indicating that the memory savings scale
linearly with the model’s complexity (i.e., the number of layers). These results demonstrate the
effectiveness of dynamic quantization in significantly reducing model size without the need for
retraining.

Table 19: Elapsed times (in seconds) for the original and quantized (dynamic PTQ) models. PPI
Benchmark.

(a) Elapsed times for the original model. (b) Elapsed times for the quantized model.

Layer Train Validation Test Layer Train Validation Test
1 0.913 0.115 0.113 1 0.921 0.134 0.112
2 1.400 0.158 0.182 2 1.469 0.178 0.129
3 1.447 0.188 0.172 3 1.410 0.211 0.173
4 1.982 0.257 0.224 4 1.694 0.252 0.181
5 2.225 0.295 0.247 5 2.538 0.322 0.304
6 2.846 0.318 0.236 6 2.878 0.307 0.313
7 3.420 0.442 0.328 7 3.538 0.328 0.299
8 3.120 0.437 0.343 8 3.236 0.360 0.342
9 3.626 0.433 0.390 9 3.936 0.605 0.481
10 4.011 0.410 0.376 10 3.783 0.464 0.375

Table 21| reports the inference times of the original and dynamically post-training quantized ACR-
GNN models across training, validation, and test datasets, measured at various layer depths. The
results reveal that quantization does not significantly reduce inference time in most configurations
and, in some cases, results in slightly higher latency. For the training set, the execution time of the
quantized model closely follows that of the original, with negligible differences across all layers. In
the validation and test sets, while some improvements are observed at shallow depths (e.g., the layer
2 test time reduces from 0.182 to 0.129 s), the overall pattern indicates no consistent speedup from
quantization. In fact, certain configurations, such as layers 9 and 10 in the validation set, exhibit
increased latency in the quantized version compared to the original.

Table 20: Difference in elapsed time (in seconds) and corresponding percentage difference of ACR-
GNN with ReLU before and after dynamic PTQ on the PPI Benchmark.

Layer Train Validation Test
Diff s) % Diff Diff(s) % Diff Diff(s) % Diff

1 -0.008 0.915% -0.019 16.307% 0.001 -1.085%
2 -0.069 4.931% -0.020 12.308% 0.053 -29.114%
3 0.037 -2.525% -0.023 12.238% -0.001 0.309%

4 0288 -14.531% 0.005 -1.990% 0.043 -19.096%
5 -0.313 14.091% -0.027 9.291% -0.057 23.218%
6 -0.032 1.131% 0.011 -3.463% -0.077 32.455%
7 -0.118 3.465% 0.114 -25.741% 0.029 -8.918%
8 -0.116 3.709% 0.077 -17.556% 0.001 -0.276%
9 -0.310 8.555% -0.172 39.611% -0.091 23.218%
10 0.228 -5.678% -0.054 13.105% 0.001 -0.192%

Table[20| presents the difference in inference time between the original and dynamically quantized
(dPTQ) ACR-GNN models, reported in absolute (seconds) and relative (%) terms, across various
layer depths. The results show that quantization has an inconsistent effect on inference time, with
no clear trend of improvement. In some configurations, dynamic quantization slightly reduces
inference time; for example, layer 2 shows a 0.053s reduction on the test set, corresponding to a

37

1251
1252
1253
1254
1255
1256
1257

1258
1259
1260
1261
1262
1263
1264
1265

1266
1267
1268

1269

1270
1271
1272

1273

1274

1275
1276
1277
1278

1279
1280
1281
1282

1283
1284

29.11% improvement. Similarly, layer 5 achieves an improvement in test time of 23.22%, and layer
6 shows the largest test time speedup of 32.46%. However, in other cases, such as layer 4 in the
training set (+0.288s, -14.53%) and layer 10 (+0.228s, -5.68%), quantization increases execution
time. The relative differences on the validation set also vary widely, with notable slowdowns at
layers 7 (=25.74%) and 9 (-39.61%). These inconsistencies highlight that run-time performance does
not always benefit from dynamic quantization, and the effectiveness likely depends on the specific
computation pattern and how well the underlying hardware supports quantized operations.

Table 21: Elapsed time (in seconds) for ACR-GNN with and without dynamic post-training quantiza-
tion (dPTQ). PPI Benchmark

Layer Train Validation Test

Original dPTQ Original dPTQ Original dPTQ
1 0.780 0.858 0.102 0.112 0.077 0.094
2 0.986 0.966 0.130 0.131 0.109 0.107
3 1.138 1.161 0.157 0.159 0.149 0.140
4 1.371 1.366 0.159 0.204 0.156 0.160
5 1.645 1.682 0.201 0.211 0.173 0.199
6 1.833 1.766 0.242 0.256 0.188 0.205
7 2.166 2.156 0.282 0.261 0.239 0.242
8 2.355 2.534 0.317 0.300 0.241 0.283
9 2.539 2.652 0.337 0.349 0.302 0.292
10 2.842 3.122 0.386 0.461 0.326 0.348

Table[2T]reports the elapsed time (in seconds) required to perform inference on the training, validation,
and test sets using the ACR-GNN model with ReLLU activation, both in its original form and after
applying dynamic post-training quantization (dPTQ). The measurements reflect the running time of
the trained models only; the time required for model training is not included in these results. The
values indicate that inference time generally increases with the number of layers, as expected, and
the impact of quantization on runtime varies across depths. In some cases, dPTQ slightly reduces
inference time (e.g., Layer 6, Train), while in others it introduces moderate overhead, particularly for
deeper models.

The experiments were run on a Samsung Galaxy Book4 laptop with an Intel Core 17-150U processor,
16 GB RAM, and 1 TB SSD storage. Additional experiments were conducted using Kaggle’s cloud
platform with an NVIDIA Tesla P100 GPU (16 GB RAM).

H Description logics with global and local cardinality constraints

The Description Logic ALCSCC™ ™ [2]] extends the basic Description Logic ALC [3] with concepts
that capture cardinality and set constraints expressed in the quantifier-free fragment of Boolean
Algebra with Presburger Arithmetic (QFBAPA) [20].

We assume that we have a set of set variables and a set of integer constants.
A QFBAPA formula is a Boolean combination (A, V, —) of set constraints and cardinality constraints.

A set term is a Boolean combination (U, N,) of set variables, and set constants U, and (). If S is a
set term, then its cardinality |S| is an arithmetic expressions. Integer constants are also arithmetic
expressions. If 77 and 75 are arithmetic expressions, so is T + T». If T is an arithmetic expression
and c is an integer constant, then ¢ - 7' is an arithmetic expression.

Given two set terms B; and Bs, the expressions By C By and By = By are set constraints.
Given two arithmetic expressions 77 and 75, the expressions 77 < T5 and Ty = T5 are cardinality
constraints. Given an integer constant ¢ and an arithmetic expression 7', the expression ¢ dvd T is a
cardinality constraint.

A substitution o assigns () to the set constant (), a finite set o () to the set constant ¢/, and a subset
of o(U) to every set variable. A substitution is first extended to set terms by applying the standard

38

1285
1286
1287
1288

1289
1290
1291
1292

1293
1294
1295
1296
1297

1298
1299
1300

1301
1302
1303

1304

1305
1306
1307
1308

1309
1310

1311
1312

1313

1314
1315
1316

1317
1318
1319
1320

1321
1322

1323

1324
1325
1326
1327
1328

1329
1330
1331

1332

1333

set-theoretic semantics of the Boolean operations. It is further extended to map arithmetic expressions
to integers, in such that way that every integer constant c is mapped to ¢, for every set term B, the
arithmetic expression |B| is mapped to the cardinality of the set o(B), and the standard semantics for
addition and multiplication is applied.

The substitution o (QFBAPA) satisfies the set constraint By C Bs if 0(B;) C o(Bs), the set
constraint By = Bs if 0(B1) = 0(B3), the cardinality constraint 77 < 1% if 0(T1) < o(12), the
cardinality constraint Ty = T5 if o(T}) = o(T5), and the cardinality constraint ¢ dvd T if ¢ divides
o(T).

We can now define the syntax of ALCSCC™™ concept descriptions and their semantics. Let N¢ be
a set of concept names, and Ny be a set of role names, such that No N Ng = (). Every A € N¢
is a concept description of ALCSCCTT. Moreover, if C, Cy, Cs, ... are concept descriptions of
ALCSCCT™, then so are: C,MCy, C1UC,, —~C, and sat(x), where x is a set or cardinality QFBAPA
constraint, with elements of Ny and concept descriptions C1, Co, . .. used in place of set variables.

A finite interpretation is a pair I = (Af,.T), where A’ is a finite non-empty set of individuals, and
-I'is a function such that: every A € N¢ is mapped to AT C A, and every R € Np is mapped to

RT C AT x A, Given an element of d € A, we define R (d) = {d' | (d,d’) € R'}.

The semantics of the language of ALCSCCt " makes use QFBAPA substitutions to interpret QFBAPA
constraints in terms of ALCSCC*™ finite interpretations. Given an element d € A, we can define
the substitution o in such a way that: o (U) = Al, cl(0) = 0, and A € N and R € N, are
considered QFBAPA set variables and substituted as o (A) = A’, and ol (R) = R!(d).

The finite interpretation I and the QFBAPA substitutions Ué are mutually extended to complex ex-
pressions such that: o(Cy M Cy) = (C1 M Co)! = CI N CL; ol(CLUC) = (CLUCr)! =
cluci; ol(=C) = (-C)! = AT\ C!; and cl(sat(x)) = (sat(x))! = {d' € Al |
ol, (QFBAPA) satisfies x}.

Definition 24. The ALCSCC'™ concept description C is satisfiable if there is a finite interpretation
I such that CT # (.

Theorem 25 ([2]). The problem of deciding whether an ALCSCCt™ concept description is satisfiable
is NEXPTIME-complete.

I ALCQ and T-Boxes consistency

ALCQ is the Description Logic adding qualified number restrictions to the standard Description
Logic ALC, analogously to how Graded Modal Logic extends standard Modal Logic with graded
modalities.

Let N and Ng be two non-intersecting sets of concept names, and role names respecively. A
concept name A € N¢ is an ALCQ concept expressions of ALCQ. If C is an ALCQ concept
expression, so is =C. If C; and C5 are ALCQ concept expressions, then so is C7 M Cy. If C'is an
ALCQ concept expression, R € Ng, and n € N, then > n R.C is an ALC Q concept expression.

A cardinality restriction of ALCQ is is an expression of the form (> n C) or (< n C), where C an
ALCQ concept expression and n € N.

An ALCQ-T¢Box is a finite set of cardinality restrictions.

An interpretation is a pair [= (Al .), where Al is a non-empty set of individuals, and - is
a function such that: every A € N¢ is mapped to AT C A, and every R € Ny is mapped
to RT C Al x Al. Given an element of d € A, we define RI(d) = {d' | (d,d') € Rl}.
An interpretation [is extended to complex concept descriptions as follows: (—C)! = AL\ C1;
(CinCy)l =cinci;and (> n R.C) = {d| |RI(d) N Ct| > n}.

An interpretation I satisfies the cardinality restriction (> n C) iff |Cf| > n and it satisfies
the cardinality restriction (< n C) iff |C!| < n. A TeBox TC is consistent if there exists an
interpretation that satisfies all the cardinality restrictions in T'C'.

Theorem 26 ([36]). Deciding the consistency of ALC Q-T¢Boxes is NEXPTIME-hard.

The proof can be slightly adapted to show that the result holds even when there is only one role.

39

1334
1335
1336
1337

1338

1339
1340

1341

1342
1343
1344

1345
1346
1347
1348

1349

(0,2 — 1) (2™ —1,2" — 1) —[E]

0,1) ——EF——> (1, 1)

(0,0) ——[E}— (1,0) (2™ —1,0) —[E]

Figure 8: Encoding a torus of exponential size with an ALC Q-T-Box with one role.

Some abbreviations are useful. For every pair of concepts C' and D, C' — D stands for ~C' U D. For
every concept C, role R, and non-negative integer n, we define: (< n R.C) := =(> (n+ 1) R.C),
(VR.C):=(<0R-C),¥VC):=(<0-C), (=nRC):=(>nRC)N(<n R.C), and
=nC):=>nC)N(<n0).

Theorem 27. Deciding the consistency of ALCQ-T¢Boxes is NEXPTIME-hard even if |Ng| = 1.
Proof. Let next be the unique role in Nr. We use the atomic concepts N to denote an individual
‘on the way north’ and E to denote an individual ‘on the way east’. See Figure [§]

For every n € N, we define the following ALC Q-T-Box.

T,={ (V-(NUE)— (=1next.N))
(VN — (= 1next.T))

(V-(NUE) = (=1next.E))
(VE — (=1next.T))
(
(

(=1Cw0,0) : =1C(gn_12n_1))
(V_'(NI—IE) HDGaSt) ’ V"(NHE) %Dnorth)
(€ @ x 2 ~(NUE), (< @' x2)N), (< @ <20) }

such that the concepts C|), C(2n—1,2n 1) are defined like in [36} Figure 3], and so are the concepts
Diortn and Do, except that for every concept C, Veast.C now stands for Vnext.(E — Vnext.C)
and VYnorth.C now stands for Vnext.(N — Vnext.C).

The problem of deciding whether a domino system D = (D, V, H), given an initial condition
wy ... Wn_1, can tile a torus of exponential size can be reduced to the problem of consistency of
ALCQ-TcBoxes, checking the consistency of T'(n, D, w) = T,, U Tp U T,,, where T, is as above,
Tp encodes the domino system, and T}, encodes the initial condition as follows.

Tp={ (V-(NUE)—= (Ugep Ca)),
VANUE) = ([iep l Nwepygay 7(CaMNCar))),

(
(V [aep(Ca — (Veast. |y gren Car))),
(V [aep(Ca = (Ynorth.| | 4 gnyev Car))) }

Tw = { (V C(O,o) — Cwo), ceey (V C(nfl,O) — Cwn71) }
The rest of the proof remains unchanged. O

40

1350

1351

1352
1353

1354

1355
1356
1357
1358

1359

1360

1361

1362

1363

1364
1365

1366

1367
1368
1369

1370

1371
1372
1373

1374

1375
1376

1377

1378
1379
1380

1381

1382
1383
1384

1385

1386
1387
1388

1389

1390
1391
1392

1393

1394
1395

1396

1397
1398
1399

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce a logical language for reasoning about quantized graph neural
networks (GNNs) with Global Readout in Section 3 We then prove that verifying quantized
GNNs with Global Readout is NEXPTIME-complete in Section] and Section[5] We also
experimentally show the relevance of quantization in the context of ACR-GNNs in Section|[7]

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Limitations are addressed in Section[8]

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the theorems, formulas, and proofs in the paper are numbered and cross-
referenced. The assumptions are stated and the full proofs are present in the appendix, with
sketches of proofs in the main text.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The authors provide the replication package with code and description of the
files.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided clear instructions on how to access the data and reproduce the ex-
perimental results in the supplemental materials, including required scripts and environment
setup.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting is described in sufficient detail in the main body of the
paper, including datasets, tools, parameters, and evaluation metrics, to support understanding
and reproducibility of the results.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The authors provided a code in the supplementary materials that generates the
detailed summary statistics across configurations for FFOC5. The method for computing
these plots is included in the code.

41

1400

1401
1402
1403

1404

1405
1406
1407
1408
1409

1410

1411
1412

1413

1414
1415

1416

1417
1418

1419

1420
1421
1422
1423

1424

1425
1426
1427

1428

1429

1430

1431
1432
1433

1434

1435
1436
1437

1438

1439
1440

1441

1442
1443
1444

1445

1446
1447
1448

1449

8.

10.

11.

12.

13.

14.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments were run on a Samsung Galaxy Book4 laptop with an Intel
Core i7-150U processor, 16 GB RAM, and 1 TB SSD storage. Additional experiments
were conducted using Kaggle’s cloud platform with an NVIDIA Tesla P100 GPU (16 GB
RAM). The runtime for the synthetic dataset experiments is reported in Table[21] and full
instructions for reproducing the results are provided in the supplementary materials.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are addressed in the introduction, explaining that the black-box
nature of NN is a major issue for their adoption, morally and legally, with the enforcement
of regulatory policies like the EU AI Act. NN that can be formally verified solve this. We
do not think that this work may have negative societal impacts.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the reference ACR-GNN, we used the original paper [4] and the official
implementation available at [Sl]. The code is distributed under the MIT License, and we
have properly credited the authors and complied with the license terms.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We are releasing new code introduced in this work under the MIT License. The
repository includes a README with setup instructions, usage examples, and description of
each module, enabling other researchers to reproduce our results.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

42

https://neurips.cc/public/EthicsGuidelines

1450

1451
1452

1453
1454
1455
1456

1457

1458

1459

1460
1461
1462
1463

1464

1465
1466

15.

16.

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

43

	Introduction
	Background
	Logic qL for Representing GNN Computations and Properties on Graphs
	NEXPTIME Membership of the Satisfiability Problem
	Hintikka Sets
	Quantized Version of QFBABA (Quantifier-free Boolean Algebra and Presburger Arithmetics)
	Reduction to QFBAPAK

	Complexity Lower Bound
	Bounding the Number of Vertices
	Quantization Effects on Accuracy, Performance and Model Size
	Conclusion and Future Work
	Proofs of statements in the main text
	Checking distributivity
	Extension of logic K and ACR-GNNs over Z
	Logic
	Aggregate-Combine Graph Neural Networks

	Capturing GNNs with K, g6pt
	Complexity of the satisfiability of K, g6pt and its implications for ACR-GNN verification
	Formal proofs
	Experimental data and further analyses
	Description logics with global and local cardinality constraints
	ALCQ and TCBoxes consistency

