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Abstract

The growing capabilities of Large Language
Models (LLMs) have enabled batch prompt-
ing (BP), the technique of concatenating mul-
tiple questions into one prompt and answer-
ing all questions in one inference pass. How-
ever, current batch prompting techniques re-
quire lengthy prompts that need few-shot ex-
amples and formatting instructions, reporting
decreased accuracy per question as the batch
size grows. In this paper, we show that this
accuracy loss can be mitigated by fine-tuning
models for batch prompting. We aggregate
training data for batch prompting by select-
ing batches from nine datasets with varying
batch sizes. We demonstrate that after lim-
ited fine-tuning of LLaMA-3-8B-Instruct on
our batch prompting dataset, BP can be per-
formed effectively without in-prompt exam-
ples or repetitive formatting. Our fine-tuned
LLaMA-3-8B-Instruct model exhibits consis-
tent performance across various batch sizes on
tasks seen and unseen during training.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in understanding
and generating human language. Their capability
for in-context learning (ICL), where instructions
and examples are provided within the input prompt,
is widely used across different tasks and model
sizes. By leveraging the patterns and information
present in the prompt, LLMs can infer the desired
task and generate suitable responses without ex-
plicit training on that particular task. However, the
best performance of in-context learning is often
achieved through detailed instructions (Bai et al.,
2022) or by providing many ICL examples (Agar-
wal et al., 2024; Bertsch et al., 2024), both of
which result in high inference costs: when standard
prompting (SP) is used to do inference, this context
is re-encoded for every problem instance.
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Figure 1: Standard prompting involves completing one
query per inference call. Batch prompting (Cheng et al.,
2023) batches multiple queries into a single prompt, en-
abling all questions to be completed in a single inference
call. Our approach, Tune-n-Batch, improves upon batch
prompting by batching queries into a smaller, token-
efficient prompt, that is then passed through an LLM
fine-tuned for batch prompting.

To address the inefficiency, Cheng et al. (2023)
proposed batch prompting, a technique that con-
catenates multiple problem instances into one
prompt and answers them through a single infer-
ence pass. Batch prompting amortizes the prompt-
ing costs by only encoding the prompt once per
batch, rather than once per example. However, ex-
isting batch prompting methods (Cheng et al., 2023;
Lin et al., 2023; Son et al., 2024) rely on lengthy,
repetitive prompts needing examples to ensure in-
struction following. As batch sizes increase, these
methods typically see drops in accuracy (Cheng
et al., 2023; Lin et al., 2023). Teaching a model the
batch prompt format may require few-shot exam-
ples, hindering its applicability to zero-shot prompt-
ing settings (e.g., if examples for the task are not
readily available).



In this work, we use fine-tuning to build an LLM
capable of batch prompting without the need for
lengthy contexts or in-context examples. As de-
scribed in Figure 1, our approach, Tune-n-Batch,
improves upon prior batch prompting methods,
by enabling the LLLM to process smaller, token-
efficient batch prompts through fine-tuning. We
construct a new dataset for this purpose by batching
a varying number of problem instances from nine
existing datasets and concatenating them with task
descriptions and any additional required context,
thereby automatically generating a large number of
batch prompts from existing data.  After fine-
tuning LLaMA-3-8B-Instruct on only 25 ques-
tions per task-batch size combination on a subset of
tasks, our fine-tuned model can effectively answer
batch prompts for both tasks included and excluded
from training. Fine-tuned LLaMA-3-8B-Instruct
maintains stable performance across various batch
sizes for each task and successfully follow format-
ting instructions.

Our contributions are: (1) Tune-n-Batch, a new
approach to enable the use of more token-efficient
batch prompts through LLM fine-tuning; (2) a new
dataset, containing 815,310 batch prompts, for the
purpose of fine-tuning and evaluating LLMs ac-
cording to our methodology; (3) an extensive eval-
uation assessing our approach across various lan-
guage understanding and reasoning tasks.

2 Methodology

2.1 Batch Prompt Format

Assume an LLM M places a probability distribu-
tion over strings y € V* given inputs x € V*.
While inputs to LLMs can be formatted in a variety
of ways, in the context of prompting, they typically
break down into a few distinct pieces.

First, a task description 'T' outlines the nature of
the task to be performed. An example of a task de-
scription is given in the top box in Figure 2. Often
this is placed in the system prompt as opposed to
the user prompt in LLMs that make the distinction.

We then have a specific problem instance ¢ to
handle. ¢ may be a one-off request (Generate a
story about...). ¢ may also reference some context
C that is problem specific (e.g., a document that
a question should be answered from). In general,
our task is to address a set of queries q1,...,qnN,
all of which share T' and some of which share C'.
In Figure 2, T consists of the task description, C
consists of the article, and ¢y, . . ., g4 are questions.

Typical LM prompting will invoke a; ~ M (- |
T, C, ¢;) for each g; in the dataset. a; is an answer
extracted from a sampled response; we assume
access to some response postprocessor to extract
the answers from the raw LLM output.

Batch prompting allows us to amortize the effort
of encoding 7" and C' across different queries g by
invoking ay,...,ag ~ M(- | T',C,q1,-..,qB)
for a batch size B. T” is a modified version of the
prompt T’ to enable the model to simultaneously
answer qi, . . ., ¢g (highlighted in red in Figure 2).
However, this batched formulation is not one that
LLMs are necessarily adapted to by default.

Previous Work on Batch Prompting Batch
prompting, initially proposed by Cheng et al.
(2023), involves a straightforward process of con-
catenating k selected in-context examples with b
queries, indexed as Question[i] and Answer[i],
into a single prompt, enabling a language model to
answer all questions in a single inference call to an
LLM. Figure 2 shows the context for a single batch
prompt. Batch prompting exploits the expanding
context windows of LLMs (Xiong et al., 2023) to
answer more questions per inference while preserv-
ing the efficiency of parallel processing.

Cheng et al. (2023) validate both its effectiveness
and efficiency (with token cost scaling theoretically
inversely proportional to b) on batch sizes up to
b = 6 on a range of CommonsenseQA, arithmetic
reasoning, and NLU/NLI benchmarks. Cheng et al.
found that BP performance suffers mild degrada-
tion with batch size, which steepens with task com-
plexity. Lin et al. (2023) developed a more ver-
bose batch prompt that incorporates instructions for
intermediate reasoning techniques such as chain-
of-thought (Wei et al., 2023). Furthermore, they
scaled their experiments to a much larger batch size
(b = 64) and subsequently proposed an iterative
voting strategy over permuted intra-batch orders to
mitigate the greater observed performance degra-
dation at larger batch sizes. While ensembling mul-
tiple attempts per question mitigates performance
loss, it undermines the token efficiency gains that
primarily motivate batch prompting.

Token Usage In terms of token usage, batch
prompting can be significantly more efficient that
standard prompting, as shared components, such as
T and C, are processed just once across multiple
problem instances. Although batch prompting does
require additional formatting instructions, these
costs are fixed, and are therefore amortized as the



Task Description

Batch Prompt for Four Queries

Standard Prompt for Single Query

Your task is to answer multiple-choice questions from the RACE dataset, based on one or more provided articles. Evaluate the articles and
questions to choose the most appropriate answer ('A’, 'B', 'C', or 'D') for each question. For each question, notated as Question[index], use
the exact format "Answer[index]: The answer is <calculated_answer>, where 'index' is the corresponding question index being answered, and
'<calculated_answer> is the answer letter of your chosen option. Do not output any other text, such as intermediate reasoning, other than

Answer[index]: The answer is<calculated_answer> for each question asked.

Shared Context

Shared Article for Questions[0:3]: Sometimes it may seem difficult to improve our health. If so, the following health habits may help you. Eat
breakfast every morning. Research shows that if you eat a meal in the morning you may not become too fat or eat too much during lunch. Eating
breakfast can help people feel better through the day. Get enough sleep. Poor sleep can influence our memory and learning. It can also cause
traffic accidents! Studies show that people who don't get enough sleep seem to get into more accidents. So stay safe and get enough sleep! Take
a walk every day. Walking is an easy way to exercise. You'd better meet friends for a walk, not for a meal. As you walk, you will see the beautiful
world around you. Once you try, you will find that adding a walk into your daily life is very easy. Join social groups. Social group scan provide
support. They might include sport teams, art or music groups. The people in the group can offer advice and can help each other in difficult times...

Problem Instances

Question[0]: The passage is mainly written for _.

A: students at school B: people who don't like running C: students who never have breakfast D: people who want to improve health

Question[1]: If you need help and want to help others, you'd better _ .

A: invite your friend to a meal B: make something with your friends C: become a member of a social group D: have a hobby

Question[2]: Which of the following is TRUE?

A: If you have breakfast every morning, you'll be fat. B: All the traffic accidents are caused by poor sleep.
C: To join a social group helps you have a healthy mind. D: Having a hobby is the best way to relax.

Question[3]: You may have a good memory and learn better if you _ .

Answer Choices: A: eat breakfast every morning B: have a good sleep C: take a walk every day D: join a social group

Figure 2: Example of a batch prompt for the RACE task. The task description 7" describes the RACE task; the shared
context C' needed for each problem instance ¢ in this example is the article needed to answer each comprehension
question. Note, 7" has been modified to include formatting instructions (as indicated by highlighted text) to become
T'. Batch prompting enables answering multiple questions about the same article without repeating the context or
task description, significantly reducing the input tokens required and the time needed per question.

batch size increases. Figure 2 illustrates this bene-
fit as it compares the size of a standard prompt for
a single problem instance as compared to a batch
prompt for four of them. In batch prompting, the
added cost for an additional problem is simply the
length of the problem instance g, whereas standard
prompting would also require shared components
such as 7" and C'. We describe these benefits more
formally in Appendix A.

2.2 Fine-tuning for Batch prompting

Our goal is to fine-tune a model M to perform well
at the batch prompting task. To do this, we will
train on an aggregated dataset D collected from
different tasks.

Each dataset instance consists of (¢;, a;, C;) tu-
ples, with the shared context C; being optional
(e.g., a context in QA datasets). From these, we
form tuples (77,C!, {q1,...,q5},{a1,...,aB}).
We then fine-tune a language model of choice in a
supervised fashion on this data. We minimize the
negative log likelihood of the tokens {a1,...,ap}
given (T7,C!,{q1,...,qp}). In Section 3.2, we
describe the choices of models and optimization
framework we use for this.

2.3 Training Data for Batch Prompting

Our batch prompting dataset includes the following
datasets, with specific task instructions and tem-
plates designed to minimize redundancies across
questions in the same batch.

* Tasks from the GLUE benchmark (Wang
et al., 2019), including linguistic acceptabil-
ity with CoLA (Warstadt et al., 2019), natu-
ral language inference with MNLI and RTE
(Williams et al., 2018; Wang et al., 2019),
paraphrase detection with MRPC (Dolan and
Brockett, 2005), and question paraphrase de-
tection with QQP (Iyer et al., 2017). The
MNLI dataset is split into matched and mis-
matched subsets to test in-domain and cross-
domain performance, respectively.

e CommonsenseQA (Talmor et al., 2019) for
evaluating commonsense reasoning abilities.

* The RACE dataset (Lai et al., 2017), designed
for reading comprehension tasks, is particu-
larly effective for batch prompting because it
provides multiple questions for each reading
passage, thereby eliminating the need to re-
peat the document context for every question.



Amount of Data Used To balance the number of
examples across different datasets and prevent large
training datasets such as MNLI from being over-
represented, we subsample from our batch prompt-
ing dataset. The number of training examples for
each task-batch size combination is determined by
(ﬁ} , indicating that as batch sizes increase,
the number of training examples decreases. For
batch sizes of 32 or greater, we train on just one
example per task. Our evaluation sets consist of
1,000 questions in the test set for each task.

3 Experimental Setup

3.1 Datasets

We evaluate the performance of both our non-
fine-tuned model and fine-tuned models across the
same nine datasets used for batch prompting (Sec-
tion 2.3).

For most of our datasets, we use a leave-one-out
approach where we fine-tune for batch prompting
excluding that dataset. This tests whether our batch
prompting system generalizes across tasks.!

We also reserve three tasks (CoLA, QQP, and
SST-2) to observe the performance of our model
fine-tuned on all 9 datasets, including training data
from the target tasks. This reflects the most opti-
mistic measure of “in-domain” performance from
batch prompting.

We use the existing train-test split established
from the original datasets of our batch prompting
dataset, except for datasets whose test set did not
include ground truth answers. For these datasets,
we use the validation sets as the test set.

In addition, we create a standard prompting
dataset, using the same tasks and train-test split.
Standard prompts are the same as batch prompts
with the exception that they only ask the model to
answer one question and have simpler formatting
instructions. Examples of our batch prompts, stan-
dard prompts, and related prior literature few-shot
batch prompts can be found in Appendix Section
E.

3.2 Models

We use LLaMA-3-8B-Instruct (Al@Meta, 2024)
with 4-bit quantization to evaluate our methodology
under two different configurations.

¢ Non-Fine-Tuned Model: We evaluated the

'When evaluating the fine-tuned model on the MNLI
datasets, we exclude both MNLI datasets from training.

original version of LLaMA-3-8B-Instruct in
its original weights.

e Tune-n-Batch: We evaluated a version of
the base model LLaMA-3-8B-Instruct fine-
tuned on Batch Prompting training data as
described in Section 2.3.

Due to the cost of fine-tuning a large lan-
guage model, we fine-tuned the base LLaMA-3-8B
Instruct using parameter-efficient fine-tuning
(PEFT). We use LoRA (Hu et al., 2021), a PEFT
method in which trainable low-rank matrices are
inserted into each transformer layer.

3.3 Baselines

To quantify any performance loss from batch
prompting, we compare the performance of stan-
dard prompting and batch prompting using both
respective datasets.

3.4 Metrics

Following Cheng et al. (2023), we use accuracy
as the primary metric for measuring model perfor-
mance. The accuracy metric enables us to identify
trends across tasks, models, and batch sizes, facili-
tating statistical testing and automatic evaluation.

We calculate accuracy using an answer parser de-
signed to robustly extract the answer across several
different formats we observed our LLMs produc-
ing. If an answer is not parseable, the model is
treated as having guessed the most likely class (or
randomly for multiple-choice tasks). We evaluate
the fraction of instances on which our parser fails
as parser error rate.’

We assess the significance of our results using a
paired t-test (Gosset, 1908) to compare overall fine-
tuned and non-fine-tuned model performance, and
Spearman correlation (Spearman, 1961) to investi-
gate relationships between batch size and answer
accuracy.

4 Results & Analysis

The results of our experiments are presented in Fig-
ure 3. We observed a substantial improvement in
performance for batch prompts (BP > 2) after

Note that this is an underestimate of the fraction of cases
where the model does not follow the exact output format spec-
ified in the instruction. In a real-world setting, we determined
that a system designer would most likely be using a flexible
answer parser, but note that answer parsing error rates are
generally higher for non-fine-tuned batch prompting if held to
the strict standard.



Comparing Tune-n-Batch and Non-Fine-Tuned Performance
of LLaMA-3-8B-Instruct for Batch Prompting
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Figure 3: Comparison of batch prompts performance before and after fine-tuning on various tasks. The non-
fine-tuned models shows decreased performance for batch prompting as batch size increases. After fine-tuning,
performance remains more stable across batch sizes for both fine-tuned tasks (solid lines) and tasks not included in
the fine-tuning (dashed lines). All accuracy results reported use multiple regular expressions to extract each answer,
with random guessing as a fallback when all regular expressions fail.

fine-tuning the model with the batch prompting
dataset. Notably, the fine-tuned model maintained
stable performance for batch prompts of all batch
sizes for tasks both tasks and unseen during train-
ing. In contrast, the non-fine-tuned model’s perfor-
mance decreased as the batch size increased.

Effect of fine-tuning Figure 3, depicts the accu-
racy across standard prompts and batch prompts
before and after fine-tuning. When the batch size is
sufficiently large, the fine-tuned model consistently
outperforms the non-fine-tuned model across all
tasks for batch prompting. This trend persists even
on tasks not included as part of training for the fine-
tuned model. The improvement in unseen tasks for
larger batch sizes indicates that our fine-tuning ap-
proach is generalizable to tasks beyond those used
during training. As the batch size increases, the
widening performance gap in unseen tasks between
both models suggests that the fine-tuned model is
learning the overall batch prompting task and an-
swer formatting rather than superficially learning
the underlying tasks during fine-tuning.

For significance testing, we randomly sample
200 examples for each task-batch size combination

across all batch sizes > 2, excluding the RACE
task due to insufficient data at larger batch sizes.
We control for the number of questions per task-
batch size, only performing tests on subsets with
an equal number of batch sizes. We conducted a
paired t-test to determine if the performance dif-
ference between the fine-tuned and non-fine-tuned
models was statistically significant. The results
showed that the fine-tuned model significantly out-
performed the non-fine-tuned model with a p-value
of 3.7 x 1076,

Similarly, we examined the relationship between
batch size and overall answer accuracy using Spear-
man correlation. For the non-fine-tuned model,
we found a significant negative correlation (rs =
—0.183, p = 3.2x1072). For the fine-tuned model,
we did not find a statistically significant correla-
tion between accuracy and batch size using the
Spearman correlation test (p > 0.05). This non-
significant result, along with the visual evidence
provided in Figure 3, suggests that fine-tuning the
LLM mitigates the negative impact of increasing
batch sizes on performance. In other words, after
fine-tuning, the model’s performance remains rela-
tively stable across different batch sizes, indicating
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Figure 4: Examining the relationship between question index and average accuracy at that question index. Results
are from an earlier training run, so per-task performance may differ from other figures.

that larger batch sizes do not lead to a significant
degradation in accuracy.

Relation Between Question Index and Accuracy
In Figure 4, we explore the impact of a query’s
position within a batch prompt on its accuracy. We
focus on batch size 8, since for larger batch sizes,
the number of examples per each bucket becomes
very small. Apart from the first question often
exhibiting slightly higher performance, we do not
observe a consistent pattern across question indices.
We again see that the fine-tuned model consistently
outperforms the non-fine-tuned model. However,
we do not see a trend of either the fine-tuned or
non-fine-tuned models consistently answering the
first or the last question more accurately than other
questions, which previous work on attention pat-
terns might suggest (Liu et al., 2023).

Prior work on batch prompting from Lin et al.
(2023) reports, in their experiments, that the av-
erage accuracy at each answer index within the
response to a batch prompt varies widely across
batch prompts for both GPT-3.5 and GPT-4. The
methodology used in their experiments is based on
a round-robin approach in which they run batch
prompts several times with questions rotated to
have visited each batch index. Our methodology
instead evaluates batch prompts in which questions
are batched and ordered randomly from a set of
1,000 batch prompts.

Analysis of Formatting Errors We manually
inspected various outputs generated through our

batch prompts prior fine-tuning to identify what
was causing parsing errors in this setting, espe-
cially for high batch sizes. Table 1 shows an illus-
trative sample of the outputs we evaluated. Overall,
we saw in our analysis that parsing errors were
caused by a complete breakdown in the model’s
ability to follow the provided instructions. Our
parsing methods were able to handle deviations
from the correct format with the main requirement
that each answer began with the correct indexing.
However, responses that ignore answer indexing
requirements and fail to consecutively answer ques-
tions with the correct indexing resulted in parsing
error.

In addition to responses that were essentially
nonsensical hallucinations, we found examples of
non-parseable responses that could interpreted to
provide valid answers upon further scrutiny. We
also show examples of these responses in Table 1.
Since these types of responses vary significantly
in terms of format and writing style, we did not
attempt to build an automatic parsing system for
them. Moreover, we did not manually parse all of
these responses as the cost for doing so was deemed
excessive.

Token Efficiency in Batch Prompting Cheng
et al. (2023) defines the token efficiency for stan-
1

dard prompting as Nstandard = " and for batch

prompting as Mpaich = KLqu in Equation 1, where
K denotes the number of in-context exemplars and
b is the number of samples in a batch.



Task  Response Correctly Formatted Parseable
QQP Answer[0]: The answer is 0.
Answer[1]: The answer is 1.
RACE Answer[0]: The answer is C.
Answer[1]: The answer is B.
QQP  Question[0]: The answer is 0. False
Question[1]: The answer is 1.
RACE  Question[0]: The correct answer is C: Sunshine in Seattle is rare during False
the winter months.
Question[1]: The correct answer is B: exhaustion, depression and lack
of energy caused by a lack of sunlight.
QQP  Answer[index]: The answer is 0. For question pairs 0-2, 4-6, 8-10, False False
12-14, 16-18, 20-22, 24-26, 28-30, 32-34, 36-38, 40-42, 44-46, 48-50,
52-54, 56-58, 60-62, and 63-64: The questions are not duplicates.
For question pairs 3, 7, 11, 15, 19, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43,
45,47, 49, 51, 53,55, 57, 59, 61, and 62: The questions are duplicates.
RACE Answer[0]: The gentleman dismissed the other boys because they False False

didn’t pick up the book lying on the floor.
Answer[1]: The gentleman hired the boy because he was polite and

gentlemanly.

Table 1: Examples of formatting errors produced by the non-fine-tuned model. Note, these responses have been
shortened as their actual length is too long to display in this table.

1
Tstandard = TH
; ()
Mbatch = m

However, the token efficiency formulas in Equa-
tion 1 make several simplifying assumptions that
may not hold in practice. The formulas do not
explicitly account for tokens used for the task de-
scription ('I"), answer, or batch prompt-specific for-
matting instructions (£), which may differ between
standard prompting and batch prompting. More-
over, they overlook the potential presence of shared
context tokens (C') that need not be repeated for
multiple questions over the same context or docu-
ment. Additionally, the formulas assume an equal
number of query () and answer (A) tokens for
both prompting methods and do not distinguish be-
tween input and output tokens. While these simpli-
fications may be justified when few-shot examples
dominate the token count, a more precise break-
down of the components is necessary for accurate
token efficiency analysis in concise prompts.

We present further discussion of token efficiency
in Appendix A.

Token Analysis To show the token efficiency of
the batch prompts we are using, we present an
analysis of the token counts of batch prompts and
standard prompts in Figure 5 for the RTE task.’

3Prior work creating batch prompts for RTE did not pro-
vide complete batch prompts containing in-context examples
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Figure 5: Comparing the token efficiency of batch
prompting and standard prompting on the RTE dataset.

As seen in Figure 5, Tune-n-Batch batch prompts
are substantially more token efficient than previous
batch prompting and standard prompting methods.
Across all batch sizes greater than 1, the number of
tokens per problem instance was significantly lower
for our method than that of other prompting meth-
ods. Moreover, the number of tokens per query
in our batch prompts decreased inversely with the
batch size.

When comparing this method to prior batch
prompting methods, we see how the removal of in-
context examples have a dramatic effect on reduc-
ing the overall prompt length. Through the Tune-

across batch sizes or code for forming the batch prompts. The
token count estimates for existing batch prompts on are based
on assumptions of example formatting and the number of
in-context examples.



n-Batch method, we do not require these examples
to induce correct responses to batch prompts, as
we use fine-tuning to teach LLMs to do this. As
the batch size increases, we can expect the num-
ber of tokens per problem instance to eventually
converge among all three methods, but the batch
size required for this to occurs is not practically
applicable. Moreover, these methods reported de-
creases in accuracy as batch size increases unlike
the results we present in which accuracy remains
relatively stable across batch sizes for most tasks.

5 Related Work

Batching in Deep Learning Systems Batching
has been employed in neural network training since
Rumelhart et al. (1986) and has since gained popu-
larity for enhancing the efficiency of both training
and inference (Bertsekas, 2011; Bengio, 2012). It
has become a standard practice for training large
language models since the introduction of the trans-
former architecture (Vaswani et al., 2017; Brown
et al., 2020; Yu et al., 2022; Touvron et al., 2023).
Under the right conditions, batching can accelerate
training through parallelization (Goyal et al., 2018),
improve accuracy by aggregating gradients (Mas-
ters and Luschi, 2018), and reduce environmental
costs (Yarally et al., 2023).

Batching has also been essential for reducing
inference time when processing large sets of model
queries. However, the parameter count of large lan-
guage models (LLMs) is growing faster than GPU
memory capacities (Rajbhandari et al., 2021), chal-
lenging the traditional batching approach where
each query is allocated separate GPU memory and
processed in parallel.

SysML approaches to redundant input While
Cheng et al. (2023), Lin et al. (2023), and this
work approach the concept of reusing redundant in-
puts to an LLM through efficient prompting strate-
gies, there are also approaches that attempt to solve
this problem at a lower level. KV cache reusing
schemes reduces the time it take to process input
text in an LLM by pre-computing and caching the
tensors of frequently reused texts. Yao et al. (2024)
improves upon prior methods, which often trade-
off speed with generation quality, by selectively
re-computing certain portions of the text while
reusing the rest from the KV cache, thereby preserv-
ing cross-attention and thus the generation quality
while still benefiting from the speedup provided
by caching. Another approach, called Attention-

Store, uses a heirarchical KV caching system to
reuse input tensors across multi-turn conversations
in LLMs (Gao et al., 2024).

Fine-tuning for Instruction Following Our
methodology of fine-tuning for batch prompting
on certain tasks while expecting the model to gen-
eralize this style of prompting on other unseen tasks
is motivated by prior work on instruction follow-
ing. The zero-shot capabilities of LLMs (Brown
et al., 2020) drove Sanh et al. (2022) to discover
that explicitly fine-tuning an LLM on a large set
of tasks could lead to better zero-shot generaliza-
tion on unseen tasks, implying that LLMs can be
trained on how to follow instructions. Wei et al.
(2022) further corroborates this phenomenon by
developing an instruction-tuned model called FLAN,
which outperformed GPT-3 on several tasks despite
its smaller size.

6 Conclusion

In this work, we present a novel approach to
batch prompting, demonstrating that fine-tuning a
large language model on a diverse dataset of batch
prompts enables effective batch prompting without
the need for lengthy prompts or few-shot exam-
ples. Our fine-tuned model maintains stable perfor-
mance across various batch sizes, even on unseen
tasks, contrasting with the performance degrada-
tion observed in non-fine-tuned models as batch
size increases. Our findings demonstrate that fine-
tuning LLMs for batch prompting can significantly
improve their efficiency and applicability in real-
world scenarios, making it possible to process a
larger number of queries using fewer computational
resources.

We encourage future work to explore batch
prompting as an efficient alternative to standard
prompting methods. Future work on batch prompt-
ing should incorporate chain-of-thought (CoT) rea-
soning (Wei et al., 2023), as CoT could be instru-
mental for extending batch prompting to multi-step
tasks, such as mathematical reasoning. While this
paper mainly explored single task batch prompts,
the development of well-performing batch prompts
encompassing multiple tasks could offer flexibil-
ity while retaining the efficiency gains from batch
prompting. With these efficiency benefits in mind,
we believe future work should also focus on devel-
oping large language models capable of processing
batch prompts with large batch sizes as accurately
as standard prompts.



Limitations

Our study has several limitations that should be ad-
dressed in future research. We only experimented
with a single model, LLaMA-3-8B-Instruct, due
the computational requirements of fine-tuning
larger models. Future work should investigate
whether our findings generalize to a diverse set of
models of different sizes, architectures, and capabil-
ities, such as T5 and Llama-3-70B-Instruct, to de-
termine if effective batch prompting is an emergent
property of larger models or if it can be achieved
after fine-tuning with smaller models as well.

Because of limited context window sizes and
the token scaling of including larger batches in a
context, our analysis only went up to batches of
size 32. Further work is needed to determine if the
performance stability observed in our experiments
extends to larger batch sizes of > 64.

Another limitation of our study is the potential
loss of generalizability due to fine-tuning. When
comparing standard prompting to batch prompting,
we observed a decrease in performance on tasks
that were not included in the fine-tuning process.
Although we attempted to mitigate this risk by fine-
tuning on a small number of examples, future work
should explore alternative methods for maintain-
ing generalizability, such as meta-learning, multi-
task learning, and fine-tuning approaches designed
to prevent the loss of generality. Exploring the
use of instruction tuning (Zhang et al., 2024) and
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) or Direct Preference
Optimization (DPO) (Rafailov et al., 2023) to fine-
tune the model for batch prompting could be a
viable alternative to Parameter-efficient fine-tuning
(PEFT). Additionally, more extensive experiments
are needed to quantify the extent of catastrophic for-
getting and its impact on the model’s performance
on non-batch prompting tasks after fine-tuning.
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A Batch Prompting Token Efficiency

Table 2 breaks down the components of standard
prompts (SP) and batch prompts (BP), providing
formulas to calculate input and output token ef-
ficiency. The table reveals that SP and BP have
relatively equal output token efficiency, with SP
slightly more efficient due to not requiring answer
index formatting. However, this difference may
be significant given the higher API costs for out-
put generation compared to input tokens. The task
description 7', formatting instructions F’, shared
context C', and examples K are fixed costs across
all batch sizes, while query tokens () depend on the
batch size. In scenarios where fixed costs are a sig-
nificant portion of the total tokens, batch prompting
can be substantially more efficient than standard
prompting. As batch size increases, fixed costs are
amortized over more queries, reducing per-query
token costs. This is particularly beneficial when
fixed costs are high relative to variable costs. How-
ever, the benefits of batch prompting may diminish
beyond a certain batch size, as variable costs scale
linearly while fixed costs remain constant, leading
to a point of diminishing returns.

B Supplemental Results

Table 3 provides the numerical values for accuracy
present in Figure 3 along with the MNLI Matched
task.

C Licensing and Artifact Information

Our use of LLaMA-3-8B-Instruct is permitted un-
der research purposes. The use of existing datasets,
such as those in the batch prompting dataset, is
allowed for research and non-commercial purposes
in accordance with the applicable data usage agree-
ments.

D Hyperparameter Settings

We used the default hyperparameters for SFT train-
ing for LORA. We used LoRA (Low-Rank Adap-
tation) with default values of lora_alpha = 16,
lora_dropout = 0.1, and r=64. Hyperparame-
ters like a learning rate of 2 x 10~% weight decay
of 0.001, and max gradient norm of 0.3 were em-
ployed during training.

For parsing and regular expression testing,
we used Python’s built-in re library with func-
tions like re.findall(), re.finditer(), and re.search(),
along with various regular expression patterns
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tailored to the task requirements. For testing
and evaluation, we employed the scikit-learn li-
brary (Pedregosa et al., 2011), utilizing modules
like sklearn.metrics for computing evaluation met-
rics, sklearn.model_selection for techniques like
cross-validation, and sklearn.preprocessing for data
normalization and scaling. The specific implemen-
tations and parameter settings were adjusted based
on the parsing and evaluation needs.



Standard Prompting Batch Prompting

T - Task Description (Tsp) T - Task Description (Ipp)

F - Formatting (Fisp) F - Formatting (Fpp)

C - Context (opt) (Csp) C - Context (opt) (Cpp)

K - Examples (opt) (Ksp) K - Examples (opt) (Kpp)

Q- Query (Qsp) b- Q- Query tokens per query (Qpp)

A - Answer (Agp) b - A - Answer tokens per answer (App)

Total Token Formula (7},4;)

Tyotar,sp = Tsp + Fsp + Csp + Ksp + Qsp + Asp | Tioar,sp = Top + Fap + Cpp + Kpp + b(Qpp + App)
Input Token Formula (75, p.¢)

Tinput,sp = Tsp + Fsp 4+ Csp + Ksp + Qsp | Tinput.BP = TP + Fp + Cpp + Kp + b(QpP)
Output Token Formula (T}y:)
Toutput,SP = ASP ‘ Toutput,BP = b(ABP)

Table 2: Breaking down the components of prompts for token efficiency analysis.

Non-Fine-Tuned Tune-n-Batch
Task Prompting Type and Batch Size Prompting Type and Batch Size
Seen SP=1 BP=2 BP=4 BP=8 BP=16 BP=32 | Seen SP=1 BP=2 BP=4 BP=8 BP=16 BP=32
CoLA No 804 790 772 775 66.7 76.9 Yes 776 814 803 805 79.8 80.3
QQP No 68.8 64.6 63.6 62.5 61.5 54.1 Yes 71.6 68.4 71.7 71.7 71.3 71.4
SST2 No 904 91.0 924 920 91.4 93.2 Yes 936 946 945 952 94.7 96.4
Common Sense No 592 61.6 6l1.1 60.6 50.2 31.8 No 640 506 547 535 52.6 53.7

MNLI Matched No 628 560 537 517 49.0 44.6 No 57.6 474 485 453 485 443
MNLI Mismatched | No 64.0 598 540 542 51.5 472 No 612 450 494 477 489 49.1

MRPC No 756 738 728 69.6 65.5 58.6 No 688 645 667 64.7 65.3 64.9
RACE No 642 610 517 549 - - No 648 624 667 62.0 - -
RTE No 680 656 678 640 58.1 68.8 No 792 775 793  80.6 80.2 78.7

Table 3: Comparing the Performance of L1ama3-8B Instruct before and after fine-tuning. All other tasks report
the performance with the task excluded from training. SP denotes Standard Prompting, whereas BP represents
Batch Prompting. Seen indicates that the training set of the task was included in fine-tuning.
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E Prompt Comparisons

We include our prompts as well as few-shot batch prompts from prior work. We see that the few-shot
batch prompts require a significant number of examples and additional text to demonstrate the formatting
of the task, which is not required for our fine-tuned model.

Our Zero-Shot Standard Prompt for QQP

Your task is to determine if a pair of questions from the QQP dataset are duplicates. Classify
each question pair as 0 (not duplicate) or 1 (duplicate) by analyzing lexical similarity and
question intent. Answer using the format "The classification is <calculated_answer>", where
<calculated_answer> is 0 or 1. Do not output any other text, such as intermediate reasoning, other
than The classification is <calculated_answer> for the question pair asked.

Question1: What is the meaning of the Urdu word *Jaah’?
Question2: What is the meaning of Urdu word ’Ziadti’?

Our Zero-Shot Batch Prompt for QQP

Your task is to determine if pairs of questions are duplicates from a list of question pairs from
the QQP dataset. Classify each question pair as O (not duplicate) or 1 (duplicate). Analyze
lexical similarity and question intent. For each question pair, answer using the exact format
"Answer[index]: The classification is <calculated_answer>", where ’index’ is the corresponding
question index being answered, and <calculated_answer> is a 0 or 1. Do not output any other text,
such as intermediate reasoning, other than Answer[index]: The answer is <calculated_answer> for
each question-pair asked.

Question1[0]: What is the meaning of the Urdu word ’Jaah’?

Question2[0]: What is the meaning of Urdu word *Ziadti’?
Question1[1]: How can we simplify our life?
Question2[1]: Life Advice: How can I make my life simpler?
Question1[2]: How does Venmo work?
Question2[2]: Are Venmo payouts reversible?
Question1[3]: What should I know before buying a house?

]

Question2[3]: What should I know before buying a house in Europe?

(Lin et al., 2023) Few-Shot Batch Prompt for QQP

You are a professional NLP expert at duplicate question detection. You will be given [BATCH-
SIZE] pairs of data from Quora Question Pairs (QQP) dataset each time, as input. Each data
includes a pair data, "Question1” and ”Question2”. Your goal to determine whether two questions
are duplicates of each other. You need to classify into below two classes:

class 1: if they have the same meaning (semantically equivalent).

class O: if they do NOT have the same meaning.

Question pair O:
Question]: XxXxXX
Question2: XXXXX
Question pair 1:
Question]: Xxxxxx



Question2: XXXXX

Below are the outputs you need to generate. "X can be 1’ or ’0’. [Conf-Description]

Label for Question pair O: [class X][Place-Holder-Conf]
Label for Question pair 1: [class X][Place-Holder-Conf]

Follow the formatting of the following examples.

Question pair O:

Questionl: Does Hanes’s online store accept PayPal?

Question2: How are Hanes t-shirts made?

Question pair 1:

Questionl: What are the best Norditrac exercise routines?

Question2: What are the best exercise routines?

Question pair 2:

Questionl: How does someone sever their carotid artery with a kitchen knife?
Question2: Do any muscle protect the carotid artery or is it right under the skin?
Question pair 3:

Questionl: Gravity: Why doesn’t the Earth fall into the Sun or the Moon fall into the Earth?
Question2: Why doesn’t the earth accelerate towards the sun?

Label for Question pair 0: [0](Confident)

Label for Question pair 1: [0](Not Confident)

Label for Question pair 2: [0](Confident)

Label for Question pair 3: [1](Confident)

Now answer the following questions.

Question pair 0:

Question1: What is the meaning of the Urdu word *Jaah’?
Question2: What is the meaning of Urdu word ’Ziadti’?
Question pair 1:

Questionl: How can we simplify our life?

Question2: Life Advice: How can I make my life simpler?
Question pair 2:

Questionl: How does Venmo work?

Question2: Are Venmo payouts reversible?

Question pair 3:

Questionl: What should I know before buying a house?
Question2: What should I know before buying a house in Europe?

Below are the outputs you need to generate. X’ can be ’1° or 0. [Conf-Description]

[Place-Holder-Conf]
[Place-Holder-Conf]
[Place-Holder-Conf]
[Place-Holder-Conf]

Label for Question pair 0: [class X
Label for Question pair 1: [class X
Label for Question pair 2: [class X
Label for Question pair 3: [class X

e e

15



Please make sure each generated label is in format of [class X].
Please make sure to generate [BATCH-SIZE] labels.

(Note: (Lin et al., 2023) only provided a condensed version of the batch prompt for the QQP
dataset, omitting few-shot examples and other text instructions. We inferred a likely prompt based
on the abbreviated version included in the appendix, but there may be minor differences from the
one used by the original authors.)

Our Zero-Shot Standard Prompt for SST2

Your task is to classify a sentence from the SST-2 dataset as positive or negative in sentiment.
Answer using the format "The answer is <calculated_answer>.", where <calculated_answer>
is O for negative sentiment and 1 for positive sentiment. Do not output any other text, such as
intermediate reasoning, other than The answer is <calculated_answer> for the question asked.
Sentence: that stealing harvard is too busy getting in its own way to be anything but frustrating ,
boring , and forgettable

Our Zero-Shot Batch Prompt for SST2

Your task is to classify sentences for each question in a list of questions from the SST-2 dataset as
positive or negative in sentiment. For each question, notated as Question[index], answer using
the the exact format "Answer[index]: The answer is <calculated_answer>.", where ’index’ is
the corresponding question number being answered, and <calculated_answer> is O for negative
sentiment and 1 for positive sentiment. Do not output any other text, such as intermediate
reasoning, other than Answer[index]: The answer is <calculated_answer> for each question asked.

Question[0]: Sentence[0]: that stealing harvard is too busy getting in its own way to be anything
but frustrating , boring , and forgettable

Question[1]: Sentence[1]: everyone ’s insecure in lovely and amazing , a poignant and wryly
amusing film about mothers , daughters and their relationships.

Question[2]: Sentence[2]: good news

Question[3]: Sentence[3]: been saved if the director , tom dey , had spliced together bits and
pieces of midnight run and 48 hours ( and , for that matter , shrek )

(Cheng et al., 2023) Few-Shot Batch Prompt for GSM8K

System

The answers should respond to each question the user inputs. One line one answer starting with
Alidx],no other line break.

User

Q[1]: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?

QI[2]: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?

QI[3]: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have
left in total?

Q[4]: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?

Assistant

A[1]: There are 15 trees originally. Then there were 21 trees after some more were planted. So



there must have been 21 - 15 = 6. The answer is 6.

A[2]: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

A[3]: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39. The answer is 39.

A[4]: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8. The answer is 8.

User

Q[1]: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now?

Q[2]: There were nine computers in the server room. Five more computers were installed each
day, from monday

to thursday. How many computers are now in the server room? Q[3]: Michael had 58 golf balls.
On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf

balls did he have at the end of wednesday?

Q[4]: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Assistant

A[1]: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more
toys. 5 +4 =9. The answer is 9.

A[2]: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5
* 4 =20 computers were added. 9 + 20 is 29. The answer is 29.

A[3]: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After
losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.

A[4]: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 -
15 dollars left. 23 - 15 is 8. The answer is 8.

User

Q[1]: A garden produced 237 potatoes, 60 fewer cucumbers and twice as many peppers than the
cucumbers. How many vegetables did the garden produce?

QI[2]: John’s cow weighs 400 pounds. It increased its weight to 1.5 times its starting weight. He is
able to sell the cow for $3 per pound. How much more is it worth after gaining the weight?

Q[3]: John writes 20 pages a day. How long will it take him to write 3 books that are 400 pages
each?

Q[4]: James has a rainwater collection barrel. For each inch of rain he collects 15 gallons. On
Monday it rained 4 inches and on Tuesday it rained 3 inches. He can sell water for $1.2 per gallon.
How much money did he make from selling all the water?

Assistant

A[1]: The garden produced 237 - 60 = 177 cucumbers. The garden produced 177 * 2 = 354
peppers. The garden produced 237 + 177 + 354 = 768 vegetables. The answer is 768.

A[2]: The cow initially weighs 400 * 1.5 = 600 pounds. So it gained 600 - 400 = 200 pounds. It is
worth 200 * 3 = 600 dollars more. The answer is 600.

A[3]: He wants to write 3 * 400 = 1200 pages. So it will take him 1200 / 20= 60 days The answer
is 60.

A[4]: It rained 3 + 4 =7 inches So he collected 7 * 15 = 105 gallons So he makes 105 * 1.2 = 126
from selling the water. The answer is 126.

User

QI[0]: To get to an island called "Virgo", Tom needs to travel by plane and then by boat. The plane
trip is four times longer than the boat trip, and the boat trip takes up to 2 hours. In how many hours
is Tom able to get to the "Virgo" island?

Q[1]: Winwin won $50 in a lottery. She paid 20% for the tax and she paid $5 for the processing
fee. How much was she able to take home?

Q[2]: Grandma left $124,600 in her will. She gave half of it to her favorite grandchild, Shelby.
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The rest was to be evenly divided among the remaining 10 grandchildren. How many

Q[3]: John and his best friend Steve bought 12 cupcakes together. Each cupcake cost $1.50. If
they split the costs evenly, how much did each person pay?

Assistant
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