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Abstract

The growing capabilities of Large Language001
Models (LLMs) have enabled batch prompt-002
ing (BP), the technique of concatenating mul-003
tiple questions into one prompt and answer-004
ing all questions in one inference pass. How-005
ever, current batch prompting techniques re-006
quire lengthy prompts that need few-shot ex-007
amples and formatting instructions, reporting008
decreased accuracy per question as the batch009
size grows. In this paper, we show that this010
accuracy loss can be mitigated by fine-tuning011
models for batch prompting. We aggregate012
training data for batch prompting by select-013
ing batches from nine datasets with varying014
batch sizes. We demonstrate that after lim-015
ited fine-tuning of LLaMA-3-8B-Instruct on016
our batch prompting dataset, BP can be per-017
formed effectively without in-prompt exam-018
ples or repetitive formatting. Our fine-tuned019
LLaMA-3-8B-Instruct model exhibits consis-020
tent performance across various batch sizes on021
tasks seen and unseen during training.022

1 Introduction023

Large Language Models (LLMs) have demon-024

strated remarkable capabilities in understanding025

and generating human language. Their capability026

for in-context learning (ICL), where instructions027

and examples are provided within the input prompt,028

is widely used across different tasks and model029

sizes. By leveraging the patterns and information030

present in the prompt, LLMs can infer the desired031

task and generate suitable responses without ex-032

plicit training on that particular task. However, the033

best performance of in-context learning is often034

achieved through detailed instructions (Bai et al.,035

2022) or by providing many ICL examples (Agar-036

wal et al., 2024; Bertsch et al., 2024), both of037

which result in high inference costs: when standard038

prompting (SP) is used to do inference, this context039

is re-encoded for every problem instance.040

Figure 1: Standard prompting involves completing one
query per inference call. Batch prompting (Cheng et al.,
2023) batches multiple queries into a single prompt, en-
abling all questions to be completed in a single inference
call. Our approach, Tune-n-Batch, improves upon batch
prompting by batching queries into a smaller, token-
efficient prompt, that is then passed through an LLM
fine-tuned for batch prompting.

To address the inefficiency, Cheng et al. (2023) 041

proposed batch prompting, a technique that con- 042

catenates multiple problem instances into one 043

prompt and answers them through a single infer- 044

ence pass. Batch prompting amortizes the prompt- 045

ing costs by only encoding the prompt once per 046

batch, rather than once per example. However, ex- 047

isting batch prompting methods (Cheng et al., 2023; 048

Lin et al., 2023; Son et al., 2024) rely on lengthy, 049

repetitive prompts needing examples to ensure in- 050

struction following. As batch sizes increase, these 051

methods typically see drops in accuracy (Cheng 052

et al., 2023; Lin et al., 2023). Teaching a model the 053

batch prompt format may require few-shot exam- 054

ples, hindering its applicability to zero-shot prompt- 055

ing settings (e.g., if examples for the task are not 056

readily available). 057
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In this work, we use fine-tuning to build an LLM058

capable of batch prompting without the need for059

lengthy contexts or in-context examples. As de-060

scribed in Figure 1, our approach, Tune-n-Batch,061

improves upon prior batch prompting methods,062

by enabling the LLM to process smaller, token-063

efficient batch prompts through fine-tuning. We064

construct a new dataset for this purpose by batching065

a varying number of problem instances from nine066

existing datasets and concatenating them with task067

descriptions and any additional required context,068

thereby automatically generating a large number of069

batch prompts from existing data. After fine-070

tuning LLaMA-3-8B-Instruct on only 25 ques-071

tions per task-batch size combination on a subset of072

tasks, our fine-tuned model can effectively answer073

batch prompts for both tasks included and excluded074

from training. Fine-tuned LLaMA-3-8B-Instruct075

maintains stable performance across various batch076

sizes for each task and successfully follow format-077

ting instructions.078

Our contributions are: (1) Tune-n-Batch, a new079

approach to enable the use of more token-efficient080

batch prompts through LLM fine-tuning; (2) a new081

dataset, containing 815,310 batch prompts, for the082

purpose of fine-tuning and evaluating LLMs ac-083

cording to our methodology; (3) an extensive eval-084

uation assessing our approach across various lan-085

guage understanding and reasoning tasks.086

2 Methodology087

2.1 Batch Prompt Format088

Assume an LLM M places a probability distribu-089

tion over strings y ∈ V∗ given inputs x ∈ V∗.090

While inputs to LLMs can be formatted in a variety091

of ways, in the context of prompting, they typically092

break down into a few distinct pieces.093

First, a task description T outlines the nature of094

the task to be performed. An example of a task de-095

scription is given in the top box in Figure 2. Often096

this is placed in the system prompt as opposed to097

the user prompt in LLMs that make the distinction.098

We then have a specific problem instance q to099

handle. q may be a one-off request (Generate a100

story about...). q may also reference some context101

C that is problem specific (e.g., a document that102

a question should be answered from). In general,103

our task is to address a set of queries q1, . . . , qN ,104

all of which share T and some of which share C.105

In Figure 2, T consists of the task description, C106

consists of the article, and q1, . . . , q4 are questions.107

Typical LM prompting will invoke ai ∼ M(· | 108

T,C, qi) for each qi in the dataset. ai is an answer 109

extracted from a sampled response; we assume 110

access to some response postprocessor to extract 111

the answers from the raw LLM output. 112

Batch prompting allows us to amortize the effort 113

of encoding T and C across different queries q by 114

invoking a1, . . . , aB ∼ M(· | T ′, C, q1, . . . , qB) 115

for a batch size B. T ′ is a modified version of the 116

prompt T to enable the model to simultaneously 117

answer q1, . . . , qB (highlighted in red in Figure 2). 118

However, this batched formulation is not one that 119

LLMs are necessarily adapted to by default. 120

Previous Work on Batch Prompting Batch 121

prompting, initially proposed by Cheng et al. 122

(2023), involves a straightforward process of con- 123

catenating k selected in-context examples with b 124

queries, indexed as Question[i] and Answer[i], 125

into a single prompt, enabling a language model to 126

answer all questions in a single inference call to an 127

LLM. Figure 2 shows the context for a single batch 128

prompt. Batch prompting exploits the expanding 129

context windows of LLMs (Xiong et al., 2023) to 130

answer more questions per inference while preserv- 131

ing the efficiency of parallel processing. 132

Cheng et al. (2023) validate both its effectiveness 133

and efficiency (with token cost scaling theoretically 134

inversely proportional to b) on batch sizes up to 135

b = 6 on a range of CommonsenseQA, arithmetic 136

reasoning, and NLU/NLI benchmarks. Cheng et al. 137

found that BP performance suffers mild degrada- 138

tion with batch size, which steepens with task com- 139

plexity. Lin et al. (2023) developed a more ver- 140

bose batch prompt that incorporates instructions for 141

intermediate reasoning techniques such as chain- 142

of-thought (Wei et al., 2023). Furthermore, they 143

scaled their experiments to a much larger batch size 144

(b = 64) and subsequently proposed an iterative 145

voting strategy over permuted intra-batch orders to 146

mitigate the greater observed performance degra- 147

dation at larger batch sizes. While ensembling mul- 148

tiple attempts per question mitigates performance 149

loss, it undermines the token efficiency gains that 150

primarily motivate batch prompting. 151

Token Usage In terms of token usage, batch 152

prompting can be significantly more efficient that 153

standard prompting, as shared components, such as 154

T and C, are processed just once across multiple 155

problem instances. Although batch prompting does 156

require additional formatting instructions, these 157

costs are fixed, and are therefore amortized as the 158
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Figure 2: Example of a batch prompt for the RACE task. The task description T describes the RACE task; the shared
context C needed for each problem instance q in this example is the article needed to answer each comprehension
question. Note, T has been modified to include formatting instructions (as indicated by highlighted text) to become
T ′. Batch prompting enables answering multiple questions about the same article without repeating the context or
task description, significantly reducing the input tokens required and the time needed per question.

batch size increases. Figure 2 illustrates this bene-159

fit as it compares the size of a standard prompt for160

a single problem instance as compared to a batch161

prompt for four of them. In batch prompting, the162

added cost for an additional problem is simply the163

length of the problem instance q, whereas standard164

prompting would also require shared components165

such as T and C. We describe these benefits more166

formally in Appendix A.167

2.2 Fine-tuning for Batch prompting168

Our goal is to fine-tune a model M to perform well169

at the batch prompting task. To do this, we will170

train on an aggregated dataset D collected from171

different tasks.172

Each dataset instance consists of (qi, ai, Ci) tu-173

ples, with the shared context Ci being optional174

(e.g., a context in QA datasets). From these, we175

form tuples (T ′
i , C

′
i, {q1, . . . , qB}, {a1, . . . , aB}).176

We then fine-tune a language model of choice in a177

supervised fashion on this data. We minimize the178

negative log likelihood of the tokens {a1, . . . , aB}179

given (T ′
i , C

′
i, {q1, . . . , qB}). In Section 3.2, we180

describe the choices of models and optimization181

framework we use for this.182

2.3 Training Data for Batch Prompting 183

Our batch prompting dataset includes the following 184

datasets, with specific task instructions and tem- 185

plates designed to minimize redundancies across 186

questions in the same batch. 187

• Tasks from the GLUE benchmark (Wang 188

et al., 2019), including linguistic acceptabil- 189

ity with CoLA (Warstadt et al., 2019), natu- 190

ral language inference with MNLI and RTE 191

(Williams et al., 2018; Wang et al., 2019), 192

paraphrase detection with MRPC (Dolan and 193

Brockett, 2005), and question paraphrase de- 194

tection with QQP (Iyer et al., 2017). The 195

MNLI dataset is split into matched and mis- 196

matched subsets to test in-domain and cross- 197

domain performance, respectively. 198

• CommonsenseQA (Talmor et al., 2019) for 199

evaluating commonsense reasoning abilities. 200

• The RACE dataset (Lai et al., 2017), designed 201

for reading comprehension tasks, is particu- 202

larly effective for batch prompting because it 203

provides multiple questions for each reading 204

passage, thereby eliminating the need to re- 205

peat the document context for every question. 206
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Amount of Data Used To balance the number of207

examples across different datasets and prevent large208

training datasets such as MNLI from being over-209

represented, we subsample from our batch prompt-210

ing dataset. The number of training examples for211

each task-batch size combination is determined by212 ⌈
25

batch size

⌉
, indicating that as batch sizes increase,213

the number of training examples decreases. For214

batch sizes of 32 or greater, we train on just one215

example per task. Our evaluation sets consist of216

1,000 questions in the test set for each task.217

3 Experimental Setup218

3.1 Datasets219

We evaluate the performance of both our non-220

fine-tuned model and fine-tuned models across the221

same nine datasets used for batch prompting (Sec-222

tion 2.3).223

For most of our datasets, we use a leave-one-out224

approach where we fine-tune for batch prompting225

excluding that dataset. This tests whether our batch226

prompting system generalizes across tasks.1227

We also reserve three tasks (CoLA, QQP, and228

SST-2) to observe the performance of our model229

fine-tuned on all 9 datasets, including training data230

from the target tasks. This reflects the most opti-231

mistic measure of “in-domain” performance from232

batch prompting.233

We use the existing train-test split established234

from the original datasets of our batch prompting235

dataset, except for datasets whose test set did not236

include ground truth answers. For these datasets,237

we use the validation sets as the test set.238

In addition, we create a standard prompting239

dataset, using the same tasks and train-test split.240

Standard prompts are the same as batch prompts241

with the exception that they only ask the model to242

answer one question and have simpler formatting243

instructions. Examples of our batch prompts, stan-244

dard prompts, and related prior literature few-shot245

batch prompts can be found in Appendix Section246

E.247

3.2 Models248

We use LLaMA-3-8B-Instruct (AI@Meta, 2024)249

with 4-bit quantization to evaluate our methodology250

under two different configurations.251

• Non-Fine-Tuned Model: We evaluated the252

1When evaluating the fine-tuned model on the MNLI
datasets, we exclude both MNLI datasets from training.

original version of LLaMA-3-8B-Instruct in 253

its original weights. 254

• Tune-n-Batch: We evaluated a version of 255

the base model LLaMA-3-8B-Instruct fine- 256

tuned on Batch Prompting training data as 257

described in Section 2.3. 258

Due to the cost of fine-tuning a large lan- 259

guage model, we fine-tuned the base LLaMA-3-8B 260

Instruct using parameter-efficient fine-tuning 261

(PEFT). We use LoRA (Hu et al., 2021), a PEFT 262

method in which trainable low-rank matrices are 263

inserted into each transformer layer. 264

3.3 Baselines 265

To quantify any performance loss from batch 266

prompting, we compare the performance of stan- 267

dard prompting and batch prompting using both 268

respective datasets. 269

3.4 Metrics 270

Following Cheng et al. (2023), we use accuracy 271

as the primary metric for measuring model perfor- 272

mance. The accuracy metric enables us to identify 273

trends across tasks, models, and batch sizes, facili- 274

tating statistical testing and automatic evaluation. 275

We calculate accuracy using an answer parser de- 276

signed to robustly extract the answer across several 277

different formats we observed our LLMs produc- 278

ing. If an answer is not parseable, the model is 279

treated as having guessed the most likely class (or 280

randomly for multiple-choice tasks). We evaluate 281

the fraction of instances on which our parser fails 282

as parser error rate.2 283

We assess the significance of our results using a 284

paired t-test (Gosset, 1908) to compare overall fine- 285

tuned and non-fine-tuned model performance, and 286

Spearman correlation (Spearman, 1961) to investi- 287

gate relationships between batch size and answer 288

accuracy. 289

4 Results & Analysis 290

The results of our experiments are presented in Fig- 291

ure 3. We observed a substantial improvement in 292

performance for batch prompts (BP ≥ 2) after 293

2Note that this is an underestimate of the fraction of cases
where the model does not follow the exact output format spec-
ified in the instruction. In a real-world setting, we determined
that a system designer would most likely be using a flexible
answer parser, but note that answer parsing error rates are
generally higher for non-fine-tuned batch prompting if held to
the strict standard.
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Figure 3: Comparison of batch prompts performance before and after fine-tuning on various tasks. The non-
fine-tuned models shows decreased performance for batch prompting as batch size increases. After fine-tuning,
performance remains more stable across batch sizes for both fine-tuned tasks (solid lines) and tasks not included in
the fine-tuning (dashed lines). All accuracy results reported use multiple regular expressions to extract each answer,
with random guessing as a fallback when all regular expressions fail.

fine-tuning the model with the batch prompting294

dataset. Notably, the fine-tuned model maintained295

stable performance for batch prompts of all batch296

sizes for tasks both tasks and unseen during train-297

ing. In contrast, the non-fine-tuned model’s perfor-298

mance decreased as the batch size increased.299

Effect of fine-tuning Figure 3, depicts the accu-300

racy across standard prompts and batch prompts301

before and after fine-tuning. When the batch size is302

sufficiently large, the fine-tuned model consistently303

outperforms the non-fine-tuned model across all304

tasks for batch prompting. This trend persists even305

on tasks not included as part of training for the fine-306

tuned model. The improvement in unseen tasks for307

larger batch sizes indicates that our fine-tuning ap-308

proach is generalizable to tasks beyond those used309

during training. As the batch size increases, the310

widening performance gap in unseen tasks between311

both models suggests that the fine-tuned model is312

learning the overall batch prompting task and an-313

swer formatting rather than superficially learning314

the underlying tasks during fine-tuning.315

For significance testing, we randomly sample316

200 examples for each task-batch size combination317

across all batch sizes ≥ 2, excluding the RACE 318

task due to insufficient data at larger batch sizes. 319

We control for the number of questions per task- 320

batch size, only performing tests on subsets with 321

an equal number of batch sizes. We conducted a 322

paired t-test to determine if the performance dif- 323

ference between the fine-tuned and non-fine-tuned 324

models was statistically significant. The results 325

showed that the fine-tuned model significantly out- 326

performed the non-fine-tuned model with a p-value 327

of 3.7× 10−6. 328

Similarly, we examined the relationship between 329

batch size and overall answer accuracy using Spear- 330

man correlation. For the non-fine-tuned model, 331

we found a significant negative correlation (rs = 332

−0.183, p = 3.2×10−3). For the fine-tuned model, 333

we did not find a statistically significant correla- 334

tion between accuracy and batch size using the 335

Spearman correlation test (p > 0.05). This non- 336

significant result, along with the visual evidence 337

provided in Figure 3, suggests that fine-tuning the 338

LLM mitigates the negative impact of increasing 339

batch sizes on performance. In other words, after 340

fine-tuning, the model’s performance remains rela- 341

tively stable across different batch sizes, indicating 342
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are from an earlier training run, so per-task performance may differ from other figures.

that larger batch sizes do not lead to a significant343

degradation in accuracy.344

Relation Between Question Index and Accuracy345

In Figure 4, we explore the impact of a query’s346

position within a batch prompt on its accuracy. We347

focus on batch size 8, since for larger batch sizes,348

the number of examples per each bucket becomes349

very small. Apart from the first question often350

exhibiting slightly higher performance, we do not351

observe a consistent pattern across question indices.352

We again see that the fine-tuned model consistently353

outperforms the non-fine-tuned model. However,354

we do not see a trend of either the fine-tuned or355

non-fine-tuned models consistently answering the356

first or the last question more accurately than other357

questions, which previous work on attention pat-358

terns might suggest (Liu et al., 2023).359

Prior work on batch prompting from Lin et al.360

(2023) reports, in their experiments, that the av-361

erage accuracy at each answer index within the362

response to a batch prompt varies widely across363

batch prompts for both GPT-3.5 and GPT-4. The364

methodology used in their experiments is based on365

a round-robin approach in which they run batch366

prompts several times with questions rotated to367

have visited each batch index. Our methodology368

instead evaluates batch prompts in which questions369

are batched and ordered randomly from a set of370

1,000 batch prompts.371

Analysis of Formatting Errors We manually372

inspected various outputs generated through our373

batch prompts prior fine-tuning to identify what 374

was causing parsing errors in this setting, espe- 375

cially for high batch sizes. Table 1 shows an illus- 376

trative sample of the outputs we evaluated. Overall, 377

we saw in our analysis that parsing errors were 378

caused by a complete breakdown in the model’s 379

ability to follow the provided instructions. Our 380

parsing methods were able to handle deviations 381

from the correct format with the main requirement 382

that each answer began with the correct indexing. 383

However, responses that ignore answer indexing 384

requirements and fail to consecutively answer ques- 385

tions with the correct indexing resulted in parsing 386

error. 387

In addition to responses that were essentially 388

nonsensical hallucinations, we found examples of 389

non-parseable responses that could interpreted to 390

provide valid answers upon further scrutiny. We 391

also show examples of these responses in Table 1. 392

Since these types of responses vary significantly 393

in terms of format and writing style, we did not 394

attempt to build an automatic parsing system for 395

them. Moreover, we did not manually parse all of 396

these responses as the cost for doing so was deemed 397

excessive. 398

Token Efficiency in Batch Prompting Cheng 399

et al. (2023) defines the token efficiency for stan- 400

dard prompting as ηstandard = 1
K+1 and for batch 401

prompting as ηbatch = b
K+b in Equation 1, where 402

K denotes the number of in-context exemplars and 403

b is the number of samples in a batch. 404
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Task Response Correctly Formatted Parseable

QQP Answer[0]: The answer is 0.
Answer[1]: The answer is 1.

True True

RACE Answer[0]: The answer is C.
Answer[1]: The answer is B.

True True

QQP Question[0]: The answer is 0.
Question[1]: The answer is 1.

False True

RACE Question[0]: The correct answer is C: Sunshine in Seattle is rare during
the winter months.
Question[1]: The correct answer is B: exhaustion, depression and lack
of energy caused by a lack of sunlight.

False True

QQP Answer[index]: The answer is 0. For question pairs 0-2, 4-6, 8-10,
12-14, 16-18, 20-22, 24-26, 28-30, 32-34, 36-38, 40-42, 44-46, 48-50,
52-54, 56-58, 60-62, and 63-64: The questions are not duplicates.
For question pairs 3, 7, 11, 15, 19, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43,
45, 47, 49, 51, 53, 55, 57, 59, 61, and 62: The questions are duplicates.

False False

RACE Answer[0]: The gentleman dismissed the other boys because they
didn’t pick up the book lying on the floor.
Answer[1]: The gentleman hired the boy because he was polite and
gentlemanly.

False False

Table 1: Examples of formatting errors produced by the non-fine-tuned model. Note, these responses have been
shortened as their actual length is too long to display in this table.

ηstandard =
1

K + 1

ηbatch =
b

K + b

(1)405

However, the token efficiency formulas in Equa-406

tion 1 make several simplifying assumptions that407

may not hold in practice. The formulas do not408

explicitly account for tokens used for the task de-409

scription (T ), answer, or batch prompt-specific for-410

matting instructions (F ), which may differ between411

standard prompting and batch prompting. More-412

over, they overlook the potential presence of shared413

context tokens (C) that need not be repeated for414

multiple questions over the same context or docu-415

ment. Additionally, the formulas assume an equal416

number of query (Q) and answer (A) tokens for417

both prompting methods and do not distinguish be-418

tween input and output tokens. While these simpli-419

fications may be justified when few-shot examples420

dominate the token count, a more precise break-421

down of the components is necessary for accurate422

token efficiency analysis in concise prompts.423

We present further discussion of token efficiency424

in Appendix A.425

Token Analysis To show the token efficiency of426

the batch prompts we are using, we present an427

analysis of the token counts of batch prompts and428

standard prompts in Figure 5 for the RTE task.3429

3Prior work creating batch prompts for RTE did not pro-
vide complete batch prompts containing in-context examples
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Figure 5: Comparing the token efficiency of batch
prompting and standard prompting on the RTE dataset.

As seen in Figure 5, Tune-n-Batch batch prompts 430

are substantially more token efficient than previous 431

batch prompting and standard prompting methods. 432

Across all batch sizes greater than 1, the number of 433

tokens per problem instance was significantly lower 434

for our method than that of other prompting meth- 435

ods. Moreover, the number of tokens per query 436

in our batch prompts decreased inversely with the 437

batch size. 438

When comparing this method to prior batch 439

prompting methods, we see how the removal of in- 440

context examples have a dramatic effect on reduc- 441

ing the overall prompt length. Through the Tune- 442

across batch sizes or code for forming the batch prompts. The
token count estimates for existing batch prompts on are based
on assumptions of example formatting and the number of
in-context examples.
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n-Batch method, we do not require these examples443

to induce correct responses to batch prompts, as444

we use fine-tuning to teach LLMs to do this. As445

the batch size increases, we can expect the num-446

ber of tokens per problem instance to eventually447

converge among all three methods, but the batch448

size required for this to occurs is not practically449

applicable. Moreover, these methods reported de-450

creases in accuracy as batch size increases unlike451

the results we present in which accuracy remains452

relatively stable across batch sizes for most tasks.453

5 Related Work454

Batching in Deep Learning Systems Batching455

has been employed in neural network training since456

Rumelhart et al. (1986) and has since gained popu-457

larity for enhancing the efficiency of both training458

and inference (Bertsekas, 2011; Bengio, 2012). It459

has become a standard practice for training large460

language models since the introduction of the trans-461

former architecture (Vaswani et al., 2017; Brown462

et al., 2020; Yu et al., 2022; Touvron et al., 2023).463

Under the right conditions, batching can accelerate464

training through parallelization (Goyal et al., 2018),465

improve accuracy by aggregating gradients (Mas-466

ters and Luschi, 2018), and reduce environmental467

costs (Yarally et al., 2023).468

Batching has also been essential for reducing469

inference time when processing large sets of model470

queries. However, the parameter count of large lan-471

guage models (LLMs) is growing faster than GPU472

memory capacities (Rajbhandari et al., 2021), chal-473

lenging the traditional batching approach where474

each query is allocated separate GPU memory and475

processed in parallel.476

SysML approaches to redundant input While477

Cheng et al. (2023), Lin et al. (2023), and this478

work approach the concept of reusing redundant in-479

puts to an LLM through efficient prompting strate-480

gies, there are also approaches that attempt to solve481

this problem at a lower level. KV cache reusing482

schemes reduces the time it take to process input483

text in an LLM by pre-computing and caching the484

tensors of frequently reused texts. Yao et al. (2024)485

improves upon prior methods, which often trade-486

off speed with generation quality, by selectively487

re-computing certain portions of the text while488

reusing the rest from the KV cache, thereby preserv-489

ing cross-attention and thus the generation quality490

while still benefiting from the speedup provided491

by caching. Another approach, called Attention-492

Store, uses a heirarchical KV caching system to 493

reuse input tensors across multi-turn conversations 494

in LLMs (Gao et al., 2024). 495

Fine-tuning for Instruction Following Our 496

methodology of fine-tuning for batch prompting 497

on certain tasks while expecting the model to gen- 498

eralize this style of prompting on other unseen tasks 499

is motivated by prior work on instruction follow- 500

ing. The zero-shot capabilities of LLMs (Brown 501

et al., 2020) drove Sanh et al. (2022) to discover 502

that explicitly fine-tuning an LLM on a large set 503

of tasks could lead to better zero-shot generaliza- 504

tion on unseen tasks, implying that LLMs can be 505

trained on how to follow instructions. Wei et al. 506

(2022) further corroborates this phenomenon by 507

developing an instruction-tuned model called FLAN, 508

which outperformed GPT-3 on several tasks despite 509

its smaller size. 510

6 Conclusion 511

In this work, we present a novel approach to 512

batch prompting, demonstrating that fine-tuning a 513

large language model on a diverse dataset of batch 514

prompts enables effective batch prompting without 515

the need for lengthy prompts or few-shot exam- 516

ples. Our fine-tuned model maintains stable perfor- 517

mance across various batch sizes, even on unseen 518

tasks, contrasting with the performance degrada- 519

tion observed in non-fine-tuned models as batch 520

size increases. Our findings demonstrate that fine- 521

tuning LLMs for batch prompting can significantly 522

improve their efficiency and applicability in real- 523

world scenarios, making it possible to process a 524

larger number of queries using fewer computational 525

resources. 526

We encourage future work to explore batch 527

prompting as an efficient alternative to standard 528

prompting methods. Future work on batch prompt- 529

ing should incorporate chain-of-thought (CoT) rea- 530

soning (Wei et al., 2023), as CoT could be instru- 531

mental for extending batch prompting to multi-step 532

tasks, such as mathematical reasoning. While this 533

paper mainly explored single task batch prompts, 534

the development of well-performing batch prompts 535

encompassing multiple tasks could offer flexibil- 536

ity while retaining the efficiency gains from batch 537

prompting. With these efficiency benefits in mind, 538

we believe future work should also focus on devel- 539

oping large language models capable of processing 540

batch prompts with large batch sizes as accurately 541

as standard prompts. 542
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Limitations543

Our study has several limitations that should be ad-544

dressed in future research. We only experimented545

with a single model, LLaMA-3-8B-Instruct, due546

the computational requirements of fine-tuning547

larger models. Future work should investigate548

whether our findings generalize to a diverse set of549

models of different sizes, architectures, and capabil-550

ities, such as T5 and Llama-3-70B-Instruct, to de-551

termine if effective batch prompting is an emergent552

property of larger models or if it can be achieved553

after fine-tuning with smaller models as well.554

Because of limited context window sizes and555

the token scaling of including larger batches in a556

context, our analysis only went up to batches of557

size 32. Further work is needed to determine if the558

performance stability observed in our experiments559

extends to larger batch sizes of ≥ 64.560

Another limitation of our study is the potential561

loss of generalizability due to fine-tuning. When562

comparing standard prompting to batch prompting,563

we observed a decrease in performance on tasks564

that were not included in the fine-tuning process.565

Although we attempted to mitigate this risk by fine-566

tuning on a small number of examples, future work567

should explore alternative methods for maintain-568

ing generalizability, such as meta-learning, multi-569

task learning, and fine-tuning approaches designed570

to prevent the loss of generality. Exploring the571

use of instruction tuning (Zhang et al., 2024) and572

Reinforcement Learning from Human Feedback573

(RLHF) (Ouyang et al., 2022) or Direct Preference574

Optimization (DPO) (Rafailov et al., 2023) to fine-575

tune the model for batch prompting could be a576

viable alternative to Parameter-efficient fine-tuning577

(PEFT). Additionally, more extensive experiments578

are needed to quantify the extent of catastrophic for-579

getting and its impact on the model’s performance580

on non-batch prompting tasks after fine-tuning.581
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A Batch Prompting Token Efficiency799

Table 2 breaks down the components of standard800

prompts (SP) and batch prompts (BP), providing801

formulas to calculate input and output token ef-802

ficiency. The table reveals that SP and BP have803

relatively equal output token efficiency, with SP804

slightly more efficient due to not requiring answer805

index formatting. However, this difference may806

be significant given the higher API costs for out-807

put generation compared to input tokens. The task808

description T , formatting instructions F , shared809

context C, and examples K are fixed costs across810

all batch sizes, while query tokens Q depend on the811

batch size. In scenarios where fixed costs are a sig-812

nificant portion of the total tokens, batch prompting813

can be substantially more efficient than standard814

prompting. As batch size increases, fixed costs are815

amortized over more queries, reducing per-query816

token costs. This is particularly beneficial when817

fixed costs are high relative to variable costs. How-818

ever, the benefits of batch prompting may diminish819

beyond a certain batch size, as variable costs scale820

linearly while fixed costs remain constant, leading821

to a point of diminishing returns.822

B Supplemental Results823

Table 3 provides the numerical values for accuracy824

present in Figure 3 along with the MNLI Matched825

task.826

C Licensing and Artifact Information827

Our use of LLaMA-3-8B-Instruct is permitted un-828

der research purposes. The use of existing datasets,829

such as those in the batch prompting dataset, is830

allowed for research and non-commercial purposes831

in accordance with the applicable data usage agree-832

ments.833

D Hyperparameter Settings834

We used the default hyperparameters for SFT train-835

ing for LORA. We used LoRA (Low-Rank Adap-836

tation) with default values of lora_alpha = 16,837

lora_dropout = 0.1, and r=64. Hyperparame-838

ters like a learning rate of 2× 10−4 weight decay839

of 0.001, and max gradient norm of 0.3 were em-840

ployed during training.841

For parsing and regular expression testing,842

we used Python’s built-in re library with func-843

tions like re.findall(), re.finditer(), and re.search(),844

along with various regular expression patterns845

tailored to the task requirements. For testing 846

and evaluation, we employed the scikit-learn li- 847

brary (Pedregosa et al., 2011), utilizing modules 848

like sklearn.metrics for computing evaluation met- 849

rics, sklearn.model_selection for techniques like 850

cross-validation, and sklearn.preprocessing for data 851

normalization and scaling. The specific implemen- 852

tations and parameter settings were adjusted based 853

on the parsing and evaluation needs. 854
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Standard Prompting Batch Prompting
T - Task Description (TSP ) T - Task Description (TBP )
F - Formatting (FSP ) F - Formatting (FBP )
C - Context (opt) (CSP ) C - Context (opt) (CBP )
K - Examples (opt) (KSP ) K - Examples (opt) (KBP )
Q - Query (QSP ) b · Q - Query tokens per query (QBP )
A - Answer (ASP ) b · A - Answer tokens per answer (ABP )
Total Token Formula (Ttotal)
Ttotal,SP = TSP + FSP + CSP +KSP +QSP +ASP Ttotal,BP = TBP + FBP + CBP +KBP + b(QBP +ABP )

Input Token Formula (Tinput)
Tinput,SP = TSP + FSP + CSP +KSP +QSP Tinput,BP = TBP + FBP + CBP +KBP + b(QBP )

Output Token Formula (Toutput)
Toutput,SP = ASP Toutput,BP = b(ABP )

Table 2: Breaking down the components of prompts for token efficiency analysis.

Task
Non-Fine-Tuned Tune-n-Batch

Prompting Type and Batch Size Prompting Type and Batch Size
Seen SP=1 BP=2 BP=4 BP=8 BP=16 BP=32 Seen SP=1 BP=2 BP=4 BP=8 BP=16 BP=32

CoLA No 80.4 79.0 77.2 77.5 66.7 76.9 Yes 77.6 81.4 80.3 80.5 79.8 80.3
QQP No 68.8 64.6 63.6 62.5 61.5 54.1 Yes 71.6 68.4 71.7 71.7 71.3 71.4
SST2 No 90.4 91.0 92.4 92.0 91.4 93.2 Yes 93.6 94.6 94.5 95.2 94.7 96.4

Common Sense No 59.2 61.6 61.1 60.6 50.2 31.8 No 64.0 50.6 54.7 53.5 52.6 53.7
MNLI Matched No 62.8 56.0 53.7 51.7 49.0 44.6 No 57.6 47.4 48.5 45.3 48.5 44.3

MNLI Mismatched No 64.0 59.8 54.0 54.2 51.5 47.2 No 61.2 45.0 49.4 47.7 48.9 49.1
MRPC No 75.6 73.8 72.8 69.6 65.5 58.6 No 68.8 64.5 66.7 64.7 65.3 64.9
RACE No 64.2 61.0 51.7 54.9 - - No 64.8 62.4 66.7 62.0 - -
RTE No 68.0 65.6 67.8 64.0 58.1 68.8 No 79.2 77.5 79.3 80.6 80.2 78.7

Table 3: Comparing the Performance of Llama3-8B Instruct before and after fine-tuning. All other tasks report
the performance with the task excluded from training. SP denotes Standard Prompting, whereas BP represents
Batch Prompting. Seen indicates that the training set of the task was included in fine-tuning.
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E Prompt Comparisons855

We include our prompts as well as few-shot batch prompts from prior work. We see that the few-shot856

batch prompts require a significant number of examples and additional text to demonstrate the formatting857

of the task, which is not required for our fine-tuned model.858

Our Zero-Shot Standard Prompt for QQP

Your task is to determine if a pair of questions from the QQP dataset are duplicates. Classify
each question pair as 0 (not duplicate) or 1 (duplicate) by analyzing lexical similarity and
question intent. Answer using the format "The classification is <calculated_answer>", where
<calculated_answer> is 0 or 1. Do not output any other text, such as intermediate reasoning, other
than The classification is <calculated_answer> for the question pair asked.

Question1: What is the meaning of the Urdu word ’Jaah’?
Question2: What is the meaning of Urdu word ’Ziadti’?

859

Our Zero-Shot Batch Prompt for QQP

Your task is to determine if pairs of questions are duplicates from a list of question pairs from
the QQP dataset. Classify each question pair as 0 (not duplicate) or 1 (duplicate). Analyze
lexical similarity and question intent. For each question pair, answer using the exact format
"Answer[index]: The classification is <calculated_answer>", where ’index’ is the corresponding
question index being answered, and <calculated_answer> is a 0 or 1. Do not output any other text,
such as intermediate reasoning, other than Answer[index]: The answer is <calculated_answer> for
each question-pair asked.

Question1[0]: What is the meaning of the Urdu word ’Jaah’?
Question2[0]: What is the meaning of Urdu word ’Ziadti’?
Question1[1]: How can we simplify our life?
Question2[1]: Life Advice: How can I make my life simpler?
Question1[2]: How does Venmo work?
Question2[2]: Are Venmo payouts reversible?
Question1[3]: What should I know before buying a house?
Question2[3]: What should I know before buying a house in Europe?

860

(Lin et al., 2023) Few-Shot Batch Prompt for QQP

You are a professional NLP expert at duplicate question detection. You will be given [BATCH-
SIZE] pairs of data from Quora Question Pairs (QQP) dataset each time, as input. Each data
includes a pair data, ”Question1” and ”Question2”. Your goal to determine whether two questions
are duplicates of each other. You need to classify into below two classes:
class 1: if they have the same meaning (semantically equivalent).
class 0: if they do NOT have the same meaning.

============
Question pair 0:
Question1: xxxxx
Question2: xxxxx
Question pair 1:
Question1: xxxxx

861
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Question2: xxxxx
......
============
Below are the outputs you need to generate. ”X” can be ’1’ or ’0’. [Conf-Description]
============
Label for Question pair 0: [class X][Place-Holder-Conf]
Label for Question pair 1: [class X][Place-Holder-Conf]
......
============
Follow the formatting of the following examples.
Question pair 0:
Question1: Does Hanes’s online store accept PayPal?
Question2: How are Hanes t-shirts made?
Question pair 1:
Question1: What are the best Norditrac exercise routines?
Question2: What are the best exercise routines?
Question pair 2:
Question1: How does someone sever their carotid artery with a kitchen knife?
Question2: Do any muscle protect the carotid artery or is it right under the skin?
Question pair 3:
Question1: Gravity: Why doesn’t the Earth fall into the Sun or the Moon fall into the Earth?
Question2: Why doesn’t the earth accelerate towards the sun?
Label for Question pair 0: [0](Confident)
Label for Question pair 1: [0](Not Confident)
Label for Question pair 2: [0](Confident)
Label for Question pair 3: [1](Confident)

Now answer the following questions.
============
Question pair 0:
Question1: What is the meaning of the Urdu word ’Jaah’?
Question2: What is the meaning of Urdu word ’Ziadti’?
Question pair 1:
Question1: How can we simplify our life?
Question2: Life Advice: How can I make my life simpler?
Question pair 2:
Question1: How does Venmo work?
Question2: Are Venmo payouts reversible?
Question pair 3:
Question1: What should I know before buying a house?
Question2: What should I know before buying a house in Europe?
============
Below are the outputs you need to generate. ”X” can be ’1’ or ’0’. [Conf-Description]
============
Label for Question pair 0: [class X][Place-Holder-Conf]
Label for Question pair 1: [class X][Place-Holder-Conf]
Label for Question pair 2: [class X][Place-Holder-Conf]
Label for Question pair 3: [class X][Place-Holder-Conf]
......
============

862
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Please make sure each generated label is in format of [class X].
Please make sure to generate [BATCH-SIZE] labels.

(Note: (Lin et al., 2023) only provided a condensed version of the batch prompt for the QQP
dataset, omitting few-shot examples and other text instructions. We inferred a likely prompt based
on the abbreviated version included in the appendix, but there may be minor differences from the
one used by the original authors.)

863

Our Zero-Shot Standard Prompt for SST2

Your task is to classify a sentence from the SST-2 dataset as positive or negative in sentiment.
Answer using the format "The answer is <calculated_answer>.", where <calculated_answer>
is 0 for negative sentiment and 1 for positive sentiment. Do not output any other text, such as
intermediate reasoning, other than The answer is <calculated_answer> for the question asked.
Sentence: that stealing harvard is too busy getting in its own way to be anything but frustrating ,
boring , and forgettable

864

Our Zero-Shot Batch Prompt for SST2

Your task is to classify sentences for each question in a list of questions from the SST-2 dataset as
positive or negative in sentiment. For each question, notated as Question[index], answer using
the the exact format "Answer[index]: The answer is <calculated_answer>.", where ’index’ is
the corresponding question number being answered, and <calculated_answer> is 0 for negative
sentiment and 1 for positive sentiment. Do not output any other text, such as intermediate
reasoning, other than Answer[index]: The answer is <calculated_answer> for each question asked.

Question[0]: Sentence[0]: that stealing harvard is too busy getting in its own way to be anything
but frustrating , boring , and forgettable
Question[1]: Sentence[1]: everyone ’s insecure in lovely and amazing , a poignant and wryly
amusing film about mothers , daughters and their relationships.
Question[2]: Sentence[2]: good news
Question[3]: Sentence[3]: been saved if the director , tom dey , had spliced together bits and
pieces of midnight run and 48 hours ( and , for that matter , shrek )

865

(Cheng et al., 2023) Few-Shot Batch Prompt for GSM8K

System
The answers should respond to each question the user inputs. One line one answer starting with
A[idx],no other line break.
User
Q[1]: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?
Q[2]: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking
lot?
Q[3]: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have
left in total?
Q[4]: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
Assistant
A[1]: There are 15 trees originally. Then there were 21 trees after some more were planted. So
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there must have been 21 - 15 = 6. The answer is 6.
A[2]: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
A[3]: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39. The answer is 39.
A[4]: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8. The answer is 8.
User
Q[1]: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many
toys does he have now?
Q[2]: There were nine computers in the server room. Five more computers were installed each
day, from monday
to thursday. How many computers are now in the server room? Q[3]: Michael had 58 golf balls.
On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf
balls did he have at the end of wednesday?
Q[4]: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Assistant
A[1]: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more
toys. 5 + 4 = 9. The answer is 9.
A[2]: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5
* 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
A[3]: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After
losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.
A[4]: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 -
15 dollars left. 23 - 15 is 8. The answer is 8.
User
Q[1]: A garden produced 237 potatoes, 60 fewer cucumbers and twice as many peppers than the
cucumbers. How many vegetables did the garden produce?
Q[2]: John’s cow weighs 400 pounds. It increased its weight to 1.5 times its starting weight. He is
able to sell the cow for $3 per pound. How much more is it worth after gaining the weight?
Q[3]: John writes 20 pages a day. How long will it take him to write 3 books that are 400 pages
each?
Q[4]: James has a rainwater collection barrel. For each inch of rain he collects 15 gallons. On
Monday it rained 4 inches and on Tuesday it rained 3 inches. He can sell water for $1.2 per gallon.
How much money did he make from selling all the water?
Assistant
A[1]: The garden produced 237 - 60 = 177 cucumbers. The garden produced 177 * 2 = 354
peppers. The garden produced 237 + 177 + 354 = 768 vegetables. The answer is 768.
A[2]: The cow initially weighs 400 * 1.5 = 600 pounds. So it gained 600 - 400 = 200 pounds. It is
worth 200 * 3 = 600 dollars more. The answer is 600.
A[3]: He wants to write 3 * 400 = 1200 pages. So it will take him 1200 / 20= 60 days The answer
is 60.
A[4]: It rained 3 + 4 = 7 inches So he collected 7 * 15 = 105 gallons So he makes 105 * 1.2 = 126
from selling the water. The answer is 126.
User
Q[0]: To get to an island called "Virgo", Tom needs to travel by plane and then by boat. The plane
trip is four times longer than the boat trip, and the boat trip takes up to 2 hours. In how many hours
is Tom able to get to the "Virgo" island?
Q[1]: Winwin won $50 in a lottery. She paid 20% for the tax and she paid $5 for the processing
fee. How much was she able to take home?
Q[2]: Grandma left $124,600 in her will. She gave half of it to her favorite grandchild, Shelby.
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The rest was to be evenly divided among the remaining 10 grandchildren. How many
Q[3]: John and his best friend Steve bought 12 cupcakes together. Each cupcake cost $1.50. If
they split the costs evenly, how much did each person pay?
Assistant

868
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