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Neurons in the primate middle temporal area (MT) respond to moving stimuli, with strong tuning for
motion speed and direction. These responses have been characterized in detail, but the functional
significance of these details (e.g. shapes and widths of speed tuning curves) is unclear, because
they cannot be selectively manipulated. To estimate their functional significance, we used a detailed
model of MT population responses as input to convolutional networks that performed sophisticated

Keywords: motion processing tasks (visual odometry and gesture recognition). We manipulated the distributions
Middle temporal area of speed and direction tuning widths, and studied the effects on task performance. We also studied
Representation performance with random linear mixtures of the responses, and with responses that had the same

Deep networks
Sensitivity analysis
Representational similarity

representational dissimilarity as the model populations, but were otherwise randomized. The width
of speed and direction tuning both affected task performance, despite the networks having been
optimized individually for each tuning variation, but the specific effects were different in each task.
Random linear mixing improved performance of the odometry task, but not the gesture recognition
task. Randomizing the responses while maintaining representational dissimilarity resulted in poor
odometry performance. In summary, despite full optimization of the deep networks in each case, each
manipulation of the representation affected performance of sophisticated visual tasks. Representation
properties such as tuning width and representational similarity have been studied extensively from
other perspectives, but this work provides new insight into their possible roles in sophisticated visual
inference.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The visual responses of neurons in different areas of the visual
cortex have been studied extensively, providing a detailed view
of many relationships between visual representations and stim-
ulus properties. Complementing these experiments, information
theory has been used to understand how tuning curve widths
affect the encoding of stimulus information by neuron popula-
tions (Zhang & Sejnowski, 1999). However, the significance of
response properties with respect to the outputs (rather than the
inputs) of the visual cortex has been less studied.

In the primate middle temporal area (MT), many neurons
respond strongly to visual motion, with robust tuning for motion
speed and direction. Tuning curves and other response properties
have been extensively characterized. Microstimulation studies
have confirmed the role of MT cells in motion perception; mi-
crostimulation biases animals’ judgements towards the direction

* Corresponding author.
E-mail address: bptripp@uwaterloo.ca (B. Tripp).

https://doi.org/10.1016/j.neunet.2019.08.027
0893-6080/© 2019 Elsevier Ltd. All rights reserved.

of motion encoded by the stimulated neurons (Salzman, Brit-
ten, & Newsome, 1990; Salzman, Murasugi, Britten, & Newsome,
1992). Furthermore, lesion studies in monkeys have confirmed
the role of MT in smooth pursuit eye movements (Newsome,
Wurtz, Diirsteler, & Mikami, 1985). Trial-to-trial variability in MT
responses is also correlated with motion perception decisions
(Smith, Chang’an, & Cook, 2011). Furthermore, tuning properties
have been linked with perception and visually guided action. For
example, preferred speeds of MT neurons are slower for smaller
stimuli, which accounts for human perception of smaller stimuli
as moving faster (Boyraz & Treue, 2011). Other stimulus manipu-
lations affect pursuit eye movements in a way that is consistent
with their effects on MT neuron tuning (Lisberger, 2010).
However, a potential limitation of these studies is that they
involve decoding the same low-level variables that form the do-
main of the tuning curves, whereas much more complex
inferences can also be made from visual motion patterns
(e.g. Johansson, 1973; Warren & Rushton, 2009). MT projects
strongly to several other cortical areas (Markov et al., 2014),
suggesting that MT representations may have a variety of roles in
perception and visually guided behaviour. The significance of MT


https://doi.org/10.1016/j.neunet.2019.08.027
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2019.08.027&domain=pdf
mailto:bptripp@uwaterloo.ca
https://doi.org/10.1016/j.neunet.2019.08.027

O. Rezai, L. Stoffl and B. Tripp / Neural Networks 121 (2020) 122-131 123

tuning widths, and other properties of the representation, with
respect to complex visual inferences is unclear.

In this study, we embedded models of MT activity within
models that performed sophisticated inference, to estimate the
potential contributions of MT representation properties in such
tasks. Specifically, we embedded an MT model within convo-
lutional networks that perform visual odometry (i.e. egomotion
from video) and gesture recognition. We then varied properties of
the representation to estimate the relevance of these properties
to sophisticated motion processing. The results in Fig. 6 have been
presented previously (Rezai, Boyraz Jentsch, & Tripp, 2018).

One property of the representations that we varied was tun-
ing curve widths. A tuning curve describes a neuron’s mean
spike rate as a function of some experimental variable. Although
electrophysiology experiments typically measure tuning curves
in single dimensions (for practical reasons), individual neurons
in a given area are typically sensitive to multiple stimulus di-
mensions (DeAngelis & Uka, 2003). Tuning curves have been
extensively measured in neurophysiology for many decades, but
new details and insights continue to emerge, e.g. related to their
dynamics (Ringach, Hawken, & Shapley, 1997), statistics (Wang &
Movshon, 2016), and modulation by attention (Treue, 2001). Their
significance has also been widely studied in theoretical work, of-
ten from the perspective of their effect on the amount of stimulus
information encoded by a population of noisy neurons (Butts &
Goldman, 2006; Zhang & Sejnowski, 1999). However, this per-
spective may not completely address the functional significance
of tuning curves in the brain. Other theoretical work deals more
directly with the use of tuning curves as a basis for computation
rather than stimulus reconstruction. In particular, Eliasmith and
Anderson (2003) showed that different sets of tuning curves sup-
port robust computation of different functions (via multi-linear
regression). This gives additional insight into the roles of tuning
curves in supporting feature transformations. However, multi-
linear regression is a simplified model of computation in a single
connection from one population to another, rather than compu-
tation in a more complex network. In this study, we extend this
view by studying the effects of tuning width in deeper networks
that compute relatively complex and naturalistic functions.

Our results suggest that tuning width is functionally sig-
nificant, even in deeper networks that perform complex tasks,
and that the optimal tuning curves are task-dependent. In sep-
arate simulations, we also found that representational similar-
ity (Kriegeskorte, 2009) does not fully account for the functional
significance of neural responses. In each case, the networks were
retrained on the modified representations, but the representation
details affected task performance.

2. Methods
2.1. Model of population activity in the middle temporal area

We used our previous empirical model of area MT population
responses (Rezai et al., 2018) (see Fig. 1).

Briefly, the model uses computer-vision methods to calculate
various fields from video input, including optic flow, disparity,
and local contrast fields. A number of feature maps are created
from these fields, corresponding to different stimulus tuning. The
number of feature maps varies somewhat between networks, as
described below. For example, a specific instance of the MT model
might have 64 13 x 13-pixel feature maps, in which case each
feature map would model 13?2 MT neurons with the same feature
selectivity, tiled over visual space. To create each feature map, we
combined tuning curves for speed, direction, disparity, etc. from
the literature. The tuning curves were calculated as pixel-wise
functions of the flow, disparity, and contrast fields. Specifically,
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Fig. 1. Overview of the MT model. The model uses computer-vision methods to
calculate flow, disparity, and contrast fields, and tuning curves from the primate
electrophysiology literature to estimate the MT population response from these
fields.

Source: Adapted with permission from Rezai et al. (2018).

the neurons’ responses were r = [A fx fy Ky 88084 + Bl, where
[1+ denotes half-wave rectification, B is the background firing
rate (spikes/s), A = maximum firing rate — background firing rate,
Ky is the spatial receptive field, g is a speed-tuning function
that is also a function of local contrast, gy is a direction-tuning
function, and gy is a binocular-disparity tuning function. Our
original model also included an attention component, which we
omitted here. Of particular interest in the present study are the
speed and direction tuning functions. The speed-tuning function
(from Nover, Anderson, & DeAngelis, 2005) is,
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s is motion speed, and s, is the preferred speed. The tuning curve
has parameters sy (offset) and o; (width). Preferred speed is a
function of contrast ¢ (Rezai et al., 2018). The direction-tuning
function is
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where 6 is motion direction, 6,, 0y, and a, are the preferred
direction, direction width, and relative amplitude in null direction
(i.e. 180 degrees away from preferred direction), respectively.

Spatial receptive fields were then modelled by combining re-
sponses across pixels, using difference-of-Gaussians kernels. For
each feature map, we drew tuning-curve parameters from distri-
butions that were modelled on data from the electrophysiology
literature. The model reproduces some MT response properties
that have not appeared in previous models (e.g. local rather than
global pattern-motion integration within a receptive field; Ma-
jaj, Carandini, & Movshon, 2007), and generally reproduces MT
response properties more closely than previous models. It ap-
proximates dynamics of component and pattern selectivity, but
this aspect of the model was omitted in this study. In sum-
mary, the model produces an approximation of an MT population
response (in spikes/s) to video input, in the same form as a
multi-channel convolutional-network layer.



124 O. Rezai, L. Stoffl and B. Tripp / Neural Networks 121 (2020) 122-131

20.04 —— 0.25x
e 0.5x
3
a —— Original
>
£0.02 — 2x
g — 4x
Qo
<
% 0.00
0 180 360

Direction Tuning Bandwidth (deg)

— 0.25x
0.5x
—— Original
— 2x
— 4x

Probability Density

o - w

o o o
o

| T

12
Speed Tuning Width

Fig. 2. Left: Gamma distributions for drawing direction tuning bandwidths where the parameters of the original distribution were shape = 7.32 and scale = 14.20.
Note that the direction tuning bandwidths were truncated at 360°. Right: Gamma distributions for drawing speed tuning widths where the parameters of the original

distribution were shape = 4.36 and scale = 0.28.

3. Perturbations of the MT model representation

Using the MT population model as a baseline representation
of visual motion, we explored several variations of this repre-
sentation, described below. We trained multiple deep networks
independently, using each of these variations as input.

3.0.1. Changes in speed and direction tuning width

The issue of optimal neuronal tuning widths has received
much attention in the literature (Brown & Bdcker, 2006), partic-
ularly around whether sharp (Barlow, 1972; Zhang & Sejnowski,
1999) or broad (Baldi & Heiligenberg, 1988; Eurich & Schwegler,
1997; Georgopoulos, Schwartz, & Kettner, 1986; Hinton, McClel-
land, Rumelhart, et al., 1984) tuning curves increase encoding
accuracy. In contrast, the present study addresses the role of
tuning width in complex and naturalistic visual inference.

We focused on two features of MT response, the direction-
tuning bandwidth and speed-tuning width. A large percentage
of MT neurons are sensitive to both direction and speed. In
the MT model, the widths of both speed and direction-tuning
curves are drawn from Gamma distributions. These are a family
of continuous distributions over [0, oco), which include expo-
nential distributions as a special case (see Lehky, Kiani, Esteky,
and Tanaka (2011) for an example of the use of Gamma dis-
tributions in the neuroscience literature). Previously, we found
that Gamma distributions fit both MT speed and direction-tuning
width histograms from the electrophysiology literature better
than a number of other common distributions, according to the
Akaike Information Criterion (Rezai et al., 2018). Gamma dis-
tributions have two parameters, the shape and the scale. We
experimented with variations in tuning-curve widths by changing
the scale parameters. Specifically, we experimented with 0.25,
0.5, 1, 2, and 4 times the original scale. Fig. 2 depicts these Gamma
distributions for both direction tuning bandwidths and speed tun-
ing widths. For direction tuning, we truncated the distributions
at 360°. We also experimented with eliminating each of these
tuning dimensions entirely.

3.0.2. Random linear recombinations

Several studies (e.g. Schrimpf et al., 2018) have used linear re-
gression to approximate neural responses from model responses.
In these studies, the quality of linear reconstruction is taken to
reflect the similarity of the model and neural representation. The
rationale is that correspondences between individual model and
biological neurons cannot be expected, but a given biological
neuron response should resemble some linear combination of
model neuron responses, if the model responses belong to the
same family. Random linear mixing of responses has little effect
on linear reconstruction, but we wondered whether it could
affect performance of complex tasks. To test this, we passed
MT population responses through random 1 x 1 kernels before
input to the odometry and gesture networks. Tuning of these
random combinations was qualitatively different than tuning of
MT model neurons. For example, tuning for speed and velocity
was not separable (see Fig. 3). Because we used 1 x 1 kernels,
the responses remained spatially localized, and were only mixed
in feature space.
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Fig. 3. Examples of normalized speed vs. direction-tuning curves for nine
random linear recombinations of MT model responses. In contrast with the
tuning of the MT model neurons, these mixed responses are not separable in
speed and direction.

3.0.3. Random responses with given representational similarity

Representational similarity analysis (RSA) (Kriegeskorte, 2008)
is widely used to characterize and compare neural representa-
tions. It consists of calculating a representational dissimilarity
matrix (RDM), which is typically simply one minus the matrix
of correlations between population responses to different stimuli,
ie.

RDM =1 —R, (4)

where R is the correlation matrix. If two stimuli evoke highly
correlated population responses, this suggests that the recorded
population makes little distinction between them. RSA allows
comparison of different representation modalities, such as elec-
trophysiology data, functional imaging data, and model data. For
example, if RDMs of a model and an electrophysiology dataset
are similar, this suggests that the model and the recorded neuron
population make similar distinctions between the stimuli. RSA
has been used to compare neurobiological representations with
representations in deep networks (Cadieu et al., 2014; Khaligh-
Razavi & Kriegeskorte, 2014; Vries et al., 2018).

Visual representations can be viewed as intermediate process-
ing steps toward visual perception or visually guided action. In
this context, we wondered how much the RDM of a representa-
tion determines how useful the representation is for certain visual
tasks. To test this, we created population responses matrices with
RDMs that closely matched those of our MT model, but which
were otherwise random. We then trained odometry networks us-
ing these RDM-matched responses as input, and compared their
performance to odometry networks with the actual MT model
as input. This process required the RDM of a model population,
over a full dataset. To make this tractable, we used a smaller MT
population (10,816 units in total) and a subset of the odometry
dataset (18,000 training and 2048 validation sequences). The
RDMs were therefore 20,048 x 20,048. A dataset of similar size
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for the gesture recognition task yielded poor performance (36%
classification accuracy), so we did not analyse the gesture task in
this way. These RDMs were exact, because they were based on
the responses of the entire MT model, whereas only a sample of
the relevant population is available in an electrophysiology study.

We experimented with two methods of generating RDM-
matching population response matrices (10,816 by 20,048 en-
tries). First, we began with the original MT-model responses, and
changed population response vectors for individual stimuli re-
peatedly by small amounts. Each change of a population response
to a given stimulus was within the null space of the gradients of
the correlations with responses to other stimuli. This approach
did not work well however, apparently due to accumulation of
numerical errors. The step directions were uncorrelated (as the
null space changed at each step), so they accumulated poorly, and
many steps were needed to make substantial changes.

Accurate results were reliably obtained with a different
method. We began with a random response matrix R, and de-
fined the cost function C = r(RF., Rj’f:) — r(RMT, Rj’.‘f’:T), where
RMT is the MT-model response matrix, and r is the correlation
coefficient. We then calculated the gradient of C with respect
to the elements of RF, and minimized the cost using the Adam
algorithm (Kingma & Ba, 2014), an adaptive variant of gradient-
descent. We optimized each response matrix by optimizing 1000
random sub-matrices, each consisting of 300 stimuli. This reliably
resulted in close matches between RM' and the optimized RF.
To reiterate, once we had calculated RM', the RDM of an MT
model’s responses, this procedure allowed us to create new,
random responses with the same RDM. This procedure produced
new (random, but RDM-matched) responses for a set of 20,048
stimuli, which was large enough for training and validation of
an odometry network with the new responses as inputs. This
in turn let us assess whether fixing the RDM determined task
performance, or whether other aspects of the responses (which
were randomized by this procedure) were also important.

Fig. 4 illustrates some differences between linear mixing and
RDM matching in a simple one-dimensional example. In general,
a matching RDM does not imply good linear reconstructions of
the original responses, and good linear reconstructions do not
imply matching RDM. Experimenting with other simplified pop-
ulation models, consisting of Gaussian tuning on vector fields of
various dimensions, we found that RDM could be closely matched
with a wide variety of populations. However, linear reconstruc-
tion of held-out samples from the RDM-matching responses was
generally poor, although it tended to improve somewhat with
wider tuning and larger receptive fields.

3.1. Visual tasks and deep networks

MT model activity was used as input to convolutional net-
works that performed sophisticated visual tasks. We tested how
the above perturbations of the MT-model representation affected
performance of two sophisticated visual motion-processing tasks,
a visual odometry task and a gesture recognition task. In each
case, the networks only received motion, disparity, and con-
trast information. However, other information is useful in these
tasks as well, for example some gestures can be recognized from
still images. Our networks were therefore somewhat impaired in
these tasks, in order to isolate the role of visual motion represen-
tation.

The goal of the visual odometry task was to estimate self-
motion velocity from video. We used a photorealistic synthetic
dataset that we had developed previously (Rezai et al., 2018). The
dataset is well suited to provide input to the MT model, as it has
stereo video with a biologically realistic stereo baseline, and a
high frame rate. It is also large enough for supervised learning
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Fig. 5. An example stereo video frame from the odometry dataset.

with deep networks. The dataset was created in Unreal Engine 4,
using the Modular Neighbourhood Pack, which contains a model
of a residential neighbourhood with houses, cars, and streets, sur-
rounded by a natural landscape of grass and trees (see example
frame in Fig. 5). The dataset has 84,000 short six-frame stereo
videos in which the camera moves along curvilinear paths. For
each video, it has ground-truth antero-posterior, medio-lateral,
and rotational velocities. We used 75,000 sequences for training
and held out 9000 additional sequences for validation.

The network structure used for the odometry task is shown in
Table 1. The MT model responses provided input to the network.
As described above, these were calculated from video. The flow,
disparity, and contrast fields were averaged over the six frames
of each video, approximating the low-pass properties of MT neu-
rons (Bair & Koch, 1996). Batch normalization was also used after
all layers of the network (except the output layer) to reduce
overfitting and speed up training. The CNN was implemented
in Keras (Chollet, 2015) with TensorFlow (Abadi et al., 2016)
back end. The mean-square error of self-motion estimates was
minimized using the Adam algorithm (Kingma & Ba, 2014).

The gesture recognition task was based on the 20BN-JESTER
dataset, which was developed by TwentyBN (Toronto, Canada).
This dataset consists of about 150,000 short videos sequences in
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Table 1

CNN architecture for the visual odometry task. The structure was based very
roughly on the structure of the primate dorsal visual stream, with area MT
corresponding to the input, and the two convolutional layers corresponding
respectively to the middle superior temporal area and the ventral intraparietal
area, which has been linked to coding of heading direction (Bremmer, 2005).

Layer # Kernels Kernel size Shape Pool Nonlinearity
Conv-1 128 9x9 6 x 6 None RelLU
Conv-2 128 9x9 6 x 6 2 x2 ReLU
Dense 1024 RelLU
Output 3 None

which people perform hand gestures from 25 different categories
(e.g. thumbs-up, swipe left).

The network structure used for the gesture recognition task is
shown in Table 2. Since the frame rate of the 20BN-JESTER dataset
was already comparable to the temporal range of MT, unlike the
higher frame rate of the odometry dataset, we did not feed the
sequence-average as input to the gesture networks. Instead, we
chose a twelve-frame window from each sequence where the
average flow was maximum compared to any other window.
Therefore, the most motion-informative part of the sequence was
captured while keeping the input sequence small enough so a
mini-batch could be fit on GPU memory during training. Because
the input was a sequence we used a long-short-term-memory
(LSTM) layer instead of a dense layer after the final convolutional
layer.

When we used the simplified difference-of-Gaussians (DoGs)
kernels as the receptive fields (RFs) of the MT neurons, the ges-
ture networks overfitted after 3 or 4 epochs with high validation
loss. Therefore, instead of using DoGs, we added three parallel
sparse convolutional layers to the beginning of these networks.
The networks received pixel-wise non-linear functions of flow
and contrast fields as input. These functions, which we refer to
as tuning feature maps, were calculated using our MT model.
The sparsity of the three parallel layers meant that each channel
of the MT layer (Table 2) almost exclusively connected to one
of the tuning feature maps through each parallel layer. In other
words, each channel of MT layer was connected to three tuning
feature maps via three kernels that corresponded, respectively,
to the classical centre RF, direction-selective surround and non-
direction-selective surround (Cui, Liu, Khawaja, Pack, & Butts,
2013). These kernels were learned during the training phase and
constrained to be either non-negative (centre RFs) or non-positive
(surrounds).

To create random linear mixing of MT responses on the ges-
ture recognition task, we added a convolutional layer with 1 x 1
kernels right after the MT layer (Table 2). These 1 x 1 kernels
were randomly initialized and not allowed to change during
training.

These network models lack many physiological details, such
as spiking and lateral interactions. It is not practical to avoid this
limitation, because most of the missing physiological details have
not been incorporated into functionally sophisticated models.

3.2. Fisher Information and optimal linear estimation

Past work has considered the significance of tuning-curve
width in terms of information theory. The Fisher information is
the inverse of the least possible variance of an unbiased esti-
mator (Dayan & Abbott, 2001). If neurons exhibit independent
Poisson variability, the Fisher information is (Dayan & Abbott,
2001),

[ =TY ——"—, (5)

Table 2

CNN architecture for the gesture recognition task. There were three parallel
sparse convolutional layers (RF-1, RF-2, RF-3) in the network that constituted
the centre and surround RFs of MT layer (see text). MT layer had 64 channels
where the activity was computed by adding the output of RF-1, RF-2 and RF-3,
as well as 64 bias values, and passing the result through the rectified linear units
(ReLUs). Compared to the odometry network, this network replaces the Dense
layer before the output with an additional convolutional layer and a LSTM layer,
which was important for integrating information over larger numbers of frames.
This network incorporated a more realistic model of MT receptive fields, based
on Cui et al. (2013), which improved performance in this task.

Layer # Kernels  Kernel size  Shape Pool Nonlinearity
RF-1 64 15 x 15 12 x 76 x 76 None None

RF-2 64 15 x 15 12 x 76 x 76 None None

RF-3 64 15 x 15 12 x 76 x 76  None None

MT 12 x 76 x 76 None ReLU
Conv-1 64 15 x 15 12x76x76 6 x 6 RelU
Conv-2 64 9x9 12 x 12 x 12 None ReLU
Conv-3 64 9x9 12x12x12 3 x 3 RelU

LSTM 256 ReLU
Output 27 Softmax

where 1;j(s) is the ith tuning curve, N is the number of neurons,
and T is the time window (Poisson noise is independent over
time, so information accumulates over time). We calculate the
Fisher information of our MT population models to contrast it
with task performance, as it is unclear how these are related.
Fisher information is related to recovering a stimulus property,
and in the standard model we use, it is assumed that the main
barrier is independent Poisson noise in each neuron. In contrast,
task performance in our network relies on inference, and the
key barrier is reliance on visual cues that may be subtle and
variable. In this context, independent neuron-level noise (such
as Dropout) may mildly degrade performance, but it can also
play an important regularizing role. In our models, errors in
the estimation of motion speed and direction are potentially a
more problematic source of noise that is correlated across all the
neurons. However, this noise of noise is injected before the tuning
curves, so their shapes do not affect sensitivity to it.

Others (Eliasmith & Anderson, 2003) have studied the ef-
fect of tuning curve width on the accuracy of optimal linear
estimates (Salinas & Abbott, 1994) of a represented variable,

Soie = (R'R)™'R's, (6)

where R is a matrix of responses for different neurons and stim-
uli) and also of optimal linear estimation of different functions of
a represented variable,

F(s)oe = (RTR)T'RTf(s). 7)

The latter is related to our deep network models, in that the
first convolutional layer after the MT model performs a linear
mapping that extracts some unknown function of the represented
variables. To relate our models to this past work, we test the
accuracy of optimal linear estimates of speed and direction from
our MT models. For the best-performing MT model populations
in each task, we also plot the principal components of the speed-
direction tuning curves, which span the space of functions that
can be computed robustly, i.e. with low sensitivity to noise.

The Fisher information and optimal linear estimate analyses
used a slightly simplified model where we removed the contrast
dependency from speed tuning. Specifically, in this simplified ver-
sion preferred speeds were drawn from a log uniform distribution
that we had modelled based on Nover et al. (2005) (as opposed
to calculating the preferred speeds as a function of contrast).
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4. Results

4.1. Sensitivity of task performance to speed and direction tuning
width

Fig. 6 shows how performance of the visual odometry task is
affected by the distributions of speed and direction tuning widths.
Importantly, the networks were trained independently with each
set of tuning curves. The oo symbol refers to not having any
selectivity for either speed (left panel) or direction (right panel)
in the model (i.e., bandwidth is infinite). The root-mean-square
error (RMSE) was 53% higher when speed-tuning widths were
narrowed to 0.25 times their original range, and 6% lower when
they were increased to twice their original range. Eliminating
speed tuning completely (the point on the right of the plot)
resulted in 50% higher error than the original model.

In contrast, RMSE was only 11% higher when direction-tuning
widths were narrowed to 0.25 times their normal range, and 3%
lower at best (4 x normal width). However, RMSE was 289%
higher when direction tuning was eliminated (1.48, similar to the
standard deviation of the targets, which was 1.54).

We tested whether performance improvements with broader
tuning were significant, using t-tests with Bonferroni correc-
tion for multiple comparisons. To improve power, we created
and trained three additional networks with new MT population
models that had the best-performing speed and direction-tuning
widths (same tuning distributions; different random samples
from these distributions). Mean absolute errors with 2 x speed
tuning widths were significantly lower than all other cases (¢ <
.05). The average RMSE of the 4 x direction-tuning width pop-
ulations was lower than other cases, although the 0.5 x, 1 x,
and 2 x means differed by less than five percent. Among the
0.25 x, 0.5 x, 1 x, and 2 x direction-tuning variations, only the

0.25 x and 0.5 x had significantly higher mean absolute errors
(¢ < .05) than the 4 x errors.

Fig. 7 shows how the distributions of speed and direction tun-
ing widths affect performance of the gesture recognition task. The
loss increased moderately when tuning widths were increased
to 4x their original range. The loss increased more substantially
when either speed or direction tuning were eliminated. Classi-
fication accuracy dropped from 75% to 60% when speed tuning
was eliminated, and to 70% when direction tuning was elimi-
nated. These results (both loss and classification accuracy) are in
different units than the odometry results, but qualitative com-
parisons are possible. In contrast with odometry, broader tuning
did not improve gesture recognition performance. Elimination of
direction tuning had a larger impact on odometry performance,
while elimination of speed tuning had a larger impact on gesture
recognition performance.

4.2. Sensitivity of Fisher information to tuning width

Fig. 8 plots Fisher information (assuming independent Poisson
variability in each neuron) for the MT layers of our models. Fisher
information declines monotonically with an increase of tuning
curve width in a single dimension. This is qualitatively consistent
with the monotonic increase in error with speed tuning width
that we found in the gesture recognition task. However, it is
inconsistent with the other task effects. Specifically, odometry
performance is best with broad direction tuning, and the other
relationships are non-monotonic. Taken together, the effects of
tuning width on Fisher information and task performance have
little in common.

Notably, in addition to decreasing information about speed,
increasing speed-tuning width also indirectly increases informa-
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Fig. 8. Left, Fisher information about log-speed, for MT model populations with different speed-tuning widths. The red and blue lines correspond to the odometry
and gesture recognition tasks, respectively. These are slightly different because the Fisher information is calculated as a weighted average over the actual speed
distributions that appeared in these tasks. The task-specific direction distributions were ignored, because direction tuning was statistically uniform. Right, Fisher
information about direction, for MT model populations with different direction-tuning widths. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

tion about direction, simply because wider tuning curves increase
mean spike rates. For this reason, task performance as a func-
tion of speed-tuning width could potentially be well correlated
with a linear combination of Fisher information about speed and
direction. However, this would be coincidental, because Fisher
information depends on independent noise around the tuning
curves, whereas our model responses have no such noise source.
Many deep networks use Dropout, which is a kind of independent
noise, but this is typically turned off at inference time.

4.3. Effect of tuning width on optimal linear estimation

Previous work has also examined the effects of tuning-curve
shapes on optimal linear decoding of stimulus properties in the
presence of noise. Deep networks are more powerful than linear
estimators, but each of their layers includes a linear map, so the
effects of tuning-curve shapes on optimal linear decoding could
conceivably be related to task effects. However, decoding of both
log-speed and direction was quite accurate for all of the pop-
ulations. For example, using the Moore-Penrose pseudoinverse,
with a regularization parameter equivalent to additive Gaussian
noise of five spikes/s, root-mean-squared log-speed decoding er-
ror was < .01 log-o/s for all populations, and root-mean-squared
direction decoding error was < .001 radians for all populations.

Importantly, the linear maps in our deep networks do not ex-
plicitly decode direction and velocity. However, they do compute
new visual features that are functions of direction and velocity.
Tuning-curve width affects the functions that can be robustly
computed from a neural population (Eliasmith & Anderson, 2003).
In particular, the functions that can be computed with the least
sensitivity to noise are in the space of the large principal com-
ponents of the tuning curves, corresponding to large singular
values a matrix with tuning curves as rows. Fig. 9 plots singular
values of these matrices, with different perturbations of tuning-
curve width. Wider tuning curves produce a few large principal
components, corresponding to a small space of functions that
can be decoded very robustly. Fig. 10 shows the largest principal
components of the best-performing populations for each task. The
best principal components for the odometry task (left) tend to be
fairly separable in speed and direction, whereas the best principal
components for gesture recognition (right) are somewhat more
complex functions of speed and direction.

4.4. Sensitivity to linear recombination and RDM-maintaining per-
turbations

Fig. 11 shows an example of random responses with a RDM
that closely matches that of an MT-model response to the odom-
etry dataset.

Table 3

Task performance with linear mixing of the MT-model responses, and random
responses with the same RDM as the MT model. The RDM matching procedure
was not performed with the gesture task due to the large size of the required
correlation matrix.

Odometry RMSE Gesture Correct

(mean +/— SD Classification
cm/frame) (mean +/— SD %)
Baseline 0.45 4/— 0.00 75.82 +/— 025
Linear Recombination 0.42 +/— 0.01 75.00 +/— 0.19
RDM Match 0.66 +/— 0.00 -
Spatially shuffled 0.51 +/— 0.03 -

Table 3 shows the results of experiments with random linear
mixing of the MT-model responses, and with randomized RDM-
matching responses (root-mean-square difference with original
RDM less than 0.0086 in each case). The means and standard
deviations are over three independently trained networks in each
case. With random linear mixing, odometry performance im-
proved, but gesture performance was slightly worse. Using ran-
dom responses with the same RDM led to substantially worse
performance of the odometry task.

The RDM is insensitive to the spatial organization of the rep-
resentation, but spatial organization could be an important factor
in both deep networks and the brain, because individual neurons
tend to receive spatially localized input. In our network, the
kernels of the MST layer were fairly large, but did not span
the whole MT layer. So the worse performance we found using
random responses with the same RDM could have been due to
loss of spatial organization of the representation. To test this,
we performed a control experiment in which the network was
trained on a spatially shuffled version of the MT model represen-
tation (i.e. each multi-channel pixel was moved to a new random
location). This resulted in slightly worse performance than base-
line (RMSE 0.51 cm/frame as opposed to 0.45 cm/frame), but
much better performance than the full RDM-maintaining ran-
domization (RMSE 0.66 cm/frame). This suggests that reduced
performance in the latter case is not primarily due to a simple
loss of spatial organization.

5. Discussion

Tuning-curve width affects how much stimulus information
is encoded in the presence of noise (Zhang & Sejnowski, 1999).
It also affects the functions that can be decoded from a popu-
lation with diverse tuning (Eliasmith & Anderson, 2003). Using
linear regression (a simple model of synaptic integration), lower-
frequency functions can be decoded more accurately from wider
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Fig. 9. Singular values of matrices of MT population model tuning curves. Left, Singular values of populations with different speed-tuning widths. Right, Singular
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Fig. 10. Left, The first 16 principal components of the tuning curves of the best-performing MT model population for the odometry task (beginning from the top-left).
The horizontal axes are log-speed, from —2 to 4 log-ofs; the vertical axes are direction, from 0 to 27 radians. Right, As on the left, but for the best-performing

model population for gesture recognition.

tuning curves, and higher-frequency functions can be decoded
more accurately from narrower tuning curves. In the naturalistic
scenarios studied here, the networks do not explicitly decode
functions that are easily expressed in terms of their spatial fre-
quency with respect to stimulus properties. However, we found
that broader tuning was beneficial for visual odometry, but not
for gesture recognition, which may reflect implicit decoding of
lower frequency and higher-frequency functions at certain stages
of these two networks, respectively. The fact that tuning width
had different effects on different visual tasks in this study sup-
ports the idea that optimal tuning properties in MT may reflect a
compromise between different functional roles (Tadin, 2015).

Random linear mixing of the tuning curves improved per-
formance on the odometry task, but not the gesture task. This
is consistent with the tuning width results, as linear mixing
generally increased the effective tuning curve widths. However,
additionally, the mixed tuning curves were non-separable in the
speed and direction dimensions. It is notable that this did not
substantially impair performance in either task.

We also optimized random responses to match the represen-
tational similarity of the MT model, to test whether representa-
tional similarity alone could account for task performance. How-
ever, this was not the case in our experiment. The RDM-matched
random responses resulted in distinctly worse performance of the
odometry task than the original responses.

It is somewhat surprising that performance was affected at all
by these manipulations, because the network parameters were
optimized individually around each representation. Deep net-
works can perform both of these tasks with video (rather than
an MT representation) as input. We previously trained deep net-
works on the odometry task, with several frames of video as
input (Rezai et al., 2018). We found that intermediate layers of

high-performance networks exhibited speed and direction tun-
ing, however the tuning statistics were quite different from those
of area MT. In general, deep networks are fairly robust to large dif-
ferences in representation. However, we found here that details of
the representation of visual motion can affect their ability to per-
form complex tasks. There may be a manifold of high-performing
representations that allows for certain large differences but not
others.

The details of motion representation in MT have been studied
extensively in electrophysiology experiments. However, details
such as the distribution of tuning widths are difficult to manip-
ulate independently in experiments, so their relationship with
visual function must be studied in models. Models have previ-
ously been used to study the impact of tuning on motion velocity
estimation (Boyraz & Treue, 2011) and smooth pursuit (Lisberger,
2010). Here we have extended this line of work, in models that
perform two sophisticated and naturalistic motion-processing
tasks with reasonable accuracy.

A limitation of our study is that the responses of our MT
model probably differ substantially from those of real MT. Among
MT models, ours addresses a relatively thorough list of MT re-
sponse phenomena. It closely reproduces stimulus-parameter
tuning from the literature, and at the population level, it in-
corporates a number of distributions of tuning properties from
the literature into the population response (Rezai et al., 2018).
However, the model assumes that MT neurons are completely
insensitive to other stimulus parameters, except insofar as they
cause errors in the estimation of velocity, disparity, and contrast
fields. Despite limitations of any particular model, the question
of the functional significance of tuning properties can only be
addressed with a model, because tuning properties cannot be
individually manipulated in animals.
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Fig. 11. An example of a random population response to the small version of the odometry dataset, that is optimized to closely match the RDM of an MT-model
response to this dataset. Spike-rate responses are plotted on the left, and RDMs on the right. The top row is from the MT model and the bottom row is randomized.
The root-mean-square difference between the RDMs is 0.0085. The full matrices are very large, so only every 100th neuron and stimulus are plotted.

Despite these limitations, our study suggests that tuning width
is relevant to sophisticated visual inference, that the optimal
widths are task-dependent, and that they differ from those that
maximize Fisher information about the corresponding variables.
They also suggest that neither linear reconstruction quality nor
representational similarity fully account for the task performance
associated with a representation.

It is unclear whether these observations can provide insights
for learning of representations in the brain or in artificial systems.
However, in light of the task relevance of tuning width, per-
haps representation learning can be somehow decomposed into
learning a tuning space, and learning parameters of the tuning
width distribution in the space. This might potentially be more
data-efficient than independently learning each feature.
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