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GlandSAM: Injecting Morphology Knowledge
Into Segment Anything Model for Label-Free

Gland Segmentation
Qixiang Zhang , Yi Li , Cheng Xue , Haonan Wang , and Xiaomeng Li , Member, IEEE

Abstract— This paper presents a label-free gland seg-
mentation, GlandSAM, which achieves comparable perfor-
mance with supervised methods while no label is required
during its training or inference phase. We observe that
the Segment Anything model produces sub-optimal results
on gland dataset: It either over-segments a gland into
many fractions or under-segments the gland regions by
confusing many of them with the background, due to
the complex morphology of glands and lack of sufficient
labels. To address this challenge, our GlandSAM inno-
vatively injects two clues about gland morphology into
SAM to guide the segmentation process: (1) Heterogene-
ity within glands and (2) Similarity with the background.
Initially, we leverage the clues to decompose the intri-
cate glands by selectively extracting a proposal for each
gland sub-region of heterogeneous appearances. Then,
we inject the morphology clues into SAM in a fine-tuning
manner with a novel morphology-aware semantic grouping
module that explicitly groups the high-level semantics of
gland sub-regions. In this way, our GlandSAM could cap-
ture comprehensive knowledge about gland morphology,
and produce well-delineated and complete segmentation
results. Extensive experiments conducted on the GlaS
dataset and the CRAG dataset reveal that GlandSAM out-
performs state-of-the-art label-free methods by a significant
margin. Notably, our GlandSAM even surpasses several
fully-supervised methods that require pixel-wise labels for
training, which highlights the remarkable performance and
potential of GlandSAM in the realm of gland segmentation.
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I. INTRODUCTION

LABEL-FREE gland segmentation refers to the process of
segmenting a whole slide image (WSI) into a glandular

region and a non-glandular region without the use of any kind
of labels during the training and inference phases. Despite
the success of the existing studies on fully supervised gland
segmentation [1], [2], [3], [4], [5], [6] and weakly super-
vised gland segmentation [7], [8], these approaches necessitate
pixel-level or weaker labels, e.g., bound-box and patch tag.
However, the manual labeling of WSIs remains a considerable
challenge due to their extensive scale [9]. Specifically, it usu-
ally takes months for a pathology expert to draw pixel-level
labels for one WSI at the resolution of 50, 000 × 50, 000 [9],
while weaker forms of annotations, e.g., bound box, still
cost more than three weeks [8]. To tackle this challenge,
in this paper, we propose the first work of label-free gland
segmentation, which enables training and inference without
relying on any explicit labels.

A simple way to achieve label-free gland segmentation
is to adopt prior label-free methods in the field of com-
puter vision [11], [12], [13], [14], [15], [16], [17]. However,
adapting these methods to gland segmentation results in poor
performance due to the intrigue gland morphology and lack
of annotations [10]. Recently, the emergence of the Seg-
ment Anything Model (SAM) has demonstrated extraordinary
label-free generalizability to different scenarios [11]. With
only a few visual prompts, e.g., points, boxes, and scribbles,
SAM has achieved robust performance in various segmentation
tasks [18], [19], [20], which makes it an attractive choice for
developing a label-free gland segmentation method. However,
based on our observation, when performing zero-shot gland
segmentation with these visual prompts, SAM demonstrates
inferior performance: It either over-segments a gland into
numerous fractions or under-segments the gland regions
by misclassifying many of them as the background; see
Fig. 1 (b). The reason behind this is the heavy reliance of
SAM’s zero-shot performance on the inherent connections
between pixels of the same object [21], and essentially,
grouping similar pixels and separate dissimilar ones. In natural
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Fig. 1. (a): Example of a gland and its gland border and interior epithelial tissues. (b) Zero-shot Segmentation with point prompts via SAM vs. Our
GlandSAM. clay and orange denote the prediction and the ground truth respectively. (This figure incorporates elements from our previous MICCAI
conference paper [10]). Over-segmentation refers to the model wrongly segmenting a gland into numerous fractions; Under-segmentation refers to
the model misclassifying many glandular regions as background.

images, such implicit object-aware relations are often clearly
visible: different parts of a ship, (prows and sterns), share
similar properties while being distinct from other objects
(people) and the background (water) [22]. With such implicit
relation, SAM is able to achieve extraordinary results.

Nevertheless, when it comes to biological tissues in
histopathology images, e.g., glands, the situation is different
and the above inherent connections no longer hold. The
glandular tissues have some unique characteristics: (1) Het-
erogeneity within glandular regions; see Fig. 1(a). Unlike
objects in natural images, our segmentation targets, i.e., gland,
in histopathology images are composed of different parts, i.e.,
gland border and interior epithelial tissue, with large varia-
tions. The gland borders usually consist of cells with higher
gray levels, surrounding the interior epithelial tissues with
various color distributions. (2) Similarity with the background.
The interior epithelial tissues consist of various kinds of cells
that may closely resemble those non-glandular tissues in the
background. As such, relying solely on these types of prompts
can provide only limited information about the morphology
of the target objects, SAM methods tend to indiscriminately
cluster pixels with similar properties and confuse many gland
regions with the background, leading to over-segmentation or
under-segment results (see Fig. 1(b)).

To address the above challenge, in this paper, we present
GlandSAM, a label-free but accurate and robust method for
gland segmentation. The key insight of our GlandSAM is
to inject two clues about gland morphology into SAM to
guide the segmentation process: (1) Heterogeneity within
glands and (2) Similarity with the background. Specifically,
our GlandSAM first utilizes the two empirical clues to
decompose the intriguing structure of glands by separately
selecting proposals for gland sub-regions according to their
unique morphological properties. In this way, by resolving the
gland with heterogeneous structures into multiple sub-regions,
we could accordingly encode the unique morphological prop-
erties into respective sub-region proposals. Then, we inject
the inherent morphology properties within the gland proposal
into SAM in a fine-tuning manner with a morphology-aware
semantic grouping (MSG) module, which explicitly groups
the semantics of the gland sub-regions to capture the overall
morphology information. Finally, we utilize the tuned model to

produce well-delineated, complete gland segmentation results
(see Fig. 1(b)), while gland proposals serve as visual prompts.

We conducted a thorough evaluation of the performance of
our GlandSAM, which involved two categories of comparison
targets. Firstly, we compare the segmentation performance
of GlandSAM with task-specific supervised and label-free
segmentation methods. Secondly, we performed a comparison
experiment between our GlandSAM and the recently emerged
SAM-based zero-shot segmentation [23] methods. The exper-
imental results on GlaS dataset [2] and the CRAG dataset [4]
show that our GlandSAM significantly outperforms the state-
of-the-art (SOTA) label-free methods and zero-shot methods
by a large margin. Notably, our GlandSAM even outperforms
several fully-supervised methods that require pixel-wise labels
for training, which further emphasizes the exceptional perfor-
mance and potential of our GlandSAM.

This work is an extension of our prior conference paper [10],
regarding the following highlighted aspects:

(1) The high-level idea of GlandSAM in this journal paper
builds on our previous work but with significant improve-
ments: (i) In MSSG [10], we utilize the unreliable proposal
maps extracted via empirical clues to train an extra segmen-
tation model from scratch, which will inevitably incorporate
unnecessary noise. In contrast, this journal paper explores an
efficient way to leverage SAM’s exceptional label-free gener-
alizability for achieving robust label-free gland segmentation.
(ii) We observe that SAM encounters huge challenges on gland
segmentation and highlight primary reasons, i.e., the presence
of heterogeneity within glandular regions and the similarity
with the background, and propose to injects gland morphology
from the above two clues into SAM to resolve the issues.

(2) The architecture of GlandSAM is improved as follows:
(i) In GlandSAM, we innovatively employ an MSG module
to summarize and inject the morphology knowledge hidden
inside the proposals into SAM instead of using the noisy
proposals to train an extra segmentation model like [10].
(ii) We develop a SAM Bypass Adaptation (SAM-BA)
mechanism to effectively preserve the injected morphology
knowledge while avoiding catastrophic forgetting during the
Morphology Knowledge Injection (MKI) phase. The SAM-BA
also achieves a time&parameter friendly way to transfer
SAM to other domains, providing valuable insights to the
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community. (iii) We innovatively propose to tune the prompt
encoder of SAM during MKI which enables utilizing proposal
maps as mask prompts to further provide more hints about
gland morphology during inference.

(3) We conduct more comprehensive experiments to val-
idate the proposed GlandSAM: (i) Besides the GlaS dataset
used in [10], GlandSAM is further evaluated on the challeng-
ing CRAG dataset, while more previous methods are added as
counterparts. (ii) We achieve 2.11% (4.50%), 2.82% (5.00%),
and 7.83% (2.40%) improvement at F1 score, DICE, and
mIOU on GlaS (CRAG) dataset, compared with our previous
work which is also the current SOTA. (iii) We conduct
extensive ablation studies on SAM’s applications and potential
for gland segmentation, which could provide valuable insights
to the community.

Our codes are made available at https://github.com/xmed-
lab/MSSG

II. RELATED WORKS

A. Label-Free Semantic Segmentation
To alleviate the annotation costs, considerable efforts have

been extort to design label-free semantic segmentation meth-
ods for different tasks on natural images [12], [13], [14], [15],
[16], [17] and medical images [24], [25], [26], [27].

1) Label-Free Semantic Segmentation for Natural Image:
Prior label-free segmentation methods for natural images can
be broadly categorized into coarse-to-fine-grained [13], [14],
[15], [28], [29] and end-to-end (E2E) clustering [12], [30],
[31]. The former ones typically rely on pre-generated coarse
masks, e.g., super-pixel proposals [28], salience masks [15],
and self-attention maps [13], [14], [29], as prior, which is not
always feasible on gland images. The E2E clustering methods,
however, produce under-segment results on gland images by
confusing many gland regions with the background [10]. This
is due to the fact that E2E clustering relies on the inherent
connections between pixels of the same class, as discussed in
the Introduction Section, while Glandular tissues demonstrate
significant Heterogeneity within Gland. As such, the E2E
clustering methods tend to indiscriminately cluster pixels with
similar properties and confuse many gland regions with the
background, leading to under-segment results.

2) Label-Free Semantic Segmentation for Medical Image:
Existing label-free segmentation methods have shown promis-
ing results in various medical modalities, e.g., magnetic
resonance images [32], x-ray images [33] and dermoscopic
images [25]. However, directly utilizing these methods to seg-
ment glands could lead to over-segment results where a gland
is segmented into many fractions rather than being considered
as one target [10]. This is because these methods are usually
designed to be extremely sensitive to color [25], while gland
images present a unique challenge due to their highly dense
and complex tissues with intricate color distribution [7].

B. SAM for Medical Image Analysis
Recently, the Segment Anything Model (SAM) was intro-

duced as a groundbreaking foundational model for image
segmentation [11] along with multiple concurrent works [11],

[34], [35]. SAM introduces the concept of training a
large-scale vision transformer using an extremely substantial
dataset consisting of 11 million images and 1 billion masks.
SAM’s most notable feature is its impressive zero-shot seg-
mentation performance via the utilization of diverse visual
prompts, e.g., points and bound-boxes (b-box), particularly for
previously unseen datasets and tasks [20].

The emergence of the vision foundation model has also
provoked the interest of many researchers in the medical image
segmentation domain [18], [23], [36], [37]. These studies
can be broadly classified into two categories: (1) Designing
fine-tuning strategies for the SAM, and (2) evaluating zero-
shot generalizability. The former category requires targeted
datasets with pixel-level annotations, which are used to transfer
SAM into the target domain. For example, [38] proposed
to utilize the LoRA strategy to fine-tune the SAM image
encoder, prompt encoder, and mask decoder using relatively
smaller labeled medical image segmentation datasets. Their
proposed SAM-Med achieved state-of-the-art segmentation
performance on CT and MRI segmentation tasks. Concur-
rently, [36] proposed a Medical SAM Adapter that employed
several adapters with few parameters to transfer SAM into
different medical image segmentation tasks, and achieved
considerable improvement on skin lesion segmentation and
brain tumor segmentation tasks. Reference [39] applied SAM
to the polyp segmentation task using five benchmark datasets
under the Everything setting. The results showed that although
SAM can accurately segment the polyps in some cases, a large
gap exists between SAM and the state-of-the-art methods.
Reference [23] assessed the performance of SAM in digital
pathology segmentation tasks, including tumor, non-tumor
tissue, and cell nuclei segmentation on whole-slide imaging.
The experimental results showed that the visual prompts only
offer limited clues about the morphology of the target objects.
Consequently, relying solely on such prompts, the foundation
models, often end up in confusion among classes, where the
models primarily focus on low-level features like colors rather
than capturing the high-level semantics of the target region and
confuse many of them with the background.

III. METHODOLOGY

The general pipeline of GlandSAM is depicted in Fig. 2.
GlandSAM starts with the Proposal Prompt Mining (PPM)
phase, which generates proposal maps for each gland image
through empirical clues related to gland morphology. These
proposal maps are then utilized to fine-tune the SAM model
through Morphology Knowledge Injection (MKI). Finally, the
tuned model is employed for segmentation, with the proposal
maps serving as visual prompts.

A. Proposal Prompt Mining
During this phase, we utilize empirical clues about gland

morphology to extract proposal maps that highlight the gland
regions. The two empirical clues could be succinctly sum-
marized as follows: Each gland exhibits a border region
characterized by cells with high gray levels, which encompass
interior epithelial tissues similar to the background. We first
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Fig. 2. Overall workflow of our proposed GlandSAM for label-free gland segmentation. (a) Prompt Proposal Mining: We generate proposal maps
for each gland sub-region with heterogeneity through empirical clues related to gland morphology. (b) Morphology Knowledge Injection: We inject
the gland morphology knowledge hidden inside the proposal maps into SAM in a fine-tuning manner with the MSG module. (c) Gland Segmentation
inference via GlandSAM.

train a shallow CNN encoder in a self-supervised manner to
divide WSI into several candidate regions, then we utilize the
empirical clue to select proposals from these candidates for
the gland sub-regions.

Specifically, let the i th input image be denoted as X i ∈

RC×H×W , where H , W , and C is the height, width, and
number of channels. We obtain a feature map Fi = ∥ f (X i )∥2,
where f is an shallow CNN encoder. We train the encoder in
a self-supervised manner. The loss function L consists of a
typical self-supervised Loss LSS , which is the cross-entropy
loss between the feature map Fi and the one-hot cluster
label Ci = arg max (Fi ), and a Spatial Continuity Loss LSC ,
which regularizes the vertical and horizontal variance among
pixels within a certain area S to assure the continuity and
completeness of the candidate regions. The expressions for
the self-supervised Loss LSS and the Spatial Continuity Loss
LSC are given below:

LSS(Fi [:, h, w], Ci [:, h, w])

= −

D∑
d

Ci [d, h, w] · ln Fi [d, h, w] (1)

LSC (Fi ) =

S,H−s,W−s∑
s,h,w

(Fi [:, h + s, w] − Fi [:, h, w])2

+ (Fi [:, h, w + s] − Fi [:, h, w])2 . (2)

Then we employ K-means to cluster Fi into 5 can-
didate regions, denoted as Yi = {yi,1 ∈ RD×n0 ,

yi,2 ∈ RD×n2 , . . . , yi,5 ∈ RD×n5}, n1 + n2 + . . . + n5 equals
the total number of pixels in the WSI (H × W ).

Proposal Selection via Empirical Clues: The above empir-
ical clue is used to select proposals for gland borders and
interior epithelial tissues from the candidate regions Yi . Partic-
ularly, we first select the region with the highest average gray
level as the proposal for the gland borders. Then, we fill the
areas surrounded by the gland border proposals and consider
them as the proposal for the interior epithelial tissues, while
the rest areas of the gland image are regarded as the back-
ground. Finally, we obtain the proposal map Pi ∈ R3×H×W ,
which contains the two proposals for gland sub-regions and
one background region.

B. Morphology Knowledge Injection
The proposal maps generated by PPM are then utilized to

fine-tune SAM, injecting the implied morphology knowledge.
To effectively inject the morphology knowledge, we introduce
a morphology-aware semantic grouping (MSG) module during
fine-tuning, which summarizes the overall information about
glands from their sub-region proposals by explicitly grouping
their semantics.

1) Model Design: One simple approach to fine-tune SAM
is to unlock all parameters. However, this can lead to three
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Fig. 3. Detailed model structure of our SAM Bypass Adaption, where
SAM is deployed as the base model, while a lightweight two-layer residual
block is applied to each Transformer layer as an adaptor.

potential adversarial effects. Firstly, training a large-scale
model with unlocked parameters demands excessive compu-
tational resources and training time. Secondly, deploying and
storing the weight of a new model is cumbersome. Thirdly,
adopting this solution without sufficient training samples
and accurate labels may lead to catastrophic forgetting [40]
and end up with poor performance. To address this issue,
we introduce a SAM Bypass Adaption (SAM-BA) to fine-tune
SAM in a parameter-efficient manner. Specifically, as shown
in Fig. 3, in the SAM-BA, SAM is deployed as a base
model, while a lightweight residual block [41] is applied to
each transformer layer as an adaptor Adaptor(·) to preserve
injected knowledge. During fine-tuning, the parameters of the
base model are frozen, while the adaptors’ parameters are
updated. Each layer output is obtained by fusing the outputs of
the adaptors and the Transformer layers of the base model. For
instance, the output feature of the i th layer Fi can be obtained
as:

Fi = α × Bi (Fi−1) + (1 − α) × Adaptori (Fi−1), (3)

where Bi and Adaptori denote the i th Transformer layer and
adaptor. α is a learnable coefficient parameter.

2) Training Strategy: To inject the gland morphology knowl-
edge, we utilize the sub-region proposal maps highlighting
gland sub-regions to fine-tune SAM. Merging the two
sub-region proposals as pseudo labels is a simplistic and
straightforward approach but it is not optimal in our case.
Firstly, the two gland sub-regions exhibit significant hetero-
geneity in appearance, making it challenging for the model
to recognize them as cohesive parts of the same object. Sec-
ondly, the PPM phase may produce proposals with inadequate
highlighting of many gland regions, particularly the interior
epithelial tissues, as shown in Fig. 2 (b) where regions marked
with × are omitted. As a result, applying pixel-level cross-
entropy loss between the gland image and the merged proposal
map could introduce unwanted noise into SAM, resulting in
sub-optimal performance. As such, we propose two types of
Morphology-aware Semantic Grouping (MSG) modules, i.e.,
MSG for Heterogeneity (MSG-H) and MSG for Omission
(MSG-O), to respectively reduce the confusion caused by the
two challenges mentioned above. The details of the two MSG
modules are described as follows.

Here, we first slice the gland image and its proposal map
into patches as inputs. Let the input patch and its correspond-
ing sliced proposal map be denoted as X̂ ∈ RC×Ĥ×Ŵ and
P̂ ∈ R3×Ĥ×Ŵ . We can obtain the feature embedding map F̂
which is derived as F̂ = S AMen(X̂) and the prediction map
X̃ as X̃ = S AMde( ˆF, Y ), where S AMen and S AMde refers to
the encoder and mask decoder of SAM respectively.

MSG for Heterogeneity is designed to mitigate the adverse
impact of appearance heterogeneity between the gland sub-
regions. It regulates the pixel-level feature embeddings of the
two sub-regions by explicitly reducing the distance between
them in the embedding space. Specifically, according to the
proposal map P̂ , we divide the pixel embeddings in F̂ ∈

RD×Ĥ×Ŵ into Gland border set |G| =
{
g0, g1, . . . , gkg

}
,

Interior epithelial tissue set |I | =
{
i0, i1, . . . , iki

}
and Non-

glandular, i.e., background, set |N | =
{
n0, n1, . . . , nkn

}
, where

kg + ki + kn = Ĥ × Ŵ . Then, we use the average of the pixel
embeddings in gland border set |G| as the alignment anchor
and pull all pixels of |I | towards the anchor:

LM SG H =
1
I

∑
i∈|I |

i −
1
G

∑
g∈|G|

g

2

. (4)

MSG for Omission is designed to overcome the problem
of partial omission in the proposals. It identifies and relabels
the overlooked gland regions in the proposal map and groups
them back into the gland semantic category. To achieve this,
for each pixel n in the non-glandular, i.e., background, set |N |,
two similarities are computed with the gland sub-regions |G|

and |I | respectively:

SG
n =

1
|G|

∑
g∈|G|

g
∥g∥2

·
n

∥n∥2
,

S I
n =

1
|I |

∑
i∈|I |

i
∥i∥2

·
n

∥n∥2
. (5)

SG
n (or S I

n ) represents the similarity between the background
pixel n and gland borders (or interior epithelial tissues).
If either of them is higher than a preset threshold β (set to
0.7), we consider n as an overlooked pixel of gland borders (or
interior epithelial tissues), and relabel n to G (or I ). In this
way, we could obtain a refined proposal map R P . Finally,
we impose a pixel-level cross-entropy loss on the prediction
and refined proposal R P to train SAM:

LM SG O = −

Ĥ ,Ŵ∑
ĥ,ŵ

R P[:, ĥ, ŵ] · ln X̃ [:, ĥ, ŵ], (6)

The total objective function L for training the segmentation
network can be summarized as follows:

L = LM SG O + λHLM SG H , (7)

where λH (set to 1) is the coefficient.

C. Segmentation With GlandSAM
Finally, we utilize the tuned SAM to perform gland seg-

mentation with proposal maps as visual prompts. Notably,
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we innovatively employ the Cut-Mix augmentation [42] dur-
ing segmentation inference. Specifically, we first crop gland
images into patches and merge patches from different gland
images, and for proposal prompts, We apply the same pro-
cedure. In this way, we could create a new gland image that
contains mixed regions from other gland images, and present
SAM with a wide range of diverse hints derived from different
glands, thereby offering a more explicit representation of the
pathological structure.

IV. EXPERIMENT

A. Datasets
We conduct experiments on three public glandular datasets:

Gland Segmentation Challenge (GlaS) dataset [2], Col-
orectal Adenocarcinoma Gland (CRAG) dataset [4], and
Prostate Gland Segmentation (PGlandSeg) dataset [43]. The
GlaS dataset comprises 165 histopathology patches stained
with H&E extracted from 16 WSIs. We follow the previous
works [1], [7], [44], and split the GlaS dataset into a train-
ing set with 85 images and a testing set with 80 images.
We utilize the images in the training set and their proposals to
fine-tune the SAM, and evaluate the performance on the testing
set. The CRAG dataset consists of 213 histopathology patches
stained with H&E extracted from 38 WSIs. Following previous
works [4], we split the CRAG dataset into 85 training images
and 80 testing images. Compared with the GlaS dataset, the
CRAG dataset contains a higher proportion of irregular malig-
nant glands, making it more challenging. The Prostate Gland
Segmentation dataset [43] consists of 1500 histopathology
patches stained with H&E obtained from 150 patients, with
18851 glands annotated. Following the official dataset split
setting [43], we divide the PGlandSeg into 1000 training
images and 500 testing images. Compared with the GlaS
and the CRAG datasets, the PGlandSeg dataset contains more
glandular structures.

B. Implementation Details
The experiments are conducted on four A100 GPUs. For

the PPM, a 3-layer encoder is trained for each training
sample. Each convolutional layer employs a 3×3 convolution
with a stride of 1 and a padding size of 1. The encoder
undergoes training for 50 iterations using an SGD optimizer
with a polynomial decay policy and an initial learning rate of
1e-2. During the process of fine-tuning SAM, we utilize the
ViT_B version of SAM as our base model and incorporate
a lightweight adaptor for each Transformer Layer within the
image encoder. Each adaptor is implemented with a three-layer
residual block [41]. During the MKI phase, we keep the
parameters of the image encoder frozen, while updating the
parameters of the adaptors, mask decoder, and prompt encoder.
The MKI phase undergoes training for 200 epochs using
an AdamW optimizer. In line with prior studies [38], [44],
we implemented exponential learning rate decay to ensure the
stability of the process. Specifically, we set the initial learning
rate to 1e-4 and established a decay period of 100. Note that,
for a fair comparison, we utilize the pseudo labels generated by
different methods to respectively train a PSPNet [45]) for each

method, and compare the performance of the trained PSPNets
to evaluate their effectiveness.

C. Comparison With State-of-the-Art Methods

To assess the performance of our GlandSAM, we conduct
two kinds of comparative experiments: (1) We compare the
segmentation performance with state-of-the-art (SOTA) seg-
mentation methods employing different supervisions, as shown
in Table I. (2) We compare GlandSAM with the SAM-based
zero-shot segmentation, as presented in Table II.

1) Comparison Results on GlaS Dataset: To begin with,
we compare our proposed GlandSAM with many SOTA meth-
ods that employ different supervision settings on the GlaS
dataset. The quantitative comparison results are illustrated
in Table. I. Many unsupervised methods fail on the GlaS
dataset due to (1) Heterogeneity within glandular regions. and
(2) Similarity with the background., and thus obtain limited
improvement compared with a randomly initialized network
(less than 20%). Our proposed GlandSAM, on the con-
trary, achieves a much more significant performance advance
(+30.65% F1 score, +32.28% Dice, and +38.42% mIOU)
with the injection and guidance of gland morphology knowl-
edge. In addition, compared with our previously proposed
and published method, i.e., MSSG [10], there is a huge
margin of 2.11% at F1 score, 3.82% at Dice, and 7.83% at
mIOU. Furthermore, even compared with the fully-supervised
segmentation method Unet [46] which requires pixel-level
annotations, our completely label-free method can still achieve
2.59%, 1.87%, and 5.21% improvement at F1 score, Dice, and
mIOU.

Besides the quantitative results, in Fig. 4, we present the
qualitative visualization results of our GlandSAM and its
counterpart, i.e., SGSCN [25] and MSSG [10]. The predictions
of SGSCN appear to be coarse and inaccurate, especially in
the interior epithelial tissues. By incorporating gland mor-
phology knowledge, MSSG achieves a more comprehensive
understanding of gland structures, leading to more accurate
segmentation results. Furthermore, our GlandSAM model
enhances the performance of MSSG by producing even more
precise results that closely resemble the ground truth.

2) Comparison Results on CRAG Dataset: To further evalu-
ate the performance of our GlandSAM model, we additionally
conduct comparative experiments on the CRAG dataset. The
comparison results are also shown in Table. I. Similar to
the results on the GlaS dataset, previous label-free segmen-
tation methods achieve limited improvement compared with
a randomly initialized model. In contrast, our GlandSAM
gained 31.49%, 29.93%, and 20.96% of advancement in F1
score, DICE, and mIOU, with a large margin to its label-
free counterparts. Furthermore, even without any annotations
from the CRAG dataset, our GlandSAM still outperforms
many fully-supervised methods. For example, even with pixel-
level annotations, VF-CNN (C8) [47] still lags behind our
method with 4.33% at F1 score, 4.06% at Dice, and 8.18% at
mIOU. Compared with the SOTA fully-supervised segmenta-
tion method, i.e., DSF-CNN, our GlandSAM still narrows the
gap to 5.47% and 6.84% at F1 score and DICE.
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TABLE I
COMPARISON RESULTS ON GLAS AND CRAG DATASET. BOLD AND UNDERLINE DENOTE BEST AND SECOND-BEST RESULTS OF THE Label-Free

Methods. † DENOTES OUR PREVIOUS PUBLISHED MICCAI CONFERENCE PAPER [10]

Besides the quantitative results, Fig. 5 shows the predictions
of our GlandSAM and its counterparts, i.e., SGSCN [25]
and MSSG [10], on the CRAG dataset. As can be seen
in Fig. 5, even without any kind of labels, GlandSAM can
still present smooth and accurate predictions, proving its
robustness.

3) Comparison Results on PGlandSeg Dataset: To addition-
ally evaluate the generalizability of our GlandSAM model,
we additionally conduct comparative experiments on a much
larger PGlandSeg dataset. The comparison results are also
shown in Table. I. Similar to the outcomes observed on
the GlaS and CRAG datasets, prior label-free segmentation
techniques show only marginal enhancements when contrasted
with a randomly initialized model. In contrast, our GlandSAM
gained 32.96%, 31.46%, and 32.55% of advancement in F1
score, DICE, and mIOU, with a large margin to its label-free
counterparts.

D. Comparison With SAM-Based Zero-Shot
Segmentation

The most notable feature of SAM lies in its remarkable
zero-shot generalizability, which has piqued the interest of
numerous researchers exploring its application in various
medical domains [23], [37]. In this study, we perform a
comparative analysis with zero-shot segmentation pipelines.
The SAM-based zero-shot segmentation requires several visual
prompts, e.g., points, bound-boxes (b-boxes), and scribbles,
which are usually obtained from an expert pathologist, e.g.,
clicking in the target regions, drawing b-boxes or scribbles.
To stimulate the plausible prompting strategies, we evaluate
the zero-shot segmentation performance under the following
settings:

• We randomly select several points from the ground-truth
mask, including at least one central point for each gland.
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Fig. 4. Visualization of predictions on GlaS dataset. Blue denotes predicted glandular regions of SGSCN [25], MSSG [10], and our GlandSAM.
Orange denotes ground truth regions of glandular tissues.

Fig. 5. Visualization of predictions on CRAG dataset. Blue denotes predicted glandular regions of SGSCN [25], MSSG [10], and our GlandSAM.
Orange denotes ground truth regions of glandular tissues.

• We utilized the instance mask to draw b-boxes for glands.
• We draw scribbles across different sub-regions of glands

for the glandular regions according to the ground truth.
Table. II and Fig. 6 illustrate the quantitative and quali-

tative comparison results on the GlaS dataset. As depicted in
Table II, when provided with less than 20 point prompts, SAM

exhibits poor performance, with F1 scores lower than 60%.
This is primarily due to the limited information provided by
the point prompts, which fail to encompass the comprehen-
sive characteristics of glandular tissues. Consequently, SAM
tends to focus on specific gland sub-regions, disregarding the
intricate morphology and interplay between different regions
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Fig. 6. Visualization of the predictions from the GlandSAM and the zero-shot segmentation with SAM using different kinds of prompts.

TABLE II
COMPARISON RESULTS WITH SAM-BASED ZERO-SHOT

SEGMENTATION ON GLAS DATASET, WHERE BOLD AND UNDERLINE

DENOTES THE BEST AND THE SECOND-BEST RESULTS

and the background. With an increase in the number of point
prompts to 162, SAM demonstrates significant improvement,
but it still falls short compared to our GlandSAM. Moreover,
it is worth noting that such a high number of points is
impractical in real-world scenarios due to its labor-intensive
nature. Secondly, we also perform experiments using scribble
prompts. Scribble prompts outline a broader area of glandular
tissue, offering more comprehensive information about glands
compared to isolated points. Consequently, SAM with scribble
prompts achieves a higher performance, i.e., about a 5% gap

at F1 score. However, the scribble prompts still cannot cover
all areas of glands leading to the overlook of some morpho-
logical characteristics. Compared with the above two kinds
of prompts, b-boxes provide a more explicit spatial constraint
for segmentation by highlighting the entire region of glands.
Consequently, they demonstrate the highest zero-shot segmen-
tation performance. Specifically, when the number of the b-box
increase to 10, the mIOU rises to 64.60%. However, the
limitation of this kind of b-box prompts is also obvious. On the
one hand, the segmentation performance still lags behind
many task-specific label-free methods, e.g., MSSG [10], due to
the unique characteristics of gland morphology and the large
domain gap.

In contrast, our GlandSAM demonstrates significantly
improved segmentation performance. Specifically, when pro-
vided with 20 proposals, GlandSAM achieves a notable
improvement of 5.82% in F1 score, 4.88% in DICE, and
5.95% in mIOU compared to SAM with bounding box
prompts. Furthermore, even when compared to SAM with a
substantial number of point prompts (specifically, 1282), which
would be extremely labor-intensive in real-world scenarios,
our GlandSAM still outperforms it with improvements of
4.71% in F1 score, 2.61% in DICE, and 3.32% in mIOU.
Moreover, in Fig. 5, we showcase the qualitative visualization
results of our GlandSAM model in comparison to zero-shot
segmentation methods, where GlandSAM yields much more
accurate, complete, and visually appealing results that closely
resemble ground truth.
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Fig. 7. Ablation studies of the spatial continuity loss during the PPM
stage on the GlaS dataset (upper row) and CRAG dataset (bottom row).
“GB” denotes the Gland Border proposal, “IET” denotes the Interior
Epithelial Tissue proposal.

TABLE III
ABLATION STUDY ON FINE-TUNING STRATEGY

E. Ablation Studies

To validate the effectiveness of each module in Gland-
SAM, we conduct comprehensive ablation studies, which
are organized as follows: (1) We evaluate GlandSAM with
varying numbers of prompts, shown in Table. II and Fig.6.
(2) We assess the quality of proposals after the PPM phase,
as depicted in Fig.7. (3) We evaluate the efficacy of the two
morphology-aware semantic grouping modules during MKI
phase, as illustrated in Table. III.

1) Studies on the Prompt Number: We begin by evaluating
the segmentation performance of GlandSAM with varying
numbers of proposal prompts. To achieve this, we merge the
number of images and their corresponding proposals into a
single image and proposal map. It is important to note that as
the number of proposal prompts increases, the computational
resources and inference time required also increase. The results
are shown in Table. II. As can be seen, with the number of
proposal prompts increasing, the segmentation performance of
our GlandSAM advances slightly but steadily. It is also worth
noting that, even with only 5 proposal prompts, our GlandSAM
still beats all zero-shot segmentation methods using SAM.

2) Studies on Proposal Prompt Mining: To verify the effec-
tiveness of each component used in the Proposal Prompt
Mining (PPM) stage, we conduct a few ablation studies
and list the performance of our CNN encoder. Specifically,
we compare our shallow CNN encoder fi (·, θi ) with the same
CNN but without training with Spatial Continuity Loss L SC
(λSC set to 0). Fig. 7 reveals the results on two datasets. From

Fig. 8. Visualization of the proposal maps after the PPM stage. The
upper row shows the extracted gland border (GB) proposal only, and the
bottom row shows both GB and interior epithelial tissue (IET) proposal.
With Spatial Continuity Loss, the gland border proposal shows better
completeness, which leads to better extraction of IET proposal.

TABLE IV
ABLATION STUDY ON HYPER-PARAMETER α IN EQUATION (3)

the quantitative results, we observe that LSC can not only
improve the mIOU of gland proposals but also improve the
robustness of the CNN encoder. From the visualization of the
initial proposals (Fig. 8), we can observe that the major reason
for the improvement is that L SC can help the model generate
more intact gland borders, leading to more accurate extraction
of interior epithelial tissue proposals.

3) Studies on Morphology Knowledge Injection: To further
study the contribution of the two MSG modules during the
morphology knowledge injection stage, we list the perfor-
mance on the GlaS dataset with different fine-tuning settings
in Table. III. We first fine-tune the SAM with only pixel-level
cross-entropy loss as the baseline. Then, we progressively add
the two MSG modules to respectively verify their effective-
ness. As shown in Table. III, we gain 3.92% and 0.94% of
mIOU with the involvement of MSG for Heterogeneity and
MSG for Omission respectively. Furthermore, when involving
both modules, our network can finally achieve 70.55% at
mIOU, surpassing the baseline of over 5.83%. Moreover,
to determine appropriate values for hyper-parameter α in
equation (3), we implement extensive experiments with the
different values of α on the GlaS dataset. Experimental results
are given in Tab. IV. We can observe that the mIOU achieves
the highest values when α is set to 0.5, reaching 70.55%,
which surpasses the baseline (α is set to 0) by 4.08%.

F. Studies on CutMix Augmentation During Inference

Since the resolution of whole slide images is quite big,
we usually need to crop them into patches before feeding them
into deep models. During segmentation inference, we employ
Cut-Mix augmentation upon the prompt proposals by mixing
patches of proposal maps into a new prompt proposal. This
step intends to increase the diversity of the prompts. In Tab. V,
we show the ablations to demonstrate the contribution
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TABLE V
ABLATION STUDY ON CUT-MIX AUGMENTATION DURING THE

SEGMENTATION INFERENCE

TABLE VI
ABLATION STUDY ON INSTANCE-LEVEL GLAND SEGMENTATION

ON THE GLAS DATASET

of cut-mix augmentation (+1.63%) during segmentation
inference.

G. Studies on Instance-Level Segmentation Performance
Despite the semantic-level segmentation, we also demon-

strate the performance from the instance-level segmentation on
the GlaS dataset; see Table. VI. In order to obtain the instance-
level prediction, we first utilize the openCV library to perform
convolutional erosion (i.e., cv2.erode) for 5 iterations to
disconnect different glandular objects that are linked together.
Then, we used torchvision.ops library to repurpose
the eroded mask into bound-boxes. Finally, we apply the
generated bound-boxes on the original semantic masks, and
consider the intersection of the semantic mask and each
bound-box as the mask for each gland instance. As shown in
Table. VI, even without any annotations including mask and
bound-box contained in the instance mask, our GlandSAM
could still lower the gap compared with the fully-supervised
methods to 3.4%, 5.0%, and 2.1 at Object F1 score, Object
DICE and Object Hausdorf. Furthermore, compared with its
unsupervised counterpart, our GlandSAM achieves a huge gap,
i.e., over 15% at Object F1 score.

V. DISCUSSION

The high cost of annotation has been a significant barrier
to the development of DL-based gland segmentation methods.
Therefore, it is highly desirable to design a label-free method
that eliminates the need for any annotations. In recent
times, the Segment Anything Model (SAM) has garnered
significant attention due to its remarkable generalizability
across a wide range of domains. Several researchers have
reported the exceptional performance and adaptability of SAM
in various domains. However, the typical pipeline of applying
SAM, i.e., zero-shot segmentation with visual prompts, results
in limited performance, due to the presence of heterogeneity
within glandular regions and the similarity with the back-
ground. To this end, we introduce a novel GlandSAM, which
utilizes empirical clues to generate initial proposals for gland
sub-regions. Subsequently, we employ a morphology-specific
grouping (MSG) mechanism to inject morphology knowledge

Fig. 9. Samples from ISIC Challenge 2017 dataset, showcasing the
Heterogeneity across the skin lesions.

Fig. 10. Performance improvement with MSG on skin lesion dataset.

into SAM. This innovative approach enables the integration
of morphology knowledge, which is obtained without any
supervision, into SAM, resulting in significant improvements
in gland datasets. We verify the superiority of our GlandSAM
on three public benchmarks. Quantitative results are offered in
Table I-V, explicitly showing the superiority of the proposed
method, while Fig. 4-8 intuitively illustrate the improvement.

Although our GlandSAM is designed specifically for the
gland segmentation tasks, the idea of semantic grouping,
i.e., injecting the semantic knowledge extracted from medical
morphology clues into the large foundation model, can also be
applied to segment multiple meaningful pathological targets,
e.g., cells and nuclei, whose morphological features can be
quantified and provide valuable information regarding tumor
aggressiveness grading [48], diagnosis [49], [50], staging [51],
and prognosis [52]. Moreover, the idea of semantic group-
ing can be applied to various medical domains besides the
histopathology image, addressing a common issue: hetero-
geneity within class, where different parts or objects of one
same class may differ from each other. As shown in Fig. 9
which takes skin lesion segmentation as an example, the
variation across different kinds of skin lesions is quite obvious.
Herein, we conduct experiments about the effectiveness of
MSG modules on the ISIC Challenge 2017 dataset [53], and
list the performance in Fig. 10. According to Fig.10, with the
MSG module, we achieve 2.79%, 2.42%, and 5.10% improve-
ment in F1 score, DICE, and mIOU respectively, proving its
effectiveness and potential to apply to other medical fields.

Despite the progress, our GlandSAM still has some limita-
tions. First, visually noticeable clues about object morphology
are not always available and may require certain biological
knowledge. In the future, we will try to follow a more
generalized method to produce initial proposals. For example,
attention maps from DINO [29] could be potential. The culprit
of its bad performance lies in the indiscriminate aggregation of
attention maps from different attention heads. Considering the
literature on the multi-head self-attention mechanism, we plan
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TABLE VII
COMPARISON EXPERIMENT RESULTS WITH SELF-ATTENTION

METHODS (DENOTED WITH †) ON THE GLAS DATASET

Fig. 11. Visualization of self-attention maps on gland patches.

to exploit different attention maps as proposals of different
sub-regions, which seems more reasonable and general for
different segmentation tasks. Furthermore, as we look ahead,
our intention is to extend the application of our methods
to gigapixel whole slide images, which encompass a diverse
range of tissues. We aim to utilize these methods for various
histopathology image segmentation tasks, including tumor and
nuclei segmentation.

VI. CONCLUSION

In this study, we propose a novel GlandSAM for label-free
gland segmentation. GlandSAM innovatively exploits empir-
ical clues about gland morphology to extract meaningful
morphological knowledge, which is then injected into SAM
using a morphology-aware semantic grouping module. As a
result, SAM learns comprehensive information about glands
and produces well-defined and complete glandular regions.
Our GlandSAM, even without any supervision, could achieve
comparable or even better results than fully supervised meth-
ods on three glandular benchmarks. Moreover, the idea of our
morphology-aware semantic grouping is a potential solution to
address the common heterogeneity within class which could
further benefit other medical image segmentation tasks.
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