
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND PREDEFINED DEPOTS: A DUAL-MODE GEN-
ERATIVE DRL FRAMEWORK FOR PROACTIVE DEPOT
GENERATION IN LOCATION-ROUTING PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

The Location-Routing Problem (LRP), which combines the challenges of facility
(depot) locating and vehicle route planning, is critically constrained by the re-
liance on predefined depot candidates, limiting the solution space and potentially
leading to suboptimal outcomes. Previous research on LRP without predefined
depots is scant and predominantly relies on heuristic algorithms that iteratively
attempt depot placements across a planar area. Such approaches lack the ability to
proactively generate depot locations that meet specific geographic requirements,
revealing a notable gap in current research landscape. To bridge this gap, we pro-
pose a data-driven generative DRL framework, designed to proactively generate
depots for LRP without predefined depot candidates, solely based on customer
requests data which include geographic and demand information. It can operate
in two distinct modes: direct generation of exact depot locations, and the creation
of a multivariate Gaussian distribution for flexible depots sampling. By extract-
ing depots’ geographic pattern from customer requests data, our approach can
dynamically respond to logistical needs, identifying high-quality depot locations
that further reduce total routing costs compared to traditional methods. Extensive
experiments demonstrate that, for a same group of customer requests, compared
with those depots identified through random attempts, our framework can proac-
tively generate depots that lead to superior solution routes with lower routing cost.
The implications of our framework potentially extend into real-world applications,
particularly in emergency medical rescue and disaster relief logistics, where rapid
establishment and adjustment of depot locations are paramount, showcasing its
potential in addressing LRP for dynamic and unpredictable environments.

1 INTRODUCTION

The Location-Routing Problem (LRP) is a critical optimization challenge in the urban logistics
industry, combining two interdependent decisions: selecting depot locations where vehicles com-
mence and conclude their tasks, and planning vehicle routes for serving customers. This integration
is crucial as the depot locations can directly affect the vehicle route planning, thereby impacting
overall costs Salhi & Rand (1989). The LRP can be formally defined as Nagy & Salhi (2007):
Given a set of customers with specific location and quantity of demands, and a set of potential depot
candidates each with a fleet of vehicles featuring fixed capacity, aiming to properly select a subset of
depots and plan routes for vehicles departing from these chosen depots to meet customers’ demands,
while minimizing both depot-related and route-related costs, without violating specific constraints.

In this traditional problem configuration, solving LRP have relied on a predefined set of depot can-
didates Contardo et al. (2014); Nguyen et al. (2012); Pourghader Chobar et al. (2022); Wang et al.
(2023) instead of directly generating desired optimal depot locations, thereby limiting the solution
space and potentially leading to suboptimal outcomes. This constraint is particularly pronounced
in scenarios where the optimal depot locations are not included in the candidates set, or when the
problem configuration demands a high degree of flexibility in depot placement, requiring quickly
establish and adjust depot locations. The real-world application that underscores the necessity of
generating depots without predefined candidates is medical rescue and disaster relief logistics: In
the aftermath of a natural disaster, such as an earthquake or flood, the existing infrastructure may be

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

severely damaged, rendering previously established depots unusable. In such scenarios, the ability
to dynamically generate new depot locations based on current needs and constraints is crucial for
efficient and effective relief operations.

Regarding this extended LRP scenario without predefined depot candidates, only a limited number
of studies do the exploration by considering the concept of an infinite candidates set, represented
by a planar area, for depot selection. However, these works primarily focus on designing heuristic
algorithms to iteratively initiate new locations as depots across the planar area, and only manage to
consider up to 2 depots (single-depot work Schwardt & Dethloff (2005); Schwardt & Fischer (2009),
double-depot work Salhi & Nagy (2009)). Furthermore, these attempts demonstrate low efficiency
and adaptability in tackling specific location constraints for depots, such as the required specific dis-
tance range among depots. In this situation, if simply expanding the search of the depot candidates
across the map and aimlessly attempting new points, then undesired increasing on problem scale
will be incurred, thereby leading to excessive time consumption and expensive computation. There-
fore, devising a method to proactively generate high-quality depots, satisfying the depot location
constraints for LRP scenario without predefined depot candidates, is well-motivated.

Motivated by this necessity of proactively generating depots when no candidates are predefined, we
propose a generative deep reinforcement learning (DRL) framework, uniquely crafted to address
LRP in depot-generating fashion. By leveraging customers’ logistical requests data, which encom-
pass geographic locations and specific demands, our framework generates depot locations and plans
efficient routes for vehicles dispatched from these generated depots for serving the customer re-
quests. Specially, our framework encompasses two models: (1) Depot Generative Model (DGM), a
deep generative model capable of generating depots in two distinct modes: direct generation of exact
depot locations or production of a multivariate Gaussian distribution for flexible depots sampling.
The exact mode ensures precision when necessary, while the Gaussian mode introduces sampling
variability, enhancing the model’s generalization and robustness to diverse customer distributions.
(2) Multi-depot Location-Routing Attention Model (MDLRAM), an end-to-end DRL model focusing
on providing an efficient LRP solution for serving customers based on the generated depots, with
minimized objective including both route-related and depot-related cost.

In summary, the contributions of our work include: (1) A generative DRL framework for LRP that
proactively generates depots based on customer requests data, eliminating the reliance on predefined
depot candidates, with a particular emphasis on applications requiring rapid adaptability, such as
disaster relief logistics; (2) The component model - DGM - provides two distinct operational modes
for depot generation: direct generating exact depot locations and producing a multivariate Gaussian
distribution for flexible depots sampling, catering to a diverse range of real-world scenarios; (3) The
component model - MDLRAM - provides an integrated LRP solution, minimizing the objectives
including both route-related and depot-related cost, while also offering flexibility to adjust inter-
depot cost distribution for balanced cost management across multiple depots. (4) The detachability
of our framework allows both independent or combined usage of its components. DGM’s depot-
generating ability can be fine-tuned to adapt to various LRP variants through integration with other
models, while MDLRAM can be freely used in traditional LRP configuration with predefined depot
candidates, and also can be fine-tuned to accommodate various real-life constraints.

1.1 RELATED WORK

Methods for LRP with Predefined Depot Candidates: In addressing the LRP with Predefined De-
pot Candidates, traditional methods have predominantly employed exact and heuristic approaches.
Exact methods, such as Mixed Integer Programming (MIP) models enhanced by branch-and-cut Be-
lenguer et al. (2011); Akca et al. (2009) or column generation techniques Contardo et al. (2014), offer
precision but often struggle with scalability in larger and complex scenarios due to an exponential in-
crease in binary variables. This limitation has pivoted attention towards heuristic methods, which are
categorized into: matheuristic approaches Rath & Gutjahr (2014); Danach et al. (2019); Ghasemi
et al. (2022) that blend heuristic rules with exact methods, learning-aided heuristics Prins et al.
(2006); Nguyen et al. (2012) that leverage learning-based algorithms to refine heuristic operations,
and pure meta-heuristic algorithms. Among pure meta-heuristics, cluster-based heuristics Billionnet
et al. (2005); Barreto et al. (2007) and iterative methods Salhi & Nagy (2009); Pourghader Chobar
et al. (2022); Albareda-Sambola et al. (2007) have been notable. However, the cluster-based heuris-
tics, which focus on geographically clustering customers, exhibit limitations in handling additional

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

constraints like customer-specific time windows, while the iterative methods present insufficient
conjugation between the two stages of depot-selecting and route-planning. Besides, these methods
typically require initiating a new search process for each case, leading to inefficiencies when even
minor alterations occur to current problem instance.

The advancements in DRL have shown promise in addressing routing problems, both in “learn-to-
construct/generalize” Kool et al. (2019); Xin et al. (2021a); Lin et al. (2024); Zhou et al. (2024)
and “learn-to-improve/decompose” Xin et al. (2021b); Ma et al. (2021); Ye et al. (2024). However,
its application in LRP, which integrates the challenges of facility locating with routing problem,
still remains notably underexplored due to their inherent limitations in problem formulation for
scenario involving multiple depots and the inability to organically integrate depot-selecting with
route-planning. The works Arishi & Krishnan (2023); Rabbanian et al. (2023); Anuar et al. (2021)
focus on resolving routing problems involving multiple depots, but without considering the depot-
relate cost, which technically confine them as multi-depot VRP, instead of LRP which considers both
route-related cost and depot-related cost. The work Wang et al. (2023) considers depot-related cost
but adopts a two-stage process, clustering customers with an assigned depot location first and plan-
ning routes second, thereby separating depot selection from route planning, which fails to capture
the interdependencies between these two critical aspects, while also lacking verification on standard
LRP setup align with real-world datasets. Most importantly, all these methods are constrained to the
predefined depot candidates, falling short in dealing with LRP without predefined depot choices.

Exploration of LRP without Predefined Depot Candidates: Only a scant number of studies ex-
plore the LRP without predefined depot candidates, predominantly employing heuristic strategies for
attempting new depots across a planar area devoid of predefined depot choices. The work Schwardt
& Dethloff (2005); Schwardt & Fischer (2009) concentrate on single-depot scenario, where a sin-
gle and uncapacitated depot is to be selected from a planar area. Specifically, Schwardt & Fischer
(2009) extends the cluster-based method in Schwardt & Dethloff (2005), proposing a learning-aided
heuristic method to recurrently initiate new depot. Based on the same single-depot scenario, the
work Manzour-al Ajdad et al. (2012) proposes a hierarchical heuristic method to iteratively update
candidate circle to select new depot and then plan routes based on this depot. Furthermore, Salhi &
Nagy (2009) extends the iterative heuristic method to explore multi-depot scenario, but only man-
ages to deal with cases with up to two depots.

It is notable that, compared with our method’s endeavors on actively and directly generating the
recommended depots, these works employ heuristic algorithms to iteratively attempt new depot and
then decide if it is a better one by re-planning routes based on it, limited to single or double-depot
scenarios. Moreover, all these works lack ability on considering specific location constraints for
depots, highlighting the necessity for a more adaptable and flexible solution.

2 METHODOLOGY

Overview: Chain-of-Thoughts Solely based on the customer requests data which include ge-
ographic and goods demand information within an area, in pursuit of a solution that proactively
generates high-quality depots satisfying specific location requirements, and subsequently plans op-
timized vehicle routes from these generated depots to efficiently serve customers, we propose the
generative DRL framework, which is overviewed in Fig. 1.

The Depot Generative Model (DGM) takes in the customer requests information including the po-
sitions and specific quantity of demands, generating the required amount of depots in two distinct
modes: the exact depot locations or a multivariate Gaussian distribution for flexible depots sampling.

Training DGM for generating desired depots hinges on a robust evaluation mechanism to assess the
quality of the generated depot set, i.e., based on the same group of customer requests and identical
route-planning strategies, determining which set of depot can lead to solution routes with lower
routing cost. This necessitates a critic model to score the generated depot locations or the distribution
during training. Additionally, to facilitate an efficient training process, this critic model must be able
to instantly provide scores for the generated depot set, and also has to operate batch-wisely.

In this pursuit, we modify the Attention Model Kool et al. (2019) to accommodate the multi-depot
scenario, introducing the Multi-depot Location-Routing Attention Model (MDLRAM) as a critic
model placed after the DGM, constituting the entire framework. By taking in the customer requests

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the Generative DRL framework for Depot Generation in LRP.

and the generated depots from DGM, MDLRAM outputs the LRP solution routes, associated with a
minimized objective, providing score to rate the generated depot locations or the distribution.

Because MDLRAM serves as a critic model for DGM, it should be robust enough to provide a
reliable score for assessing the generated depots from DGM. That means, the score is expected to
solely reflect the quality of the generated depots, ruling out the influence of LRP routing solution’s
quality per se as much as possible. To achieve this capability, the MDLRAM should be pre-trained
to be able to provide the LRP routing solution with minimized overall cost based on given requests
and depots, and then set fixed to participate in the training of DGM. In this manner, during training
the DGM, the different sets of depots generated by DGM for a same group of customer requests
will get different scores from MDLRAM, solely reflecting the influence of depot locations, thereby
facilitating a robust training process for DGM.

2.1 CRITIC MODEL: MDLRAM

As a critic model for DGM, the MDLRAM takes in the customer requests and the generated de-
pots, aiming to output the integrated LRP routing solution with minimized objectives including both
route-related and depot-related cost.

MDLRAM-Configuration: In alignment with the conventional setting Belenguer et al.
(2011), the configuration is defined on an undirected graph G = (V,E), where the V =
{vD1

, . . . ,vDm
,vS1

, . . . ,vSn
} denote the vertices set comprising n customers and m depots.

Specifically, vDk
signifies the coordinates (xDk

, yDk
) for depot Dk, where k ∈ {1, . . . ,m}, and

vSe represents the coordinates (xSe , ySe) for customer Se, where e ∈ {1, . . . , n}. The Euclidean
edge set is defined as E ⊆ V × V , with dij representing the Euclidean distance from vi to vj .

Each customer vSe
has a specific quantity of demands for goods denoted as qe. Each depot vDk

is characterized by two attributes: (i) the maximum supply Mk (soft constraint), indicating the
desired maximum total goods dispatched from this depot; (ii) the fixed opening cost Ok, indicating
the expense for using this depot facility. Regarding the vehicles, we operate a homogeneous fleet,
with each vehicle having the same maximum capacity Q (hard constraint) indicating the maximum
vehicle load during service, and a setup cost U for using this vehicle in service. (More details for
LRP configuration are available in Appendix A.1).

MDLRAM-Objective Function: In the LRP scenario, a feasible solution is essentially a set of
routes, simultaneously executed by multiple vehicles starting and ending at their designated depots.
To utilize DRL model to output solution routes, it’s crucial to formulate the solution routes into a
Markov Decision Process (MDP) as the output format, representing iterative decisions to construct

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the solution. To mathematically formulate the LRP solution into MDP, a tuple (S,A,P,R, γ)
is defined, with each decision step t associated with a tuple (st, at, pt, rt, γt). The st represent
current state, encompassing information of: the current route’s depot, the current serving customer
and remaining capacity on current vehicle; The action at denotes the next visit point, subject to
the vehicle’s remaining load; The pt and the rt correspond to the transition probability and cost
associated with action at, respectively. Along with the generation of MDP, in each decision step
t, the current state is dynamically updated upon serving a customer or returning to a depot. (See
Appendix A.2 for detailed MDP formulation proposed for LRP scenario.)

Following this construction, a feasible LRP solution is formulated, associated with an objective
(cost) function expressed as Eq. (1). Apart from the step-wisely accumulated transit distance length∑

t rt along with the MDP generating process, other costs, which depict solution’s overall perfor-
mance are also integrated into the total cost with a respective discount, including: (i) the opening
cost for used depots; (ii) the setup cost for dispatched vehicles; (iii) penalty of exceeding depot de-
sired maximum supply. In Eq. (1), ηk ∈ {0, 1} represents whether depot Dk is opened, χk records
the number of vehicles dispatched from depot Dk, and α, β, δ are coefficients.

LSel(A) =
∑
t

rt + α ·
m∑

k=1

Ok · ηk + β ·
m∑

k=1

U · χk + δ ·
m∑

k=1

max[(
∑
e

qe)k −Mk, 0] (1)

MDLRAM aims to minimize the expectation of this loss associated with the LRP solution, defined
as E[LSel(A)], where LSel(A) is expressed in Eq. (1).

MDLRAM-encoder: As is shown in the red block of Fig. 1, two streams of information are fed
into MDLRAM as input: the depot candidates and the customer requests data. For each depot can-
didate vDk

where k ∈ {1, . . . ,m}, it is represented by its coordinates gDk
= [xDk

, yDk
]T . For

each customer vSe
where e ∈ {1, . . . , n}, it is depicted by a vector concatenating its coordinates

and specific demands, in form of gSe
= [xSe

, ySe
, qe]

T . By respectively implementing different
learnable linear projections, these depot candidates information vectors and customers information
vectors are embedded into a high-dimensional space with same dimension, deriving the node fea-
tures {hD1 , . . . ,hDm ,hS1 , . . . ,hSn}. These node features undergo N standard attention modules,
encoded as the final node embeddings {h(N)

D1
, . . . ,h

(N)
Dm

,h
(N)
S1

, . . . ,h
(N)
Sn
} for downstream decoding.

MDLRAM-decoder: With the encoded node embeddings, the decoder operates iteratively to con-
struct feasible solution routes in form of vertices’ permutation as an MDP. Each decoding step
necessitates a context embedding ht

c depicting current state st, and a mask finalizing point selection
domain through filtering out the current infeasible points, both updated step-wisely.

(i) Context embedding: We design the context embedding ht
c to depict current state, concatenating

four elements: ht
c = W c[ha∥h(t)∥hD(t)∥Qt] + bc, where ha = 1

m+n (
∑m

k=1 h
(N)
Dk

+
∑n

e=1 h
(N)
Se

)
is the global information; h(t) is the node embedding of the point where current vehicle is situated,
while Qt is the remained load on current vehicle. Notably, hD(t) is the node embedding of the depot
which current route belongs to.

(ii) Mask mechanism: In each decoding step, guided by the context embedding ht
c, the decoder pro-

duces the corresponding probabilities for all the feasible points within the selection domain, while
infeasible points—determined by vehicle remained load and tasks completion state—are masked.
To efficiently handle batch processing of problem instances, we employ a boolean mask tailored for
the LRP scenario, allowing for batch-wise manipulation on selection domains, avoiding repeated
operation for each individual instance. (See step-wise update pseudo code in Appendix A.3)

Upon finalizing the boolean mask for current decoding step, the context embedding is applied to
conduct Multi-head Attention (MHA) with the node embeddings filtered by the mask. This yields
an intermediate context embedding ĥt

c incorporating the glimpse information on each feasible point.
Then, ĥt

c participates in Single-head Attention (SHA) with the filtered node embeddings, yielding
the corresponding probabilities for all the feasible points in its selection domain, where a feasible
point, as an action at, can be selected with an associated pt. This decoding process is delineated as:

ĥt
c = FF(MHA(ht

c,mask{h(N)
D1

, . . . ,h
(N)
Dm

,h
(N)
S1

, . . . ,h
(N)
Sn
}))

at = argmax(softmax[
1√
dim

· FF(query)(ĥ
t
c) · FF(key)(mask{h(N)

D1
, . . . ,h

(N)
Dm

,h
(N)
S1

, . . . ,h
(N)
Sn
})T ])

(2)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.2 DUAL-MODE DEPOT GENERATION: DGM

As depicted in the purple block of Fig. 1, the DGM is designed to only take in the customer requests
data and generate the depots in two distinct modes based on preference: exact depot locations or a
multivariate Gaussian distribution for flexible depot sampling.

DGM-Configuration: The configuration for depot generation is also defined on an undirected graph
G = (V,E), where the V = {vS1 , . . . ,vSn} only including customer requests. A solution set
incorporating m depots is pending to be generated. During depot generation, the distances among
generated depots are expected to be within the range [lmin, lmax], which means the depots being
excessively close or distant with each other will both incur violation penalty.

DGM-Objective Function: As the main task of depot generation, the depots with desired properties
are expected to be generated. According to the problem configuration for DGM, for the solution set
of generated depots, denoted as D, its loss can be defined as Eq. (3), where LMDLR is the route
length derived by MDLRAM based on the DGM generated depots, λ, ε are coefficients for penalty
of the depots being too distant or close with each other:

LGen(D) = LMDLR +

m∑
i=1

m∑
j=i

[λ ·max(dij − lmax, 0) + ε ·max(lmin − dij , 0)] (3)

DGM aims to minimize the expectation of this loss associated with generated depot set, defined as
E[LGen(D)], where LGen(D) is formed as Eq. (3).

DGM-encoder: The DGM solely processes the customer requests, each characterized by a vector
gSe

= [xSe
, ySe

, qe]
T concatenating location and demands. Following the similar encoding process

with MDLRAM, these requests are encoded as node embeddings {h̃(N)
S1

, . . . , h̃
(N)
Sn
}, based on which

a global embedding is finalized as: hserve =
1
n

∑n
i=1 h̃

(N)
Si

for downstream depot generation.

DGM-generator in Multivariate Gaussian distribution mode: In this mode, the DGM aims to
generate a multivariate Gaussian distribution where depots can be flexibly sampled. Since m depots
are pending to be identified, the generated multivariate Gaussian distribution should exhibit 2m
dimensions, with each pair of dimensions denoting the coordinates (xDk

, yDk
) for depot Dk, where

k ∈ {1, . . . ,m}. To achieve this, we define this multivariate Gaussian distribution, pending to be
generated, as: Xdepot ∼ N (µ,Σ), where any randomly sampled 2m-dimensional vector Xdepot =
(X1, X2, . . . , X2m)T represents the coordinates for a depot set including m depots.

To generate such distribution, two essential components are: the mean vector µ ∈ R2m and covari-
ance matrix Σ ∈ R2m×2m. Hence, the output of DGM should be a vector hdepot as below, where
the first 2m dimensions represent the mean vector, followed by the second 2m dimensions denote
corresponding variance of each coordinate, with the remaining C2

2m dimensions as the covariance
of any two coordinates. Therefore, the hdepot ∈ R2m+2m+C2

2m is arranged as Eq. (4).

hdepot = (

mean︷ ︸︸ ︷
h1, . . . , h2m,

variance︷ ︸︸ ︷
. . . , h4m,

covariance︷ ︸︸ ︷
. . . , h4m+C2

2m
)T (4)

To output this hdepot for constructing the 2m-dimensional Gaussian distribution, we employ a layer
module featuring two fully connected layers to process the global embedding hserve derived by
encoder, expressed as: hdepot = tanh(FFmultiG(tanh(FF(hserve)))).

When utilizing the hdepot to construct the multivariate Gaussian distribution, it is critical to ensure
that the variances remain positive. Hence, before constructing, we process the second 2m dimen-
sions’ elements as below: −→var = 1 + elu((h2m+1, . . . , h4m)T ). Besides, when sampling the depot
set Xdepot which records the depot coordinates, to adhere to the configuration, Xdepot should be
mapped within unit square [0, 1]× [0, 1] to standardize the depot set: DmultiG = sigmoid(Xdepot).

DGM-generator in Exact position mode: In this mode, DGM aims to directly generate the exact
positions for a set of depots based on the global embedding hserve derived by encoder. To this end,
we retain m as the depot number, then the DGM’s output should be a vector hdepot ∈ R2m in which
every two dimensions represent the coordinates (xDk

, yDk
) for a depot Dk.

hdepot = (

D1︷ ︸︸ ︷
h1, h2, . . . ,

Dm︷ ︸︸ ︷
h2m−1, h2m)T (5)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To output this hdepot, a layer module, encompassing two fully connected layers, is employed:
hdepot = FFexactP(tanh(FF(hserve))). Also, to satisfy the configuration, we map the hdepot

within the unit square [0, 1]× [0, 1] to standardize the depot set: DexactP = sigmoid(hdepot).

3 TRAINING STRATEGY

Step I: Pre-training of MDLRAM: MDLRAM concurrently processes a batch of problem in-
stances randomly sampled from the configuration, thereby generating a batch of corresponding
MDPs as their respective feasible solutions. Each MDP involves a permutation of actions, denoted
as MDP(A) = {a1, a2, . . .}. Because each action at is associated with a probability pt for se-
lecting the corresponding point, the entire MDP’s probability is manifested as: pθI(A) =

∏
t pt =∏

t p(st+1|st, at), which is parameterized by θI, denoting the MDLRAM’s parameters that require
training. Based on a batch of such MDPs, each associated with a probability pθI(A) and a cost
LSel(A) in Eq. (1), the MDLRAM is trained by REINFORCE gradient estimator with greedy roll-
out baseline Kool et al. (2019) to minimize the expectation of cost, as depicted in Eq. (6), where the
baseline B̄ is established through a parallel network mirroring the structure of MDLRAM, persis-
tently preserving the best parameters attained and remaining fixed. (See Appendix A.4 for pseudo
code and details.)

∇L(θI) = EpθI (A)[(LSel(A)− B̄)∇ log pθI(A)] (6)

Step II: Dual-mode training of DGM: As depicted in Fig. 2, DGM can be trained in two modes,
with the pre-trained MDLRAM serving as a fixed sub-solver. For the record, the θII, denoting
DGM’s parameters that requires training, is appended as footnote only to those variables which are
parameterized by DGM.

(i) Multivariate Gaussian distribution mode: In this mode, as depicted in left side of Fig. 2, the DGM
takes in a main-batch (Batchsize: Bmain) of randomly sampled graphs: {Gb|b = 1, 2, ..., Bmain}, each
with a group of customer requests, and then outputs a main-batch of corresponding multivariate
Gaussian distributions: {Nb (µ,Σ) |b = 1, 2, ..., Bmain}. Thus, training DGM involves ensuring that
the depots sampled from these distributions yield favorable expectations for the cost LGen(D).
To achieve this, from each distribution Nb (µ,Σ) within the main-batch, we sample a sub-batch
(Batchsize: Bsub) sets of depots. Each depot set is represented as DmultiG, associated with their
probabilities pθII(DmultiG) and costs LGen(DmultiG) in Eq. (3). In this way, a main-batch (Bmain) of
cost expectations, each corresponding to a multivariate Gaussian distribution, can be derived. This
entire process is shown in left part of Fig. 2. We employ following optimizer to train the DGM in
this distribution mode:

∇L(θII) =
1

Bmain

Bmain∑
b=1

E(b)
pθII (DmultiG)

[LGen(DmultiG, Gb) · ∇ log pθII(DmultiG)] (7)

Figure 2: DGM’s dual-mode training.

(ii) Exact position mode: In this mode, as depicted in
right side of Fig. 2, the DGM still ingests a main-
batch (Bmain) of randomly sampled graphs: {Gb|b =
1, 2, ..., Bmain}, each with a group of customer requests,
but directly generates the corresponding sets of depots:
{D(b)

exactP|b = 1, 2, ..., Bmain}. For each set of depots
DexactP, the cost LGen(DexactP) can be derived by Eq. (3)
whose first part is obtained by pre-trained MDLRAM.
Below optimizer guides the DGM’s training in exact
mode:

∇L(θII) =
1

Bmain

Bmain∑
b=1

∇LGen((D(b)
exactP)θII , Gb) (8)

It is crucial to differentiate that, for different modes, the
DGM’s parameters θII are tracked in different variables. In multivariate Gaussian distribution mode,
what has been parameterized by θII is the probability for each sampled DmultiG, whereas in exact
position mode, what has been parameterized by θII is the DexactP. Therefore, the gradients in these
two modes are respectively backpropagated to parameters θII through pθII(DmultiG) and (DexactP)θII .

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS AND DISCUSSION

Training Setup: To ensure comparability with prior methods, we establish the training dataset fol-
lowing the setup outlined in prior routing studies Kool et al. (2019). As for the depot-related setting,
we adopt the data format prevalent in real-world LRP benchmark datasets which are conventionally
employed in pertinent studies Belenguer et al. (2011); Prins et al. (2006). Every single problem in-
stance in the training dataset is defined on a unit square [0, 1]× [0, 1], where the customers’ requests
are uniformly scattered, with their corresponding demands uniformly sampled from [0, 10].

The problem instances for MDLRAM’s pre-training are from three problem scales: n = 20, 50, 100
customers, respectively coupled with m = 3, 6, 9 depot candidates. Corresponding to each scale:
(1) The vehicle’s maximum capacity Q is selected as 30, 40, 50 respectively; (2) The vehicle’s setup
cost U is set as 0.3; (3) The depot’s desired maximum supply Mk is uniformly selected from
[50, 80], [80, 120], [120, 170]; (4) The depot’s opening cost Ok is uniformly selected from [2, 5],
[2, 5], [12, 19]; The coefficients in objective function Eq. (1) are defined as α = 1, β = 1, δ = 2; For
each scale, we train MDLRAM on one A40 GPU for 100 epochs with 1,280,000 problem instances
generated on the fly as training dataset, which can be split into 2,500 batches with batchsize of 512
(256 for scale 100 due to device memory limitation).

As for DGM’s problem instance, only including customer requests, we also consider three problem
scales: n = 20, 50, 100 customers. The expected distance among the generated depots ranges
within [0.2, 0.7]. The coefficients in objective function Eq. (3) are specified as λ = 10, ε = 10.
Correspondingly, for each scale, we train DGM on one A40 GPU for 100 epochs. Within each
epoch, 2,500 main-batches of problem instances are generated on the fly as training dataset and
iteratively fed into DGM. In multivariate Gaussian distribution mode, the main-batch size Bmain is
set as 32 (16 for scale 100), and the sub-batch size Bsub for sampling in each distribution is selected
as 128, 64, 32 for scale 20, 50, 100 respectively. In exact position mode, where no sampling is
performed, we set main-batch size as 512 (256 for scale 100).

4.1 RESULTS ANALYSIS FOR CRITIC MODEL - MDLRAM

We first assess the efficacy of the pre-trained MDLRAM. As critic model, it is expected to instantly
provide optimized LRP solution for serving customers based on generated depots, in batch-wise
manner. Therefore, we test it on both Synthetic Dataset to highlight the instant batch-wise solving
ability, and Real-world Benchmark Dataset to evaluate its generalization performance by compar-
ing with SOTA results, which, so far, are all achieved by specifically designed heuristic methods.

Table 1: Batch-wise Testing Performance of MDLRAM on
Synthetic Dataset. (“Ttl.C.: total cost in Eq.(1)”; “Len.: to-
tal length”; “Dpt.C. (Nb.): depot opening cost (opened de-
pot number)”; “Veh.C. (Nb.): vehicle setup cost (used vehi-
cle numbers)”; “Dpt.P.: penalty for exceeding depot desired
maximum supply”)

n m Mtd. Ttl.C. Len. Dpt.C. (Nb.) Veh.C. (Nb.) Dpt.P. Inf.T.

Sc
al

e
20

20 3 MDLR(S) 13.17* 5.61 6.26 (2.14) 1.23 (4.08) 0.07 0.16s
20 3 MDLR(G) 13.81 5.86 6.45 (2.15) 1.25 (4.17) 0.24 0.10s

20 3 ALNS 13.23 6.56 5.40 (2.01) 1.16 (3.88) 0.10 4.12s
20 3 GA 13.72 6.87 5.61 (2.01) 1.17 (3.90) 0.07 6.63s
20 3 TS 16.26 9.13 5.79 (2.00) 1.16 (3.88) 0.18 0.16s

Sc
al

e
50

50 6 MDLR(S) 20.85* 8.65 10.13 (3.52) 2.05 (6.82) 0.03 0.43s
50 6 MDLR(G) 22.05 9.20 10.66 (3.55) 2.09 (6.97) 0.10 0.31s

50 6 ALNS 25.10 14.71 8.33 (3.03) 2.05 (6.84) 0.01 47.35s
50 6 GA 29.65 18.53 9.03 (3.12) 2.09 (6.98) 0 12.69s
50 6 TS 33.26 22.26 8.91 (3.16) 2.10 (6.99) 0 1.57s

Sc
al

e
10

0

100 9 MDLR(S) 86.88* 14.79 68.77 (5.00) 3.32 (11.06) 0 1.04s
100 9 MDLR(G) 94.94 16.29 75.00 (5.00) 3.37 (11.23) 0.28 0.55s

100 9 ALNS 89.75 29.58 56.82 (3.97) 3.21 (10.69) 0.14 412.83s
100 9 GA 108.24 43.79 61.03 (4.14) 3.28 (10.92) 0.14 19.44s
100 9 TS 104.39 41.80 59.31 (4.08) 3.27 (10.89) 0.01 16.44s

(i) Testing on Synthetic dataset:
For each problem scale, the syn-
thetic testing dataset include 10,000
problem instances randomly sampled
from the same configuration in train-
ing process, capable of being di-
vided into batches to facilitate batch-
wise testing. Given the lack of ex-
isting DRL method specifically de-
signed for standard LRP scenario
setup, we compare results from var-
ious enhanced classic heuristic meth-
ods, which are commonly applied to
solve routing problems, even though
heuristic methods are not suitable
for batch-wise usage considering its
solving manner and unstable infer-
ence time. The parameters are tuned
to align LRP setup to report the best performance.

As presented in Table 1, the testing on synthetic dataset provides a detailed breakdown of cost and
inference times for various problem scales, with customer numbers indexed as n ranging from 20 to
100, and depot numbers marked as m varying from 3 to 9. For each scale, all methods involved in

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

comparison report their average objective value on the 10,000 synthetic problem instances. Specif-
ically, for MDLRAM, the results are reported in two testing strategies, decided by its decoding
process: (a) Greedy test: when generating the solution routes for each problem instance, the action
selected in each decoding step is the point with the highest probability, thereby deriving one greedy
solution; (b) Sampling test: For each instance, MDLRAM simultaneously generates 1,280 random
solutions by stochastically select action in each decoding step. Then, the one with the lowest cost is
chosen as the solution.

From Table 1, MDLRAM’s sampling test consistently achieves the lowest total cost across all scales,
outperforming other methods. Meanwhile, its greedy way yields smaller total cost than other meth-
ods on larger scale n = 50, 100, being slightly outperformed on scale n = 20. The error bars for
the greedy test results are ±0.11, ±0.11, and ±0.35 for scales 20, 50, and 100, respectively. Re-
garding each individual objective, all methods exhibit similar vehicle usage, but MDLRAM tends to
distribute this usage among more depots, resulting in an increase on depot opening cost compared
to heuristic methods. This indicates that DRL method’s extensive searching ability enables explo-
ration of a broader range of circumstances, leading to better solutions. As for inference time, with
the increase of scale, MDLRAM shows steady performance, basically within 1s timeframe, whereas
heuristic methods demonstrate significant increase on time consumption.

Table 2: MDLRAM’s Performance on cases from
Real-world Dataset (“*” represents an optimal solu-
tion; “Ttl.C.”: Total Cost; “Inf.T.”: Inference Time).

GRASP Prins et al. (2006) MDLRAM (ours)
Case name n m BKS Ttl C. Gap Inf.T. Ttl C. Gap Inf.T.

P111122 100 20 14492 15269.0 5.36% 40.7s 15554.5 7.33% 0.75s
P111222 100 20 14323 14822.9 3.49% 36.2s 15154.43 5.80% 0.74s
P111112 100 10 14676.8 15252.5 3.92% 32.4s 15516.6 5.72% 0.64s
P113122 100 20 12463 12729.4 2.14% 36.0s 13081.49 4.96% 0.72s
P111212 100 10 13948 14235.4 2.06% 27.6s 14529.15 4.17% 0.58s

50-5-1a 50 5 90111 90632 0.57% 1.8s 95072 5.51% 0.25s
50-5-2b 50 5 67340 68042 1.04% 2.5s 70941 5.35% 0.23s
50-5-3b 50 5 61830 61890 0.10% 2.0s 66258 7.16% 0.23s
G67-21-5 21 5 424.9* 429.6 1.1% 0.2s 425.66 0.18% 0.12s
20-5-1a 20 5 54793* 55021 0.42% 0.2s 57005 4.04% 0.11s
20-5-2a 20 5 48908* 48908 0.00% 0.1s 50029 2.29% 0.12s
20-5-2b 20 5 37542* 37542 0.00% 0.2s 38893 3.60% 0.11s

HBP Akca et al. (2009) MDLRAM (ours)
Case name n m BKS Ttl C. Gap Inf.T. Ttl C. Gap Inf.T.

P183-12-2 12 2 204* 204.0 0.00% 0.2s 204.00 0.00% 0.07s
P183-55-15 55 15 1112.06 1121.8 0.88% 10800s 1151.91 3.58% 0.38s
P183-85-7 85 7 1622.5 1668.2 2.82% 10813.8s 1676.89 3.35% 0.46s

B&C Belenguer et al. (2011) MDLRAM (ours)
Case name n m BKS Ttl C. Gap Inf.T. Ttl C. Gap Inf.T.

30-5a-1 30 5 819.52* 819.60 0.00% 50.22s 849.33 3.64% 0.143s
30-5a-2 30 5 821.50* 823.50 0.00% 53.89s 884.29 7.64% 0.144s
40-5a-1 40 5 928.10* 928.20 0.00% 305.25s 988.80 6.54% 0.189s
40-5b-1 40 5 1052.04* 1052.07 0.00% 3694.45s 1107.54 5.28% 0.195s

(ii) Testing on Real-world dataset: To
further assess the MDLRAM’s general-
ization performance on real-world prob-
lem instances with diverse node distribu-
tion compared to the synthetic problem in-
stances used during training, we conduct
individual comparison on instances from
four real-world datasets (Prodhon Prins
et al. (2006), Acka Akca et al. (2009),
Tuzun Tuzun & Burke (1999), Barreto
Barreto et al. (2007)) which include
their best-known solutions (BKS), and the
SOTA results derived by existing methods.
Notably, as a critic model, MDLRAM
stands out for its rapidity to plan high-
quality solutions in batches, which lays
the foundation for depot-generating tasks
completed by DGM. Therefore, when test-
ing on real-world dataset, our aim is not
to establish new SOTA results, instead, we
demonstrate how MDLRAM consumes significantly less inference time than existing method to de-
rive high-quality solutions comparable to BKS, thereby ensuring the efficacy for depot generation.

As detailed in Table 2, these instances diverse significantly, with customer amount n ranging from 12
to 100 and depot candidate amount m from 2 to 20. For each case, we juxtapose: the BKS, the results
achieved by the specifically designed SOTA method reported in literatures, and results obtained
through our MDLRAM. Across all the cases, our approach can plan solution routes comparable
to those of traditional method but with notably reduced inference time. This efficiency becomes
increasingly pronounced as the problem scale enlarges, demonstrating MDLRAM’s capability to
maintain solution quality while significantly reducing time consumption.

4.2 RESULTS ANALYSIS FOR DGM

As for the DGM, based on a same group of customer requests devoid of predefined depot candi-
dates, it is expected to generate a depot set D which can lead to lower total cost than the randomly
attempted depots. Thus, we arrange an experiment to evaluate which of the following three strategies
can identify the best depot set for a same group of customer requests: (i) Generating the depot set in
DGM-Exact mode; (ii) Generating the depot set in DGM-Gaussian mode; (iii) Randomly attempting
the depot set in batches. The quality of the depot set is judged by LGen(D) in Eq. (3). For each
scale n ∈ {20, 50, 100}, we randomly sample 8,000 problem instances as testing dataset. Each in-
stance only includes a group of customer requests. The results are reported in two ways, respectively

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

evaluating the average-level and best-level of the solution depot set generated by each method: (i)
Average test: For each problem instance, these methods respectively generate 512 solution sets of
depots to serve the same group of customers accordingly. The mean of these 512 cost values is re-
ported as the corresponding result for this problem instance. Then, the average of these 8,000 mean
costs are obtained as final result. (ii) Sampling test: Similarly, for each problem instance, these
methods respectively generate 512 solution sets of depots to serve the same group of customers, but
only the lowest cost is reported as the result for that problem instance. The final result is derived
as the average of these 8,000 lowest cost values. Notably, DGM’s Exact mode directly generate
deterministic solution depot set for given problem instance, thereby yielding identical outcomes for
its both testing ways.

Table 3: Comparison of solution depot set generated
by different strategies. (“Ttl.C.: total cost in Eq.(3)”;
“Len.: total length”; “Ex.P. or Ls.P.: penalty for ex-
ceeding Upper bound or Lower bound of the distance
among the generated depots”;)

n Method Ttl C. Len. Ex. P. Ls. P. (Dpt C. Veh C. Dpt P.)

A
ve

ra
ge

20

Rdm. 7.671 5.857 1.121 0.693 (6.448 0.246 1.249)

DGM-G. 5.724 5.370 0.354 0.000 (6.427 0.234 1.252)
DGM-E. 5.096* 5.089* 0.005 0.002 (6.449 0.242 1.251)

50

Rdm. 18.261 9.192 5.600 3.469 (10.650 0.101 2.090)

DGM-G. 10.921 8.660 0.339 1.922 (10.649 0.090 2.092)
DGM-E. 8.531* 8.496* 0.018 0.017 (10.637 0.082 2.083)

100

Rdm. 38.040 16.281 13.434 8.325 (74.956 0.281 3.371)

DGM-G. 23.305 14.616 0.896 7.793 (74.933 0.271 3.372)
DGM-E. 15.394* 13.690* 0.026 1.678 (74.940 0.274 3.385)

Sa
m

pl
e

20

Rdm. 5.045* 5.021* 0.014 0.010 (6.465 0.270 1.247)

DGM-G. 5.137 5.115 0.022 0.000 (6.428 0.249 1.249)
DGM-E. 5.096 5.089 0.005 0.002 (6.449 0.242 1.251)

50

Rdm. 10.684 8.570 0.610 1.504 (10.679 0.083 2.086)

DGM-G. 8.769 8.259* 0.135 0.375 (10.676 0.085 2.086)
DGM-E. 8.531* 8.496 0.018 0.017 (10.637 0.082 2.083)

100

Rdm. 24.056 14.910 2.491 6.655 (74.928 0.281 3.369)

DGM-G. 19.538 13.828 0.667 5.043 (74.942 0.250 3.367)
DGM-E. 15.394* 13.690* 0.026 1.678 (74.940 0.274 3.385)

All three methods undergo testing on same
dataset, and their results are respectively
decomposed and compared in Table 3 with
two testing ways: (1) Average test aims
at comparing the average level of the so-
lution depot set that each method can
generate. Observations reveal that both
DGM’s two modes can identify superior
solution depot set than randomly attempt-
ing, while the Exact mode exhibits bet-
ter performance over the Gaussian mode;
(2) Sampling test further compares the
best level of solution depot set that each
method can achieve. The results demon-
strate that, when compared with “ran-
domly attempting” on the same problem
instance, DGM’s Gaussian mode can find
better solution depot set within the same
sampling timeframe. As for the DGM’s
Exact mode, its specific solution set con-
sistently outperform those of the Gaussian mode, whereas the Gaussian mode can offer more flex-
ibility with its sampling ability. Only one exception is observed in small scale (n = 20), where
“randomly attempting” achieves better solution set without the aid of DGM, which may not be
replicable at larger scales. It’s worth noting that, the superior performance achieved by the gener-
ated depot set D not just simply reflects on the total cost LGen(D) which is the sum of route length
and the violation of distance range among depots, but also respectively reflected on each individual
cost items. This reflects DGM’s ability on both identifying good depot positions and satisfying the
location requirements, instead of only focusing on minimizing the violation of distance range among
depots, while neglecting the route length, to achieve “superior performance”.

Visualize Depots Distribution: DGM’s Gaussian mode reveals correlations between depot coor-
dinates through learnable covariances. Visualization of these distributions shows that for smaller
problem scales m = 3, n = 20, the 6-D normal distribution tends to present as distinct 2-D nor-
mal distributions. However, as problem scales grow, the relationships between depot coordinates
become more complex, instead of simply presenting as several discrete 2-D normal distributions,
implying that, at larger scales, random sampling would require significant computational effort to
cover optimal depots. Full details and visualizations can be found in Appendix B.2.

5 CONCLUSION AND FUTURE WORK

In this study, we propose a generative DRL framework for depot generation without predefined
candidates. Based on customer requests data, the DGM proactively generates depots, while the
MDLRAM efficiently plans routes from these generated depots, demonstrating flexibility and cost
reductions, especially in scenarios requiring quick depot establishment and flexible adjustments.
This modular framework can be adapted to various LRP variants and further optimized for inter-
depot cost balancing (see Appendix B.3 for extended results). For more detailed discussions on
the framework’s limitations and future work, such as incorporating additional depot constraints and
generating depots adaptive to multiple routing tasks, please refer to the Appendix B.4.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Z Akca, RT Berger, and TK Ralphs. A branch-and-price algorithm for combined location and
routing problems under capacity restrictions. In Operations research and cyber-infrastructure,
pp. 309–330. Springer, 2009.

Maria Albareda-Sambola, Elena Fernández, and Gilbert Laporte. Heuristic and lower bound for
a stochastic location-routing problem. European Journal of Operational Research, 179(3):940–
955, 2007.

Wadi Khalid Anuar, Lai Soon Lee, Hsin-Vonn Seow, and Stefan Pickl. A multi-depot vehicle routing
problem with stochastic road capacity and reduced two-stage stochastic integer linear program-
ming models for rollout algorithm. Mathematics, 9(13):1572, 2021.

Ali Arishi and Krishna Krishnan. A multi-agent deep reinforcement learning approach for solving
the multi-depot vehicle routing problem. Journal of Management Analytics, 10(3):493–515, 2023.

Sérgio Barreto, Carlos Ferreira, Jose Paixao, and Beatriz Sousa Santos. Using clustering analysis
in a capacitated location-routing problem. European Journal of Operational Research, 179(3):
968–977, 2007.

José-Manuel Belenguer, Enrique Benavent, Christian Prins, Caroline Prodhon, and Roberto Wolfler
Calvo. A branch-and-cut method for the capacitated location-routing problem. Computers &
Operations Research, 38(6):931–941, 2011.

Alain Billionnet, Sourour Elloumi, and Leila Grouz Djerbi. Designing radio-mobile access networks
based on synchronous digital hierarchy rings. Computers & operations research, 32(2):379–394,
2005.

Claudio Contardo, Jean-François Cordeau, and Bernard Gendron. An exact algorithm based on
cut-and-column generation for the capacitated location-routing problem. INFORMS Journal on
Computing, 26(1):88–102, 2014.

Kassem Danach, Shahin Gelareh, and Rahimeh Neamatian Monemi. The capacitated single-
allocation p-hub location routing problem: a lagrangian relaxation and a hyper-heuristic approach.
EURO Journal on Transportation and Logistics, 8(5):597–631, 2019.

Peiman Ghasemi, Hossein Hemmaty, Adel Pourghader Chobar, Mohamad Reza Heidari, and Mahdi
Keramati. A multi-objective and multi-level model for location-routing problem in the supply
chain based on the customer’s time window. Journal of Applied Research on Industrial Engineer-
ing, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Jayavelu
Senthilnath. Cross-problem learning for solving vehicle routing problems. In The 33rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-24), 2024.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-
vances in Neural Information Processing Systems, 34:11096–11107, 2021.

SMH Manzour-al Ajdad, S Ali Torabi, and Said Salhi. A hierarchical algorithm for the planar single-
facility location routing problem. Computers & Operations Research, 39(2):461–470, 2012.

Gábor Nagy and Saı̈d Salhi. Location-routing: Issues, models and methods. European journal of
operational research, 177(2):649–672, 2007.

Viet-Phuong Nguyen, Christian Prins, and Caroline Prodhon. Solving the two-echelon location
routing problem by a grasp reinforced by a learning process and path relinking. European Journal
of Operational Research, 216(1):113–126, 2012.

11

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Adel Pourghader Chobar, Majid Sabk Ara, Samaneh Moradi Pirbalouti, Mehdi Khadem, and Saeed
Bahrami. A multi-objective location-routing problem model for multi-device relief logistics under
uncertainty using meta-heuristic algorithm. Journal of Applied Research on Industrial Engineer-
ing, 9(3):354–373, 2022.

Christian Prins, Caroline Prodhon, and Roberto Wolfler Calvo. Solving the capacitated location-
routing problem by a grasp complemented by a learning process and a path relinking. 4OR, 4(3):
221–238, 2006.

Seyedeh Shaghayegh Rabbanian, Hao Wang, and Gerald M Knapp. Analysis of decoding strategies
for transformer-based solution of multi-depot vehicle routing problems. In IISE Annual Confer-
ence and Expo, volume 2023, pp. 3575. IISE, 2023.

Stefan Rath and Walter J Gutjahr. A math-heuristic for the warehouse location–routing problem in
disaster relief. Computers & Operations Research, 42:25–39, 2014.

Saı̈d Salhi and Gábor Nagy. Local improvement in planar facility location using vehicle routing.
Annals of Operations Research, 167(1):287–296, 2009.

Said Salhi and Graham K Rand. The effect of ignoring routes when locating depots. European
journal of operational research, 39(2):150–156, 1989.

Martin Schwardt and Jan Dethloff. Solving a continuous location-routing problem by use of a self-
organizing map. International Journal of Physical Distribution & Logistics Management, 35(6):
390–408, 2005.

Martin Schwardt and Kathrin Fischer. Combined location-routing problems—a neural network ap-
proach. Annals of Operations Research, 167:253–269, 2009.

Dilek Tuzun and Laura I Burke. A two-phase tabu search approach to the location routing problem.
European journal of operational research, 116(1):87–99, 1999.

Shaohua Wang, Junyuan Zhou, Haojian Liang, Zhenbo Wang, Cheng Su, and Xiao Li. A new
approach for solving location routing problems with deep reinforcement learning of emergency
medical facility. In Proceedings of the 8th ACM SIGSPATIAL International Workshop on Security
Response using GIS, pp. 50–53, 2023.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021a.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in
Neural Information Processing Systems, 34:7472–7483, 2021b.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 20284–20292,
2024.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mv-
moe: Multi-task vehicle routing solver with mixture-of-experts. In International Conference on
Machine Learning (ICML), 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL DETAILS ABOUT METHODOLOGY

A.1 LRP CONFIGURATION

Assumptions: Following the established assumptions Belenguer et al. (2011): (1) Each customer’s
demand must be served by a delivery from exactly one depot and load transfers at intermediate
locations are not allowed; (2) Each customer must be served exactly once by one vehicle, i.e.,
splitting order is not allowed; (3) No limits on the number of vehicles utilized, but the vehicle cost
should be minimized as part of the objective.

Constraints: The constraints in LRP includes three aspects. (1) Customer Demand: The vehi-
cle’s remaining capacity must suffice to cover its next target customer’s demand during service; (2)
Vehicle Capacity: The cumulative demands delivered in a single vehicle route cannot surpass the
vehicle’s maximum capacity; (3) Depot Supply: The aggregate demands dispatched from a specific
depot is expected not to exceed its desired maximum supply.

Remark 1: The first two items are hard constraints determining solution feasibility, whereas the last
item is a soft constraint manifesting as a penalty in the objective function.

A.2 MDP FORMULATION

Figure 3: The feasible LRP solution in this exam-
ple consists of 6 single routes, which are simul-
taneously carried out by multiple vehicles. The
routes in same color belongs to a same depot. By
linking them together, the feasible solution is for-
mulated in points permutation, as an MDP.

Here, we propose the formulation of feasible
LRP solution routes in form of MDP, which is
an entire permutation of the vertices in the graph.
As depicted in Fig. 3, the routes corresponding
to the same depot have the identical start and end
point, facilitating their aggregation into an en-
tire permutation by jointing their identical depot.
Consequently, by linking together these permu-
tations from all depots, a feasible solution can be
finally formulated as an MDP.

Remark 2: The MDP is a necessary mathemati-
cal formulation used to construct the feasible so-
lution routes when engaging DRL method. Once
the solution is derived in MDP form, it will be
reverted to a set of routes for simultaneous exe-
cution by multiple vehicles.

We define this MDP with a tuple (S,A,P,R, γ), where, in each decision step t, the current iteration
is represented by a tuple (st, at, pt, rt, γt).

(a) S : is a set of states, wherein each state corresponds to a tuple (G,Dt,vt, Qt), where G denotes
entire static graph information; Dt indicates the depot which current route belongs to; vt signifies
current customer in decision step t; Qt records remaining capacity on current vehicle; This tuple is
updated at each decision step within MDP.

(b) A : is a set of actions, wherein each action at is the next point that current vehicle plans to serve.
In this problem configuration, to ensure that the MDP represents a feasible solution, actions should
be selected from feasible points whose demands can be satisfied by current vehicle’s remaining
capacity. Upon selecting the at, the state tuple should be updated accordingly:

Qt+1 =

{
Qt − qe if at ∈ {vSe

|e = 1, 2, . . . , n},
Q if at ∈ {vDk

|k = 1, 2, . . . ,m}, (9)

at ∈ {vSe
|e = 1, 2, . . . , n} indicates that current vehicle is scheduled to visit an unserved cus-

tomer. Then, the remaining capacity Qt should be updated according to Eq. (9), wherein qe repre-
sents the demand associated with the customer selected by action at. Meanwhile, at ∈ {vDk

|k =

1



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1, 2, . . . ,m} indicates that current vehicle chooses to return to its departure depot, or start planning
for a new depot. Then, a new vehicle’s route will commence from this depot, thereby the capacity
Qt is refreshed to full state.

(c) P : is a set of probabilities, wherein each element pt represents the probability transiting from
state st to st+1 by taking action at, and pt can be expressed as: pt = p(st+1|st, at)
(d) R : is a set of costs, wherein each element rt denotes the cost incurred by taking action at in
step t. The rt can be expressed as follows, where dij denotes the length between vi in step t and vj

in step t+ 1:

rt =

{
0 if vi,vj ∈ {vDk

|k = 1, 2, . . . ,m},
dij otherwise,

(10)

As is shown in Eq. (1), apart from this step-wisely accumulated transit distance, other costs used
to depict the overall performance of the solution routes, which are not accumulated step-wisely, are
added into the total cost after an entire MDP is generated. These additional overall costs include: (i)
the opening cost for used depots; (ii) the setup cost for dispatched vehicles; (iii) penalty of exceeding
depot desired maximum supply.

(e) γ ∈ [0, 1] : the discount factor for cost in each step. Here, we presume no discount applies to the
costs, i.e., γ = 1

A.3 MULTI-DEPOT MASK MECHANISM

In each decoding step, guided by the context embedding ht
c, the decoder produce the corresponding

probabilities for all the feasible points within the selection domain. This selection domain should ex-
clude all the points that current vehicle cannot visit in next step, which is subject to vehicle capacity
and current state in MDP. Because the model processes problem instances in batches, simultaneous
updates to their respective selection domains at each decoding iteration is necessary.

We identify four key scenarios to categorize the selection domain of each instance at any given
step, based on the vehicle’s location (depot or customer) and the completion status of delivery tasks.
Specifically, these four potential patterns are summarized as follows:

• (i) When current vehicle is at a depot and all the customers’ delivery tasks are finished: it
can only stay at current depot.

• (ii) When current vehicle is at a depot but not all the customers’ delivery tasks are finished:
it can choose from the vertices set including all the unserved customers and unplanned
depots but excluding current depot.

• (iii) When current vehicle is at a customer and all the customers’ delivery tasks are finished:
this represents the current customer is the last delivery task, implying that the only selection
is the vehicle’s departure depot.

• (iv) When current vehicle is at a customer but not all the customers’ delivery tasks are
finished: it can choose from the vertices set including all the unserved customers and its
departure depot.

Based on these four patterns, the selection domain is updated before each decoding iteration.

As discussed, the model operates in batch-wise manner, necessitating simultaneous updating each
instance’s selection domain at each decoding iteration. The challenge is, in each decoding step,
the selection domain of each problem instance within one batch can be very different. Thus, an
efficient boolean mask matrix specific to the LRP scenario is devised for batch-wise manipulation
on selection domain, avoiding repeated operation on individual problem instance.

The Algorithm 1 specifies our mask mechanism specifically tailored for LRP scenario. which in-
cludes manipulations on the selection domain of customers and depots. Firstly, by masking the
customers which have been served or cannot be satisfied with remaining capacity, the selection do-
main of customers can be simply derived. Crucially, for the depot selection domain, we notice
that among the four patterns above: three patterns (i, iii, and iv) include only the departure depot,
whereas one pattern (ii) excludes the departure depot. Thus, at each decoding step for a batch of

2



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

instances, we initially mask all the depots unanimously and only reveal their departure depot of cur-
rent routes. Then, we identify the problem instances belonging to pattern-ii in this batch, mask the
departure depots and reveal the unplanned depots. All the manipulations operate in batches to avoid
repeated operation on individual problem instance.

Algorithm 1 Mask Mechanism for batch-wise manipulation on selection domain for a batch of
problem instances
Input: A batch of problem instances with Batch Size B

1: Init Record = [σij ] ∈ RB×(m+n) where σij ∈ {0, 1} representing, in problem instance i,
whether the vertex j is visited (σij = 0) or unvisited (σij = 1)

2: Init ID ∈ RB current situated vertices for all instances
3: Init DP ∈ RB current departure depots for all instances
4: for each decoding step t = 1, 2, ... do
5: {φi} ← Batch No. for the problem instances where not all the tasks are finished
6: {φj} ← Batch No. for the problem instances where all the tasks are finished
7: σij ← 0 according to the IDt

8: (Mask0)ij ← True if σij = 0, (Mask0)ij ← False if σij = 1
9: (Mask1)ij ← True if (Qt)i < (qe)j , (Mask0)ij ← False if (Qt)i > (qe)j

10: Mask← Mask0 +Mask1
11: (Mask)ij ← True for all j ∈ {0, 1, ...,m− 1}
12: (Mask)ij ← False according to the DPt

13: {φk} ← Batch No. for the problem instances where current vertex is one of the depots
14: {φe} ← {φi} ∩ {φk} Batch No. for the problem instances where current vertex is one of the

depots and not all tasks are finished
15: (Mask)ij ← False where i ∈ {φe} and j ∈ {0, 1, ...,m− 1}
16: (Mask)ij ← True where i ∈ {φe} and DPφe

∈ {0, 1, ...,m− 1}
17: (Mask)ij ← True where j ∈ {0, 1, ...,m− 1} and σij = 0
18: end for
19: Return Mask

A.4 MDLRAM’S PRE-TRAINING & DGM’S DUAL-MODE TRAINING

Algorithm 2 Pre-training for MDLRAM
Input: M batches of problem instances with Batch Size B

1: for each epoch ep = 1, 2, ..., 100 do
2: for each batch bt = 1, 2, ...,M do
3: {Gb|b = 1, 2, ..., B} ← A Batch of Cases
4: {AθI

b |b = 1, 2, ..., B} ←MDLRAMθI({Gb})
5: {Aθ∗

I
b |b = 1, 2, ..., B} ←MDLRAMθ∗

I
({Gb})

6: ∇L(θI)← 1
B

∑B
b=1[(L(A

θI
b )− L(A

θ∗
I

b ))∇ log pθI(A
θI
b )]

7: if One Side Paired T-test (AθI
b , A

θ∗
I

b ) < 0.05 then
8: θ∗I ← θI
9: end if

10: end for
11: end for

The baseline B̄ in Algorithm 2 is established through a parallel network mirroring the structure of
MDLRAM, persistently preserving the best parameters attained and remaining fixed. Parameters’
update solely occurs if a superior evaluation outcome is derived by MDLRAM, enabling baseline
network’s adoption of these improved parameters from MDLRAM. The actions in MDPs produced
by MDLRAM is selected with probabilistic sampling in each decoding step, whereas that of baseline
network is greedily selected based on the maximum possibility.

3



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 3 Dual-mode training for DGM, coupled with pretrained MDLRAM functioning as a
critic model
Input: Batches of problem instances with Batch Size Bmain

1: if in Multivariate Gaussian Distribution mode then
2: for each epoch ep = 1, 2, ..., 100 do
3: for each batch bt = 1, 2, ...,M do
4: {Gb|b = 1, 2, ..., Bmain} ← A Main-Batch of graphs with customers Info
5: {N θII

b |b = 1, 2, ..., Bmain} ← DGMθII({Gb})
6: for each graph b = 1, 2, ..., Bmain do
7: {D(b′)

multiG|b′ = 1, 2, ..., Bsub} ← A Sub-Batch of sampled depot sets
8: ∇LDGM (Nb)← E(b)

pθII (DmultiG)
[MDLRAM(D(b′)

multiG, Gb)

9: ·∇ log pθII(D
(b′)
multiG)]

10: end for
11: ∇L(θII)← 1

Bmain

∑Bmain
b=1 ∇LDGM (Nb)

12: end for
13: end for
14: else if in Exact Position mode then
15: for each epoch ep = 1, 2, ..., 100 do
16: for each batch bt = 1, 2, ...,M do
17: {Gb|b = 1, 2, ..., Bmain} ← A Main-Batch of graphs with customers Info
18: {D(b)

exactP|b = 1, 2, ..., Bmain} ← DGMθII({Gj})
19: ∇L(θII)← 1

Bmain

∑Bmain
b=1 ∇MDLRAM((D(b)

exactP)θII , Gb)
20: end for
21: end for
22: end if

B EXTENDED DETAILS ABOUT EXPERIMENTAL RESULTS

B.1 HYPERPARAMETERS DETAILS

For MDLRAM, we train it for 100 epochs with training problem instances generated on the fly,
which can be split into 2500 batches with batchsize of 512 (256 for scale 100 due to device memory
limitation). Within each epoch, by going through the training dataset, MDLRAM will be updated
2500 iterations. After every 100 iterations, the MDLRAM will be assessed on an evaluation dataset
to check whether improved performance is attained. The evaluation dataset consists of 20 batches
of problem instances, with the same batch size of 512(256).

For DGM, we also train it for 100 epochs. In each epoch, 2500 main-batches of problem instances
are iteratively fed into DGM. In multivariate Gaussian distribution mode, the main-batch size
Bmain is set as 32 (16 for scale 100), and the sub-batch size Bsub for sampling in each distribution is
selected as 128, 64, 32 for scale 20, 50, 100 respectively. During training, after every 100 iterations’
updating, the DGM will be evaluated on an evaluation dataset to check if a better performance is
derived. The evaluation dataset is set as 20 main-batches of problem instances, maintaining the same
batch size Bmain and Bsub. In exact position mode, where no sampling is performed, we set main-
batch size as 512 (256 for scale 100). Likewise, after every 100 iterations’ updating, an evaluation
process is conduct on 20 main-batches of problem instances with corresponding batch size of 512
(128) to check if DGM achieves a better performance.

As for the hyperparameters in model architecture across the entire framework, the encoding process
employs N = 3 attention modules with 8-head MHA sublayers, featuring an embedding size of
128. All the training sessions are finished on one single A40 GPU.

Parameters for heuristic methods in Table 1: (a) Adaptive Large Neighborhood Search (ALNS):
Destroy (random percentage 0.1 ∼ 0.4, worst nodes 5 ∼ 10); Repair (random, greedy, regret
with 5 nodes); Rewards (r1 = 30, r2 = 20, r3 = 10, r4 = −10); Operators weight decay rate: 0.4;
Threshold decay rate: 0.9; (b) Genetic Algorithm (GA): Population size: 100; Mutation probability:

4



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.2; Crossover probability: 0.6; (c) Tabu Search (TS): Action Strategy (1-node swap, 2-node swap,
Reverse 4 nodes); Tabu step: 30;

B.2 VISUALIZE DEPOTS DISTRIBUTION:

Figure 4: Visualization of Multivariate Gaus-
sian Distribution outputted by DGM based
on customer requests (Gray): Predicted De-
pot Distribution (Blue), and Optimal Depots
Identified (Red).

DGM’s distribution mode is trained to understand cor-
relations between coordinates of various depots, man-
ifested as their learnable covariances. To visualize the
distribution generated in the Gaussian mode of DGM
and observe how this multivariate Gaussian distribu-
tion is represented in a 2-D graph, we depict the gen-
erated multivariate Gaussian distribution for problem
instances from all three scales. A notable pattern is
revealed as below:

In the problem scale of m = 3, n = 20, the 6-D nor-
mal distribution tends to present as three separate 2-
D normal distributions, as depicted in Fig. 4. How-
ever, as the problem scales increase, such as the 12-D
(m = 6, n = 50) or 18-D (m = 9, n = 100) normal
distributions, they do not tend to present as several
discrete 2-D normal distributions.

This trend indicates that, in large-scale scenario, the
covariance between coordinates from different depots
exhibit a more complex relationship, which further
implies that simply relying on randomly sampling de-
pots in pursuit of covering optimal depots would require an expansive search and substantial com-
putational effort.

B.3 MDLRAM’S ABILITY ON BALANCING ROUTE LENGTH AMONG DEPOTS

With MDLRAM’s structure, fine-tuning the model to align with diverse additional requirements
associated to the multiple depots in LRP scenario is flexible through designing specialized cost
functions. Here, we examine the route balancing challenge among various depots.

If the objective is to maintain the route length lk(A) associated with each depot Dk (k ∈
{1, 2, . . . ,m}) in a specific proportional relationship, namely l1(A) : l2(A) : . . . : lm(A) =
ρ1 : ρ2 : . . . : ρm, while simultaneously minimizing the overall cost LSel(A), it can be achieved by
augmenting the cost function LSel(A) in Eq. (1) with a balance penalty as follows:

L̃Sel(A) = LSel(A) +

m∑
k=1

m∑
k′=k

|lk(A)− ρk
ρk′

lk′(A)| (11)

To evaluate the adaptability of MDLRAM in addressing LRP with additional requirements on ad-
justing inter-depot cost distribution, we fine-tune the MDLRAM, which has been pre-trained with
original objective LSel(A) in Eq. (1), with this new balance-oriented objective L̃Sel(A) in Eq. (11)
on the same training dataset. In this context, our specific goal is to ensure that the lengths belonging
to each depot are approximately equal (i.e., ρk = 1). Notably, ρk can be adjusted based on specific
proportion requirements.

To illustrate the effectiveness of balance-oriented fine-tuning, we select random cases from each
scale for direct comparison of route length belonging to each depot, generated by MDLRAM under
different objectives. In Table 4, it can be observed that, for each case, the balance penalty of solution
routes found by MDLRAM under balance-oriented objective Eq. (11) is conspicuously smaller than
that of original objective Eq. (1), only incurring a slight wave on the total length as an acceptable
trade-off for incorporating the additional item in the balance-oriented objective function. This can
also be directly reflected by the balanced route length distribution across depots in 5th column of
Table 4.

5



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Comparison of Each Depot’s Route Length, respectively planned by Original MDLRAM
and the Fine-tuned Version. (“Obj.”: Objective Function; “Ori.Obj.”: Original Objective Function in
Eq. (1); “Bln.Obj.”: Balance-oriented Objective Function in Eq. (11); “Bln.Pen.”: penalty for mea-
suring the balancing performance of route length among depots; “Dpt.Nb.”: opened depot number
out of total available depots).

Case Obj. Bln. Pen. (Dpt Nb.) Saperate Depot Len. Total Len.

sc
al

e
20

case1 Ori obj. 0.758 2/3 3.487-2.729 6.216
Bln obj. 0.008 2/3 2.781-2.772 5.554

case2 Ori obj. 0.929 2/3 3.439-2.511 5.951
Bln obj. 0.007 2/3 3.022-3.016 6.038

case3 Ori obj. 0.926 2/3 3.608-2.682 6.290
Bln obj. 0.022 2/3 3.123-3.102 6.225

case4 Ori obj. 0.693 2/3 2.853-2.159 5.012
Bln obj. 0.0002 2/3 2.518-2.518 5.036

sc
al

e
50

case1 Ori obj. 3.131 4/6 2.158-2.536-2.155-3.073 9.922
Bln obj. 0.129 4/6 2.492-2.530-2.521-2.507 10.052

case2 Ori obj. 3.738 4/6 2.150-3.154-2.947-2.220 10.471
Bln obj. 0.283 4/6 2.449-2.434-2.473-2.383 9.739

case3 Ori obj. 2.016 3/6 2.981-2.579-3.586 9.146
Bln obj. 0.067 3/6 3.085-3.091-3.058 9.234

case4 Ori obj. 2.416 4/6 1.808-2.596-1.918-1.969 8.292
Bln obj. 0.176 4/6 2.190-2.186-2.163-2.220 8.759

sc
al

e
10

0

case1 Ori obj. 3.444 5/9 2.728-3.132-2.496-3.092-2.642 14.091
Bln obj. 0.916 5/9 2.736-2.742-2.829-2.842-2.915 14.063

case2 Ori obj. 2.495 5/9 3.008-3.344-3.063-3.487-3.353 16.256
Bln obj. 0.373 5/9 3.045-3.015-2.987-2.987-2.967 15.001

case3 Ori obj. 5.310 5/9 3.743-2.622-2.985-3.335-2.922 15.606
Bln obj. 1.641 5/9 3.043-3.099-3.056-3.249-3.358 15.808

case4 Ori obj. 8.711 5/9 3.273-3.398-4.455-2.599-2.754 16.479
Bln obj. 1.896 5/9 3.492-3.465-3.404-3.709-3.755 17.825

B.4 FURTHER DISCUSSION

In this study, we extend the exploration of the LRP by addressing a real-world challenge: the gen-
eration of depots when no predefined candidates are presented. For this purpose, a generative DRL
framework comprising two models is proposed. Specifically, the DGM, based on customer requests
data, enables proactive depot generation with dual operational modes flexibly- the exact mode en-
sures precision when necessary, while the Gaussian mode introduces sampling variability, enhancing
the model’s generalization and robustness to diverse customer distributions. Meanwhile, the MDL-
RAM subsequently facilitates rapid planning of LRP routes from the generated depots for serving
the customers, minimizing both depot-related and route-related costs. Our framework represents a
transition from traditional depot selection to proactive depot generation, showcasing cost reductions
and enhanced adaptability in real-world scenarios like disaster relief, which necessitates quick depot
establishment and flexible depot adjustment.

The framework’s detachability offers flexible extension for its application. The DGM’s depot-
generating ability can be fine-tuned to adapt different LRP variants by jointing with other down-
stream models, making DGM a versatile tool in real-world logistics. Meanwhile, the end-to-end
nature of MDLRAM enable its flexible usage on addressing LRP variants with requirements of
adjusting inter-depot cost distribution, which has been detailed in Appendix B.3.

Based on the framework design details and the application scenario description, we spot following
limitatioins and arranging a research landscape for future works.

Limitation: While the MDLRAM model has the ability to select a flexible number of depots from
the generated depot set when planning routes for vehicle from the generated depot set, the number

6



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

of depots generated by the DGM is currently set fixed during training. Incorporating an adap-
tive mechanism within the DGM to dynamically determine the optimal number of depots based on
customer demands and logistical factors could further enhance the framework’s flexibility and ef-
ficiency. Achieving this adaptive depot generation may require a more conjugated and interactive
integration between the DGM and the MDLRAM’s route planning process.

Future work: Future research will focus on expanding DGM’s applicability by incorporating a
wider range of depot constraints to reflect more real-world scenarios accurately. For example, in
this study, we consider the distance between depots should adhere to a specific range requirements,
preventing the depots from being too close or too distant with each other. Additional constraints on
depots can be emphasized on the forbidden area within the map, such as ensuring the depots are not
situated in specific regions or must be placed within designated zones.

Additionally, leveraging the framework’s modular design to adapt to various routing tasks presents
an exciting avenue for exploration. This includes generating depots which can generally achieve
satisfying performance across multiple concurrent routing tasks, which would further extend the
framework’s utility in complex and dynamic real-world logistics environments.

7


	Introduction
	Related Work

	Methodology
	Critic Model: MDLRAM
	Dual-mode Depot Generation: DGM

	Training Strategy
	Experimental Results and Discussion
	Results Analysis for Critic Model - MDLRAM
	Results Analysis for DGM

	Conclusion and Future Work
	Additional details about Methodology
	LRP configuration
	MDP formulation
	Multi-depot mask mechanism
	MDLRAM's pre-training & DGM's dual-mode training

	Extended details about Experimental Results
	Hyperparameters Details
	Visualize Depots Distribution:
	MDLRAM's ability on balancing route length among depots
	Further Discussion


