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Abstract— In this paper, we introduce a novel approach for au-
tonomous driving trajectory generation by harnessing the com-
plementary strengths of diffusion probabilistic models (a.k.a.,
diffusion models) and transformers. Our proposed framework,
termed the “World-centric Diffusion Transformer”(WcDT),
optimizes the entire trajectory generation process, from feature
extraction to model inference. To enhance the scene diver-
sity and stochasticity, the historical trajectory data is first
preprocessed into “Agent Move Statement” and encoded into
latent space using Denoising Diffusion Probabilistic Models
(DDPM) enhanced with Diffusion with Transformer (DiT)
blocks. Then, the latent features, historical trajectories, HD map
features, and historical traffic signal information are fused with
various transformer-based encoders that is used to enhance the
interaction of agents with other elements in the traffic scene.
The encoded traffic scenes are then decoded by a trajectory
decoder to generate multimodal future trajectories. Compre-
hensive experimental results show that the proposed approach
exhibits superior performance in generating both realistic and
diverse trajectories, showing its potential for integration into
automatic driving simulation systems. Our code is available at
https://github.com/yangchen1997/WcDT.

I. INTRODUCTION

Autonomous driving is a transformative technology aimed
at reducing driver fatigue and traffic congestion by enabling
autonomous vehicle operation [1], [2], [3], [4]. Developing
these algorithms involves iterative optimization for safety
and performance [5], [6], [7], but real-world testing poses
challenges due to time constraints, safety concerns, reg-
ulatory hurdles, and high costs [8], [9]. Simulators play
a vital role in the cost-effective testing and evaluation of
autonomous driving systems (ADS) by providing control-
lable environments [10], [11]. To be effective, they must
realistically replicate traffic scenarios and driver behaviors
[12]. Current simulators rely on replaying driving logs or
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Fig. 1. World-centric model and agent-centric model: (a) The conventional
”Agent-centric model” is common in trajectory prediction, including on the
Sim Agents leaderboard. (b) Our approach replaces complex coordinate
transformations with position embeddings, enhancing efficiency in multi-
scenario, multi-agent trajectory generation.

heuristic controllers [13], [12], limiting diversity and un-
predictability in real-world behavior, which impacts ADS
validation [14]. Multimodal motion prediction approaches
[15], [16], [17], [18], [19], [20] have shown promise in traffic
scene generation but struggle to generate diverse actions
for all agents using comprehensive global information [15].
Generative adversarial networks (GANs) and Variational
Auto-Encoders (VAEs) have been applied to traffic scene
generation but face limitations. These models often lack di-
versity, reflecting training data distributions [12], and GANs
suffer from unstable adversarial training [14]. Additionally,
they fail to capture agent trajectory smoothness, leading
to unrealistic results [14], and typically focus on individ-
ual vehicle paths, neglecting all agents. Recently, diffusion
models have emerged as a promising alternative for diverse
traffic scenarios [21], [12], [14], [22], treating generation as
an inverse diffusion process. However, these models often
require agent-centric Cartesian coordinates [15] and generate
only one trajectory per agent per inference. In this paper,
we propose a novel framework for traffic scene generation
tailored to autonomous driving, leveraging diffusion models
and transformer-based encoder-decoder architectures. Our
”World-centric Diffusion Transformer” (WcDT) framework
optimizes trajectory generation from feature extraction to
inference, enabling coherent and joint future movements
for various agents in a single inference. Our contributions
include:

• A new paradigm for simultaneous, consistent future
movement generation for all agents in a single inference.
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• A Diffusion-Transformer module that enhances scene
diversity and stochasticity, integrating the world state
efficiently.

• Benchmarking performance for realism and diversity in
trajectory generation, validated on open traffic datasets.

II. RELATED WORK

A. Motion prediction-based methods

Recent developments in traffic scene generation utilize mo-
tion prediction methodologies to enhance realism in multi-
modal scenarios [15], [16], [17], [18], [19], [20]. For exam-
ple, Multipath++ [16] advances its predecessor by integrating
a context-aware fusion approach with Gaussian mixture
models for more precise trajectory predictions. Similarly,
Trafficsim [18] employs an implicit latent variable model
for simulating multi-agent interactions. Transformer-based
encoder-decoder architectures are also central to motion
prediction [17], [19], [20]. The Scene Transformer [17]
encodes interactions among agents using a global coordi-
nate frame, enabling joint behavior prediction. The Motion
Transformer (MTR) [19] optimizes both global intention and
local movement, achieving top rankings in the Waymo Open
Motion Dataset [23]. Leading the Waymo Open Sim Agents
Challenge (WOSAC), the Multiverse Transformer (MVTA)
introduces novel training and sampling methods along with a
receding horizon prediction technique. However, while these
approaches focus on local scene details, they often overlook
the broader multimodal context. Our diffusion-based model
addresses this by generating diverse actions for all agents
in each inference, overcoming a significant limitation of
traditional trajectory prediction methods.

B. Generative model-based methods

Generative adversarial networks (GANs) [24], [25] and Vari-
ational Auto-Encoders (VAEs) [26], [27] have been utilized
for traffic scene generation. For example, [24] proposes a
conditional generative neural system (CGNS) for probabilis-
tic trajectory generation, while [27] develops a conditional
VAE for multimodal, context-driven traffic scene generation.
However, these methods often generate unrealistic trajec-
tories due to their reliance on training data distribution
and limited diversity [12]. Additionally, GANs can suffer
from unstable training [14], and VAEs may be constrained
by a simple Gaussian prior, limiting their expressiveness.
Recently, diffusion models have emerged as a promising
alternative to GANs and VAEs for generating realistic and
diverse data [21], [12]. Notably, [21] applies a classifier-
guided diffusion approach to trajectory data with a prob-
abilistic framework, while [12] introduces a conditional
diffusion model for controllable traffic generation (CTG),
allowing users to specify desired trajectory properties while
maintaining realism and physical plausibility. However, these
methods primarily focus on single-agent behaviors. Recent
work on multi-agent trajectory generation using diffusion
models includes SceneDM [14], which generates future
motions of all agents, achieving state-of-the-art results on
the Waymo Sim Agents Benchmark, and DJINN [22], which

produces traffic scenarios based on the joint states of all
agents. A limitation of these models is that they predict
individual agent trajectories per inference. In contrast, our
approach integrates diffusion models with transformer-based
encoder-decoder architectures to simultaneously generate
joint, coherent future trajectories for all agents.

III. METHODOLOGY

In this section, we present our novel WcDT framework for
representing and generating complex traffic scenes. We first
explain how traffic environments are modeled, followed by
an introduction to the framework and its components.

A. Traffic scene representation

Traffic environments are composed of multimodal data, such
as road layouts, traffic signals, agent movements, and envi-
ronmental conditions [28], [29]. To encode these elements
in WcDT, we adopt a unified approach that captures both
predicted and environmental (world) agents. Unlike exist-
ing methods that require transforming information to each
agent’s perspective [15], our approach simplifies this by:

• Using a unified Cartesian coordinates system for both
predicted and world agents.

• Representing historical agent trajectories through move-
ment statements instead of traditional coordinate vec-
tors.

Key variables for simulating traffic scenarios in WcDT:

• Aall , Ap, Aw: Counts of all agents, predicted agents,
and world agents, respectively.

• Th, T f : Historical and future time steps.
• L , P: Lane lines and points within scenarios.
• Stl : Traffic light states.
• D : Dimensionality of different traffic elements in a

traffic scenario (Da represents the features of an agent,
Dt represents the features of a traffic light, and Dm
represents the features of a map element).

For different traffic objects, we represent them as follows:

• Agent move statement and features: To mitigate the
impact of varying agent positions on historical and
future trajectories, we introduce absolute states for past
and prospective agent states. For agent i at time step
t, the state si

t is defined as si
t = [(xt − xt−1),(yt −

yt−1),(θt − θt−1),(vt − vt−1)], where xt , yt , θt , and vt
represent longitudinal position, lateral position, heading
angle, and velocity, respectively. The feature space for
each agent is [A ,Th −1,Da].

• Traffic light feature: The traffic light dataset for each
scenario, denoted as [Stl ,Th,Dt ], contains the posi-
tions and operational statuses of signals over historical
intervals. For any traffic signal point stl ∈ Stl , this
information is represented using a one-hot encoding
of signal states and spatial positions at each historical
moment.



Fig. 2. Overview of WcDT, which consists of the following modules: (a) Agent action generation and agent to agent cross attention blocks; (b) The traffic
scene encoder extracts temporal and spatial features in the traffic scene, including: other agents, traffic signals, HD maps; (c) The multimodal trajectory
decoder is used to generate possible future actions for all predicted agents.

• Map feature: The map features, denoted as
[1,L ,P,Dm], encompass key lane details in a
traffic scenario, including positions and types. Each
lane line lt ∈ L at the current time step is represented
positions of all points along the lane and using one-hot
encoding to specify the its type.

Figure 2 shows an overview of our proposed WcDT frame-
work for traffic scene generation, including three major
components: action diffusion, scene encoder, and trajectory
decoder, which are detailed in the following subsections.

B. Action Diffusion

To enhance trajectory diversity in WcDT, we encode agent
actions into latent space to increase variability. These latent
features are then input into the scene encoder. We use
Denoising Diffusion Probabilistic Models (DDPM) [30] for
action encoding. Although DDPM traditionally employs U-
Net architectures, recent research [31] demonstrates that
transformers can achieve comparable performance without
U-Net’s inductive biases. Consequently, we replace U-Net
with Diffusion Transformers (DiTs) to improve performance
and ensure diverse agent trajectories. Figure 3 shows the
architecture of conditional DiT blocks for encoding ”latent
action features”. The network takes random noise, time steps,
and historical trajectories as inputs and produces latent action
features for the scene encoder. The DDPM loss function
guides the network to generate latent features consistent with
agent kinematics [30], thus enhancing trajectory variability.
The loss function for the DiT module is as follows:

Ldi f f = ||ε − εθ (
√

ᾱtx0 +
√

1− ᾱtε, t)||2, (1)

where ᾱt are hyperparameters for diffusion model training,
εθ represents the diffusion model with DiT blocks, and ε is
Gaussian noise.

C. Scene Encoder

In traffic scenes, agents like vehicles, pedestrians, and bi-
cycles, along with map features and traffic signals, are
present. To generate diverse trajectories, we use embedding
blocks of different sizes and layers. These blocks encode
agents’ characteristics, bypassing the need for agent-specific
coordinate transformations. The Pose-Embedding encodes
positional data pi into a 1D matrix, while Feature-Embedding

Fig. 3. Overview of the developed conditional DiT blocks and illustration
of DiT block processing, where action latent features are integrated with
map, object, and traffic light using multi-head attention for traffic scene
generation.

translates attributes like height, width, and type into another
matrix. For agent i:

Ep = φp[xi,yi], E f = φ f [ fw, fh, ftype], (2)

where φp and φ f represent linear transformations. The final
agent embedding EA is:

EA = ReLU(LayerNorm(Concat(Ep,E f ))). (3)

To represent traffic scenarios, the encoding process integrates
world agents, maps, and traffic lights. Features are processed
into embeddings, refined via neural network blocks, includ-
ing multi-head self-attention for detailed analysis and cross-
attention for feature relationships. Attention layers, replacing
CNNs, dynamically capture long-range dependencies. The
self-attention encoding for world agents is:

qAp =W Q×hEp, kAp =W K×hEp, vAp =WV×hEp, (4)

where W Q, W K , WV are learnable parameters, and attention
is calculated as:

∝Ap= Softmax

(
qT

Ap√
dk

kAp

)
, SelfAp =∝Ap vAp . (5)



Cross-attention for encoding map and traffic light features
follows a similar process:

qAp =W Q×hEAp , km =W K×hEm, vm =WV×hEm, (6)

∝m= Softmax

(
qT

Ap√
dk

kM

)
, Crossm =∝Ap vM. (7)

Spatial and Temporal Fusion. We propose Temporal-
Spatial Fusion Attention layers to capture the dynamic nature
of traffic scenarios by integrating multimodal data. The
agent’s features are augmented with latent action features
(from Eq. 3) and processed through self-attention layers to
identify key temporal-spatial insights, ensuring an accurate
understanding of traffic dynamics.

D. Trajectory Decoder

The trajectory decoder translates fused traffic features into
agents’ future trajectories using GRU and MLP blocks.
Drawing inspiration from [15], we employ a multimodal
output mechanism to handle agents with varied behaviors. To
reduce the influence of different initial positions, the decoder
outputs agents’ move statements and their likelihoods. The
trajectory for model M is computed as shown in Fig. 4:

Trajma = Posa +

Tf

∑
i=t

[∆xm,∆ym,∆θm], (8)

where Posa is the agent’s current position, and Trajma denotes
future trajectory points, computed by adding the displace-
ment [∆xm,∆ym,∆θm] for each time step. The speed is:

Speedm
a =

[∆xm,∆ym]

∆t
, (9)

calculated from the displacement over time ∆t. This kine-
matic approach outputs the trajectory as [xm

a ,y
m
a ,θ

m
a ,vm

a ].

E. Loss functions

Our model aims to ensure generated trajectories adhere to
scene constraints while maintaining diversity. The trajectory
with the lowest loss from the multimodal set is selected, and
its deviation from the ground truth is measured using the
Huber loss [32]:

Lreg = Huber(Trajp,Trajgt), (10)

where Trajp and Trajgt are the predicted and ground truth
trajectories, respectively. We also introduce a classification
loss to identify the modality closest to the ground truth,
where the modality with the smallest AED is used as the
classification target:

Lcls =−
M

∑
i=1

yilog(pi), (11)

The total loss is a combination of diffusion, regression, and
classification losses:

Ltotal = Ldi f f +Lreg +Lcls. (12)

Here, Ldi f f is the standard diffusion model loss, computed
as the L2 loss between predicted and original noise.

Fig. 4. Illustration of the trajectory generation process.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Dataset. We use the Waymo Motion Prediction dataset [23],
containing 576,012 driving scenarios. The data is divided
into 486,995 training, 44,097 validation, and 44,920 testing
scenarios. Each scenario lasts 9 seconds, sampled at 10 Hz,
with only the first second of the testing scenarios available
for generating future trajectories for the next 8 seconds.
Metrics. We employ established evaluation metrics [33],
[35], [18] and Sim Agents Challenge metrics [33] to assess
the realism and diversity of generated trajectories. These
metrics cover kinematic, object interaction, and map-based
aspects. We minimize the negative log-likelihood (NLL):

NLL∗ =− 1
|D |

|D |

∑
i=0

Logqworld(o≥t,i|o<t,i), (13)

where o<t,i represents historical observations, and o≥t,i de-
notes future observations.
Implementation Details. We train our model for 128 epochs
using two NVIDIA A100 GPUs, with Adam optimizer [36].
We set the batch size to 128, the initial learning rate to 2×
10−4, and apply a cosine annealing scheduler [37] for learn-
ing rate adjustment. The architecture includes 2 DiT blocks,
4 Other Agent Former blocks, 4 Map Former blocks, and
2 Traffic Light Former blocks, with the Trajectory Decoder
using 2 MLP blocks. Both Multi-Head Self-Attention and
Cross-Attention mechanisms are configured with 8 attention
heads. We test two model variants: WcDT-64 (64 hidden
units) and WcDT-128 (128 hidden units). The origin for all
scenarios is set at the current self-driving vehicle’s location.

B. Comparison with state-of-the-art methods

We compare our proposed WcDT model against several
state-of-the-art benchmarks submitted to the Sim Agent
Challenge1 [33], including Random Agent, Constant Ve-
locity [33], MTR+++ [34], WayFormer [28], MULTI-
PATH++ [16], MVTA [20], and MVTE [20]. MVTE, MVTA,
and MTR+++ show advanced capabilities in generating

1Sim Agent Leaderboard as of 02-04-2024: https://waymo.com/
open/challenges/2023/sim-agents/

https://waymo.com/open/challenges/2023/sim-agents/
https://waymo.com/open/challenges/2023/sim-agents/


TABLE I
THE SIM AGENTS LEADERBOARD RESULTS EVALUATE METHODS USING 10 SIMILARITY METRICS (KINEMATIC, OBJECT INTERACTION, AND

MAP-BASED) AND DISTANCE ERROR METRICS (ADE AND MINADE), WHERE HIGHER SIMILARITY VALUES INDICATE BETTER PERFORMANCE, AND

LOWER ADE/MINADE VALUES REPRESENT MORE ACCURATE TRAJECTORY PREDICTIONS.

Method Linear
Speed

Linear
Accel

Ang
Speed

Ang
Accel

Dist
to Obj Collision TTC Dist to

Road Edge Offroad Composite
Metric ADE MinADE

Random Agent [33] 0.002 0.044 0.074 0.120 0.000 0.006 0.734 0.178 0.325 0.163 50.740 50.707
Constant Velocity [33] 0.074 0.058 0.019 0.035 0.208 0.202 0.737 0.454 0.325 0.238 7.924 7.924

MTR+++ [34] 0.412 0.107 0.484 0.437 0.346 0.414 0.797 0.654 0.577 0.470 2.129 1.682
WayFormer [28] 0.408 0.127 0.473 0.437 0.358 0.403 0.810 0.645 0.589 0.472 2.588 1.694

MULTIPATH++ [16] 0.432 0.230 0.515 0.452 0.344 0.420 0.813 0.639 0.583 0.489 5.308 2.052
MVTA [20] 0.437 0.220 0.533 0.481 0.373 0.436 0.830 0.654 0.629 0.509 3.938 1.870
MVTE [20] 0.443 0.222 0.535 0.481 0.382 0.451 0.832 0.664 0.641 0.517 3.873 1.677

WcDT (Ours) 0.515 0.370 0.543 0.508 0.548 0.629 0.846 0.738 0.608 0.743 2.045 1.472

realistic and feasible motion trajectories for autonomous
vehicles. Table I summarizes the evaluation results. The
Random Agent method [33], which generates random trajec-
tories, performs the worst with a composite score of 0.163.
Constant Velocity [33], which predicts based on the last
known heading and speed, improves slightly, scoring 0.238 in
the composite metric. Our WcDT model achieves the highest
composite metric of 0.743, indicating strong performance
and outperforming MVTE [20] in specific metrics such as
Linear Speed, Linear Acceleration, Angle Speed, Distance
to Object, and Distance to Road Edge, while also achieving
a better MinADE score. This highlights WcDT’s ability
to generate precise and contextually appropriate trajectory
predictions, showing its strength in interpreting dynamic
traffic environments.

C. Ablation studies on diffusion model

We evaluate the effect of the ”latent action features” encod-
ing, comparing random noise inputs, the Unet network, and
our custom DiT block. As shown in Table II, the DiT module
consistently achieves the lowest ADE and MinADE scores,
along with the highest composite score. This demonstrates
that the diffusion model with the DiT block significantly
improves action diversity while maintaining realistic trajec-
tories.

TABLE II
ABLATION STUDY ON DIFFUSION MODEL: EVALUATING THE DIFFUSION

MODEL’S CONTRIBUTION AND COMPARING IMPACTS OF DIT BLOCKS

AND UNET.

Random Noise Unet Dit Blocks ADE↓ minADE↓ Composite
Metric ↑

✓ 4.843 2.715 0.326
✓ 4.163 1.907 0.480

✓ 2.045 1.472 0.743

TABLE III
ABLATION STUDY ON SCENE-ENCODER COMPONENTS: WE ASSESS

THE IMPORTANCE OF EACH MODULE BY ADDING OR REMOVING IT FROM

THE SCENE ENCODER AND EVALUATING PERFORMANCE USING ADE
AND MINADE.

Spatial &Temporal
Attention

Other Agent
Former

HD Map
Former

Traffic Light
Former ADE↓ minADE↓

✓ ✓ ✓ 3.035 1.973
✓ ✓ ✓ 3.490 1.883
✓ ✓ ✓ 2.960 2.130
✓ ✓ ✓ 2.593 1.865
✓ ✓ ✓ ✓ 2.045 1.472

D. Ablation studies on traffic scene encoder

As shown in Table III, the HD Map Former is crucial for
accurate trajectory generation, with its removal leading to the
worst ADE and MinADE scores. The Spatial and Temporal
Attention blocks significantly enhance the encoder’s under-
standing of traffic, with their absence resulting in sub-optimal
ADE (3.035) and MinADE (1.973) scores. The Traffic Light
and Other Agent Formers further boost accuracy, and the
full encoder setup delivers the best results, demonstrating
the effectiveness of our approach.

E. Ablation studies on trajectory decoder

We evaluate the trajectory decoder by assessing the contri-
butions of GRU and MLP blocks, focusing on how different
configurations impact trajectory prediction. As shown in
Table IV, MLP layers play a crucial role, with their absence
resulting in the highest ADE and MinADE scores (3.759
and 2.475). This highlights the importance of MLP blocks
in refining the decoder’s predictive capabilities. GRU blocks
are also essential, helping the model leverage historical data
effectively. The best results are achieved when both MLP and
GRU blocks are used, demonstrating their combined impact
on enhancing trajectory generation.

TABLE IV
ABLATION STUDY ON THE TRAJECTORY DECODER: WE ASSESSED THE

IMPACT OF VARIOUS COMPONENTS AND THE DIMENSIONALITY OF

HIDDEN UNITS IN THE TRAJECTORY DECODER ON ADE AND MINADE
PERFORMANCE.

MLP Blocks GRU Blocks Dimension ADE↓ minADE↓

✓ 64 4.174 2.532
✓ 128 3.759 2.475

✓ 64 3.612 1.805
✓ 128 3.857 1.780
✓ ✓ 64 2.857 1.735
✓ ✓ 128 2.045 1.472

F. Ablation studies on network structures

We examine the effects of varying the number of modalities
and attention heads on trajectory generation. Table V shows
that WcDT-128 consistently outperforms WcDT-64, indicat-
ing that more attention layers enhance prediction accuracy.
Additionally, the multi-modality configuration in WcDT-64
yields better results than the single-modality setup, as it
enables the model to process more information, improving



Fig. 5. Visualization results of the ground truth and WTSGM-generated trajectories in cruise scenarios.

its understanding of the driving environment and leading to
more precise predictions.

TABLE V
IMPACT OF MULTIMODAL TRAJECTORY DECODERS AND DIMENSION OF

ATTENTION BLOCKS ON SCENE GENERATION PERFORMANCE

Method Multimodal Attention
Block Heads ADE↓ minADE↓

WcDT-64 1 8 3.758 3.758
WcDT-64 10 8 3.475 2.548
WcDT-64 10 16 3.729 2.470
WcDT-64 30 16 3.647 1.962

WcDT-128 10 8 2.948 1.781
WcDT-128 30 16 2.045 1.472

G. Visualization Results

Figure 5 illustrates the generated trajectories for randomly
sampled Waymo dataset scenarios. The input features include
map elements (black dotted lines) and the initial 1-second
trajectories of various agents (dots), with each agent’s tra-
jectory represented by a unique color. The intensity of the
colors deepens over time, reflecting the temporal progression
of each agent’s movement. The left side demonstrates lane-
changing maneuvers, highlighting the model’s ability to
predict diverse and accurate trajectories in dynamic driving
conditions. On the right, the figure showcases the model’s
performance in more complex intersection scenarios, further
underscoring its robustness and precision in handling chal-
lenging traffic environments.

V. CONCLUSION

This paper introduced a novel traffic scene generation frame-
work that optimizes trajectory generation through Diffusion
with Transformer (DiT) blocks. The model effectively fuses
latent features, historical trajectories, HD maps, and traffic
signal data using transformer-based encoders with attention
mechanisms. A key contribution is the multimodal trajectory

decoder, which generates a wide range of future trajectories,
enhancing the diversity and realism of the generated traffic
scenes. Experimental results show that our approach sets
a new standard for realism and diversity in traffic scene
generation. Future work will focus on improving robustness
for more complex urban scenarios and handling more agents.
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