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ABSTRACT

“Socrates is human. All humans are mortal. Therefore, Socrates is mortal.” This
form of argument illustrates a typical pattern of two-hop reasoning. Formally, two-
hop reasoning refers to the process of inferring a conclusion by making two logical
steps, each connecting adjacent concepts, such that the final conclusion depends
on the integration of both steps. It is one of the most fundamental components
of human reasoning and plays a crucial role in both formal logic and everyday
decision-making. Despite recent progress in large language models (LLMs), we
surprisingly find that they are vulnerable when distractors are present. We observe
on a synthetic dataset that pre-trained LLMs often resort to random guessing among
all plausible conclusions. However, after few steps of fine-tuning, models achieve
near-perfect accuracy and exhibit strong length generalization. To understand the
underlying mechanisms, we train a 3-layer Transformer from scratch on a synthetic
two-hop reasoning task and reverse-engineer its internal information flow. We
observe a clear progression in the attention logits throughout training. This pictures
a sharp phase transition from an initial stage of random guessing to the emergence
of a structured sequential query mechanism, where the model first retrieves the
preceding and the bridge concepts in the early layers and then uses them to infer the
final answer. Finally, we show that these dynamics can be captured by a minimal
three-parameter attention-only network.

1 INTRODUCTION

Modern Large Language Models (LLMs) trained on language data have shown impressive abilities
in solving complex reasoning tasks, including linguistic, mathematical, and programming problems
(Cobbe et al., 2021; Wei et al., 2022; Achiam et al., 2023; Dubey et al., 2024; Yang et al., 2024a;
Shao et al., 2024; Guo et al., 2025). Among these, multi-hop reasoning stands out as one of the
most fundamental and important forms of reasoning. It refers to the process of drawing conclusions
by integrating information across multiple intermediate steps or pieces of evidence. For example,
consider the following chain of facts: Marie Curie was a physicist, physicists study matter, and matter
is fundamental to understanding the universe. From these premises, we can infer that Marie Curie
contributed to understanding the universe. This reasoning requires multiple inferential steps, each
built on the previous one, making the reasoning process inherently compositional. Such multi-hop
reasoning is critical for tasks where information must be integrated across several logical or semantic
connections. Despite its simplicity and clear structure, it still lacks a clear understanding of whether
and how pre-trained LLMs can reliably perform such reasoning.

In this paper, we study the mechanism behind two-hop reasoning, which is the simplest and most
tractable form of multi-hop reasoning. We define a premise as a factual statement that connects two
entities through a specific relation. In two-hop reasoning, two such premises form a chain that allows
one to infer a final conclusion. We define the source entity ([SRC]) as the starting point, the bridge
entity ([BRG]) as the intermediate link, and the end entity ([END]) as the target of inference. Here is a

0Our code is available at the anonymous repository https://anonymous.4open.science/r/twohopIC-
2FEC/README.md.
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concrete example that illustrates the above reasoning procedure:

(Premises) Socrates︸ ︷︷ ︸
[SRC]

is human︸ ︷︷ ︸
[BRG]

. Humans︸ ︷︷ ︸
[BRG]

are mortal︸ ︷︷ ︸
[END]

.

(Conclusion) Socrates︸ ︷︷ ︸
[SRC]

is mortal︸ ︷︷ ︸
[END]

.

We begin by building a test dataset of simple two-hop reasoning examples with distractors, where
multiple unrelated two-hop examples are presented in the same context. We observe that pretrained
LLMs struggle with it. In particular, the models tend to guess randomly, with accuracy dropping
to about 1/K (where K is the number of two-hop examples). This suggests that distractors in the
context strongly confuse the model and hurt the performance, revealing a weakness in its reasoning
ability. After fine-tuning the model on a curated two-hop dataset, we observe a sharp transition
in performance—from random guessing to near-perfect accuracy. Even more impressively, the
fine-tuned model generalizes to harder settings with more distractors.

To better understand this behavior, we study a three-layer Transformer. When trained on a curated
symbolic two-hop reasoning dataset with distractors, the model exhibits a sharp phase transition
moving from uniform guessing to a structured reasoning phase, where it consistently performs correct
inference. By fully reverse-engineering the model, we analyze how information flows across layers
and identify the specific role each layer plays. We show that this transition is driven by particular
patterns in the attention logits, which guide the model to retrieve relevant entities in the correct
order. In the structured reasoning phase, the model performs two-hop inference by sequentially
attending to the source and then the bridge entity to reach the correct end entity. To further support
our findings, we also built a simple three-parameter analytical model that captures the full dynamics
of the three-layer Transformer.

Our contributions and paper outline are summarized as follows.

• We introduce two-hop reasoning with distractors, and show pretrained LLMs collapse to
random guessing. Fine-tuning leads to a sharp improvement and a strong generalization
performance (Section 2).

• We reverse-engineer a three-layer Transformer and restore the transition from random
guessing to the emergence of a sequential query mechanism. We reveal how each layer
contributes to the emergence of reasoning ability through structured attention patterns
(Section 3).

1.1 RELATED WORKS

In this part, we review and discuss additional related papers.

Multi-hop reasoning. Our research focuses on multi-hop reasoning, a fundamental form of reason-
ing and a key benchmark for evaluating LLMs (Zhong et al., 2023). Recent studies such as Yang
et al. (2024b) have shown that LLMs can follow latent reasoning paths when given certain types of
prompts. A growing body of papers focused on mechanistically understanding how LLMs perform
multi-hop reasoning by sequentially attending to intermediate steps (Biran et al., 2024; Wang et al.,
2024a; Feng et al., 2024). Prior research mainly focused on the in-weight multi-hop reasoning, where
the model retrieves and combines factual knowledge stored in its internal weights. In contrast, our
work focused on in-context two-hop reasoning, where the model must extract relevant facts directly
from the context and reason on-the-fly without relying on memorized knowledge.

In-context learning and induction head. Transformer-based models exhibit strong In-Context
Learning (ICL) ability. It refers to the ability to predict the label of new input simply from several
demonstrations, without updating model weights (Brown et al., 2020). Transformers have been shown
to solve various tasks in context, such as regression, classification (Akyürek et al., 2022; Garg et al.,
2022; Von Oswald et al., 2023; Zhang et al., 2024; Ahn et al., 2024; Huang et al., 2023; Nichani
et al., 2024), Bayesian inference (Xie et al., 2021), model selection (Bai et al., 2023), and sequential
decision making (Lin et al., 2023). Our study focuses on two-hop reasoning in context, which is very
different and more complex than the standard regression-style ICL tasks.
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Moreover, prior work showed that ICL relies on the induction head–a pattern of attention that enables
the model to copy and complete sequences by linking repeated tokens (Elhage et al., 2021; Olsson
et al., 2022). Several recent theoretical and empirical analyses have extensively studied induction-
head mechanisms in small transformers (Bietti et al., 2023; Nichani et al., 2024; Wang et al., 2024b;
Chen et al., 2024), showing that a two-layer transformer is required to perform induction-head
tasks (Sanford et al., 2024a). In comparison, two-hop reasoning is a more complex extension to
the induction head and requires the model to combine two separate relational facts. We show that
two-layer Transformers cannot solve this task; the minimal architecture required is a three-layer
Transformer. Theoretically, it has been shown that a Transformer with log k layers is both necessary
and sufficient to perform k-hop reasoning in context (Sanford et al., 2024b).

Interpretability of LLMs. Beyond ICL and the induction head, many studies have aimed to
interpret the internal mechanisms of LLMs (Charton, 2022; Liu et al., 2022; Allen-Zhu and Li, 2023;
Zhu and Li, 2023; Guo et al., 2023; Zhang et al., 2022). This includes works on grokking (Nanda
et al., 2023), function vectors (Todd et al., 2023), circuit discovery (Elhage et al., 2021; Wang et al.,
2022; Conmy et al., 2023; Shi et al., 2024; Hase et al., 2024), the binding ID mechanism (Feng and
Steinhardt, 2023), and the association-storage mechanism (Meng et al., 2022; Geva et al., 2023). Our
work is not directly comparable with theirs.

Methodologically, a growing body of studies has focused on designing small systems, where essen-
tially the same phenomenon can be observed, and then dissecting the proxy model to interpret the
mechanism of LLMs. For example, Olsson et al. (2022) replicates the induction head in a minimal
two-layer network. Bietti et al. (2024) further explains the rapid emergence of bigram memorization
and the slower development of an induction head. Zhu et al. (2024) theoretically analyzed the cause
of the reversal curse in bilinear models and one-layer transformers. Reddy (2023) studies the abrupt
emergence of induction heads in two-layer models and captured the underlying mechanism using a
two-parameter toy model. Guo et al. (2024) reproduces the extreme-token phenomenon in Trans-
formers with one to three layers on the Bigram-Backcopy task, and then identifies the mechanism of
active and dormant attention head in small and large models. Our work is methodologically similar
to this line of work, whereas two-hop reasoning is a more complex tasks than Bigram-Backcopy or
copy-paste, so the revealed mechanism is much more complex.

2 TWO-HOP REASONING IN LLMS

2.1 TASK AND DATA

Two-hop reasoning. We begin by formally defining the task of two-hop reasoning. Each reasoning
chain involves three distinct entities:

• Source entity [SRC]: The initial entity from which reasoning originates.

• Bridge entity [BRG]: An intermediate entity that connects the source entity to the final
inferred entity.

• End entity [END]: The target entity that the reasoning aims to infer.

A valid two-hop reasoning task consists of exactly two premises. The first premise connects the
source entity [SRC] to the bridge entity [BRG], and the second premise connects the bridge entity
[BRG] to the end entity [END]. Together, these premises form a logical chain that supports drawing a
conclusion from the source to the end entity.

Two-hop reasoning with distractors. To evaluate LLMs’ robustness in reasoning, we introduce
two-hop reasoning with distractors. This setting intentionally incorporates irrelevant premises to
assess the robustness and precision of LLM reasoning. In this setting, multiple two-hop reasoning
chains are provided within the same context, but only one chain (the target chain) leads to the correct
inference. The other chains, meanwhile, serve purely as distractors, introducing irrelevant entities.
We aim to infer the end entity of the target chain. The entities involved in the reasoning chains are
categorized into target entities and non-target entities. Target entities, denoted as [SRC-T], [BRG-T],
and [END-T], correspond respectively to the source, bridge, and end entities within the target
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reasoning chain. Non-target entities, denoted as [SRC-NT], [BRG-NT], and [END-NT], represent the
entities involved in distractor chains, which do not contribute to the correct inference.

Dataset. To systematically evaluate two-hop reasoning performance, we generate a synthetic dataset
based on standardized logical templates. Templates represent structured reasoning patterns from
domains such as geography, biology, and arithmetic. Templates follow a consistent structure, such as
"[A] is the father of [B]. [B] is the father of [C]. Therefore, [A] is the grandfather of [C]." Here, [A],
[B], and [C] represent source, bridge, and end entities, respectively.

For each data sample, we randomly select a single template and generate multiple argument chains by
populating placeholders with entity sets sampled from a predefined entity pool. Exactly one chain is
designated as the target reasoning chain, and its corresponding conclusion part is presented at the end
of the context as a query. All remaining chains act as distractors. Only two premises of the distractors
are present in the context. Target and non-target reasoning premises in the context are randomly
permuted. We construct a dataset comprising more than 50,000 such reasoning contexts, spanning
6 distinct templates. This rigorous dataset construction provides a robust evaluation framework
to investigate how effectively LLMs distinguish relevant from irrelevant premises and accurately
perform two-hop logical reasoning. A concrete example of such a two-hop reasoning chain with
distractors is shown in the following example.

EXAMPLE 1: AN EXAMPLE OF TWO-HOP REASONING WITH 2 DISTRACTORS

Question: John is the father of Paul. Luke is the father of Tom. Sam is the father of Joe. Paul
is the father of Ben. Tom is the father of Mark. Joe is the father of Max. Therefore, John is
the grandfather of ???
Answer: Ben.

Red: Target source/bridge/end entities in the target chain.
Blue: Non-target source/bridge/end entities in the non-target chain.

Probability assignment:
Base model: {‘Ben’:0.33, ‘Mark’: 0.32, ‘Max’: 0.31,...}.
Fine-tuned model: {‘Ben’:0.97, ‘Mark’: 0.01, ‘Max’: 001,...}.

2.2 RESULTS

Pre-trained LLMs perform random guessing at the presence of distractors. We evaluate the
performance of the OLMo-7B model on two-hop reasoning tasks both with and without distractors.
Specifically, on a held-out test set, we track the probability assigned by the model to the first token of
the target end entity ([END-T]) versus other tokens at the conclusion of each context. Surprisingly,
the model achieves high accuracy in identifying the [END-T] when no distractors are present, but
exhibits a dramatic drop in performance even with a single distractor. As the number of distractors
increases, accuracy further decreases. In fact, Table 1 shows the next-token probability assigned to
the (first token of) every possible end entities in the context ([END-T] and all [END-NT] entities) are
approximately 1/K (although there is a slight bias toward [END-T]), where K is the total number of
reasoning chains presented. Therefore, the model almost resorts to random guessing among the set of
possible end entities. This behavior is clearly illustrated by Example 1 and Table 1 and highlights the
vulnerability of pre-trained models to distractors in two-hop reasoning tasks.

Fine-tuned LLMs significantly improve accuracy and generalization. To address the challenge
posed by distractors, we fine-tune the OLMo-7B model using 1,000 curated prompts, each containing
exactly one target reasoning chain and one distractor chain (further details provided in Appendix A).
We then evaluate the fine-tuned model on the same held-out test set. Table 1 compares model
performance before and after fine-tuning across contexts with varying numbers of distractors.

Before fine-tuning, the OLMo-7B model correctly predicts the [END-T] only in distraction-free
contexts and defaults to random guessing when distractors are introduced. However, after fine-tuning,
the model reliably identifies the [END-T] even in the presence of multiple distractors. Remarkably,
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despite being fine-tuned exclusively on contexts with a single distractor, the model generalizes
effectively to scenarios containing multiple distractors, accurately performing two-hop reasoning
tasks with as many as five distractor chains. These findings confirm that fine-tuning significantly
enhances LLM robustness and generalization capabilities. We present additional results for other
LLMs in Appendix A, where all models in our experiments exhibit similar behaviors.

Table 1: Performance comparison of OLMo-7B base and fine-tuned models on two-hop reasoning tasks with
varying numbers of distractors. K = 1 indicates the scenario without distractors. The [END-T] and [END-NT]
rows report the average probabilities assigned to the first token of the target end entity and non-target end entities,
respectively. For cases with multiple distractors, the reported probabilities for non-target entities are averaged
first over all [END-NT] within each context, then across all contexts. The values in the parentheses are the
standard errors. Additional evaluation results for other LLMs are in Appendix A.

Models Next Tokens The Number of Reasoning Chains in the Context (K)

1 2 3 4 5

OLMo [END-T] 0.72 (0.01) 0.37 (0.01) 0.25 (0.01) 0.18 (0.01) 0.14 (0.00)
[END-NT] NA (NA) 0.32 (0.01) 0.19 (0.01) 0.14 (0.00) 0.11 (0.00)

Fine-tuned
on K = 2

[END-T] 1.00 (0.00) 1.00 (0.00) 0.66 (0.01) 0.57 (0.01) 0.50 (0.01)
[END-NT] NA (NA) 0.00 (0.00) 0.17 (0.01) 0.14 (0.01) 0.12 (0.01)

3 TWO-HOP REASONING IN THREE-LAYER TRANSFORMERS

3.1 DATA AND MODELS

Symbolic two-hop reasoning task. To systematically investigate the mechanisms underlying
random guessing and how Transformers learn two-hop reasoning from context, we design a symbolic
version of the two-hop reasoning task. In this simplified setting, we hide the predicates of reasoning
chains and represent each entity with a unique single token. With a little abuse of notation, these tokens
are denoted as the source token ([SRC]), bridge token ([BRG]), and end token ([END]), respectively.
Each symbolic two-hop reasoning chain consists of two premises represented by concatenated token
sequences: the first premise is [SRC] [BRG], and the second premise is [BRG] [END]. The conclusion
part of each chain is represented by the token sequence [SRC] [END]. For each premise, we call the
paired tokens the parent token and the child token. For example, in the first premise [SRC] [BRG], we
call [SRC] the parent token and [BRG] the child token. Below is an example of the reasoning chain
from our symbolic task.

[SRC] [BRG]︸ ︷︷ ︸
The first premise

[BRG] [END]︸ ︷︷ ︸
The second premise

[SRC] [END]︸ ︷︷ ︸
The conclusion

For each context, we randomly sample five unique two-hop reasoning chains, each with distinct
source, bridge, and end tokens. One chain is randomly chosen as the target reasoning chain, while
the remaining four serve as distractors. Tokens within the target reasoning chain are denoted as
[SRC-T], [BRG-T], and [END-T], and tokens within distractor chains as [SRC-NT], [BRG-NT], and
[END-NT]. Each context includes all premises from these five reasoning chains and concludes with
the source token of the target chain as a query. Premises are randomly permuted within the context,
but the order within each reasoning chain remains fixed, that is, the source-to-bridge premise always
precedes the bridge-to-end premise in the context. An illustrative example from our simulated dataset
is presented below. Note that all contexts in our symbolic dataset have the same length.

EXAMPLE 2: SYMBOLIC TWO-HOP REASONING WITH FOUR DISTRACTORS

Context: <BOS> [Src-NT1] [Brg-NT1] [Src-NT2] [Brg-NT2] [SRC-T] [BRG-T] [Src-NT3]
[Brg-NT3] [Src-NT4] [Brg-NT4] [Brg-NT3] [End-NT3] [BRG-T] [END-T] [Brg-NT1]
[End-NT1] [Brg-NT4] [End-NT4] [Brg-NT2] [End-NT2] [SRC-T]?

<BOS>: The begin-of-sequence token.
Red: Tokens from the target chain.
Blue: Tokens from distractor chains. Subscripts distinguish different reasoning chains.
[SRC-T]: The query token.
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Three-layer Transformer Analysis. We investigate the minimal Transformer architecture capable
of capturing both the random guessing phenomenon and the structured learning phase observed in
two-hop reasoning tasks. By comparing Transformers of varying depths, we find that a three-layer
Transformer with a single attention head per layer is the minimal structure required. Figures 1a and 1b
illustrate that when trained on our symbolic two-hop reasoning dataset, the three-layer Transformer
exhibits a sharp phase transition at approximately 800 training steps. Before this transition, the
model assigns nearly uniform probabilities (around 0.2) to all possible end tokens ([END-T] and
all [END-NT] tokens), albeit with a slight bias toward [END-T]. This indicates an almost random
guessing behavior in this slow learning phase.

(a) Training loss
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(b) Predicted probabilities
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Figure 1: The loss and the predicted probabilities. Left (a): The cross entropy loss computed at the
query token, with the label being the correct target end token ([END-T]) in the preceding premises.
Right (b): The predicted probabilities for different tokens throughout training. The [END-NT] line
represents probabilities averaged across [End-NT1], [End-NT2], [End-NT3], and [Brg-NT4]. Before
approximately 800 steps, the [END-NT] and [END-T] lines remain close, indicating an almost random
guessing behavior during this slow learning phase.

In contrast, single-layer and two-layer Transformers fail to consistently solve the symbolic task,
even after extensive training. Additionally, we observe that removing the MLP layers from the
three-layer Transformer (thus using an attention-only Transformer) does not harm the observed
learning dynamics or the phase transition. Therefore, our subsequent analysis will focus on the
three-layer attention-only Transformers.

3.2 A METHODOLOGY FOR REVERSE ENGINEERING TRANSFORMERS

In the following sections, we reverse-engineer how a three-layer attention-only Transformer learns
to perform two-hop reasoning by analyzing its internal information flow during training. We start
by introducing two primary methodologies for empirical analysis: examining attention logits and
applying the logit lens technique.

Attention logits. Our first method analyzes the Transformer’s attention mechanism, which controls
how information flows between tokens. Specifically, we examine the attention logits, the raw scalar
values computed immediately before the softmax operation within the attention layer. These logits
quantify how strongly one token retrieves information from another. Plotting attention logits also
reduces the complications induced by the softmax operation. For clarity, we refer to the values after
the softmax operation as attention weights. We visualize attention logits across tokens and layers,
highlighting entries with notably large values. When a token attends to another, the corresponding
attention logit is high, indicating the information retrieval. This retrieval process involves copying
part or all of the information from the key token into a buffer, potentially separate from the query
token’s own information storage.
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Logit lens. Our second method employs the logit lens approach (Belrose et al., 2023), which
interprets hidden states within the Transformer by projecting them directly onto the output space used
for next-token prediction. In standard Transformers, the logits at the final layer are computed using
a READOUT operator, which applies layer normalization followed by a linear transformation into
the vocabulary space. These logits, calculated at the final token position (the query token), are then
converted into probabilities through softmax.

Formally, let hquery be the hidden state at the query token in the final layer, and ATTN-WEIGHT(i)
the attention weight between the i-th token and the query token. The probability of the next token is
approximated by:

SOFTMAX(READOUT(hquery)) ≈ SOFTMAX

(∑
i

ATTENTIONWEIGHT(i) · READOUT(VAL(i))

)
,

where the summation includes all preceding tokens. In the following sections, we track these vectors
after the readout operator in the earlier layers to clarify how the final logits and probabilities are
computed.

3.3 MECHANISTIC INTERPRETATION FOR THE SLOW LEARNING PHASE

Phenomenologically, during the slow learning phase (prior to the sharp phase transition), the model
effectively resorts to random guessing among all possible end tokens ([END-T] and [END-NT]
tokens). To explain this behavior, we closely examine attention logits across each Transformer layer.
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(c) Layer 3
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Figure 2: Attention logits heatmaps of the three-layer Transformer at the slow learning phase (training
step 800): Left (a): The first layer. Chess-board-like pattern; Middle (b): The second layer. The parent tokens
have uniform attention on all preceding tokens. Each child token still uniformly attends to all parent tokens
appearing in the preceding premises; Right (c): The third layer. The query token uniformly attends to all child
tokens in the preceding premises. The query token retrieves the information from all [END] and [BRG] tokens.
The logit lens could give a complete explanation for the random guessing, as shown in Figure 3.

The first layer. The first attention layer shows chess-board-like patterns. Each parent token attend
to all child tokens appearing in the preceding premises, and vice versa, forming the alternating
bright-dark grids on the heatmap, as shown in Figure 2a. In particular, [END] tokens (including
[END-T] and [END-NT] tokens) retrieve information from [SRC] and [BRG] tokens.

The second layer. In the second layer, we observe a different information retrieval pattern, as
presented in Figure 2b. Here, each parent token changes to attend to all preceding tokens uniformly.
Each child token still uniformly attends to all parent tokens appearing in the preceding premises.
Crucially, for every child token, these attention logits are approximately equal in magnitude. This
uniform attention suggests that, at this intermediate stage, the model indiscriminately aggregates
information from all prior parent tokens in the context without distinguishing between relevant and
irrelevant tokens.

The third layer. The third layer attention logits in Figure 2c show that the query token attends
to all preceding child tokens, including all [BRG] tokens in [SRC]-to-[BRG] premises and all [END]
tokens in [BRG]-to-[END] premises.
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Mechanistic Explanation of random guessing. Surprisingly, despite the final layer query token
attending to all preceding child tokens, the resulting next-token probabilities strongly favor [END]
tokens, resulting in the random guessing over all [END] tokens instead of all child tokens of the
premises (as [BRG] tokens are also child tokens in some premises).

EXAMPLE 3: ONE DISTRACTOR

Context: <BOS> [SRC-NT]
[BRG-NT] [SRC-T] [BRG-T]
[BRG-NT] [END-NT] [BRG-T]
[END-T] [SRC-T]?

<BOS>: Begin-of-sequence token.
Red: Tokens from the target chain.
Blue: The distractor chain.
[SRC-T]: The query token.

Figure 3: Illustration of the logit lens results of the query
token at the layer 3 during the slow learning phase. The
[END] tokens have positive entries at their own positions
and negative entries with their preceding [BRG] tokens.
These positive and negative values cancel each other out
after summation.

The logit lens clearly illustrates this phenomenon. For visualization purposes, Figure 3 presents the
logit lens results with a simplified two-hop reasoning task (containing only one distractor) as shown
in Example 3.3. The complete numerical results are provided in Section B. In Figure 3, each [END]
token has negative entries associated with preceding parent tokens and positive entries at its own
position. This is probably associated with the fact that every child token attends to all preceding
parent tokens in the second layer. Thus, the READOUT operation at the query token aggregates the
value vectors equally. Formally, this is

READOUT(hquery) ≈
1

|CHILD TOKENS|
∑

i∈CHILD TOKENS

READOUT(VAL(i))

=
1

|CHILD TOKENS|

[ ∑
i∈CHILD TOKENS

ei −
∑

j∈PARENT TOKENS

ajej

]
, (1)

where aj > 0 are some positive numbers, ei is the vector with i-tn entry being one and others zero.
|CHILD TOKENS| is the number of all preceding child tokens. Since some negative factors always
appear at the [SRC] and [BRG] tokens’ entries, the most significant entries in READOUT(hquery) are
all [END] tokens. After applying softmax, all other entries will become negligible, while similar
positive magnitudes for all [END] tokens yield approximately equal probabilities, resulting in random
guesses over all [END] tokens.

3.4 MECHANISTIC INTERPRETATION FOR THE STRUCTURED LEARNING PHASE

In our experiments, after several hundred gradient steps, the three-layer Transformer successfully
learns the two-hop tasks. To understand how this happens, we closely examine attention logits across
each layer.

The first layer. The first attention layer shows a clear token-copying mechanism. As shown in
Figure 4a, the only significant entries in the attention map are those connecting the paired parent
token and the child token within every individual premise. Each child token copies information
directly from the paired parent token. For instance, the target bridge token ([BRG-T]) retrieves
information from the target source token ([SRC-T]), and the target end token ([END-T]) similarly
retrieves information from the target bridge token in [BRG-T]-to-[END-T] premise.

The second layer. In the second layer, the only significant attention occurs primarily between the
query token and the target bridge token ([BRG-T]). This strong attention indicates that the query token
retrieves important information directly from the [BRG-T] token. Since the [BRG-T] token already
contains information from its parent (the [SRC-T] token) due to the first-layer copying, the query
token now possesses information from both [SRC-T] and [BRG-T] tokens. This targeted retrieval is
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Figure 4: Attention logits heatmaps of the three-layer Transformer at the structured learning phase
(training step 10000): Left (a): The first layer. Each child token strongly attends to its parent token; Middle (b):
The second layer. The query token strongly attends to the target bridge token ([BRG-T]); Right (c): The third
layer. The query token strongly attends to the target end token ([END-T]). The query retrieve the identity of the
target end token ([END-T]), enabling the correct next-token prediction.

possible because the query and [BRG-T] tokens share the same information (of the [SRC-T] token,
since the [BRG-T] token attends to [SRC-T] from the first layer, while the query token retrieves
[SRC-T] in the second layer), allowing them to effectively attend to each other.

The Third Layer. In the final layer, attention exclusively connects the query token and the target
end token ([END-T]). This selective attention arises because both tokens share information from the
target bridge token ([BRG-T]): the [END-T] token received this information directly from [BRG-T]
in the first layer, while the query token obtained it indirectly through the second layer. Consequently,
the final attention mechanism precisely aligns the query token with the [END-T] token, resulting in a
next-token prediction that distinctly favors the [END-T] token. This structured attention ensures the
model’s predictions are both accurate and interpretable.

A simplified three-layer model. To understand the relationship between the observed mechanisms
and the loss training dynamics of the three-layer Transformer. We further build a three-parameter
model that essentially captures both the observed mechanisms and the loss dynamics of Transformers,
building strong connections between them. We relegate the details to Appendix C.

4 CONCLUSIONS

In this paper, we study the underlying mechanism that transformer-based LLMs use to solve in-
context two-hop reasoning tasks, especially in the presence of distracting information. We synthesize
a novel dataset and find that many large pre-trained models are vulnerable to two-hop reasoning
with distraction and may perform the uniform guessing mechanism, and very few steps of fine-
tuning suffice to teach the model to learn a correct mechanism. By carefully analyzing the training
dynamics and fully reverse-engineering a three-layer Transformer, we identified the random guessing
mechanism during the early training stages and the structured learning after a sharp phase transition.
Our work could bring new insights into the internal reasoning mechanisms of LLMs. Extending our
work to multi-hop reasoning and more LLMs would be important future work.
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