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Abstract

We consider zero-shot cross-lingual transfer001
in legal topic classification using the recent002
Multi-EURLEX dataset. Since the original003
dataset contains parallel documents, which is004
unrealistic for zero-shot cross-lingual transfer,005
we develop a new version of the dataset with-006
out parallel documents. We use it to show007
that translation-based methods vastly outper-008
form cross-lingual fine-tuning of multilingually009
pre-trained models, the best previous zero-shot010
transfer method for Multi-EURLEX. We also011
develop a bilingual teacher-student zero-shot012
transfer approach, which exploits additional un-013
labeled documents of the target language and014
performs better than a model fine-tuned directly015
on labeled target language documents.016

1 Introduction017

Τransformer-based (Vaswani et al., 2017) pre-018

trained models (Devlin et al., 2019) have signif-019

icantly improved performance across NLP tasks.020

Multilingually pre-trained models (Conneau et al.,021

2020; Xue et al., 2021) have also been used for022

zero-shot cross-lingual transfer (Hu et al., 2020;023

Ruder et al., 2021), i.e., fine-tuning (further train-024

ing) in one or more source languages and applying025

the model to other target languages at inference.026

NLP for legal text has become popular (Zhong027

et al., 2020; Hendrycks et al., 2021; Chalkidis et al.,028

2021a,b; Xiao et al., 2021), but to our knowledge029

only Chalkidis et al. (2021a) have considered cross-030

lingual transfer of neural models in legal NLP. They031

introduced a multilingual dataset, Multi-EURLEX,032

for legal topic classification and explored zero-033

shot cross-lingual transfer using multilingually pre-034

trained models like XLM-R (Conneau et al., 2020)035

combined with adaptation (Houlsby et al., 2019; Za-036

ken et al., 2021) to retain multilingual knowledge037

from pre-training. Multi-EURLEX, however, con-038

tains to a large extent parallel text (same content039

in multiple languages), which is unrealistic in real-040

world cross-lingual transfer. Also, Chalkidis et al.041

(2021a) did not consider translation-based meth- 042

ods (Lample and Conneau, 2019), which machine- 043

translate the target language documents to a source 044

language, or machine-translate the labeled source 045

documents to the target languages and use the trans- 046

lations to train models for the target languages. 047

Teacher-student approaches, which leverage multi- 048

lingual teacher models to soft-label unlabeled doc- 049

uments of the target language(s) to train a student 050

(Eisenschlos et al., 2019), were also not considered. 051

We address these limitations in this work. 052

• We construct, use, and release a new, more re- 053

alistic version of Multi-EURLEX that contains 054

non-parallel training documents in four languages 055

(English, French, German, Greek), along with the 056

same (parallel) development and test documents 057

for those languages as in the original dataset. 058

• To establish ‘upper’ performance bounds for 059

zero-shot transfer, we fine-tune XLM-R sepa- 060

rately per language, as well as jointly in all four 061

languages, simulating a scenario where there are 062

equally many training documents in all languages, 063

confirming that adapters improve cross-lingual 064

transfer. Unlike Chalkidis et al. (2021a), we find 065

that jointly fine-tuning for all languages leads 066

to better performance, compared to monolingual 067

fine-tuning. We partly attribute this difference to 068

the fact that the original dataset contains paral- 069

lel documents (same content), which reduces the 070

benefit of jointly training in multiple languages. 071

• We show that translation-based methods vastly 072

outperform cross-lingual fine-tuning with 073

adapters, which was the best zero-shot cross- 074

lingual transfer method of Chalkidis et al. (2021a). 075

This suggests that exploiting modern Neural Ma- 076

chine Translation (NMT) systems is a much better 077

zero-shot cross-lingual transfer strategy in real 078

life, at least for legal topic classification. 079

• We develop a bilingual teacher-student. A mul- 080

tilingually pre-trained teacher is fine-tuned on 081
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labeled documents of the source language and082

their machine-translations in the target language.083

The teacher then soft-labels all the documents it084

was trained on, and also soft-labels unlabeled doc-085

uments of the target language. A student is then086

trained to predict all the soft labels. Its perfor-087

mance exceeds the monolingual ‘upper bound’,088

i.e., fine-tuning directly in the target language.089

Also, the student supports both the target and the090

source language, which allows a company to sup-091

port both languages with a single model.092

2 Related Work093

Pre-trained Transformers have boosted perfor-094

mance across NLP, including cross-lingual transfer095

(Conneau and Lample, 2019; Conneau et al., 2020;096

Xue et al., 2021). Adapter modules (Houlsby et al.,097

2019) have been used to transfer pre-trained models098

to low-resource or even unseen languages (Pfeiffer099

et al., 2020, 2021). Also, Eisenschlos et al. (2019)100

proposed MultiFiT, a teacher-student framework101

that allows pre-training and fine-tuning monolin-102

gual students in a target language, using a multilin-103

gually pre-trained teacher to bootstrap the student104

with soft-labeled documents of the target language.105

Gonalves and Quaresma (2010) performed le-106

gal topic classification in English, German, Ital-107

ian, Portuguese using monolingual SVMs and their108

combination as a multilingual ensemble. Chalkidis109

et al. (2021a) studied zero-shot cross-lingual trans-110

fer in legal topic classification, introducing Multi-111

EURLEX. They found that fine-tuning a multilin-112

gually pretrained model in a single language leads113

to catastrophic forgetting of the multilingual knowl-114

edge from the pre-training and, thus, performs115

poorly in zero-shot transfer to other languages. To116

retain the multilingual knowledge, they used adap-117

tation strategies (Houlsby et al., 2019; Pfeiffer et al.,118

2020). Their results also show that zero-shot cross-119

lingual transfer is more challenging in legal topic120

classification, compared to more generic classifica-121

tion tasks (Hu et al., 2020; Ruder et al., 2021).122

3 The New Multi-EURLEX Version123

We use Multi-EURLEX (Chalkidis et al., 2021a),124

a multilingual dataset for legal topic classification125

comprising 65k EU laws officially translated in126

23 EU languages.1 Each document (EU law) was127

1Multi-EURLEX is available at https://huggingface.
co/datasets/multi_eurlex. Our modified version will be
made publicly available when this work is published.

originally annotated with relevant EUROVOC2 128

concepts by the Publications Office of EU. EU- 129

ROVOC is a taxonomy of concepts (a hierarchy 130

of labels). We use the 127 ‘Level 2’ labels, ob- 131

tained by Chalkidis et al. (2021a) from the original 132

EUROVOC annotations of the documents. 133

Limitations of Multi-EURLEX: One limitation 134

of Multi-EURLEX is that the number of training 135

documents is not the same across languages. For 136

languages spoken in the older EU member states, 137

there are 55k training documents per language, but 138

for many others, there are much fewer training doc- 139

uments (e.g., 8k for Croatian, 15k for Bulgarian). 140

This makes zero-shot cross-lingual transfer results 141

difficult to compare, because the training set size 142

varies across experiments, a factor not controlled 143

for by Chalkidis et al. (2021a). More importantly, 144

when training in several source languages, most of 145

the source language documents are parallel (same 146

content in multiple languages), which is unrealis- 147

tic in most real-life applications and may produce 148

misleading results. For example, in one of their 149

baselines, Chalkidis et al. (2021a) jointly fine-tune 150

a multilingually pre-trained model on the (paral- 151

lel) training documents of all the 23 languages, and 152

observe no performance benefit compared to fine- 153

tuning a different instance of the model per lan- 154

guage, possibly because of the fact that the training 155

documents are parallel (same content). By contrast, 156

we find that the multilingually fine-tuned model 157

is substantially better than the monolingual ones, 158

when the training documents are not parallel. 159

Updated Harder Version: We, therefore, con- 160

struct, use, and release a new, more realistic ver- 161

sion of Multi-EURLEX, where there are no parallel 162

training documents across languages. For the new 163

version, we randomly selected 12k (11k training, 164

1k development) documents per language, limit- 165

ing the languages to four, namely English, German, 166

French, Greek, and making sure there are no par- 167

allel documents. Using four languages allowed us 168

to avoid parallel documents, but still have a reason- 169

ably large training set (11k) per language. The test 170

sets are still parallel (5k training per language, as 171

in the original Multi-EURLEX) to allow compar- 172

isons to bemade when changing the target language. 173

The four languages are from three different fami- 174

lies (Germanic, Romance, Hellenic), which makes 175

cross-lingual transfer harder. 176

2http://eurovoc.europa.eu/
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Source Target Languages Target

Model #M MT BS+SL en de fr el Avg

‘Upper’ performance bounds (labeled training documents available in all 4 languages)

Monolingual FT (Fine-Tuning on labeled documents of a particular language only)

XLM-R (E2E) 4 7 7 68.2 ± 0.8 65.8 ± 0.7 67.0 ± 1.7 64.6 ± 0.4 65.8

XLM-R +Adapters 4 7 7 68.8 ± 0.1 65.0 ± 0.7 68.1 ± 0.4 64.9 ± 0.2 66.0

Multilingual FT (jointly Fine-Tuning on labeled documents of all 4 languages)

XLM-R (E2E) 1 7 7 70.0 ± 1.0 68.9 ± 1.0 69.1 ± 1.5 67.4 ± 0.6 68.5

XLM-R +Adapters 1 7 7 70.4 ± 1.6 69.2 ± 1.1 69.9 ± 1.6 67.1 ± 0.5 68.7

Zero-shot Cross-lingual Methods (no labeled training documents available in the Target languages)

Cross-lingual FT (FT on Source documents only, test in each Target language directly)

XLM-R (E2E) 1 7 7 — 55.2 ± 5.2 58.1 ± 2.9 42.8 ± 6.5 52.0

XLM-R +Adapters 1 7 7 — 61.7 ± 1.9 60.6 ± 0.8 48.1 ± 1.8 56.8

Translate Test (FT on Source documents only, test on Target documents translated to Source)

XLM-R (E2E) 1 3 7 — 63.3 ± 1.8 68.1 ± 0.8 66.5 ± 1.0 66.0

XLM-R +Adapters 1 3 7 — 62.8 ± 1.0 68.7 ± 0.2 67.2 ± 1.2 66.2

Translate Train (translate the Source training documents to each Target, FT on the translations)

XLM-R (E2E) 4 3 7 — 66.7 ± 1.5 67.2 ± 1.1 64.1 ± 1.4 66.0

XLM-R +Adapters 4 3 7 — 67.2 ± 1.0 67.0 ± 1.2 64.8 ± 1.7 66.4

Bilingual Teacher-Student (jointly FT on Source documents and their translations in a Target language)

XLM-R (E2E) 4 3 3 69.1 ± 1.3 67.4 ± 0.1 66.1 ± 0.3 65.0 ± 0.4 66.1

XLM-R +Adapters 4 3 3 67.8 ± 1.3 66.9 ± 0.3 67.6 ± 1.2 67.9 ± 0.1 67.5

Multilingual Teacher-Student (jointly FT on Source documents and their translations in all Target languages)

XLM-R (E2E) 1 3 3 62.3 ± 1.6 60.9 ± 0.3 66.8 ± 0.2 48.4 ± 0.3 58.7

XLM-R +Adapters 1 3 3 65.0 ± 0.2 62.6 ± 0.2 68.7 ± 0.8 50.5 ± 0.0 60.6

Table 1: Test R-Precision (RP, %) results± std. deviation over 3 runs with different random seeds. E2E: End-to-End

Fine-Tuning (FT). +Adapters: Updating only Adapter layers and classification head during FT. #M: number of

models fine-tuned. MT: machine-translated documents used. BS+SL: Boot-Strapping with Soft Labels. :

Teacher-Student approach. Best zero-shot scores per language shown in bold. Teacher scores in the Appendix.

4 Experimental Setup and Methods177

We experiment with XLM-R (Conneau et al.,178

2020) in the two best-performing configurations179

of Chalkidis et al. (2021a): (a) End-to-end (E2E)180

fine-tuning, where all model parameters are up-181

dated, and (b) Adapter-based (Houlsby et al., 2019)182

fine-tuning, where we only update the parameters183

of additional bottleneck (adapter) layers between184

the pre-trained Transformer blocks. We compare185

both configurations across several training settings:186

‘Upper’ Performance Bounds: Firstly, we ex-187

amine the performance of XLM-R fine-tuned in a188

monolingual fashion, i.e., separately on the labeled189

documents of each language (source or target), or in190

a multilingual fashion, i.e., jointly on training doc-191

uments of all four languages. In real life, labeled192

data in the target languages are rarely available.193

Typically a company has trained a system on En-194

glish labeled documents and wishes to deploy it195

in other languages with very few (or no) labeled196

documents. However, these experiments show how197

high performance would be in an ideal case with la-198

beled documents in each target language (as many199

as in the source language). We call them an ‘up- 200

per’ bound, because we would expect performance 201

to be inferior in zero-shot cross-lingual transfer, 202

where no labeled documents are available in the tar- 203

get languages. Nevertheless, our best zero-transfer 204

method, actually surpasses some ‘upper’ bounds. 205

Cross-lingual Fine-Tuning (FT): Chalkidis et al. 206

(2021a) showed that when fine-tuning a multilin- 207

gually pre-trained model for a particular language, 208

the model ‘forgets’ to a large extent its knowledge 209

of the other languages and performs poorly in zero- 210

shot cross-lingual transfer, unless adaptation mech- 211

anisms are used; but even then, zero-shot perfor- 212

mance was much lower than the ‘upper’ bounds. 213

Translation-based Methods: Following Con- 214

neau et al. (2020) and Xue et al. (2021), we also 215

consider methods that exploit machine-translated 216

documents.3 In Translate Test, we fine-tune XLM- 217

R for the source language; given a target language 218

document at inference time, we simply translate it to 219

the source language and use the fine-tuned (for the 220

3We use the EasyNMT (Reimers, 2021) framework.
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source language) XLM-R. In Translate Train, we221

machine-translate the labeled training documents222

of the source language to the target language, and223

use the translations (and the original labels) to fine-224

tune XLM-R for the target language; at test time,225

we evaluate on labeled test documents written in226

the target language (not machine-translated).227

Teacher-Student: Inspired by Eisenschlos et al.228

(2019), we first fine-tune a bilingual teacher XLM-229

R using labeled documents in the source language230

and their machine translations (and original labels)231

in the target language. Then, we use the teacher232

to soft-label (assign a probability per label to) the233

source and machine-translated documents it was234

trained on, and to soft-label additional unlabeled235

documents of the target language; we use the 12k236

training documents of the target language without237

their labels. We then train a student XLM-R (on238

all the documents the teacher soft-labeled) to pre-239

dict the soft labels. The student (and the teacher)240

is bilingual, i.e., it supports both the target and the241

source language. This allows a company to sup-242

port both languages with a single model, which243

has cost benefits. We also experiment with a mul-244

tilingual teacher-student approach, where a sin-245

gle multi-lingual teacher is jointly fine-tuned on246

labeled documents of the source language and their247

machine translations in all target languages. The248

teacher then soft-labels all the documents (and trans-249

lations) it was trained on and additional unlabeled250

documents of the target languages. The student is251

again trained to predict the soft labels.4 In this case,252

all four languages are supported.253

5 Experimental Results254

Table 1 reports test results. Following Chalkidis255

et al. (2021a), we report average R-Precision (RP)256

(Manning et al., 2009) alongside (±) standard de-257

viation over 3 runs with different random seeds.258

Starting from the ‘upper’ bound results, we find that259

jointly fine-tuning on all four languages performs260

substantially better than fine-tuning monolingual261

models. By contrast, Chalkidis et al. (2021a) re-262

ported no benefit when jointly fine-tuning XLM-R263

for multiple languages. However, in their experi-264

ments there were many more training documents265

per language and the documents were parallel trans-266

4The student sees soft labels even in the manually labeled
target documents and their translations, since soft labels have
been found beneficial in manually labeled documents too (For-
naciari et al., 2021). Preliminary experiments confirmed this.

lations (same content), which reduced the benefit of 267

jointly training in multiple languages (in our case, 268

four times more documents with different content). 269

Cross-lingual FT with Adapters performs approx. 270

10 points lower in the target languages on aver- 271

age, compared to the corresponding monolingual 272

‘upper’ bound (56.8 vs. 66.0). Translate Test and 273

Train, which were not considered by Chalkidis et al. 274

(2021a), vastly outperform Cross-lingual FT with 275

Adapters, which was the best zero-shot method of 276

the same authors, and perform on par with themono- 277

lingual ‘upper’ bounds.5 The bilingual student with 278

Adapters improves the average performance on tar- 279

get languages slightly further (67.5), exceeding the 280

monolingual ‘upper’ bound with Adapters (66.0). 281

This improvement can be attributed to the addi- 282

tional (originally unlabeled) documents of the tar- 283

get languages and the soft labels that the student 284

uses. Recall that the student has the further practical 285

advantage of supporting two languages. 286

The multilingual student performs much worse 287

on average, compared to the bilingual student, even 288

with Adapters; with an exception for French where 289

the student performs best (68.7) compared to all 290

other methods. The results seem to be related to 291

(affected by) the translation quality across target 292

languages and the quality of the teacher’s soft labels. 293

We conduct an analysis for both aspects (translation 294

and soft labels quality) in Appendix A. 295

6 Conclusions and Future Work 296

We considered zero-shot cross-lingual transfer in le- 297

gal topic classification, introducing a more realistic 298

version of Multi-EURLEX without parallel doc- 299

uments. We showed that translation-based meth- 300

ods vastly outperform cross-lingual fine-tuning of 301

multilingually pre-trained models, the best previ- 302

ous zero-shot transfer method for Multi-EURLEX. 303

We also developed a bilingual teacher-student zero- 304

shot transfer approach, which exploits additional 305

unlabeled documents of the target language and 306

performs better than a model fine-tuned directly on 307

labeled target language documents, while support- 308

ing both languages with a single model. 309

In future work, we aim to better understand the 310

reasons of the poor performance of the multilin- 311

gual teacher-student and hopefully to address them, 312

in order to deploy a single zero-shot cross-lingual 313

transfer model for multiple target languages. 314

5The same conclusions can be drawn with other source
languages (French, German, Greek); see Appendix B.
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A Quality Assessment465

We observed that the multi-lingual teacher-student466

under-performs compared to the rest of the zero-467

shot cross-lingual settings, while also its bilingual468

counterparts show strong results. We hypothesis469

that these overall negative results (or positive for470

French) are correlated with the translation quality471

across target languages and the quality of the soft472

labels generated by (predicted) the teacher.473

Translation Quality: In Table 2, we report the474

quality of machine-translations measured with the475

METEOR score (Banerjee and Lavie, 2005). We476

observe that the quality from English to French477

(0.73) is substantially better compared to the one 478

from English to German or Greek (0.68). This qual- 479

ity disparity could potentially affect the the perfor- 480

mance of all methods that use machine-translated 481

documents, i.e. translate-train, translate-test, bilin- 482

gual/multilingual teacher-student. Indeed, we ob- 483

serve in Table 1, that these methods are consistently 484

better in French, while being comparable in Ger- 485

man, and worse in Greek. This is quite expected 486

as both French, and German use the Latin alphabet, 487

and share a larger part of vocabulary compared to 488

Greek, using the Greek one. 489

Soft Labels Quality: In Figure 1, we estimate the 490

quality of soft labels via the absolute differences 491

in between gold and soft labels predicted by the 492

multilingual Teacher model across all document 493

subsets (original in English, machine-translated in 494

target languages, and additional unlabelled docu- 495

ments), and languages considered by the student. 496

We compute differences, as the averaged Mean Ab- 497

solute Error (MAE) across documents in documents 498

subset: 499

Diff =
1

N

N∑
n=1

|Gn − Sn| (1) 500

where N=12, 000 is number of documents trans- 501

lated from English to a target language, and Gn, 502

Sn are the gold and soft labels per document. We 503

observe that the quality of the soft labels vastly 504

varies both across documents subsets (considering 505

the mean difference reported per violin with a thick 506

blue horizontal line), and across documents per sub- 507

set (distribution in each violin). 508

The average differences (Diff) per language 509

(source or target) fully correlate with the perfor- 510

mance of the student model in the respective lan- 511

guage, measured in RP, as reported in Table 1. 512

Specifically, soft labels for French documents 513

(machine-translated or unlabelled) are more accu- 514

rate (Diff ' 0.25) compared to the rest: Diff ' 515

0.45 for German, andDiff ' 0.60 for Greek. These 516

results (soft label quality) seem to justify the per- 517

formance improvement in French, compared to per- 518

formance decrease in German and Greek. These 519

results could also be affected by the quality of NMT 520

(Table 2). 521

Based on these findings, we acknowledge that 522

bootstrapping should be reconsidered in the future 523

with respect to the quality of translations and soft 524

labels. Such improvements could include filter- 525

ing of documents with very uncertain soft labels 526
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Figure 1: Difference (left blue parts) in between gold and soft labels predicted by the multilingual Teacher model,

measured as Mean Absolute Error (MAE). Results reported per document subset (original in English (source),

machine-translated (MT) in target languages, and additional unlabelled (UL)) and target language.

METEOR scores

en-to-de en-to-fr en-to-el

0.680 0.733 0.680

Table 2: Quality of machine-translations, English (en)

to targets (German (de), French (fr) and Greek (el)),

provided by the NMT systems measured in METEOR.

(probabilities), e.g., very close to a threshold (e.g.,527

t = 0.5), or weighting with respect to the labeling528

uncertainty. Similarly, one could possibly filter529

out, exceptionally low quality translations, mea-530

sured via language modeling metrics (e.g., perplex-531

ity] with a language-specific pre-trained language532

model.533

B Additional Results534

In this section, we provide additional results of535

the same experiments described in Section 4, and536

presented in Section 5 across more language pairs,537

i.e., source-target combinations, such as German to538

the rest, French and Greek, respectively. Given the539

results, we can draw very similar conclusions.540

C Responsible NLP - Details541

C.1 Experimental Details542

We follow the best hyper-parameters reported by543

Chalkidis et al. (2021a). For end-to-end (E2E) fine-544

tuning with XLM-R, we use a learning rate of 3e-5.545

When we use adapter modules, we use a learning546

rate of 1e-4, and the botteneck size is 256. For547

additional details consider Appendix A of Chalkidis548

et al. (2021a).549

C.2 Licensing / Intended Use / Privacy 550

Both the dataset and code base of Chalkidis et al. 551

(2021a) are available under CC-BY-4.0 license and 552

we re-distribute the augmented dataset (incl. trans- 553

lations) and the updated code under the same li- 554

cense. 555

C.3 Computational Details 556

In all of our experiments we fine-tune the XLM- 557

R model (Conneau et al., 2020) consists of 278M 558

params with batch size (BS) equal to 8 and learning 559

rate equal to 3e-05. When adapters modules were 560

used we selected a Bottle-neck Size, the number of 561

hidden units (K), to be equal to 256 as in the work 562

of Chalkidis et al. (2021a) this number gave the best 563

results. All experiments ran on an NVIDIA DGX-1 564

station with 8 NVIDIA V100 16GB GPU cards. In 565

Table 6 we show the run-time (Hours:Minutes) of 566

every experiment across the 3 runs performed with 567

different random seed. 568

D Translation Details 569

We performed the translations using the 570

EasyNMT6 framework utilizing the many- 571

to-many M2M_100_418M model of (Fan et al., 572

2020) for el-to-en and el-to-de pairs and the 573

OPUS-MT (Tiedemann and Thottingal, 2020) 574

models for the rest. A manual check of some 575

translated samples showed sufficient translation 576

quality. 577

6https://github.com/UKPLab/EasyNMT
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Source Target Languages Target

Model #M NMT SL + BS de en fr el Avg

Zero-shot Cross-lingual FT (No labeled data in target languages)

Cross-lingual FT (German Only)

XLM-R 1 7 7 65.84 ± 0.68 57.43 ± 1.61 53.95 ± 2.48 44.97 ± 1.09 52.1

XLM-R + Adapters 1 7 7 64.98 ± 0.72 61.30 ± 1.70 58.28 ± 0.60 49.02 ± 1.09 56.2

Translate Test documents to Target language

XLM-R 1 3 7 65.84 ± 0.68 65.65 ± 0.72 65.66 ± 0.78 63.57 ± 0.74 65.0

XLM-R + Adapters 1 3 7 64.98 ± 0.72 65.66 ± 1.16 64.76 ± 0.50 64.70 ± 1.61 65.0

Translate Train documents to Target language

XLM-R N 3 7 65.84 ± 0.68 67.36 ± 1.62 65.64 ± 1.14 64.32 ± 1.21 65.8

XLM-R + Adapters N 3 7 64.98 ± 0.72 66.03 ± 1.40 65.74 ± 1.53 63.85 ± 0.18 65.2

Table 3: Test R-Precision (RP, %) results± std. deviation over 3 runs with different random seeds. E2E: End-to-End

Fine-Tuning (FT). +Adapters: Updating only Adapter layers and classification head during FT. #M: number of

models fine-tuned. MT shows if machine-translated documents are used. BS+SL shows if teacher-student Boot-

Strapping with Soft Labels is used.

Source Target Languages Target

Model #M NMT SL + BS fr en de el Avg

Zero-shot Cross-lingual FT (No labeled data in target languages)

Cross-lingual FT (French Only)

XLM-R 1 7 7 67.01 ± 1.69 65.26 ± 0.85 57.04 ± 2.74 49.27 ± 2.17 57.2

XLM-R + Adapters 1 7 7 68.05 ± 0.35 64.98 ± 1.66 61.44 ± 1.80 51.31 ± 1.86 59.2

Translate Test documents to Target language

XLM-R 1 3 7 67.01 ± 1.69 66.73 ± 1.86 59.49 ± 2.26 46.16 ± 0.42 57.5

XLM-R + Adapters 1 3 7 68.05 ± 0.35 66.72 ± 1.11 59.59 ± 0.24 46.98 ± 2.56 57.8

Translate Train documents to Target language

XLM-R N 3 7 67.01 ± 1.69 69.01 ± 0.55 67.51 ± 1.59 67.62 ± 0.42 68.0

XLM-R + Adapters N 3 7 68.05 ± 0.35 68.02 ± 1.11 66.99 ± 1.01 66.00 ± 0.95 67.0

Table 4: Test R-Precision (RP, %) results± std. deviation over 3 runs with different random seeds. E2E: End-to-End

Fine-Tuning (FT). +Adapters: Updating only Adapter layers and classification head during FT. #M: number of

models fine-tuned. MT shows if machine-translated documents are used. BS+SL shows if teacher-student Boot-

Strapping with Soft Labels is used.

Source Target Languages Target

Model #M NMT SL + BS el de fr en Avg

Zero-shot Cross-lingual FT (No labeled data in target languages)

Cross-lingual FT (Greek Only)

XLM-R 1 7 7 64.57 ± 0.39 46.30 ± 3.23 43.09 ± 1.37 41.54 ± 2.02 43.6

XLM-R + Adapters 1 7 7 64.86 ± 0.19 49.89 ± 3.81 48.56 ± 4.28 47.98 ± 4.75 48.8

Translate Test documents to Target language

XLM-R 1 3 7 64.57 ± 0.39 64.69 ± 0.49 64.59 ± 1.53 64.62 ± 0.48 64.6

XLM-R + Adapters 1 3 7 64.86 ± 0.19 65.41 ± 1.13 62.89 ± 0.95 64.88 ± 0.50 64.2

Translate Train documents to Target language

XLM-R N 3 7 64.57 ± 0.39 65.29 ± 1.51 64.31 ± 2.27 64.77 ± 1.30 64.8

XLM-R + Adapters N 3 7 64.86 ± 0.19 66.22 ± 0.22 64.76 ± 1.24 65.80 ± 1.56 65.6

Table 5: Test R-Precision (RP, %) results± std. deviation over 3 runs with different random seeds. E2E: End-to-End

Fine-Tuning (FT). +Adapters: Updating only Adapter layers and classification head during FT. #M: number of

models fine-tuned. MT shows if machine-translated documents are used. BS+SL shows if teacher-student Boot-

Strapping with Soft Labels is used.
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Setting Adapters Avg Run Time

Monolingual 7 2h

Monolingual 3 4h

Multilingual 7 5h

Multilingual 3 9h

Cross-lingual + MT 7 2h

Cross-lingual + MT 3 4h

Bilingual 7 13h

Bilingual 3 10h

Multilingual 7 18h

Multilingual 3 15h

Table 6: Run-time (Hours:Minutes) of every experiment

in Tesla V100 GPU across the 3 runs performed with

different random seed.
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