
Extended Abstract Track 2023 Symmetry and Geometry in Neural Representations

Emergence of Latent Binary Encoding
in Deep Neural Network Classifiers

Luigi Sbailò sbailo@physik.hu-berlin.de
Physics Department and IRIS Adlershof of the Humboldt-Universität zu Berlin, Berlin, Germany

Luca Ghiringhelli
Department of Materials Science and Engineering, Friedrich-Alexander Universität, Erlangen-Nürnberg,

Germany

Physics Department and IRIS Adlershof of the Humboldt-Universität zu Berlin, Berlin, Germany

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Nina Miolane

Abstract

We observe the emergence of binary encoding within the latent space of deep-neural-network
classifiers. Such binary encoding is induced by introducing a linear penultimate layer, which
is equipped during training with a loss function that grows as exp(x2), where x are the
coordinates in the latent space. The phenomenon we describe represents a specific instance
of a well-documented occurrence known as neural collapse, which arises in the terminal
phase of training and entails the collapse of latent class means to the vertices of a simplex
equiangular tight frame (ETF). We show that binary encoding accelerates convergence
toward the simplex ETF and enhances classification accuracy.

Keywords: Binary encoding, neural collapse, latent space.

1. Introduction

In tasks like images classification, deep neural networks have achieved levels of performance
that surpass human capabilities. Nevertheless, there is a general lack of understanding
regarding the theoretical mechanisms behind these outstanding results.

In the last years, there has been a growing interest in studying the geometrical struc-
tures that emerge in the latent space of deep neural networks. Notably, it has been noticed
that the class means in the penultimate layers collapse to the vertices of a simplex equian-
gular tight frame (ETF) in the terminal phase of training Vardan Papyan (2020). This
phenomenon known as neural collapse has been linked to transfer learning Galanti et al.
(2022) and incremental learning Yibo Yang (2023).

In this work, we develop a method for generating a binary encoding for the latent repre-
sentations found in the penultimate layer of deep neural networks. Within each dimension
of the penultimate layer, latent representations are in practice trained to assume one of two
possible values. In the tests that we perform all data points belonging to the same class
adopt an identical binary encoding. This implies that data points within the same class
ultimately converge to the vertices of a simplex constructed on the vertexes of a binary
hypercube. Notably, our work represents a specific instance of neural collapse. In our case,
the phenomenon extends beyond just the class means collapsing to simplex vertices; rather,
it encompasses all data points within the same class. Furthermore, our findings demonstrate
that this method enhances accuracy of neural-networks prediction.

© 2023 L. Sbailò & L. Ghiringhelli.



Sbailò Ghiringhelli

2. Binary Encoding

Given a labeled dataset {x,y}, we deal with the problem of predicting the labels with a
deep neural network. For an input point x, we can break down the process of producing the
neural network’s output f(x) into two distinct steps. Firstly, the non-linear component of
the neural network generates a latent representation h(x). Following this, a linear classifier,
characterized by weights W and biases b operates on this latent representation to compute
f(x) = Wh(x) + b. The predicted label y is finally determined by applying a softmax
function to the network’s output. The neural network is trained through the minimization
of the cross-entropy loss function LCE (f(x),y), which measures the disparity between the
network’s predictions and the ground truth labels.

Here, we propose the introduction of an additional linear layer prior to the classifier,
defined as xbin = W binh(x)+bbin. This layer serves as the penultimate step in the network
architecture, with classification being subsequently determined through another linear oper-
ation, f(x) = Wxbin+b. In addition to the cross-entropy loss applied to the network’s out-
put, we incorporate a loss function into the penultimate layer defined as: LBin(xbin) = ex

2
bin .

The resulting loss function is thus composed of two terms:

L = LCE + γ LBin, (1)

where γ is a hyperparameter.

The latent binary encoding emerges as a result of balancing two conflicting tendencies
coming from the two components of the loss function. The exponential loss function pushes
towards having all latent representations closer to zero, while the minimization of the cross-
entropy induces differentiation among the different latent representations. This dynamics
naturally leads to a configuration where, for each latent dimension, most of the latent values
cluster around two opposing peaks in relation to the origin. The presence of these two peaks
facilitates the necessary differentiation for distinguishing various representations, and they
tend to be in close proximity to zero due to the influence of the exponential loss. Assuming
the concentrated distribution of points only around the two peaks, it becomes evident that
the latent representation effectively approximates only two distinct values: either positive
or negative.

3. Experiments

To evaluate the impact of incorporating a binary encoding layer, we conducted experiments
with four distinct neural network architectures, all of which share a common base network
responsible for generating the latent representation h(x). Nevertheless, these networks
diverge in their subsequent steps for classification.

One network architecture, referred as Binary encoding, implements a linear penultimate
layer with loss function as in Eq (1). The Linear penultimate architecture features a linear
penultimate layer as well, but is trained using only the cross-entropy loss function. The
Non-linear penultimate architecture implements a non-linear layer that acts on h(x) before
linear classification. The fourth No penultimate architecture performs linear classification
directly on the h(x) latent representation.

2



Latent Binary Encoding

We note that the Binary encoding, Linear penultimate and Non-linear penultimate ar-
chitectures have the same number of layers and parameters but differ for activation and
loss functions, while the No penultimate architecture has one layer less with respect to the
others. These 4 different architectures are tested on MNIST and FashionMNIST. Details
about training and architecture of the network used to generate the latent representation
h(x) are given in Appendix A. Code to reproduce results presented in this work is available
online1.

Figure 1: Average log-likelihood scores and standard deviations for Gaussian mixture mod-
els with two modes on each dimension of the penultimate layer. Averages of
different training outcomes are shown, and line shadows represent the standard
deviations. If not visible standard deviations are small for the image resolution.

Figure 2: Fraction of points belonging to the same class which share the same binary en-
coding. Averages of different training outcomes are shown, and line shadows
represent the standard deviations. If not visible standard deviations are small.

In order to test the binarity hypothesis, which we define as the assumption that each
dimension in the latent representation can assume approximately only one of two values, we

1. https://github.com/luigisbailo/emergence binary encoding.git

3

https://github.com/luigisbailo/emergence_binary_encoding.git


Sbailò Ghiringhelli

Figure 3: Neural network accuracy on train and test set. Averages of different training
outcomes are shown, and line shadows represent the standard deviations.

fit a Gaussian mixture model with 2 modes on the Binary encoding latent representation
xBin. A different fit is performed on each dimension over all values of the training set. In each
dimension, the average log-likelihood score of the training set is computed and averaged over
all dimensions. Also the standard deviation of the two posterior distributions are collected
and averaged over all dimensions. These values are plotted in Fig. 1, where we can see that
during training the score increases while the standard deviation decreases. This observation
supports our binarity hypothesis, as it aligns with the notion that a Gaussian distribution
with a standard deviation approaching zero implies that all data points converge to a single
position. The same analysis is performed for the Linear penultimate architecture as it also
features a linear layer before classification. However, we can see that in this architecture
the binarity hypothesis does not hold.

As we assume that each latent representation xBin is encoded into a binary represen-
tation, we expect that points with the same label present the same encoding. We then
generate a binary encoding of the penultimate layer in each of the network architectures we
study. This encoding is generated giving 1 to all positive values and 0 to values equal to or
lower than 0. In Fig. 2, we show the fraction of points that share the same encoding and
belong to the same class. Notably, we observe that this assumption holds true exclusively
for the Binary encoding architecture. All points belonging to the same class are in fact
placed on a vertex of the simplex designed on the vertices of a hypercube. Binary encoding
also accelerates neural collapse as discussed in Appendix B.

Finally, we can see in Fig. 3 that the implementation of a binary encoding layer has the
effect of improving the accuracy of neural network classification both on the train and test
set, while the other three architectures show comparable performance.

4



Latent Binary Encoding

4. Conclusion and limitations

We have discussed a method to generate a binary encoding in the latent space, which
is accomplished by adding a penultimate binary encoding layer, i.e. a linear layer that
incorporates an exponentially growing loss function. The emergence of this phenomenon is
shown to accelerate convergence toward the vertices of a simplex equiangular tight frame,
and to enhance the network accuracy. Although results seem to be promising to suggest
that binary encoding should be used to enhance network performance, more comprehensive
tests on more complex datasets and with more expressive deep neural networks are still to
be done.

Appendix A. Training and architecture details

To generate the latent representation h(x), two distinct neural network architectures were
employed for the two different datasets. For MNIST classification, a fully connected neural
network with three layers, each consisting of 2048 nodes, along with two dropout layers,
was utilized. In the case of FashionMNIST, a convolutional neural network was employed,
featuring five convolutional layers with specified input and output channel configurations
([1,64],[64,128],[128,256],[256,256], [256,512]), a kernel size of 3, and padding of 1. Addi-
tionally, three max pool layers with a kernel size of 2 and a stride of 2 were applied in the
following sequence: Conv2D, MaxPool, Conv2D, MaxPool, Conv2D, Conv2D, MaxPool,
Conv2D. Furthermore, two fully connected layers, each comprising 1024 nodes, were em-
ployed after the convolutional layers, and two dropout layers were included. A nonlinear
activation function was consistently applied following each convolutional layer.

Both architectures incorporated a dropout rate of 0.5 and utilized ReLU activation func-
tions. In the context of the CNN network applied to FashionMNIST, the Binary encoding,
Linear penultimate, and Non-linear penultimate architectures included an additional fully
connected layer consisting of 128 nodes. Conversely, for the fully connected network ap-
plied to MNIST, this penultimate layer contained 64 nodes. The Non-linear penultimate
architecture incorporated a ReLU activation function within this penultimate layer.

The training process utilized the Adam optimizer with default settings as specified in the
PyTorch implementation, employing a learning rate of 10−4. The learning rate was reduced
by half after every 20 epochs. For the MNIST dataset, a batch size of 64 was employed,
whereas for the FashionMNIST dataset, a batch size of 128 was utilized. The loss function
employed for the ’Binary encoding’ architecture was as in Eq. (1) with γ = 10. Each
network architecture has undergone training three times with distinct initial conditions,
and the quantities displayed in plots represent the averages and standard deviations of
these outcomes.

Appendix B. Convergence to simplex equiangular tight frame

In the terminal phase of training the vectors of the class means are known to converge to a
simplex equiangular tight frame (ETF) as manifestation of a phenomenon known as neural
collapse. The class mean vectors converge to having equal lengths, resulting in uniform
angles between any given pair of vectors. The ETF configuration represents the maximum
pairwise distance while adhering to the aforementioned properties.

5



Sbailò Ghiringhelli

Figure 4: Plots demonstrating convergence to the vertices of a simplex equiangular tight
frame. From top to bottom: ’Equinorm’ as variation of the mean classes norms;
’Equiangularity’ as variation of the angle between all class means pairs; ’Max
Angle’ as distance from the max angle class means can have; ’Tr(Sw/Sb)/C’ as
weigheted within-class variance; ’Within class covariance’ is the average of the
within-class covariance matrix. More details about the quantities plotted can be
found in Ref. Vardan Papyan (2020).

6



Latent Binary Encoding

In Figure 4, we illustrate this convergence of class means towards the vertexes of the
simplex ETF. Notably, we observe that this convergence occurs more rapidly when em-
ploying a binary encoding layer. In this figure the within class variation is computed using
the within class covariance compared with the between class covariance. The collapse of
variability becomes apparent when contrasting with the between-class covariance. However,
in the lower plot, which displays the average within-class covariance matrix, we observe an
interesting trend. The average within-class covariance matrix itself, without comparison to
the between-class covariance matrix, shows an increase during training, unless the binary
encoding layer is integrated into the network. This implies that, when using the binary en-
coding layer, not only the class means but also all data points within the dataset converge
towards the vertexes of a simplex ETF.

References

Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in
transfer learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=SwIp410B6aQ.

David L. Donoho Vardan Papyan, X. Y. Han. Prevalence of neural collapse during the
terminal phase of deep learning training. PNAS, 117:24652–24663, 2020.

Xiangtai Li Zhouchen Lin Philip Torr Dacheng Tao Yibo Yang, Haobo Yuan. Neu-
ral collapse inspired feature-classifier alignment for few-shot class incremental learning.
arXiv:2302.03004, 2023.

7

https://openreview.net/forum?id=SwIp410B6aQ

	Introduction
	Binary Encoding
	Experiments
	Conclusion and limitations
	Training and architecture details
	Convergence to simplex equiangular tight frame

