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Abstract

In recent years, deep learning methods have become the most effective approach for
tool segmentation in endoscopic images, achieving the state of the art on the available
public benchmarks. However, these methods present some challenges that hinder their
direct deployment in real world scenarios. This work explores how to solve two of the most
common challenges: real-time and memory restrictions and false positives in frames with
no tools. To cope with the first case, we show how to adapt an efficient general purpose
semantic segmentation model. Then, we study how to cope with the common issue of only
training on images with at least one tool. Then, when images of endoscopic procedures
without tools are processed, there are a lot of false positives. To solve this, we propose to
add an extra classification head that performs binary frame classification, to identify frames
with no tools present. Finally, we present a thorough comparison of this approach with
current state of the art on different benchmarks, including real medical practice recordings,
demonstrating similar accuracy with much lower computational requirements.
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1. Introduction

In recent years, machine learning techniques, and more specifically convolutional neural net-
works (CNN), have been widely used for analysis of medical images, including endoscopic
images. The main goal in using these techniques is to aid and improve diagnosis through
detection and classification of specific structures and characteristics related to certain dis-
eases (Choi et al., 2020). Some applications of such techniques include automatic detection
and classification of gastric cancers (Hirasawa et al., 2018) and polyps (Zhang et al., 2016)
using gastroscopy or colonoscopy, as well as classification of different anatomical locations
in esophagogastroduodenoscopy images (Takiyama et al., 2018). As a result of medical spe-
cialists using these tools as an aid to complement their skills and knowledge, some diseases
could be detected earlier and better treated, improving the patient’s condition.

This work is focused on the particular problem of tool segmentation in endoscopic im-
ages, commonly solved by machine learning techniques and CNNs. More specifically, it is a
binary semantic segmentation problem that, as described in (Münzer et al., 2018), is a key
pre-processing step for automatic scene understanding, to facilitate downstream tasks such
as monitoring, augmented reality or 3D reconstruction. It has got plenty of attention in
the field, for example, it was the main focus of the 2017 Robotic Instrument Segmentation
Challenge (EndoVis17) (Allan et al., 2019). Figure 1 shows three examples of the tool seg-
mentation results on different datasets using the MiniNet architecture (Alonso et al., 2020)
applied in our work.
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The problem of tool segmentation in endoscopic sequences presents several challenges.
We focus on two significant ones in this work. The first challenge is processing endoscopic
images in the wild, i.e. complete endoscopic videos acquired during real medical practice.
Two subtasks appear in trying to solve this challenge. Firstly, in full endoscopy sequences,
many frames don’t actually contain tools. Therefore, when the segmentation model is
applied to these frames, it introduces false positives. These false positives have to be
removed to allow for any further processing using the segmented images, since they can
cause wrong results which could be easily avoided. The second subtask comes from the fact
that endoscopic images present very specific characteristics such as lighting and colors, that
have a strong dependency on the endoscope model, protocols followed by the specialists, etc.
Frequently, segmentation models developed for a certain medical dataset cannot be used
directly on another dataset, and need to be adapted to the specific target data distribution
using domain adaptation. Besides, this particular task may have specific requirements, and
we find several segmentation models developed specifically for medical image segmentation,
such as UNet (Ronneberger et al., 2015), MF-TAPNet (Jin et al., 2019), DMNet (Wang
et al., 2021). General purpose models can also be successfully adapted to endoscopic images,
as shown in Endovis17 challenge winning solution (Shvets et al., 2018) with TernausNet
(Iglovikov and Shvets, 2018) or LinkNet (Chaurasia and Culurciello, 2017), and as we do
in this work .

Another main challenge consists in enabling the use of the segmentation model in real-
time. Running segmentation models in real-time is essential when the segmentation is part of
a downstream task with computational restrictions, such as 3D reconstruction and mapping
tasks targeted, for instance, in the EndoMapper project (Endomapper, 2021). Efficiency in
segmentation models is an active area of research, with approaches such as MiniNet (Alonso
et al., 2020) and DMNet (Wang et al., 2021). DMNet has been developed for medical tool
segmentation and gives very accurate segmentations when applied to endoscopic images,
but the number of parameters and inference time are still far from the real-time use case.
Our recently developed architecture, MiniNet, presents significantly lower computational
requirements and promising properties for quick domain adaptation, but so far it has been
evaluated on urban scenarios.

This paper targets more efficient tool segmentation in complete endoscopic videos ac-
quired during real medical practice, i.e., in the wild. Our contributions are the following:

(a) (b) (c)

Figure 1: Examples of tool segmentation results with MiniNet architecture for differ-
ent benchmarks of endoscopic images: (a) EndoVis2017 dataset (b) Kvasir-
Instrument dataset (c) HCULB-tools dataset
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• A thorough study on the performance of the MiniNet model in endoscopic
datasets. We show high accuracy (similar to current state of the art) and significantly
lower computational requirements than models currently used in this field.

• A novel module, integrated within the MiniNet architecture, to achieve a quick
binary frame classification of tools vs no-tools frame. Our modification to MiniNet
consists of an additional classification head that serves as quick pre-filtering of
images that contain no tools. We show how this helps us avoiding plenty of false
positives when running on complete sequences of real medical procedures.

2. Methodology

This section describes the different segmentation models used in this work, with a more
detailed summary of the MiniNet architecture and the proposed novel binary-module just
mentioned in previous section.

2.1. Pre-existing models used for medical segmentation

In this work, we evaluate five models that were originally designed to be used for seg-
mentation either in medical images or other types of images. The more general purpose
models were then adapted for and evaluated on medical benchmarks. Within these models,
three of them are UNet-based models, and the other two use temporal as well as semantic
information to compute the segmentation masks.

UNet-based models. These three models were compared in the winning paper (Shvets
et al., 2018) of EndoVis17 Challenge (Allan et al., 2019).

• UNet (Ronneberger et al., 2015): UNet is a fully convolutional network specif-
ically designed for semantic segmentation of biomedical images. It is composed of a
contracting path and an expanding path. Both paths are formed by a succession of
convolutional and pooling (contracting path) or upsampling (expanding path) layers.

• TernausNet (Iglovikov and Shvets, 2018): It follows the UNet architecture but
uses VGG-16 (Simonyan and Zisserman, 2014) pre-trained on ImageNet as the en-
coder. It was originally developed as a more general purpose segmentation model and
later evaluated on medical images in (Shvets et al., 2018), with very good results for
tool segmentation.

• LinkNet (Chaurasia and Culurciello, 2017): Similarly to TernausNet, it uses
ResNet-34 (He et al., 2016) pre-trained on ImageNet as the encoder.

Semantic + temporal models. Two more recent models, developed specifically for tool
segmentation in endoscopy, are MF-TAPNet (Jin et al., 2019) and DMNet (Wang et al.,
2021). These models include temporal as well as semantic information extracted from the
input images to compute the segmentation masks.

• MF-TAPNet (Jin et al., 2019): MF-TAPNet uses motion flow between consec-
utive frames calculated with Unflow (Meister et al., 2018) model to compute maps
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Figure 2: Proposed pipeline: MiniNet + binary frame classifier for pre-filtering

representing displacement between two consecutive frames. These maps can be com-
bined with the computed segmentation mask to obtain current frame segmentation.

• DMNet (Wang et al., 2021): DMNet follows the same idea but with a Dual-
Memory system to include temporal information from several previous frames. This
reduces the model parameters and inference time and facilitates its use in real-time.

2.2. Our approach: MiniNet + Binary frame classification head

Our approach 1 to real-time semantic tool segmentation is based on our recently proposed
architecture, MiniNet (Alonso et al., 2020). It is a segmentation model designed for general
purpose semantic segmentation, and has not been evaluated on medical images. Its architec-
ture follows an encoder-decoder structure formed by four convolutional blocks (downsample,
feature extractor, refinement and upsample). It focuses on efficiency, facilitating its use in
real-time applications. Higher efficiency is achieved using multi-dilation depthwise sepa-
rable convolutional layers in the encoder, reducing the number of parameters and amount
of memory needed by the model. It achieves similar or better results than state-of-the-art
efficient architectures on benchmark non-medical datasets. The low computational require-
ments lead to lower energy consumption, CO2 equivalent emissions and carbon footprint
caused by the model, making it a relatively environmental friendly model.

Binary frame classification module (pre-filter). When applied in real medical prac-
tice, the segmentation model needs to process the whole endoscopic recording, including
plenty of frames where there is no tool. As it could be expected, this leads to a significant
amount of false positives with any of the existing models evaluated. These false positives
could be removed or prevented with other strategies, but we have explored them and they do
not provide as good results as the proposed strategy. If we train the models including a lot
of frames with no tools, the resulting model does not reach the same level of accuracy. If we
attempt to remove the false positives by post-processing the segmentations (based on shape
or location of the segmented regions), it would be feasible, but not efficient at all, since
all frames from the sequence would have to be processed completely by the segmentation
model, and then by the post-processing module.

1. Code at https://github.com/endomapperUZ/toolSegmentation
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We propose to include a simple additional step integrated on the segmentation architec-
ture of MiniNet. It consists of an additional binary frame classification head to determine
if tools are present or not in a given frame. Note this is done before running the whole
segmentation. We use the encoder blocks of MiniNet as feature extractor, and train sepa-
rately a simple binary classification layer (tools vs no-tools) for this new step. Figure 2 sums
up the proposed pipeline composed of MiniNet and our binary frame classification module.
The proposed binary classifier consists of a Global Average Pooling layer, a Dropout layer
with rate 0.2 and a Dense layer. For training we use the Adam optimizer and Binary Cross-
Entropy CE(y, ŷ) = −

∑Nc
i=1 yi log(ŷi), where Nc is the number of classes, y is the real label

and ŷ the predicted label. The new layers of the binary frame classifier are trained on the
dataset needed, while the weights of the Feature Extractor block are loaded from MiniNet
pre-trained on said dataset and then frozen.

3. Experimental set up

Datasets. Our evaluations use the following datasets:

EndoVis2017 dataset (Allan et al., 2019): Publicly available dataset (developed for the
2017 Robotic Instrument Segmentation Challenge): eight real endoscopic videos (225-frames
each) with ground truth segmentation of the surgical tools that appear in each frame.

Kvasir-Instrument dataset (Jha et al., 2021): Publicly available dataset composed of
590 frames obtained during real gastrointestinal endoscopic procedures as well as corre-
sponding tool segmentation annotations.

HCULB dataset (Endomapper, 2021): Dataset recorded during real medical practice by
the EndoMapper project, currently private2. It consists of a set of videos of full gastroscopy
and colonoscopy procedures captured during real medical practice. Since these sequences
were captured during real medical procedures, the main objective while recording was not
to get the best suited sequences for training. Then, the frames can be often blurry or
include reflections due to non-optimal movements of the camera or lighting conditions.
These aspects make the data more challenging to process. We manually labeled frames
where tools were present in fragments from four sequences. Three of the sequences are
used as training and one as evaluation. From these four sequences, we obtain two subsets
: HCULB-tools and HCULB-full. HCULB-tools only contains frames with tools, whereas
HCULB-full contains all frames from HCULB-tools and added frames without tools.

Metrics. To account for quality and efficiency of the methods we compute the following:

• Mean Intersection Over Union (mIoU) (%): The most commonly used metric
for evaluating semantic segmentation models, computed as in (Allan et al., 2019).

• Binary Accuracy (%): percentage of frames where the predicted label matches the
ground-truth label (used to evaluate our binary frame classification module)

• Inference Time: Time to compute the segmentation mask of a one image

2. This data is on the process of being released, and we will contribute the manually acquired tool segmen-
tation labels. A more detailed description of this dataset is available in the supplementary material.
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• Number of Parameters of each model.

Implementation details. Training and fine-tuning of the different models are done using
a GPU Tesla V100 SXM2 from a computing cluster. Evaluation of the models is done using
a GPU GeForce RTX2080 on a desktop. For the experiments where it is necessary to
re-train/fine-tune models, we use the training implementation provided by the respective
authors and adapt it to allow fine-tuning on a different dataset. More details on all the
training and fine-tuning processes run are available in the supplementary material.

4. Results

4.1. Comparisons on Tool Segmentation benchmarks

This section compares state of the art tool segmentation models on the three endoscopic
datasets described in previous section for binary tool segmentation task.

Binary tool segmentation. This task consists of labelling every pixel as tool or not.
For this experiment, all models were first trained with EndoVis17 training set, and fine-
tuned on the additional datasets (HCULB-tools and Kvasir-instrument) respectively. To
fairly compare to existing published results, MiniNet is trained as described in (Shvets
et al., 2018), using 4-fold cross-validation on EndoVis17 dataset. Table 1 presents the
results obtained on each dataset. We can observe how MiniNet gets similar results to
state-of-the-art model MF-TAPNet, but requires a lot less memory (less parameters) and
presents significantly faster inference. The lower mIoU of all models on HCULB-tools
dataset compared to other datasets confirms the higher complexity of HCULB-tools dataset.
Fig. 3 shows a few examples of segmentation results on the HCULB-full test set (using
models fine-tuned on HCULB-tools dataset and no pre-filtering step).

4.2. Tool Segmentation in the wild

Kvasir-Instrument and EndoVis17 datasets, as well as the training data from HCULB-tools
dataset used in the first experiment, only include frames which contain tools. Therefore the

Table 1: Binary segmentation results (mIoU) for models pre-trained on EndoVis17 and
fine-tuned for the rest. N.A.: Not available due to computational resource limita-
tions.

Datasets Performance
Models EndoVis17 Kvasir-Inst. HCULB-tools Params(M)$ Time(ms)+

U-Net 75.44 85.78 55.63* 7.85 54
TernausNet 83.60 N.A. N.A. 36.92 119
LinkNet 82.36 87.75* 60.54* 21.79 34
MF-TAPNet 87.56 86.81* 66.87* 37.73 155
MiniNet 87.16* 85.13* 66.65* 0.52 26
*: Results for model retrained in this work as explained. Otherwise, mIoU reported by authors.
$: Params: Memory required by the model (M = millions of parameters).
+: Time: Average inference time for 1 image on GPU RTX2080.
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(a)

(b)

(c)

(d)

(e)

Figure 3: Binary Segmentation examples from HCULB-full dataset using different ap-
proaches fine-tuned on HCULB-tools dataset: (a) Ground-truth manual segmen-
tation (b) MiniNet (c) UNet (d) LinkNet (e) MF-TAPNet

models, including MiniNet, have trained with frames where there is always some tool pixel
present.

This produces a lot of noise (false positives) in the case of attempting to segment frames
where there are no tools, as seen in Fig. 3 in the two right columns. The presence of false
positives poses a problem when applying the segmentation models to real full colonoscopy
sequences, since frames containing tools only represent a small fraction of the whole se-
quence.

If we re-evaluate the segmentation results on the HCULB-full test set, which contains
frames with and without tools, the value of mIoU decreases a lot due to the large number
of false positives. Table 2, column without pre-filter, shows this decreased accuracy, with
respect to previous experiment average values.

Next we discuss how we propose to mitigate this problem.

Binary frame classification module pre-filtering evaluation. To limit the amount
of memory and time needed by the full pipeline (pre-filtering + segmentation), we develop
a binary frame classification module, in particular trained with the HCULB-full data. One
of the requirements in this step is to keep it computationally constrained, not to include
too many extra computations. This new binary classifier achieves 72.64% accuracy on the
test set from HCULB-full dataset and inference from features takes 2ms. We first apply the
MiniNet encoder and classifier, then the MiniNet decoder or full MF-TAPNet model.

Table 2 shows the results of this experiment, which demonstrate how the accuracy
drop due to the false positives in images with no tools is mitigated with our proposed
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Table 2: Binary tool segmentation evaluation (mIoU and inference time) on HCULB-full
sequences using our pre-filter.

Models mIoU without pre-filter (%) mIoU with pre-filter (%)

MiniNet 33.21 66.09

MF-TAPNet 18.98 51.20

pre-filtering step. Only MiniNet and MF-TAPNet are considered as they get the highest
mIoU ( 66%) on binary segmentation in previous experiment. The mIoU without applying
the pre-filter decreases a lot for both approaches compared to previous experiment (from
66.65% to 33.21% for MiniNet and from 66.87% to 18.98% for MF-TAPNet). Note how after
applying the pre-filtering it gets back up to 66.09% using MiniNet and 51.20 using MF-
TAPNet. The models therefore reach mIoU values closer to the previous simpler experiment
using only tool frames, and the negative effect of false positives is clearly mitigated. The
larger gap between mIoU from not filtered and filtered images in the case of MF-TAPNet
is due to the number of false positives introduced by the model being higher. Since the
classifier only reaches 72.64% accuracy, it can’t compensate as well as in the case of MiniNet,
which introduces less false positives. Indeed, all segmentation models could benefit from
the addition of the binary frame classifier, but since it is integrated with the MiniNet
architecture, it presents the most suitable situation with this approach. Note that we are
re-using the MiniNet encoder, so if the binary pre-filter is positive, we only need to finish
executing the decoder part of Mininet, with the consequent execution time reductions. As
previously mentioned, any alternative involving post-processing based on position or shape
of the segmentation results to decide whether they look like real tools or just like false
positive noise, implies having run the whole segmentation already in every frame. This
would therefore increase the processing time compared to our binary frame classifier.

5. Conclusion

This work studies the problem of tool segmentation in endoscopic images with an emphasis
on efficient models and their performance when running on complete real medical procedure
recordings. We have shown how general purpose MiniNet reaches comparable results to
state-of-the-art on several benchmarks for tool segmentation while presenting much lower
computational requirements (memory and inference time). This aspect makes this model
more suitable than current state of the art models for tool segmentation for applications
that present time or computational restrictions.

Including tool segmentation solutions in real world applications also involves processing
the complete recordings, not separate sets of frames where all of them contain surgical tools
in the image. Segmentation models tend to produce significant amounts of false positives in
images without any tool. Our work contributes a simple solution to mitigate this issue by
incorporating a new classification head to MiniNet that re-uses the encoder part and filters
quickly if frames contain tools or not before proceeding with the complete segmentation
task.
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Appendix A. Supplementary Materials

A.1. Additional training details

Table 3 sums up all the parameters chosen for training of the different models used in this
work. The image size used for training is 1056x1280. The MiniNet architecture takes around
8 hours to train, whereas the other networks take twice as much. MiniNet is trained en-
tirely from scratch on the EndoVis17 dataset and then fine-tuned on the other two datasets
(Kvasir-Instrument and HCULB). The other networks are available pre-trained on En-
doVis17 and we just run the fine-tuning on the same two other datasets.

Table 3: Training parameters for all trained models
Models Dataset Optimizer Learning Epochs Batch Metric

Rate Size

U-Net HCULBt Adam 1e-3+1e-4* 10+10* 2 mIoU

LinkNet Kvasir-Instrumentt Adam 1e-3+1e-4* 10+10* 2 mIoU

LinkNet HCULBt Adam 1e-3+1e-4* 10+10* 2 mIoU

MF-TAPNet Kvasir-Instrumentt Adam 3e-5 (initial)+ 100 max. $ 2 mIoU

MF-TAPNet HCULBt Adam 3e-5 (initial)+ 100 max. $ 2 mIoU

MiniNet EndoVis17 Adam 1e-3 (initial)+ 20 2 mIoU

MiniNet Kvasir-Instrumentt Adam 1e-3 (initial)+ 20 2 mIoU

MiniNet HCULBt Adam 1e-3 (initial)+ 20 2 mIoU

Binary Binary
Classifier HCULB Adam 5e-3 20 2 Accuracy

*: Trained for 10 epochs with lr = 1e− 3 and then 10 more epochs with lr = 1e− 4
$: 100 maximum, stops if no change in loss for 20 epochs.
+: Decaying learning rate as per original authors’ code
t: Fine-tuning from pre-trained on EndoVis17 dataset.

A.2. Additional HCULB details

HCULB dataset consists of a large set of colonoscopy and gastroscopy sequences recorded
in the context of the project EndoMapper (Endomapper, 2021). These sequences were
recorded during real medical practices at HCULB3. They have a duration of 20 to 30
minutes and tools appear in some of them. Some of the frames with tools were manually
segmented to obtain ground-truth which we use in this work.

The train set used in this work consists of 3 videos (ids 39, 181 and 206) from the
colonoscopy sequences of the dataset. During training, 80% of the frames from the train
set are used for training and 20% are used for validation. The test set consist of 1 video
(id 118) from the colonoscopy sequences. For each video, only a certain number of frames
is used. The number of frames used from each video changes depending on the video and
the use of tools in this video. It also changes depending on the task, segmentation or
classification, since the segmentation task only uses frames with tools and the classification
task also includes frames without. We therefore create two sub-datasets : HCULB-tools
and HCULB-full. HCULB-tools contains only frames with tools, whereas HCULB-full
contains the same frames with tools from HCULB-tools and added frames without tools.

3. http://www.hcuz.es/
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Figure 4: Examples of frames from the HCULB-full dataset

Figure 4 presents examples of frames found in the HCULB-full dataset. The frames in
which tools are present can also be found in the HCULB-tools dataset.

Regarding the HCULB-tools dataset, each training sequence contains only one or two
types of tool, and the type of tool seen in each sequence only appears in that sequence. The
sequence reserved for evaluation is the one that contains all the different types of tool seen
during training. The tools seen in the sequences are the most common tools used during
procedures from HCULB. Table 4 presents the total number of frames in each set (train
and test) depending on the sub-dataset. Table 5 presents the number of frames used from
each video depending on the sub-dataset. The frames with tools used in HCULB-tools are
the same ones used in HCULB-full.
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Table 4: Total number of frames in each set depending on the sub-dataset
Set Task Frames

Train HCULB-tools 825

Train HCULB-full 1650

Test HCULB-tools 254

Test HCULB-full 508

Table 5: Number of frames used for each video and each sub-dataset
Video id Task Frames

39 HCULB-tools 161

39 HCULB-full 322

118 HCULB-tools 254

118 HCULB-full 508

181 HCULB-tools 435

181 HCULB-full 870

206 HCULB-tools 229

206 HCULB-full 458

A.3. Effect of fine-tuning

Table 6 sums up the values of mIoU measured for the HCULB-tools test set using all models
before and after fine-tuning on the HCULB-tools train set. As expected, fine-tuning allows
for better adaptation to the target domain.

Table 6: Binary segmentation results (mIoU) for models only pre-trained on EndoVis17
and models pre-trained on EndoVis17 and fine-tuned on HCULB-tools

Model mIoU before fine-tuning mIoU after fine-tuning

U-Net 12.31 55.63

LinkNet 54.12 60.54

MF-TAPNet 27.99 66.87

MiniNet 37.66 66.65

A.4. MiniNet architecture

MiniNet is a segmentation model designed specifically to be more efficient than most state-
of-the-art models, where efficiency means lower number of parameters and lower inference
time. It reaches similar to better results than state-of-the-art efficient models on public
benchmarks. MiniNet follows an encoder-decoder structure formed by four blocks : down-
sample, feature extractor, refinement and upsample blocks.
The efficiency of the model is reached using specific types of convolutional layers : depthwise
separable convolutions and multi-dilation depthwise separable convolutions. The depthwise
separable convolution splits a normal convolution into two convolutions. First, a depthwise
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convolution is applied, which is a convolution applied to the input without modifying its
depth or number of channels. One kernel is applied to each channel of the input. Then,
a pointwise convolution is applied. It is a 1x1 convolution that combines all channels of
the inputs, applied as many times as the desired number of channels of the output. The
division of the classic convolution into two simpler convolutions allows for an important
reduction of the number of learning parameters of the model, 88% in the case of MiniNet.
The multi-dilation depthwise separable convolution is introduced in (Alonso et al., 2020).
It is formed by two parallel depthwise convolutions and a pointwise convolution applied to
the combined outputs of both depthwise convolutions. Each depthwise convolution has a
different dilation rate. The dilation rate defines the step size between each of the values in
the kernel used. The first depthwise convolution uses a dilation rate r = 1, meaning it is
a classic depthwise convolution as describe before, with no spacing in between the values
in the kernel. The other depthwise convolution uses r ≥ 1, meaning there might be a gap
defined by r between each consecutive value in the kernel. The use of the multi-dilation
depthwise separable convolution allows for reduction by 87% of the number of parameters
in MiniNet, compared to using a standard convolution.
These two types of convolutions are combined with upsample and downsample operations
to form the four blocks of the model. The downsample block is a succession of downsample
operations, represented by a max-pooling layer followed by a strided convolution, combined
with 3x3 depthwise separable convolutions and residual connections. The upsample block
follows the same structure but with upsample opertions, defined by transposed convolutions,
instead of downsample operations. The feature extractor uses a succession of multi-dilation
depthwise separable convolutions, with different dilation rate, and dropout. The refinement
block is formed by two downsample operations as described previously, applied to the input
image, and allows for extraction of spatial and high resolutions features, meaning it extracts
additional information which the feature extractor might have missed. Figure 5 shows the
detailed structure of the model for an input of size 1024x512.
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Figure 5: Detailed architecture of MiniNet for input size 1024x512, obtained from (Alonso
et al., 2020)

A.5. Additional inference time results

Inference time can also be measured for the encoder and decoder parts of the models, as well
as with and without the pre-filtering step. Table 7 shows these results. The pre-filtering
classification step from already extracted features takes 2ms.
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Table 7: Detailed inference time results (ms) for the three best segmentation models and
their encoder and decoder, with and without pre-filtering

Model Encoder Decoder Inf. time Inf. time with
inf. time (ms) inf. time (ms) no pre-filtering (ms) pre-filtering (ms)*

MiniNet 15 11 26 28

MF-TAPNet 74 81 155 157

*: Maximum inference time, achieved if tool is detected and decoder is applied;
if not detected, output is zero matrix.

A.6. Additional experiment : multi-class tool segmentation

Besides binary segmentation, another possible task is multi-class tool segmentation. In par-
ticular, for the EndoVis17 multi-class dataset there are 8 classes, where each class represents
a different type of tool (1-7) or the background (0). In this experiment, all models were
trained and evaluated with the corresponding training and evaluation sets from EndoVis17
multi-class dataset. Table 8 presents the results obtained, showing that MiniNet is better
than state-of-the-art models in terms of memory and inference time but also significantly
in accuracy for this case of Multi-class segmentation. Figure 6 shows a few examples of
images from EndoVis17 dataset segmented using MiniNet.

(a)

(b)

(c)

Figure 6: Examples of Multi-class Segmentation (8 classes) for EndoVis17 dataset : (a)
Original image (b) Ground-truth manual segmentation (c) MiniNet segmentation.
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Table 8: Multi-class segmentation (8 tool types) results (mIoU) on EndoVis17.
Models EndoVis17 Params (M)$ Time (ms) +

U-Net 15.80 7.85 54
TernausNet 33.78 36.92 119
LinkNet 22.47 21.79 34

MF-TAPNet 36.62 37.73 155
DMNet 61.03 4.38 183
MiniNet 62.49* 0.52 26

*: Results for model retrained in this work as explained. Otherwise, mIoU reported by authors.
$: Params: Memory required by the model (M = millions of parameters).
+: Time: Average inference time for 1 image on GPU RTX2080.
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