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ABSTRACT

We devise a novel method for nowcasting implied volatility based on neural oper-
ators. Better known as implied volatility smoothing in the financial industry, now-
casting of implied volatility means constructing a smooth surface that is consistent
with the prices presently observed on a given option market. Option price data
arises highly dynamically in ever-changing spatial configurations, which poses
a major limitation to foundational machine learning approaches using classical
neural networks. While large models in language and image processing deliver
breakthrough results on vast corpora of raw data, in financial engineering the gen-
eralization from big historical datasets has been hindered by the need for consider-
able data pre-processing. In particular, implied volatility smoothing has remained
an instance-by-instance, hands-on process both for neural network-based and tra-
ditional parametric strategies. Our general operator deep smoothing approach,
instead, directly maps observed data to smoothed surfaces. We adapt the graph
neural operator architecture to do so with high accuracy on ten years of raw in-
traday S&P 500 options data, using a single model instance. The trained operator
adheres to critical no-arbitrage constraints and is robust with respect to subsam-
pling of inputs (occurring in practice in the context of outlier removal). We pro-
vide extensive historical benchmarks and showcase the generalization capability
of our approach in a comparison with classical neural networks and SVI, an indus-
try standard parametrization for implied volatility. The operator deep smoothing
approach thus opens up the use of neural networks on large historical datasets in
financial engineering.

1 INTRODUCTION

Options trading experienced phenomenal growth in recent years. In its 2023 trading volume re-
port (Cboe Global Markets, Inc., 2024), the CBOE announced the fourth consecutive year of record-
breaking volumes on its options exchanges, citing an all-time high number of transactions for Eu-
ropean options on the S&P 500 index. European options are financial derivative contracts that give
their holder the right, but not the obligation, to either buy or sell an underlying asset at a predeter-
mined price (the strike) at a predetermined time (the expiry). An option specifying the right to buy
(respectively to sell) is called a Call (respectively Put) option. Options are traded on a wide range
of underlyings, including stocks, indices, currencies and commodities, and can be used to hedge
against or speculate on the price movements of the underlying asset.

A key concept in options trading is the so-called implied volatility, which transforms the nominal
price of an option into a conceptually and numerically convenient metric. The implied volatility
surface is the collection of implied volatilities as observed at a specific point in time, visualized
as a surface over the (strike, expiry)-domain. It provides an intuitive representation of the current
state of the options market and is crucial for hedging and risk management. The extraction of a
smooth surface from quoted option prices is called implied volatility smoothing and allows to infer
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(or nowcast) theoretical option prices for interpolated strike values and expiry times. It remains one
of the key challenges in options trading.

Conventionally, implied volatility smoothing relies on parametric surfaces whose parameters are op-
timized based on the distance to observed prices while adhering to absence-of-arbitrage conditions,
which ensure the consistency of prices extrapolated from the smoothed surface. The development of
such ad-hoc models for implied volatility traces back to SVI (Gatheral, 2004), which models implied
volatility slice-wise for each expiry and successfully captures its key features on Equity indices. A
continuous interpolation scheme for SVI slices was provided in Gatheral & Jacquier (2014), yield-
ing a full surface. Nowadays, sophisticated market makers employ custom parametrizations, which
can be considered proprietary trading secrets and reduce SVI to a benchmark role.

Regardless of the particular parametric surface model used, the conventional smoothing approach
boils down to the continued execution of a numerical optimization routine: A smoothed surface
expires as soon as quotes are updated (whenever markets move), necessitating the re-calibration of
parameters. Success and duration of this routine is sensitive to initial conditions, search heuristics,
and termination criteria, which exposes practitioners to considerable process uncertainties during
trading hours (or online). In response, we introduce a novel operator deep smoothing approach,
replacing the instance-by-instance optimization with a single evaluation of a neural network. This
greatly simplifies online calibration, at the upfront cost of training the network offline from historical
data (in the spirit of Hernandez (2016); Horvath et al. (2021); Liu et al. (2019)). Our unique use of
neural operators (Kovachki et al., 2023) is fundamentally directed by the observation that the raw
inputs for volatility smoothing (the collections of observed volatilities) over time vary in size and
spatial arrangement: Options expire, new expiries and strikes become available (the total number of
options listed is steadily increasing, see Figure 10), and the coordinates of existing options evolve
continuously in the domain of the implied volatility surface (illustrated in Figure 1b and Figure 9).
This setting excludes classical neural networks – which required fixed-size inputs – from direct
application. Neural operators, instead, conceptualize observed data as point-wise discretizations of
latent functions in implicit infinite-dimensional function spaces and are well suited for the task.

Contributions We introduce operator deep smoothing, a general approach for discretization-
invariant data interpolation based on neural operators, and apply it to implied volatility smoothing.
Our technique transcends traditional parametric smoothing and directly maps observed volatilities
to smoothed surfaces. Comparable neural network based approaches are limited to certain option
markets (e.g. FX markets, where options by default spread out on fixed rectilinear grids, as relied
upon by Bergeron et al. (2021) for its VAE approach) or require data pre-processing (as in Cont
& Vuletić (2023), which achieves fixed rectilinear grids by linear interpolation of market values,
setting aside questions related to no-arbitrage constraints). Instead, our technique novelly adapts
the graph neural operator (GNO) architecture (Anandkumar et al., 2020) to consistently smooth
input data of any size and spatial arrangement. While neural operators have successfully been used
in Physics to numerically solve partial differential equations, our application is the first in finan-
cial engineering and highlights the values of their discretization-invariance properties, so far rather
under-explored. We employ our method on ten years of intraday S&P 500 options data, smoothing
more than 60 million volatility datapoints using a single model instance with around 100 thousand
trained parameters. We report errors that substantially improve on the SVI industry benchmark and
are highly competitive with Ackerer et al. (2020), which performs smoothing by training one classi-
cal neural network per volatility surface. We proceed to successfully demonstrate the generalization
capabilities of our model for end-of-day options data of the S&P 500 as well as three further major
US indices. No data from these three indices has been used for training.

We explore the technical implications and limitations of our method in Section 5. Here we discuss
the broader impact of our contributions:

• Operator Deep Smoothing for Implied Volatility – Our method massively simplifies volatility
smoothing, an area where effective methods mean competitive advantage and frequently remain
trade secrets. We believe that our approach lowers the entry barrier for effective volatility smoothing,
even among industry professionals. Practitioners and researchers who are not directly involved in
options trading frequently employ rudimentary methods (SVI or linear/spline interpolation). Here,
our trained operator, served as a hands-off tool, could provide “cheap” and accurate surfaces for
use in downstream tasks. Ultimately, our method may be useful for all participants of option mar-
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kets. This includes the general public, whose trading in such markets has been increasing substan-
tially (Doherty et al., 2023) and which benefits from broadly accessible investment tools.
• Neural Operators for Discretization-Invariant Interpolation – Our operator deep smoothing ap-
proach constitutes the first application of neural operators for interpolation/extrapolation tasks and
paves the way to future research on the versatility of the discretization-invariance of neural operators
in industrial applications characterized by dynamic and spatially irregular data. At least in financial
engineering, surfaces analogous to the implied volatility surface (e.g. higher-dimensional equiva-
lents, as, for example, the volatility cube) are ubiquitous. We expect our technique to be transferable
and to streamline and robustify engineers’ and researchers’ algorithms and data pipelines.

Literature review The aforementioned SVI was developed for internal use at Merrill Lynch in
1999 and later advocated in Gatheral (2004). Its extension to surface-based SSVI in Gatheral &
Jacquier (2014) has been eagerly adopted by practitioners, which have since contributed to its robust
calibration and generalizations (Corbetta et al., 2019; Hendriks & Martini, 2017; Guo et al., 2016). It
was augmented in Ackerer et al. (2020) by a multiplicative neural network corrector, based on guided
network training by means of no-arbitrage soft constraints from Zheng (2018). The absence-of-
arbitrage conditions for implied volatility surfaces – providing safeguards for option pricing – were
formulated in Roper (2010), and we provide an equivalent formulation, based on Fukasawa (2012);
Lucic (2021), for practical purposes. In Chataigner et al. (2020) static arbitrage constraints were used
to perform option calibration (with an additional regularization technique), which can be considered
to be instance-by-instance smoothing of nominal price data. In Bergeron et al. (2021) a classical
VAE (variational autoencoder) was applied to implied volatility smoothing on FX markets, where
strikes of quoted options are tied to a fixed grid of deltas.1 This specificity of FX markets allows
the use of a conventional feedforward neural network based decoder. Recent option calibration
approaches based on neural networks have been proposed in Baschetti et al. (2024); Hernandez
(2016); Horvath et al. (2021); Van Mieghem et al. (2023).

A comprehensive account on neural operators is given in Kovachki et al. (2023), unifying previous
research on different neural operator architectures and techniques (Anandkumar et al., 2020; Li
et al., 2020). Subsequent developments investigating the expressivity of these architectures as well
as their generalizations include Hao et al. (2023); Huang et al. (2024); Lanthaler et al. (2023); Li
et al. (2021); Lingsch et al. (2023); Tran et al. (2021).

Outline We review financial concepts and the challenges of implied volatility smoothing in Sec-
tion 2. In Section 3, we provide a review of neural operators (Section 3.1) and introduce our operator
deep smoothing approach for general interpolation tasks (Section 3.2). In Section 4, we perform ex-
periments for implied volatility smoothing of S&P 500 options data. Finally, Section 5 gathers
technical implications and limitations as well as outlooks regarding the use of neural operators for
interpolation purposes.

Code We make code for the paper available at the location https://github.com/rwicl/
operator-deep-smoothing-for-implied-volatility. In particular, the code repository
contains a general PyTorch (Paszke et al., 2019) implementation of the graph neural operator archi-
tecture for operator deep smoothing.

2 BACKGROUND: IMPLIED VOLATILITY

We consider a market of European options written on an underlying asset, which we observe at a
given instant T0. We denote the time-T forward price of the underlying asset by FT0,T .

European Call options The market consists of a finite collection of European Call options,2 each
identified by its expiry T ∈ (T0,∞) and its strike K ∈ (0,∞). We write C(T,K) for its (undis-
counted) price. In practice, these are traded for fixed expiries T1, . . . , Tm; for each Ti, only a finite
range of strikes Ki

1, . . . ,K
i
ni

is available, widening as the expiry increases (Figure 1).

1Delta is the derivative of the price with respect to the underlying asset and is standard in FX strike quoting.
2In practice, market participants trade both Call and Put options, which are mathematically equivalent

through the well-known Put-Call parity. The latter thus allows to speak in terms of Call options only.
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Black-Scholes The Black-Scholes model is the simplest diffusive asset model and captures the
volatility of the underlying asset with a single parameter v ∈ (0,∞). Its popularity stems from
the closed-form expression it admits for the price of a European Call option with time-to-expiry
τ = T − T0 and log-moneyness k = log(K/FT0,T ):

BS(τ, k, v) = Φ (d1 (τ, k, v))− ek Φ (d2 (τ, k, v))

(in units of the time-T forward of the underlying). Here, Φ denotes the cumulative distribution
function of the standard Normal distribution, while

d1(τ, k, v) =
−k

v
√
τ
+

1

2
v
√
τ , d2(τ, k, v) =

−k

v
√
τ
− 1

2
v
√
τ . (1)

Implied volatility While not able (any longer) to fit market data, the mathematical tractability of
the Black-Scholes model gave rise to the concept of implied volatility: Given a Call option with price
C(T,K), its implied volatility v(τ, k) is defined by C(T,K) = FT0,T BS(τ, k, v(τ, k)). By using
time-to-expiry/log-moneyness coordinates, implied volatility provides a universal way to consis-
tently compare the relative expensiveness of options across different strikes, expiries, underlyings,
and interest rate environments. Its characteristic shape helps traders make intuitive sense of the
states of option markets relative to a (flat) Black-Scholes model baseline.

Implied volatility smoothing This refers to fitting a smooth surface v̂ : (0,∞) × R → (0,∞)
to a collection v = {v(τl, kl)}pl=1 of observed implied volatilities. Naive strategies such as cubic
interpolation are ill-fated: Surfaces generated by such interpolation rules will in general correspond
to Call option prices that are exploitable by so-called arbitrage, namely costless trading strategies
generating a guaranteed profit. In option markets, an arbitrage is called static if set up solely from
fixed positions in options and finitely many rebalancing trades in the underlying. Beyond simple
interpolations, practitioners have devised ad-hoc parametrizations for implied volatility (in particular
the aforementioned SVI), which are not expected to perfectly match all reference prices. Instead,
the model parameters are optimized with respect to an objective function that measures market
price discrepancy and includes penalization terms ruling out static arbitrage. These penalization
terms are commonly formulated on the basis of the following theorem, which summarizes the shape
constraints of the implied volatility surface (Gatheral & Jacquier, 2014; Lucic, 2021; Roper, 2010).
Theorem 2.1 (Volatility validation). Let v̂ : (0,∞)× R → (0,∞) be continuous and satisfying:

(i) Calendar arbitrage: For each k ∈ R, v̂(·, k)
√
· is non-decreasing and vanishes at the origin.

(ii) Strike arbitrage: For every τ > 0, the slice v̂τ = v̂(τ, ·) is of class C2 with

But(τ, ·, v̂τ , ∂kv̂τ , ∂2
k v̂τ ) ≥ 0 and lim sup

k↑∞

v̂2τ (k)

k
<

2

τ
, (2)

where

But(τ, k, v0, v1, v2) =
(
1 + d1(τ, k, v0)v1

√
τ
) (

1 + d2(τ, k, v0)v1
√
τ
)
+ v0v2τ.

Then, (T,K) 7→ BS(τ, k, v̂(τ, k)) defines a Call price surface that is free from static arbitrage.

Condition 2.1(i) is equivalent to option prices increasing in expiry, while Condition 2.1(ii) arises
when computing the implied probability density fτ of the underlying:

fτ ( ·) =
φ(−d2(τ, · , v))

v
√
τ

But(τ, · , v, ∂kv, ∂2
kv), (3)

where φ is the probability density of the standard Normal distribution. Since a probability density
needs to be non-negative, equation 3 explains why Condition 2.1(ii) is required.

3 NEURAL OPERATORS FOR DISCRETIZATION-INVARIANT SMOOTHING

3.1 BACKGROUND: NEURAL OPERATORS

We provide full details about notations and terms, as well as additional context in Appendix A.
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(a) Relative trading volume per quoted interval, averaged over S&P 500
dataset 2012-2021. Left: Rectangular domain w.r.t. time-to-expiry/log-
moneyness (99.9% of trading volume with maturities < 1 year). Right:
Rectangular domain w.r.t. transformed coordinates (96.6% of trading
volume while more evenly populated); boundary delineated in Left.

(b) Scatter plots of example
sets of option quotes v1,v2,v3.
Observed on 15.10.2012,
18.05.2017, and 04.01.2021,
respectively, at 10:50:00, each.

Figure 1: Spatial distribution of option quotes in time-to-expiry/log-moneyness domain.

Philosophy The development of neural operators is based on the philosophy that observed data
a = {al}pl=1 arises as the evaluation of a latent function a : D → Rcin , defined on some domain
D ⊆ Rd, at a discretization π = {xl}pl=1 of D. That is, a = a|π , or

al = a(xl), l = 1, . . . , p. (4)
An input-output relationship of data a 7→ u is then ”really” described by an operator F : A → U
between function spaces A and U . Neural operators are abstract neural network architectures
F θ : A → U , with implementations that integrate equation 4 consistently across the variable dis-
cretization π.

Technicalities We review the core concepts of neural operators from Kovachki et al. (2023). Let D
be a bounded domain in Rd and A and U be Banach spaces of functions mapping from D to Rcin

and Rcout , respectively. Neural operators are finitely parametrized mappings F θ : A → U with
universality for continuous target operators and with discretization-invariant implementations F̃ θ.
In the space C(A,U) topologized by uniform convergence on compacts, the architecture F θ is called
universal if {F θ}θ∈Θ is dense in C(A,U), with Θ the parameter set. An implementation of F θ is
an algorithm F̃ θ which accepts observed data a = a|π and outputs a function u ∈ U and is such that
F̃ θ
π ( ·) = F̃ θ( · |π) ∈ C(A,U). Now, F̃ θ is called discretization-invariant if limn↑∞ F̃ θ

π(n) = F θ in
C(A,U), given a discrete refinement3 of D.

Let K be a set of input functions, compact in A, and let ε > 0. In combination, universality and
discretization-invariance allow to posit the existence of parameters θ, such that for all a ∈ K,

∥F̃ θ(a|π)− F (a)∥U ≤ ε, (5)
irrespective of the particular discretization π given that the data a = a|π is scattered sufficiently
densely across D. The training of neural operators is analogous to the classical finite-dimensional
setting. It happens in the context of an implicit training distribution µ on the input space A and aims
at minimization of the generalization error

Rµ : θ 7→ Ea∼µ∥F̃ θ(a|π)− F (a)∥U , (6)
through the use of gradient descent methods applied to empirical estimates of equation 6. These esti-
mates are constructed from a training dataset D = {(a(i),u(i))}ni=1 of features a(i) = a(i)|π(i) and
labels u(i) = F (a(i))|π(i) on the basis of (mini) batching heuristics and are frequently transformed
or augmented by additional terms through the use of apposite loss functions.

3.2 OPERATOR DEEP SMOOTHING

Let v = {v(xl)}pl=1 be the collection of observed data, for example implied volatilities as in Sec-
tion 2. This notation silently adopts the neural operator philosophy, connecting the data point v(xl)

3A discrete refinement of D is a nested sequence (π(n))n∈N of discretizations of D for which for every
ε > 0, there exists N ∈ N such that {BRd(x, ε) : x ∈ π(N)} covers D.
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(a) Smoothed surface with input
volatility quotes (blue). δabs =
0.005, δspr(v̂,v) = 1.020.

(b) Left: Slices of implied volatility scaled by
√
τ ; absence of cross-

ings indicates absence of calendar arbitrage. Right: Implied probability
density factor; positivity indicates absence of butterfly arbitrage. In fact,
Lcal(θ,v) = 0 and Lbut(θ,v) = 0.

Figure 2: Operator deep smoothing of quotes v from 08.01.2021 at 11:50:00. Compare Figure 13.

with coordinates xl and hinting at a latent function v : D → R giving rise to the observed values.
The smoothing or interpolation task consists of constructing an appropriately regular estimate v̂ of
v from the data v = v|π , with π = {x1, . . . , xp}. The operator deep smoothing approach uses a
neural operator F̃ θ, trained using historical data, to generate v̂ := F̃ θ(v). It fundamentally lever-
ages the discretization-invariance to produce consistent results even as the “sensors” xl of the latent
function v change in availability and/or location in the domain D. This is the situation for volatil-
ity smoothing, where the sensors xl = (τl, kl) are the (time-to-expiry, log-moneyness) coordinates
of the quoted options, which – as noted in Section 1 and illustrated in Figure 1b – move with the
market.

Methodology Translating the smoothing task to an operator learning problem, we find that the
target operator is the (continuous) identity operator

Fid : C(D) → C(D), v 7→ v,

meaning that F = Fid and A = U = C(D). The training dataset is the collection D = {v(i)} of
historical data (labels and features coincide), and we train a suitable neural operator architecture F̃ θ

such that
|F̃ θ(v)(x)− v(x)| ≤ ε, for all x ∈ D, (7)

where v denotes the postulated latent function of which we observe v = v|π , and ε is some given
error tolerance for the smoothing task. Instead of minimizing empirical estimates of the ∞-norm
∥F̃ θ(v)− v∥U , however, we suggest a fitting loss based on the root mean square relative error,

Lfit(θ,v) :=

√√√√ 1

|π|
∑
x∈π

(
|F̃ θ(v)(x)− v(x)|

1 ∨ |v(x)|

)2

, (8)

for its smoothness and invariance to the scale of the data.4 Additional engineering techniques, such
as subsampling of inputs during training, are explored in our practical investigation in Section 4.

Constraints Depending on the application, the smoothing task may be subject to constraints. For
volatility smoothing, the smoothed surface v̂θ = F̃ θ(v) must be free of static arbitrage (Theo-
rem 2.1). This is effectively enforced by augmenting the loss function with additional penalization
terms, moving away from a pure operator learning problem. This does not only promote the rel-
evant properties in the neural operator output but can also help define it when faced with sparsity
of data in the domain D (in this context see also Li et al. (2021)). We handle the strike arbitrage
constraint 2.1(ii) via

Lbut(θ;v) =
∥∥∥(But( · , v̂θ, ∂kv̂θ, ∂2

k v̂
θ)− ε

)−∥∥∥
1
, (9)

4Empirical estimates of ∞-norms and L2-norms are equivalent loss functions on finite-dimensional spaces.

6



Published as a conference paper at ICLR 2025

where we ignore the asymptotic condition since our experiments are focused on the bounded do-
main D (Figure 1a). The inclusion of ε promotes strictly positive implied densities (we will use
ε = 10−3), while we choose the 1-norm to induce sparsity in the constraint violation. The calendar
arbitrage constraint 2.1(i) can be tackled analogously with

Lcal(θ;v) =
∥∥∥(∂τ [(τ, k) 7→ vθ(τ, k)

√
τ
]
− ε
)−∥∥∥

1
, (10)

where again we ignore the asymptotic condition since D is bounded away from zero time-to-expiry.

Interpolating graph neural operator Various neural operator architectures exist, mostly arising
from the kernel integral transform framework of Kovachki et al. (2023). Most prominently, these
include Fourier neural operators (FNO), delivering state-of-the-art results on fixed grid data, as well
as graph neural operators (GNO), able to handle arbitrary mesh geometries (both reviewed in Ap-
pendix A.1). While highly effective with documented universality, these neural operators are not
directly applicable for interpolation tasks as their layers include a pointwise-applied linear transfor-
mation, which limits the output to the set of the input data locations. Dropping this local transforma-
tion results in an architecture proved to retain universality Kovachki et al. (2023) and that – at least
for its implementation as a GNO – allows to interpolate functions. On the other hand, Lanthaler
et al. (2023) proves universality for the architecture combining the local linear transformation with
a simple averaging operation, suggesting the fundamental importance of the collaboration of local
and non-local components for the expressivity of neural operators. This was noted in Kovachki et al.
(2023), for whom retaining the local components can be “beneficial in practice”, and confirmed in
our experiments, where a purely non-local architecture led to substantially reduced performance.

We therefore propose a new architecture for operator deep smoothing leveraging GNOs’ unique
ability to handle irregular mesh geometries. We use a purely non-local first layer (dropping the
pointwise linear transformation), and use it to produce hidden state at all required output locations,
enabling subsequent layers to retain their local transformations. Since GNOs do not theoretically
guarantee a smooth output, we augment the training with additional regularization terms such as
Lreg(θ;v) = ∥∆v̂θ∥2, with ∆ the Laplace operator, and provide a full description in Appendix B.

4 EXPERIMENTS

We detail our practical investigation of the operator deep smoothing approach for implied volatility.

4.1 MODEL TRAINING

Dataset and splits We perform our numerical experiments using 20-minute interval CBOE S&P
500 Index Option data from 2012 to 2021. The dataset amounts to a collection of 49089 implied
volatility surfaces and just above 60 million individual volatility datapoints (after domain trunca-
tion). We refer the reader to Appendix C.1 for details on the preparation of the dataset. We allocate
the first nine years of data (2012 to 2020) to training, keeping 750 randomly drawn surfaces for
validation purposes, and use the final year of the dataset (2021) for testing. This yields a training
dataset Dtrain containing ntrain = 43442 surfaces, a validation dataset Dval containing nval = 750
surfaces, and a test dataset Dtest with ntest = 4897 surfaces.

Data transformation Motivated by Figure 1a, we transform time-to-expiry and log-moneyness
via ρ =

√
τ and z = k/ρ. Intuitively, this transformation converts the “natural” scaling of implied

volatility by the square root of time-to-expiry to a scaling of the input domain. From here on, we
consider the domain in these coordinates, setting D = (ρmin, ρmax) × (zmin, zmax) = (0.01, 1) ×
(−1.5, 0.5). In (τ, k)-coordinates, D becomes a cone-shaped region, that, on average, contains
96.6% of traded options (with time-to-expiry below one year) and, with respect to (ρ, z)-coordinates,
is more evenly populated, improving the numerics.

Model configuration We employ the interpolating GNO as introduced in Section 3.2 and de-
scribed in detail in Appendix B. The model hyperparameters (giving rise to 102529 trainable pa-
rameters in total) were identified by manual experimentation and are detailed in Appendix C.2. We
perform ablations for the connectivity of the graph structure (and thus for the tradeoff between ex-
pressivity and computational complexity) in Appendix C.6.
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Figure 3: Benchmark of our method (OpDS) vs. SVI, split between training period (left half; 2012
to 2020) and testing period (right half; 2021). Top and middle: Surface-averages ⟨δabs⟩ and ⟨δspr⟩;
shaded regions depict respective interquartile range. Bottom: Surface-average bid-ask spread ⟨s⟩.

Loss function We implement a Vega-weighted version of Lfit (equation 8). We compute Lbut
(equation 9) using finite differences on a synthetic grid. We use a multiplicative formulation of Lcal
that is invariant to the level of implied volatility. We provide a precise description in Appendix C.3
and perform an ablation study for the weighting of the arbitrage losses in Appendix C.7

Model training We train the GNO for 500 epochs on Dtrain using the AdamW optimizer with
learning rate λ = 10−4 and weight decay rate β = 10−5, and use a pseudo batch size of 64 by
accumulating gradients. We randomly subsample the inputs v and randomize the grids on which
we compute the arbitrage losses. The training is performed in around 250 hours using an NVIDIA
Quadro RTX 6000 GPU. The validation loss is reported in Table 2.

4.2 RESULTS

Evaluation metrics Let v = {v(x)}x∈π be a collection of observed implied volatilties and v̂ the
smoothed surface. We measure absolute relative error:

δabs(v̂(x), v(x)) = |v̂(x)− v(x)|/v(x).
The average value of δabs over the whole surface v is the mean absolute percentage error (or MAPE);
we denote it by ⟨δabs⟩. As in Corbetta et al. (2019), we moreover realize the importance of analyzing
the smoothing algorithm in terms of nominal price error relative to the bid-ask spread s(x) =
BS±(x, vask(x))− BS±(x, vbid(x)).5 We define

δspr(v̂(x), v(x)) = 2|BS±(x, v̂(x))− BS±(x, v(x))|/s(x).
δspr(v̂(x), v(x)) ≤ 1 indicates that the prediction v̂(x) for the option x lies within the bid-ask spread.

Evaluation and model finetuning During production use, the GNO would be retrained regularly
using the most recent available data. We emulate this procedure for our benchmark in Figure 3.
Following the evaluation of the first month of test data (January 2021), the GNO is re-trained for 10
epochs on this data (with each mini-batch augmented by an equal amount of data from the training
dataset Dtrain), before the next month is evaluated. The process is repeated until the entire dataset
Dtest is assessed. This finetuning-evaluation procedure takes circa 1.8 GPU hours per month.

5vbid(x) and vask(x) are the implied volatilities corresponding to Bid and Ask option prices while BS± is
the Black-Scholes formula for Call (resp. Put) options for positive (resp. negative) log-moneyness values:

BS±(τ, k, v) =

{
Φ(d1(τ, k, v))− ekΦ(d2(τ, k, v)), k > 0

ekΦ(−d2(τ, k, v))− Φ(−d1(τ, k, v)), k ≤ 0
.
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Figure 4: Average spatial distribution of benchmark metrics and arbitrage terms over Dtest. The
terms But( · , v̂, ∂kv̂, ∂2

k v̂) and ∂τ [v̂
√
τ ] appear in Theorem 2.1. It is apparent that depicted values

are strictly positive (indicating absence of arbitrage), lying above the threshold of ε = 10−3.

Analysis It is apparent from Figure 3 that our operator approach substantially improves on SVI’s
smoothing capabilities, with respect to both δabs and δspr.6 Our approach, with monthly finetuning,
smooths the volatility surface with a MAPE of around 0.5%, while SVI fluctuates between 1% and
2%. The various figures in Appendix D illustrate the qualitative improvements of our method over
SVI. Moreover, our approach appears highly competitive with Ackerer et al. (2020), which performs
instance-by-instance volatility smoothing using classical neural networks and reports a MAPE of
around 1% for synthetically generated data.7 We reenact its backtesting for the period Jan-Apr 2018
using our method and summarize the results in Table 5 in Appendix C.5.8

An important fact to consider when analyzing Figure 3 is the historical tightening of the bid-ask
spread s (displayed in the bottom), driven by increased competition on the S&P 500 option market.
This explains why δspr is small early in the training dataset, both for our approach and SVI, while
δabs is large: Wide spreads make δspr more lenient an error metric but are accompanied by noisier
prices, necessitating greater need for correction by the smoothing algorithm, in turn captured by
δabs.9 Similarily, spikes in s (which indicate periods of market stress) help explain spikes in δabs.

Complementary to Figure 3, Figure 4 resolves the error metrics as well as the terms controlling the
absence of arbitrage spatially, averaged over time. δabs tends to be larger on the Call side (positive
log-moneyness), in accordance with Call option’s noisier prices (Call options experience less trading
than Put options). Moreover, we discern that, on average, the smoothed surfaces are completely free
of arbitrage (indicated by non-negativity).

Generalization To test the generalization of our approach, we procure end-of-day options data
for the S&P 500 (SPX), the NASDAQ-100 (NDX), the Dow Jones Industrial Average (DJX), and
the Russell 2000 (RUT) from the OptionMetrics Ivy DB US database, accessed by us through the
Wharton Research Data Services (WRDS). We evaluate the trained operator on the data for the
month of January 2021 (right after the training period on the CBOE S&P 500 intraday data), and
report the averages of ⟨δabs⟩ and ⟨δspr⟩ as well as the average arbitrage losses Lcal and Lbut in Table 1.
Firstly, our method maintains its performance on end-of-day S&P 500 data, validating the soundness
of our approach: While end-of-day data is slightly different from intraday data, our method still
yields small error metrics and arbitrage-free prices. Secondly, the method generalizes well to other
indices. We want to stress the fact that our operator has solely been trained on intraday S&P 500
data. Its accurate and virtually arbitrage-free output on end-of-day data of other indices is a strong
indicator of the robustness of our approach. We provide further example plots for these datasets in
Appendix D.3.

6We produce the SVI benchmark as described in Section E.
7Compare Table 1 of Ackerer et al. (2020), which we note, however, performs smoothing on a larger

strike/expiry domain.
8We emphasize the following: First, the backtest involves dropping 50% of points for each surface, and our

trained operator continues to perform accurate smoothing, a strong indicator of the robustness of our approach
with respect to subsampling of inputs. Second, while Ackerer et al. (2020) requires to train 61 neural networks
to perform the backtest once, our operator approach enables us to run 25 repetitions in around two minutes on a
consumer grade laptop CPU, which is the average time that it takes Ackerer et al. (2020) to train one network.

9Compare, e.g., Figure 11 and Figure 13.
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Table 1: Average error metrics and arbitrage losses for end-of-day options data for US indices in
January 2021. The GNO has been trained solely on intraday S&P 500 data from before 2021.

SPX NDX DJX RUT

⟨δabs⟩ 0.00272 0.01057 0.01629 0.00885
⟨δspr⟩ 0.64423 1.53306 0.20736 1.03183
Lbut 6.41e-05 2.16e-04 1.61e-03 4.48e-06
Lcal 0.00000 0.00000 3.13e-08 0.00000

5 DISCUSSION

Summary We provide a novel method for implied volatility smoothing, resulting from an appli-
cation of our general operator approach for discretization-invariant data interpolation. The approach
leverages a GNO to directly map given data – consistently across size and spatial arrangement –
to smoothed surfaces, transcending classical parametric smoothing techniques. In the example of
volatility smoothing, benefits include a massively simplified online calibration process.

Learning from large datasets By moving the application of neural networks from the instance-
by-instance level (Ackerer et al., 2020) to the “operator level”, we leverage the information contained
in the entire training dataset for the smoothing of every single surface. In other words, our method
“unlocks” large historical options datasets for volatility smoothing. We argue that our substantial
outperformance against Ackerer et al. (2020) in the “Extrapolation-Test”-setting of the benchmark
detailed in Table 5 of Appendix C.5 owes to this circumstance.

Subsampling of inputs The discretization-invariance of the GNO entails that our method is robust
with respect to subsampling of inputs. In practice, subsampling of inputs occurs in the context of
outlier removal. In the example of volatility smoothing, certain quotes may be determined spurious.
Simply removing anomalous datapoints from the input is compatible with our method (moreover,
we leverage this fact during operator training to improve generalization, compare Appendix C.3).

Compression Figure 3 makes the compression qualities of the operator approach apparent: We
compute the entire historical timeseries using a single GNO instance, with around 100 thousand
parameters. Evaluating the SVI benchmark, on the other hand, requires 61454 model instances (one
per slice), or a total of 307270 parameters. A comparison with Ackerer et al. (2020), which for each
smoothed surface trains a new neural network of around 5085 parameters,10 is striking: Smoothing
of the CBOE dataset 2012–2021 at its 20-minute interval frequency would require more than 200
million parameters (more with rising frequency). At the same time, we expect our GNO to perform
accurate smoothing over the entire training period and beyond (with regular finetuning), and our
model instance remains fixed, even when moving to higher-frequency data.

Limitations and perspectives Compared to ad-hoc volatility parametrizations like SVI, our neu-
ral operator approach loses interpretability of parameters, which for some practitioners may be a
stringent requirement. This disadvantage is generally shared by neural network based engineer-
ing solutions. Moreover, in some situations dimensionality reduction (even without interpretability
of parameters) may be a desirable additional feature that is not directly achieved by our operator
approach. Combining the VAE method (Bergeron et al., 2021) with our operator approach could
lead to further promising potential applications of neural operators. Huang et al. (2024) introduces
neural mappings, which generalize neural operators to mixed infinite-/finite-dimensionality for in-
put or output spaces. This motivates a discretization-invariant GNO-based encoder, fit to handle
raw incoming market data, and a classical decoder to extend the operator approach to a VAE-like
architecture.

10Computed as the sum of 120 = 3 × 40 parameters for the input layer, three times 1640 = 41 × 40
parameters for the hidden layers, 41 parameters for the output layers, plus 4 additional parameters of the SSVI
prior and a scaling parameter.
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REPRODUCIBILITY

Primarily, we ensure reproducibility by providing the codebase and model weights used to produce
all results in this paper as part of the supplementary material. The codebase includes the data pro-
cessing components, the GNO architecture, the loss functions, the error metrics, the production of
the SVI benchmark, the notebooks used to train and evaluate the models (including hyperparam-
eters and data splits), as well as the notebooks to produce the plots and tables in this paper. The
full reproduction of results on intraday data (in particular of Figure 3) is contingent on access to the
proprietary CBOE options data, which we are not allowed to provide. In fact, we have stripped the
codebase from intermediate benchmarking artifacts that would expose the proprietary data (which
some notebooks for the plots rely on). The dataset can be purchased from CBOE, but is expensive.
The OptionMetrics end-of-day options data for the suite of indices considered in the final paragraph
of Section 4, on the other hand, is more readily and freely available to researchers with subscriptions
via the Wharton Research Data Services (WRDS) platform. The provided code allows to directly
reproduce the experimental results, in particular, Table 1 and the plots in Appendix D.3. To do so,
one would need to download the data from WRDS, persist it at prespecified location detailed in
the codebase, and then run the respective notebooks, which automatically load the trained model
weights.

To avoid any unclarities in our technique, the Pytorch implementation of our general graph neural
operator architecture follows the mathematical definition given in Appendix B as closely as possible.
Moreover, the concrete steps undertaken as part of our experiments are detailed in Appendix C:

• Appendix C.1 gives a summary of the processing of the options data.
• The hyperparameter configuration of our model finally employed in our experiments is detailed

in Appendix C.2.
• The loss functions and their weights are explicitly defined in Appendix C.3.

ETHICS STATEMENT: DATA AVAILABILITY

The effectiveness of our method is fundamentally tied to the quality and frequency of the options
data used for training. Our operator was trained using a proprietary dataset with 20-minute interval
frequency, which may not be accessible to many researchers due to its cost. More easily available
datasets, such as OptionMetrics data (e.g. freely available from the Wharton Research Data Ser-
vices), usually only provide daily snapshots of volatility surfaces (end-of-day data). We acknowl-
edge that training using such lower-frequency data may yield an operator that does not have the
same smoothing performance as ours. This raises important ethical questions about data accessibil-
ity in financial engineering research, where high-quality, high-frequency data is often locked behind
paywalls. In our case, the following strategies could potentially mitigate the resulting limitations:
Augmenting low-frequency datasets with synthetically generated data based on established paramet-
ric models like SVI, or combining data from multiple indices to increase the effective sample size.
Practitioners working with lower-frequency data might want to carefully evaluate these approaches
and consider the relationship between their data sampling frequency and their intended use case.
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A NEURAL OPERATORS

We give a review of the kernel integral transform neural operator framework of Kovachki et al.
(2023), and expand in more detail on its graph neural operator.

Notation and terms Let A and U be input and output space of an operator learning problem, as
introduced in Section 3.1. Then, A and U are Banach spaces of functions D → Rcin and D →
Rcout , respectively, where D is a (bounded) domain in Rd. The mathematical analysis of neural
operators in Kovachki et al. (2023) summarized hereafter, as well as the definition of universality
and discretization-invariance in Section 3.1, make use of the following terms and notations.

In the context of Kovachki et al. (2023), a domain is a bounded and connected open set that is
topologically regular (in the sense that it is the interior of its closure). A domain D is Lipschitz if its
boundary locally is the graph of a Lipschitz continuous function defined on an open ball of Rd−1.
An open ball – for any metric space X = (X , d) – is the set

BX (x, ε) = {y ∈ X : d(y, x) < ε}.

A discrete refinement of X is a nested sequence (πn) of discretizations of X (finite subsets of X ),
such that for every ε > 0 there is N ∈ N such that {B(x, ε) : x ∈ πN} covers X .

We consider the space C(A,U) of continuous operators between A and U . C(A,U) is topologized
by uniform convergence on compact sets. With respect to this topology, a sequence (Fn)n∈N in
C(A,U) converges with limit F ∈ C(A,U), if, for every ε > 0 and every compact set K in A, it
holds

lim
n→∞

∥Fn − F∥∞,K = 0.

Here,
∥H∥∞,K = sup

a∈K
∥H(a)∥U , H ∈ C(A,U).

It is well known that this topology on C(A,U) is induced by the metric

ρ(F,G) =

∞∑
n=0

∥G− F∥∞,BC(A,U)(0,n)

1 ∨ ∥G− F∥∞,BC(A,U)(0,n)

, F,G,∈ C(A,U).

Therefore, the notion of density in C(A,U), as used to define universality of neural operators in
Section 3.1, is well defined.

A.1 KERNEL INTEGRAL NEURAL OPERATORS

Kernel integral transform neural operators and universality A kernel integral transform neural
operator consists of the sequential application of:

1) A lifting layer

LP : [a : D → Rcin ] 7→ [h0 : D → Rc0 , h0(x) = P(a(x))],

given by the pointwise application of a function P : Rcin → Rc0 .
2) The forward propagation through J neural operator layers L0, . . . , LJ−1:

[h0 : D → Rc0 ]
L07−−→ [h1 : D → Rc1 ]

L17−−→ . . .
LJ−17−−−→ [hJ−1 : D → RcJ ];

each layer Lj operates as

hj+1(y) = σj

(
Wjhj(y) +

∫
D

κj(y, x)hj(x)dx+ bj(y)

)
, y ∈ D, (11)

where
• Wj ∈ Rcj+1×cj is a weight matrix applied pointwise,
• κj ∈ C(D × D,Rcj+1×cj ) is a kernel function parametrizing the integral transform and

subject to integrability conditions,
• The bias term bj is itself a function from D to Rcj+1 ,
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• σj is a classical neural network activation function.

3) A projection layer

LQ : [hJ : D → RcJ ] 7→ [u : D → Rcout , u(x) = Q(hJ(x))],

given by the pointwise application of a function Q : RcJ → Rcout .

In practice, all components (lifting, kernel functions, projection) are implemented as classical feed-
forward neural networks (FFNs). This neural operator architecture is universal in the following
sense.

Theorem A.1 (Universal Approximation; Theorem 11 of Kovachki et al. (2023)). Let D be a
(bounded) Lipschitz domain. Assume:

• A = W k1,p1(D) for k ∈ N≥0 and 1 ≤ p1 < ∞, or A = C(D).

• U = W k2,p2(D) for k ∈ N≥0 and 1 ≤ p2 < ∞, or U = C(D).

Then, a subset of kernel integral neural operators, with kernel functions and bias functions taken
from a suitable set of FNNs, is dense in C(A,U).

Discretization-invariant implementations Consider a neural operator F θ and let π = {xl}pl=1

be a discretization of D. To make sense of a basic discretization-invariant implementation for F θ,
associate with π a partition (D1, . . . , Dp) of D for which λd(Dl) > 0 and xl ∈ Dl for l = 1, . . . , p.
Here λd denotes the Lebesgue measure on Rd. Consider the following implementation of F θ (writ-
ten in terms of a single constituent layer L = (W,κ, b, σ)):

L̃(h|π)(y) = σ

(
Wh(y) +

p∑
l=1

κ(y, xl)h(xl)λd(Dl) + b(y)

)
, y ∈ D. (12)

Kovachki et al. (2023) establishes the following.

Theorem A.2 (Discretization Invariance; Theorem 8 of Kovachki et al. (2023)). Let F θ : A → U
be a kernel integral neural operator, where A and U both continuously embed into C(D). Then, the
implementation of F θ based on equation 12 is discretization-invariant as defined in Section 3.1.

equation 12 suggests the straightforward (quasi) Monte-Carlo inspired implementation

L̃(h|π)(y) = σ

(
Wh(y) +

λd(D)

|π|
∑
x∈π

κ(y, x)h(x) + b(y)

)
, y ∈ D. (13)

Most effectively, π is a low-discrepancy sequence in D.

A.2 GRAPH NEURAL OPERATORS

The curse of dimensionality makes the direct implementation equation 13 prohibitively expensive
in practice. Instead, Anandkumar et al. (2020) introduces graph neural operators (or, GNOs, for
short) which replace the kernel integral operation at the heart of the framework by a sum ap-
proximation and organizes the constituent terms using a directed graph structure: The discretiza-
tion π = {x1, . . . , xm} of the input data h = h|π is enriched with a directed graph structure
Gh = (V,E), allowing the following implementation F̃ θ of F θ:

L̃(h|π)(y) = σ

Wh(y) +
1

|Nin(y)|
∑

x∈Nin(y)

κ(y, x)h(x) + b(y)

 , y ∈ V. (14)

Here, Nin(y) is the set of so-called in-neighbors of y in the graph Gh: x ∈ Nin(y) iff (x, y) ∈ E. It
is clear that, to compute output at y, the point y must be included as a node into the graph Gh. On
the other hand, it is necessary to drop the local linear transformation with W if y is not part of the
input data locations π (compare our discussion in 3). It is important to reconcile the input and output
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locations of the layers when creating the graph structure to enable an efficient implementation using
message passing algorithms.

The graph structure can be meticulously adjusted to implement various complexity-reducing tech-
niques like Nyström approximation or integration domain truncation that effectively aim at a sys-
tematic reduction of the size of Nin(y); the naive implementation equation 12 is recovered for the
case of a complete directed graph (with self-loops) for which Nin(y) = π. Note that choosing Nin(y)
as a strict subset of π breaks the guaranteed smoothness in the GNO output.
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B INTERPOLATION GRAPH NEURAL OPERATOR

We detail our modifications of the GNO architecture.

Let v = {v(x)}x∈π be the given data.

Graph construction Arguably part of the model architecture is the graph construction: Compile
the set πout = {yl}ql=0 of points y ∈ D at which to compute the smoothed surface v̂(y). During
operator training, this will be the set of input locations (to compute the fitting loss) as well as
any additional locations needed to compute auxiliary loss terms (the arbitrage losses Lbut(θ,v)) and
Lcal(θ,v) in the case of volatility smoothing). For each y ∈ πout, we construct the set of in-neighbors
from the set of input data locations:

Nin(y) ⊆ πin. (15)
In other words, we employ a Nyström approximation with nodes limited to the input data locations.
This is an important prerequisite to enable the use of the GNO architecture for interpolation tasks
(or, more generally phrased, allows us to employ kernel functions with input skip connections). We
set Gv = (πout, E), where

E =
⋃

y∈πout

{(x, y) : x ∈ Nin(y)}.

Forward propagation Given Gv, we perform the first step of the forward propagation as follows:h̃0(x) = P0(v(x)), x ∈ πin

h1(y) = (σ0 ◦ Q0)
(
K(h̃0;v)(y) + b0

)
, y ∈ πout.

For the subsequent layers j = 1, . . . , J − 1, we then proceed using the classical scheme: h̃j(y) = Pj(hj(y)),

hj+1(y) = (σj ◦ Qj)
(
Wj h̃j(y) +Kj(h̃j ;v)(y) + bj

) , y ∈ πout.

In the above:

• Pj : Rcj → Rc̃j and Qj : Rc̃j+1 → Rcj+1 are layer-individual lifting and projection, in view of
A.1 implemented simply as FNNs.

• Wj ∈ Rc̃j+1×c̃j is a weight matrix (not present for j = 0), while bj ∈ Rc̃j+1 is a constant bias
term.

• Kj is the sum approximation of the kernel integral with kernel weight function κW
j : D2×Rc̃j ×

Rc0 → Rc̃j+1×c̃j and kernel bias function κb
j : D

2 × Rc̃j × Rc0 → Rc̃j+1 (both with state and
input skip connections):

Kj(h̃j ;v)(y) =
1

|Nin(y)|
∑

x∈Nin(y)

κW
j (y, x, h̃j(x); v(x))h̃j(x) + κb

j(y, x, h̃j(x); v(x)).

Both κW
j and κb

j are implemented as FNNs in our case, again to satisfy the requirements of A.1
and to keep things simple.

Note that omitting the local linear transformation in the first layer allows to extract the fist hidden
state h1(y) for all y ∈ πout from the lifted input h̃0, which is defined solely for the input locations x ∈
πin. Providing each layer with its own lifting and projection allows to separate the hidden channel
size c0, . . . , cJ from the the dimensions c̃0, . . . , c̃J of the space in which the integral transformation
is performed. Moreover, the individual lifting and projection help re-parametrize the state before
performing the integral transform (inspired by the succesful Transformer architecture), which allows
to keep the size of the kernel weight matrix low.
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C SUPPLEMENTARY INFORMATION: DATA, MODEL, TRAINING, EVALUATION

This section contains additional information regarding our empirical study of the operator deep
smoothing method for implied volatility smoothing.

C.1 DATA

Data source Our numerical experiments are based on the “Option Quotes” dataset product avail-
able for purchase from the CBOE. Our version of the dataset contains relevant data features for S&P
500 Index options for the years 2012 through 2021 and is summarized on a 20-minute interval basis.

Data preparation We compute simple mids for options and underlying by averaging bid and ask
quotes and use this aggregate as a reference price for all our subsequent computations. We cal-
culate discount factors and forward prices from Put-Call parity using the industry standard tech-
nique based on linear regression. We compute time-to-expiry in units of one year as well as log-
moneyness as defined in Section 2. We extract implied volatilities using the py-vollib-vectorized
project available in the Python Package Index at the location https://pypi.org/project/
py-vollib-vectorized/. py-vollib-vectorized implements a vectorized version of Jäckel
(2015)’s Let’s-be-rational state-of-the-art method for computing implied volatility. We discard all
implied volatilities of in-the-money options, or, in other words, we compose our implied volatil-
ity surface from Put options for non-positive log-moneyness values and Call options for positive
log-moneyness values.

C.2 MODEL

We proceed to detail the hyperparameter configuration of the modified GNO architecture introduced
in Appendix B.

The choice of in-neighborhoods The construction of the in-neighborhood sets for the graph neu-
ral operator is a crucial hyperparameter choice, fundamentally dictating the computation routes (and
thus complexity) of the forward pass of the model. We already explained in Appendix B that we
employ a Nyström approximation with subsampling from the input data nodes, to unlock the GNO
for interpolation tasks. Additionally, we employ truncation. Truncation limits the spatial extent
of the in-neighborhoods and is a way to incorporate information about the locality structure of the
learning task at hand directly into the graph neural operator architecture. Since implied volatility
smoothing requires limited global informational exchange along the time-to-expiry axis, we impose
the following restriction on the in-neighborhood sets Nin(y):

Nin(y) ⊆ Nin(y), (16)

where
Nin(ρy, zy) = {(ρl, zl) ∈ π : |ρl − ρy| ≤ ρ} (17)

is the set of all available options (ρl, zl) contained in the slices with a time-to-expiry ρl close than ρ̄
to the time-to-expiry ρy of y. We explain our reasoning more precisely:

• The input data for volatility smoothing is not arbitrarily scattered over the (ρ, z)-domain, but
arranged as dense z-slices that are sparseley distributed along the ρ-axis (compare Figure 5 as
well as three more examples pictured in Figure 1(b)). Condition 2.1(i) of Theorem 2.1 imposes
monotonicity of the output surface along the time-to-expiry axis. This constraint is inherently
“local”: To generate a compliant output surface, it is sufficient for the hidden states at a given
output location to receive information from their immediate neighboring slices.11 We computed
the maximum distance (with respect to ρ-coordinates) between slices over our entire dataset as
∆maxρ ≈ 0.269, which is thus established as a lower bound for ρ̄, and finally explains our choice
ρ̄ = 0.3. We note that – because we use three hidden GNO layers (see below) – the domain
of influence of each input point ultimately is unrestricted: The compositional structure allows
information to travel slice to slice in steps of length ρ̄ = 0.3, which amounts to a total distance
of 4×0.3 = 1.2. This exceeds the size of the considered domain D = (ρmin, ρmax)× (zmin, zmax)
in the direction of the ρ-axis. It is therefore not motivated to increase the level of ρ̄.

11A collection of slices that is monotonously increasing in pairs is montonously increasing as a whole.
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• We do not perform a similar truncation in the direction of the log-moneyness axis. In particular,
this allows all points in any given slice to connect with each other indiscriminately, which in view
of the nonlinear shape constraint 2.1(ii) of Theorem 2.1 is motivated. Moreover, such truncation
would limit extrapolation distance in z-direction.

To concretely compute Nin(y) for given y on the basis of equation 16, we employ the following
low-discrepancy subsampling heuristic, parametrized by the hyperparameter K: First, we compute
Nin(y) and convert it to a sequence by sorting it by two-dimensional Euclidean distance to y in
ascending order. Of this sequence we take every k-th element, where k is the largest step size
such that the final number of nodes Nin(y) does not exceed K. This gives us Nin(y). Note that,
by sorting Nin(y) and performing a “sparse” selection, we promote low-discrepancy properties for
Nin(y), which intuitively aid the convergence properties of the kernel integrals (compare 5).

The hyperparameter K, finally, constitutes an upper bound on the size of the Nin(y). It allows us to
control the computational complexity of the model, in a trade-off, of course, with the expressivity
of the GNO. After manual experimentation, we settle on a value of K = 50 and perform an ablation
study in Appendix C.6 to validate our choice.

Figure 5: Graph construction: Given data v = (vx)x∈π (S&P 500 on 10.05.2012 at 16:10:00),
generate in-neighborhood for output point y by subsampling from Nin(ρy, zy) by first sorting and
then taking a sparse selection, promoting low-discrepancy.

GNO layers and kernels The below choices amount to a total number of 102529 trainable pa-
rameters.

• We employ three hidden layers and a channel size of 16: J = 4, and c1, c2, c3 = 16 (c0 and
cJ are determined as 1 by the scalar dimension of volatility data). We use GELU-activations for
the hidden layers and a Softplus-activation for the output layer (to ensure the positivity of the
smoothed surfaces): σ0, . . . , σJ−1 = GELU, and σJ = Softplus.

• We retain P0, . . . ,PJ−1 and QJ as single-hidden layer FNNs with 64 hidden nodes and GELU-
activations for the hidden layers. The remaining lifting and projections remain unutilized. In
particular, c̃0, . . . , c̃J = 16.

• We implement the kernel weight and bias functions as two-hidden layer FNNs with 64 hidden
nodes and GELU-activations for the hidden layers.

19



Published as a conference paper at ICLR 2025

C.3 TRAINING

Loss function To ease notation we write v̂θ = F̃ θ(v). We implement a Vega-weighted version of
the fitting loss equation 8:

Lfit(θ;v) =

(
1

|πv|
∑
x∈πv

wV(x;v)
∣∣(v̂θ(x)− v(x))/v(x)

∣∣2)1/2

.

Here,

wV(x;v) =
V(x, v(x))

1
|π|
∑

x∈π V(x, v(x))
∨ 1,

where V(x, v(x)) is the Black-Scholes Vega, the sensitivity of the Black-Scholes option price with
respect to its volatility parameter:

V(ρ, z, v) = ∂vBS(τ, k, v) = φ(d1(τ, k, v))
√
τ . (18)

For the implementation of the no-arbitrage penalization terms Lbut and Lcal, we first generate dis-
cretizations πρ = {ρ1, . . . , ρm} and πz = {z1, . . . , zn} of [ρmin, ρmax] and [zmin, zmax]. We resolve
the derivative terms ∂zv

θ and ∂2
zv

θ on the synthetic rectilinear grid π = πρ × πz using (central)
finite differences. Then, we translate Lbut directly from equation 9 as

Lbut(θ;v, π) =
1

|π|
∑
x∈π

(
But(x; ṽθ(x),∆z,π ṽ

θ(x),∆2
z,π ṽ

θ(x))− ε
)−

,

where But is made consistent with the transformed coordinates and we used obvious notation for
the finite differences. We use ε = 10−3. On the other hand, we enforce the monotonicity constraint
of Theorem 2.1 using

Lcal(θ;v, πρ, πz) =
1

mn

m∑
i=1

n∑
j=1

(
ṽθ(ρi+1, zj)

ṽθ(ρi, (ρi+1zj)/ρi)
− ρi

ρi+1
− ε

)−

.

Compared to a derivative based implementation, this implementation is independent of the scale and
– in our empirical experiments – has provided an improved signal. Since the Nyström approximation
employed by the graph neural operator (as well as the choice equation 16) break the guaranteed
smoothness of the operator output, we additionally introduce ∥∂2

ρ v̂
θ∥2 and ∥∂2

z v̂
θ∥2 as regularization

terms:

Lreg-ρ(θ;v, π) =

√
1

|π|
∑
x∈π

|∆2
ρ,π ṽ

θ(x)|2, Lreg-z(θ;v, π) =

√
1

|π|
∑
x∈π

|∆2
z,π ṽ

θ(x)|2.

We compose the final loss function as a weighted sum of all terms introduced:

L(θ;v, πρ, πz) =
∑



λfitLfit(θ;v),

λbutLbut(θ;v, πρ × πz),

λcalLcal(θ;v, πρ, πz),

λreg-ρLreg-ρ(θ;v, πρ × πz),

λreg-zLreg-z(θ;v, πρ × πz).

The specific weights are

λfit λcal λbut λreg-ρ λreg-z

1 10 10 0.01 0.01

The particular weighting of the individual terms has initially been retrieved by manual experimen-
tation, led by the findings of Ackerer et al. (2020). To additionally validate our choices, we perform
an ablation study in Appendix C.7.

Validation loss Table 2 displays descriptive statistics of the validation losses.
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Table 2: Validation loss.

mean std 1% 25% 50% 75% 99%

L 0.0591 0.0807 0.0351 0.0450 0.0506 0.0578 0.1489
Lfit 0.0182 0.0182 0.0066 0.0121 0.0162 0.0203 0.0479
Lbut 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Lcal 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
Lreg-r 0.8567 2.4065 0.3280 0.4702 0.5788 0.7703 2.7578
Lreg-z 0.7610 0.1403 0.4815 0.6488 0.7590 0.8679 1.0812

C.4 EVALUATION

Here we provide additional results to supplement our performance evaluation. Table 3 and Table 4
display descriptive statistics of our approach (OpDS) versus SVI. OpDS* refers to benchmarking
without monthly finetuning. Moreover, we include Figure 6 and Figure 8, which have been created
just like Figure 3 and Figure 4 but without monthly finetuning (OpDS*). Finally, Figure 7 shows
the average spatial distribution of benchmark metrics and arbitrage term over the training dataset,
which complements the same averages on the test dataset shown in Figure 4.

Table 3: Descriptive statistics for surface-MAPE’s ⟨δabs⟩ over Dval/Dtest.

mean std 1% 25% 50% 75% 99%

OpDS 0.009/0.005 0.007/0.001 0.003/0.003 0.006/0.004 0.008/0.005 0.010/0.005 0.021/0.007
OpDS* 0.009/0.007 0.007/0.001 0.003/0.003 0.006/0.07 0.008/0.007 0.010/0.008 0.021/0.012
SVI 0.021/0.015 0.006/0.002 0.007/0.010 0.016/0.013 0.020/0.014 0.025/0.016 0.034/0.020

Table 4: Descriptive statistics for surface-averages ⟨δspr⟩ over Dval/Dtest.

mean std 1% 25% 50% 75% 99%

OpDS 0.479/1.265 0.662/0.347 0.193/0.609 0.274/1.025 0.330/1.240 0.550/1.451 1.526/2.453
OpDS* 0.479/1.866 0.662/0.574 0.193/0.731 0.274/1.457 0.330/1.826 0.550/2.233 1.526/3.445
SVI 1.124/3.382 0.877/0.826 0.301/1.464 0.492/2.827 0.715/3.320 1.646/3.914 3.710/5.247
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Figure 6: Benchmark comparison between operator deep smoothing without finetuning (OpDS*)
and SVI, split between training period (left half; from 2012 to 2020) and testing period (right half;
2021). Surface-averages ⟨δabs⟩ (top) and ⟨δspr⟩ (middle); shaded region indicate interquartile range.
Bottom plot: Surface-average spread ⟨s⟩.

Figure 7: OpDS: Average spatial distribution of benchmark metrics and arbitrage term over train
dataset.

Figure 8: OpDS*: Average spatial distribution of benchmark metrics and arbitrage terms over test
dataset (non-finetuned model).

C.5 COMPARISON TO CLASSICAL NEURAL NETWORKS

We reproduce the experiment underlying Table 1 of Ackerer et al. (2020) using our operator deep
smoothing approach. Given observed option quotes, it involves dropping 50% of datapoints, and
then measuring the MAPE of the smoothed surface at retained datapoints (“Train”) as well as
dropped datapoints (“Test”). “Interpolate” and “Extrapolate” are different settings dictating how
exactly the datapoints which to drop are selected (for details refer to Ackerer et al. (2020)). The
experiment is performed on end-of-day S&P 500 data in the period from January to April 2018 and
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averaged percentiles are reported. Table 5 reproduces the relevant row of Table 1 of Ackerer et al.
(2020) (“DS”) as well as our results averaged over 25 repetitions (“OpDS”).

Table 5: Backtesting results (⟨δabs⟩, i.e. MAPE) of Operator Deep Smoothing vs. Deep Smoothing
(“DS”; taken from [2]); quantiles in %, Jan-Apr 2018 end-of-day SPX data.

Interpolation Extrapolation

Train Test Train Test

λ q05 q50 q95 q05 q50 q95 q05 q50 q95 q05 q50 q95

OpDS 10 0.5 0.7 1.0 0.5 0.7 1.1 0.5 0.7 1.0 0.7 0.9 1.3
DS 10 0.5 0.7 1.2 0.5 0.8 1.2 0.4 0.6 0.9 1.2 1.7 2.4

C.6 ABLATION: NYSTRÖM APPROXIMATION

We explore the impact of our hyperparameter choice K = 50 introduced in Appendix C.2, control-
ling the size of the Nyström approximation of the integral kernels. We perform an ablation study by
resuming training of our trained GNO for the additional values for K = 3, 5, 10, 20, 30, 40 as well
as K = 60, 70. We focus on the data D2018 of the period Jan-Apr 2018, and perform two additional
training runs starting from our final GNO-checkpoint (trained for 500 epochs on Dtrain) as follows:

• 20 epochs each for K = 40, 30, 20, 10, 5, 3, in this order. We plan to understand how low K can
be for our method to still produce meaningful results.

• 20 epochs each for K = 60, 70, in this order. We plan to understand how much additional
information the GNO can extract by increasing the value of K.

Descriptive statistics for losses and evaluation metrics over D2018 itself are printed in Table 6 and
Table 7. We can read from Table 7 that increasing K does not significantly improve performance for
either δfit or δspr. The mean values for both metrics remain relatively stable for K > 50, suggesting
diminishing returns with larger K (or, in view of the slightly increasing tendency, the need for
additional training). On the other hand, reducing K below its original value of 50 leads to gradual
degradation in performance. It is expected that very small K-values, especially K < 10, result in
substantially poorer performance, but it is noteworthy that the progression is quite graceful. Table 6
paints a similar picture for the fitting loss term Lfit, while the auxiliary loss terms slightly increase as
K incrases. We argue that the increased expressivity awarded by larger values of K leads to slightly
more irregular surfaces, and thus to slightly increased arbitrage loss terms. Finally, we argue that
our choice of K = 50 is validated, where decreasing K is a reasonable strategy when computational
resources are scarce and accuracy requirements are not too stringent.
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Table 6: Loss terms over D2018 for different values of K, after training for 20 additional epochs on
D2018.

mean std 1% 25% 50% 75% 99%

L 3 0.1113 0.0934 0.0577 0.0819 0.0978 0.1174 0.3771
5 0.1008 0.1022 0.0499 0.0714 0.0849 0.1018 0.3074
10 0.0914 0.1220 0.0412 0.0635 0.0742 0.0885 0.2739
20 0.0854 0.1484 0.0371 0.0580 0.0669 0.0799 0.2802
30 0.0852 0.1834 0.0360 0.0561 0.0650 0.0776 0.2916
40 0.0890 0.2341 0.0367 0.0561 0.0647 0.0779 0.3511
50 0.0906 0.2416 0.0388 0.0564 0.0644 0.0782 0.4900
60 0.0930 0.2956 0.0371 0.0555 0.0644 0.0773 0.5752
70 0.0889 0.2293 0.0371 0.0556 0.0642 0.0773 0.4404

Lfit 3 0.0639 0.0346 0.0237 0.0462 0.0575 0.0739 0.2017
5 0.0484 0.0243 0.0195 0.0369 0.0466 0.0557 0.1428
10 0.0354 0.0188 0.0132 0.0283 0.0340 0.0402 0.0681
20 0.0264 0.0168 0.0102 0.0202 0.0245 0.0294 0.0638
30 0.0234 0.0167 0.0088 0.0171 0.0215 0.0258 0.0785
40 0.0220 0.0169 0.0084 0.0157 0.0200 0.0238 0.0963
50 0.0207 0.0174 0.0084 0.0147 0.0183 0.0221 0.1122
60 0.0215 0.0186 0.0083 0.0150 0.0192 0.0230 0.1236
70 0.0217 0.0181 0.0081 0.0152 0.0195 0.0234 0.1218

Lbut 3 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001
5 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0002 0.0035 0.0000 0.0000 0.0000 0.0000 0.0001
20 0.0003 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0005 0.0117 0.0000 0.0000 0.0000 0.0000 0.0001
40 0.0008 0.0163 0.0000 0.0000 0.0000 0.0000 0.0002
50 0.0009 0.0168 0.0000 0.0000 0.0000 0.0000 0.0010
60 0.0012 0.0216 0.0000 0.0000 0.0000 0.0000 0.0004
70 0.0008 0.0155 0.0000 0.0000 0.0000 0.0000 0.0005

Lcal 3 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
5 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0001
30 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0003
40 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0004
50 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0005
60 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0009
70 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000 0.0009

Lreg-ρ 3 1.1568 2.4882 0.3534 0.5468 0.6905 1.0271 6.9051
5 1.3544 3.0528 0.3823 0.5419 0.7105 1.1629 8.1210
10 1.4194 3.3473 0.3897 0.5763 0.8204 1.2643 8.6570
20 1.4614 3.2880 0.3676 0.6552 0.8875 1.3222 9.0101
30 1.5008 3.3752 0.3790 0.7009 0.9327 1.3734 8.8143
40 1.5716 3.5193 0.4026 0.7334 0.9835 1.4533 9.2937
50 1.5256 3.5376 0.4661 0.7785 1.0336 1.4189 9.2313
60 1.5924 3.6494 0.4175 0.7514 1.0053 1.4776 9.4071
70 1.5610 3.4815 0.3999 0.7508 0.9877 1.4551 8.8669

Lreg-z 3 0.7183 0.0900 0.4913 0.6589 0.7346 0.7832 0.8723
5 0.7134 0.0788 0.5375 0.6597 0.7193 0.7649 0.8887
10 0.7240 0.0773 0.5572 0.6623 0.7260 0.7773 0.8966
20 0.7413 0.1010 0.5583 0.6585 0.7384 0.8171 0.9738
30 0.7476 0.1177 0.5362 0.6563 0.7420 0.8326 1.0086
40 0.7545 0.1404 0.5280 0.6516 0.7467 0.8425 1.0482
50 0.7616 0.1523 0.5270 0.6533 0.7586 0.8520 1.0745
60 0.7593 0.1647 0.5255 0.6517 0.7542 0.8463 1.0617
70 0.7624 0.1489 0.5286 0.6538 0.7585 0.8552 1.0720
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Table 7: Evaluation metrics over D2018 for different values of K, after training for 20 additional
epochs on D2018.

K mean std 1% 25% 50% 75% 99%

⟨δabs⟩ 3 0.0414 0.0232 0.0159 0.0289 0.0376 0.0473 0.1427
5 0.0323 0.0140 0.0127 0.0242 0.0310 0.0379 0.0898
10 0.0230 0.0093 0.0081 0.0178 0.0221 0.0270 0.0500
20 0.0166 0.0078 0.0064 0.0127 0.0156 0.0194 0.0473
30 0.0145 0.0079 0.0053 0.0106 0.0135 0.0169 0.0529
40 0.0135 0.0083 0.0051 0.0098 0.0126 0.0152 0.0562
50 0.0127 0.0087 0.0050 0.0092 0.0116 0.0138 0.0571
60 0.0132 0.0101 0.0048 0.0093 0.0120 0.0145 0.0628
70 0.0133 0.0095 0.0048 0.0093 0.0121 0.0148 0.0622

⟨δspr⟩ 3 3.7755 4.9387 0.8977 1.4838 2.0117 3.2423 24.8441
5 2.7120 3.3901 0.6315 1.1012 1.4551 2.4550 18.7650
10 1.8229 2.4049 0.4316 0.7320 0.9282 1.7497 12.9783
20 1.2243 1.6054 0.3171 0.4991 0.6227 1.1353 7.7893
30 0.9980 1.2846 0.2787 0.4229 0.5180 0.9376 5.6118
40 0.9307 1.2340 0.2742 0.3907 0.4768 0.8775 5.1398
50 0.8634 1.1477 0.2627 0.3639 0.4356 0.8218 4.4631
60 0.9012 1.2789 0.2647 0.3710 0.4483 0.8584 5.2339
70 0.9038 1.2559 0.2607 0.3773 0.4570 0.8498 5.2972

C.7 ABLATION: WEIGHTING OF ARBITRAGE PENALTIES

To assess the impact of weighting of the arbitrage penalties in the loss function, we perform the
following experiment: We resume training of our trained GNO for 20 additional epochs on the
full training dataset Dtrain, varying the weights λcal and λfit of Lcal and Lbut. More precisely, we
equally weight both terms Lcal and Lbut at the values λarb = 0, 1, 10, 100, 1000, 10000 (we include
the original value λarb = 10 to maintain a fair baseline). We start each training run from our final
GNO-checkpoint (trained for 500 epochs on Dtrain with λarb = 10). The results are reported in
Table 8 and Table 9, and we make the following observations:

• The particular choices λarb affect the achieved loss terms in the expected ways. For a value of
λarb > 10 all traces of the arbitrage penalties vanish from the table. At the same time, however,
accuracy (as measured by Lfit, δabs, and δrel) suffers. For choices λarb < 10, it is possible to
read a non-zero average for the calendar loss from the table. For λarb = 1000 and λarb. At the
same time, however, accuracy (as measured by Lfit, δabs, δrel) suffers. Our choice λarb = 10 is
validated: λarb = 1 or even λarb = 0 do not seem to unlock substantial additional accuracy of the
GNO. If there is a small effect, it comes at a cost of increased arbitrage in the smoothed surfaces,
as measured by Lcal and Lbut.

• λcal has a counter-regularizing effect in ρ-direction, and we suspect overfitting of the monotonic-
ity constraint. Lbut, instead, remains stable for all values. Practitioners will be aware that the
calendar arbitrage constraint is usually more demanding than the butterfly arbitrage constraint.
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Table 8: Loss terms over Dval for different values of λarb, after training for 20 additional epochs on
Dtrain.

λarb mean std 1% 25% 50% 75% 99%

L 0 0.0577 0.0750 0.0341 0.0441 0.0499 0.0567 0.1312
1 0.0575 0.0733 0.0344 0.0441 0.0497 0.0568 0.1375
10 0.0583 0.0774 0.0351 0.0446 0.0501 0.0573 0.1452
100 0.0581 0.0599 0.0352 0.0456 0.0511 0.0580 0.1358
1000 0.0617 0.0658 0.0380 0.0480 0.0535 0.0609 0.1474
10000 0.1304 0.0802 0.0825 0.1023 0.1148 0.1381 0.2793

Lfit 0 0.0180 0.0181 0.0066 0.0118 0.0160 0.0202 0.0457
1 0.0181 0.0182 0.0063 0.0118 0.0162 0.0202 0.0435
10 0.0182 0.0181 0.0065 0.0120 0.0164 0.0204 0.0469
100 0.0195 0.0315 0.0069 0.0123 0.0165 0.0206 0.0497
1000 0.0225 0.0479 0.0088 0.0136 0.0177 0.0218 0.0529
10000 0.0603 0.0669 0.0287 0.0401 0.0474 0.0652 0.1369

Lbut 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lcal 0 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
1 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0001
100 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lreg-ρ 0 0.8019 2.1876 0.3091 0.4490 0.5489 0.7329 2.8897
1 0.7925 2.1203 0.3102 0.4410 0.5395 0.7268 2.9587
10 0.8236 2.2886 0.3301 0.4578 0.5573 0.7476 2.6687
100 0.7756 1.2831 0.3332 0.4866 0.5858 0.7758 3.4684
1000 0.8216 0.8114 0.3927 0.5394 0.6450 0.8389 3.5378
10000 2.0534 0.7765 1.2892 1.6319 1.8667 2.2504 5.5746

Lreg-z 0 0.7621 0.1394 0.4876 0.6498 0.7599 0.8690 1.0786
1 0.7633 0.1390 0.4876 0.6506 0.7596 0.8695 1.0829
10 0.7572 0.1379 0.4793 0.6477 0.7529 0.8619 1.0702
100 0.7596 0.1409 0.4909 0.6512 0.7554 0.8649 1.0812
1000 0.7467 0.1339 0.4903 0.6442 0.7414 0.8494 1.0558
10000 0.7507 0.1462 0.5013 0.6365 0.7422 0.8278 1.1014
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Table 9: Evaluation metrics over Dval for different values of λarb, after training for 20 additional
epochs on Dtrain.

mean std 1% 25% 50% 75% 99%

⟨δabs⟩ 0 0.0108 0.0097 0.0045 0.0073 0.0098 0.0122 0.0265
1 0.0109 0.0100 0.0042 0.0071 0.0098 0.0122 0.0262
10 0.0110 0.0091 0.0044 0.0073 0.0101 0.0125 0.0260
100 0.0121 0.0217 0.0046 0.0074 0.0101 0.0125 0.0276
1000 0.0139 0.0291 0.0057 0.0086 0.0109 0.0134 0.0302
10000 0.0388 0.0360 0.0182 0.0265 0.0315 0.0419 0.0923

⟨δspr⟩ 0 0.6138 1.0777 0.2218 0.3130 0.3728 0.7277 1.9947
1 0.6039 1.0790 0.2221 0.3062 0.3685 0.7026 1.9557
10 0.6186 1.0552 0.2200 0.3080 0.3775 0.7475 2.1704
100 0.7241 2.7257 0.2227 0.3137 0.3797 0.7378 2.4623
1000 0.9303 4.1817 0.2399 0.3480 0.4265 0.9299 2.8245
10000 3.1238 7.3292 0.5128 0.8566 1.3404 3.6653 14.2364

C.8 DISCRETIZATION-INVARIANCE IN THE CONTEXT OF IMPLIED VOLATILITY SMOOTHING

Figure 9 illustrates the fact that the coordinates of options continuously evolve with respect to their
time-to-expiry/log-moneyness coordinates. It shows the trajectory of three S&P 500 Put options ex-
piring on 19.06.2020, with strike prices of K = 2000, 3000, 4000, over the period from 01.06.2019
to 01.06.2020. The 2020 (Covid) stock market crash and subsequent recovery and the sudden in-
crease in log-moneyness of the options is clearly discernible. Moreover, over the lifetime of these
options, all three options leave our smoothing domain (one temporarily), which means that from that
point onward these options are dropped from the input of the GNO (and one returns). Figure 10,
instead, shows that the number of listed options to be processed by the GNO has continuously been
increasing. It is the discretization-invariance of the GNO architecture that allows our method to
produce consistent results over the whole timeline of Figure 10.

Figure 9: S&P 500 Put option paths, expiry on 19.06.2020. The path is depicted from 01.06.2019 to
01.06.2020.
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Figure 10: Development of the total number of listed Put and Call options (out-the-money and
contained in our smoothing domain).

C.9 ANALYSIS OF COMPUTATIONAL COMPLEXITY

Let πin be the (τ, k)-coordinates of the volatility inputs v and πout the points at which the smoothed
surface is to be computed. As part of the forward pass, the computation of the kernel integrals in
each layer involves for each y ∈ πin ∪ πout the summation of |N (y)| ≤ K many terms. In total,
this amounts to the summation of O((nin + nout)K) many vectors, where nin = |πin| is the number
of input datapoints and nout = |πout| is the number of queried output points. The production of
each of these vectors involves the evaluation of the kernel FNNs as well as the matrix multiplication
of its output with the previous hidden state h̃j(x) (in our implementation, a 16 × 16 matrix-vector
multiplication). We take these as base units of computation and do not decompose their complexity
further (in terms of e.g. the hidden channel size). Moreover, each layer has its own lifting net-
work (the last one has a projection as well) and a local linear transformation (the first one has not),
which involve O(nin + nout) many FNN evaluations/matrix multiplications. The computational ef-
fort therefore is O(J(nin + nout)K) (where J is the number of layers), counted in evaluations of
(relatively small) feedforward neural networks. We derive the following strategies to control the
“time-to-smoothed-surface”:

• Changing the subsample size K: We refer to Appendix C.6, which contains an ablation study for
K. It shows that there is potentially quite a bit of leeway to reduce K below the level of K = 50,
reducing the complexity of the forward pass.

• Decreasing the resolution of the output surface: Lower-resolution output can be traded for faster
execution speed.

• Targeting the constants: It could be motivated to investigate smaller FNN components for ker-
nels, liftings, and projections with faster execution speeds.

• Accelerate compute: Since our method is purely compute-based, the use of more and/or faster
GPUs will allow to process surfaces more quickly. This is a great advantage over instance-by-
instance smoothing, whose fitting routines are sequential in nature and hard to accelerate.

We benchmarked the execution with nin = 897 and nout = 2500 (i.e., with an output grid of size
50 × 50) on a consumer-grade laptop CPU as well as an Nvidia Quadro RTX 6000 GPU in Ta-
ble 10. The numbers confirm the linear scaling of compute in the subsample size K and the great
accelerability of our method using GPUs. They also show that computation times for typical grid
sizes are fast enough for performing smoothing several times per second, which is more than suf-
ficient for most applications. However, there exist participants in modern financial markets that
operate at sub-millisecond timescales (high-frequency trading or HFT). At the same time, our cur-
rent implementation prioritizes methodological validation over speed optimization (in particular the
graph construction is brute-forced and takes around 100 ms), and prevents us from drawing defini-
tive conclusions about the method’s applicability across the full spectrum of HFT applications. A
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comprehensive optimization study targeting HFT-specific requirements lies beyond the scope of this
work.

Table 10: Computation times for different subsample sizes K on CPU and GPU.

K 10 20 30 40 50

CPU (ms) 74.6 149 215 273 336
GPU (ms) 3.57 6.93 10.0 13.2 16.7
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D ADDITIONAL PLOTS

D.1 EXAMPLE PLOTS

We plot the results of operator deep smoothing (OpDS) vs. SVI on example inputs. To aid the visual
clarity of our plots, we display only every third market datapoint.

Figure 11: Smoothing of quotes v ∈ Dval from 20.07.2012 at 10:50:00.
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Figure 12: Smoothing of quotes v ∈ Dval from 21.10.2016 at 13:10:00.
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Figure 13: Smoothing of quotes v ∈ Dtrain from 04.01.2021 at 10:50:00.
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D.2 MONTHLY BREAKDOWN OF SPATIAL DISTRIBUTIONS OF BENCHMARK METRICS ON
TEST DATASET

Figure 14: Average spatial distribution of δabs on Dtest for OpDS with monthly finetuning, per month.
Blank cells indicate that no data was available for the particular region in the respective month.
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Figure 15: Average spatial distribution of δfit on Dtest for OpDS with monthly finetuning, per month.
Blank cells indicate that no data was available for the particular region in the respective month.
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D.3 EXAMPLE PLOTS: OPTION METRICS END-OF-DAY US INDEX OPTIONS DATA

Figure 16: Smoothing of SPX end-of-day data from 07.01.2021. Every third datapoint displayed.
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Figure 17: Smoothing of NDX end-of-day data from 07.01.2021. Every second datapoint displayed.
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Figure 18: Smoothing of DJX end-of-day data from 07.01.2021. Every datapoint displayed.
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D.4 EXAMPLE PLOTS: SYNTHETIC SSVI DATA

SSVI is a continuous interpolation scheme for SVI (see Section E) introduced in Gatheral & Jacquier
(2014). We use to generate synthetic volatility surface data, to which we then apply our smoothing
method. We consider the following formulation of SSVI (taken from Lind & Gatheral (2023)):

v̂ϕSSVI(τ, k) =

√
θτ
2τ

(
1 + ρφ(θτ )k +

√
(φ(θτ )k + ρ)

2
+ (1− ρ2)

)
,

where φ(θτ ) = ηθγτ and

θτ = θ τ + (V − θ)
1− e−κ1T

κ1
+ (V ′ − θ)

κ1

κ1 − κ2

(
1− e−κ2T

κ2
− 1− e−κ1T

κ1

)
,

making ϕ = (V, V ′, θ, ρ, p, η, γ, κ1, κ2) the parameter vector. We set the parameters to the following
values, reported as historical averages for the S&P 500 over the period 1996-2021 in Lind & Gatheral
(2023):

V V ′ θ ρ p η γ κ1 κ2

0.04 0.04 0.11 −0.5 0.01 1.19 0.49 5.5 0.1

We produce synthetic market data vSSVI by evaluating the SSVI instance v̂ϕSSVI on the synthetic
(8× 51)-grid

πin = πρ × πz

with πρ = {0.16, 0.28, 0.4, 0.52, 0.64, 0.76, 0.88, 1} and πz = {−1.5,−1.46, . . . , 0.46, 0.5}. We
then proceed to smooth vSSVI with our method, producing v̂OpDS = F̃ θ(vSSVI), and plot the results
in Figure 19. Moreover, we compute the MAPE smoothing error, both over the grid πin, as well as
over a high-resolution (100× 100)-grid

πout = πρ × πz,

where πρ and πz discretize [0.01, 1] and [−1.5, 0.5], respectively, uniformly with one hundred nodes
each. We achieve the following values:

πin πout

2.01% 2.42%
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Figure 19: Smoothing of synthetic SSVI data. Every second datapoint displayed.
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E SVI

SVI, originally devised by Gatheral (Gatheral, 2004), stands for Stochastic Volatility Inspired and
is a low-dimensional parametrization for implied volatility slices (namely for each maturity). It
captures the key features of implied volatility of Equity indices, and has become the industry-wide
benchmark for implied volatility smoothing on such markets. Its raw variant parametrizes the “slice”
of implied volatility at a given time-to-expiry τ as

v̂ϕτ (k) =

√√√√a+ b
(
ρ(k −m) +

√
(k −m)2 + σ2

)
τ

, k ∈ R,

where ϕ = (a, b, ρ,m, σ) is the parameter vector.

Calibration While stylistically accurate, SVI does not easily guarantee absence of static arbitrage
opportunities, and several authors have investigated this issue (Gatheral & Jacquier, 2014; Martini
& Mingone, 2022; Mingone, 2022; Martini & Mingone, 2023). To produce our SVI benchmark
we therefore rely on the constrained SLSQP optimizer provided by the SciPy scientific computing
package for Python, with the mean square error objective, a positivity constraint and the constraint
equation 2 (computed in closed form), and the following parameter bounds:

a ∈ R, b ∈ [0, 1], ρ ∈ [−1, 1], m ∈ [−1.5, 0.5], σ ∈ [10−8, 2].

We ignore the calendar arbitrage condition.
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