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ABSTRACT

Despite being pretrained on large-scale data, multimodal models such as CLIP
can still learn spurious correlations. However, CLIP does not seem to learn the
same spurious correlations as standard vision models, performing worse on some
benchmark datasets (Waterbirds) yet better on others (CelebA). We investigate this
discrepancy and find that CLIP’s robustness on these datasets is highly sensitive
to the choice of class prompts. Worst-group accuracy can be arbitrarily improved
or worsened by making minute, single-word changes to prompts. We further pro-
vide evidence that the root cause of this phenomenon is coverage — using class
prompts that are out-of-distribution with respect to pretraining can worsen spuri-
ous correlations. Motivated by these findings, we propose using class prompts that
are generated from a public image-to-text model, such as BLIP. We show that per-
forming k-nearest neighbors on these prompt embeddings improve downstream
robustness without needing to fine-tune CLIP.

1 INTRODUCTION

Icarus, who perished by flying too close to the sun, made the fatal mistake of ignoring distribution
shift — namely, that proximity to the sun would increase ambient temperature, melting the wax that
held his wings together.1 Much like Icarus’ wings, we too desire our machine learning models today
to be robust — an umbrella term that describes the model’s ability to maintain good performance in
the face of distribution shifts at test time.

Of the many flavors of distribution shifts that have been studied, one such pernicious phenomenon
is the presence of spurious correlations or shortcuts. These are features that are highly correlated
to the label under the training distribution, however, this relationship breaks down on unseen test
distributions. One canonical example is the image background, with distribution shift occuring
when objects are photographed at a different place or time of day (Beery et al., 2018; Zech et al.,
2018). Models trained under empirical risk minimization (ERM) have been observed to rely on a
combination of shortcut and salient features and therefore fail to generalize at test time (Hovy &
Søgaard, 2015; Hashimoto et al., 2018; Puli et al., 2023).

In recent years, large pretrained models have enjoyed notable success on a wide range of tasks.
These refer to models with billions of parameters that are typically trained in a self-supervised
manner on broad Internet-scale data (Bommasani et al., 2021). The resulting model can then be
adapted to downstream applications by fine-tuning the model’s parameters on the smaller dataset of
interest. For image classification tasks, the most widely-used pretrained model is CLIP (Radford
et al., 2021), whereby an image and text encoder are jointly trained using the contrastive InfoNCE
objective (Oord et al., 2018) on a huge corpus of image-caption pairs. Downstream classification is
performed in a zero-shot manner by codifying class labels as text prompts, then predicting the class
whose label embedding has the highest inner product with the image embedding.

It was hoped that CLIP and other large pretrained models would be more robust to spurious corre-
lations than smaller bespoke vision models, having been exposed to data orders of magnitude larger
than the downstream dataset containing the spurious correlation. Results, however, paint a more

1We know today that temperature actually decreases as altitude increases. Of course, one should never let
scientific inaccuracy get in the way of good storytelling.
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complicated picture. Zhang & Ré (2022) show that the gap between average accuracy and worst-
group accuracy ranged from 55.6% in Waterbirds (Wah et al., 2011; Sagawa et al., 2019) to 7.9% in
CelebA (Liu et al., 2018), two widely-used benchmark datasets. Clearly, large-scale pretraining is
not the one-stop solution for mitigating spurious correlations.

Existing literature has simply sought to remedy this gap by fine-tuning CLIP on the biased training
dataset (Zhang & Ré, 2022; Yang et al., 2023), either through explicitly using additional labels of
the spurious feature or by making certain assumptions of model behavior. These methods can indeed
be viewed as contrastive analogues of methods originally proposed in the targeted setting (Sagawa
et al., 2019; Liu et al., 2021).

Motivated instead by the unexplained difference in worst-group accuracy between CelebA and Wa-
terbirds, we set out to more closely probe zero-shot behavior in these datasets. We expand our
experiments to include OpenCLIP (Ilharco et al., 2021) in addition to the original CLIP models.
We observe that CLIP’s zero-shot prediction of background in Waterbirds is just as poor as fore-
ground. Further probing of image embedding space shows poor separability by both foreground and
background features. These observations cannot be fully explained by spurious correlations.

Our first contribution is to show that the choice of class prompt greatly affects zero-shot accuracy
in both CelebA and Waterbirds. Arbitrary changes to prompt templates can worsen or improve
worst-group performance. Delving deeper, we show that the root cause of this discrepancy is due to
the class prompts being out-of-distribution (OOD) during CLIP’s pretraining. We verify this directly
on OpenCLIP and MetaCLIP (Xu et al., 2023) by counting token frequencies.

From these experiments, we conclude that choosing in-distribution class prompts that CLIP has
seen during pretraining is critical to zero-shot success, particularly in datasets containing spurious
correlations where OOD prompts can reinforce such biases. To this end, our second contribution
is leveraging the use of large, public image-to-text models to automatically generate proxy class
prompts for downstream classification.

We show that such a model — we use BLIP (Li et al., 2022a) in our experiments — can be used
to generate captions on the downstream dataset, which are then used to classify test samples via
k-nearest neighbors. Our approach achieves comparable results on spurious correlation datasets
without needing to fine-tune CLIP’s embeddings on the downstream dataset and without requiring
any spurious labels. We verify our method on ImageNet-1K (Deng et al., 2009) in addition to
Waterbirds and CelebA. Beyond robustness, our work is also a step towards automating downstream
classification without requiring human input to generate class prompts.

2 BACKGROUND AND PROBLEM SETUP

For a downstream image classification task, we let x ∈ X denote covariates, y ∈ Y the class label
and s ∈ S the spurious label. We consider a family of data-generating distributions pe(x, y, s)
indexed by the environment e, of which the training (e = tr) and test (e = te) distributions are two
such environments. Spurious correlations happen when pe(y, s) changes across environments.

Most spurious correlation datasets contain salient features h := h(x) that can predict y perfectly.
That is, there exist some deterministic function f1 such that f1(h) = y for all e. Furthermore, there
is no deterministic function f2 such that f2(h) = s for all e. The existence of such h implies that
ptr(y|h) = pte(y|h). As such, the optimal predictor that minimizes training loss will also minimize
test loss and the Bayes optimal predictor ptr(y|x) should be robust to test-time distribution shift.
Unfortunately, empirical risk minimization (ERM) generally fails to learn h, instead learning a
representation of s that breaks at test time (Sagawa et al., 2019; Geirhos et al., 2020).

As y and s typically have discrete support, we denote their Cartesian product g = (y, s) as the
group. Colloquially, we use the terms “majority group” and “minority group” to refer to groups
with disproportionate representation in the training distribution. In addition to average accuracy
Aave on the test distribution, we also evaluate worst-group accuracy (WGA) across all groups:

Aworst

(
pte(x, y)

)
= min

g
Aave

(
pte(x, y|g)

)
(1)

CLIP CLIP consists of an image encoder fθ and a text encoder gφ, trained jointly with respect
to a pretraining distribution qpt(x, t) of image-caption pairs (x, t). CLIP is trained in a contrastive
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Method Waterbirds CelebA
WG Average Gap WG Average Gap

ERM ResNet-50 (Sagawa et al., 2019) 60.0 97.3 37.3 41.1 94.8 53.7
CLIP ResNet-50 39.3 77.2 38.0 82.2 87.9 5.7
CLIP ViT-L/14 45.2 84.4 39.2 74.3 80.7 6.5

OpenCLIP ViT-L/14 46.3 73.7 27.5 15.6 89.0 73.5
CLIP ResNet-50 Spurious Prediction 52.8 71.9 19.1 89.4 98.9 9.4
CLIP ViT-L/14 Spurious Prediction 55.7 75.1 19.4 92.8 99.0 6.3

OpenCLIP ViT-L/14 Spurious Prediction 72.3 83.5 11.2 90.0 99.0 9.0

Table 1: Worst-group and average zero-shot accuracies on Waterbirds and CelebA test sets. In rows
2-4 we predict the true label; in rows 5-7 we predict the spurious attribute. For comparison, row 1
shows the vanilla ERM results on a single ResNet-50 network, taken from Sagawa et al. (2019).

manner using the InfoNCE objective. For a given minibatch {xi, ti}Ni=1 of size N , we have:

LCLIP (θ, φ) =−
1

2
Ei∼U [1,...,N ]

[ e⟨fθ(xi),gθ(ti)⟩/τ∑N
j=1 e

⟨fθ(xi),gθ(tj)⟩/τ

]
(2)

− 1

2
Ei∼U [1,...,N ]

[ e⟨fθ(xi),gθ(ti)⟩/τ∑N
j=1 e

⟨fθ(xj),gθ(ti)⟩/τ

]
(3)

where τ is a temperature hyperparameter. Once trained, zero-shot downstream classification can be
done: For a given image dataset {x, y}Ni=1, we encode all images into embeddings fθ(x). We also
encode class labels as text embeddings by first manually describing the classes, and then filling this
description into commonly-used class prompt templates. An example of a class prompt template is

“This is the photo of a [class_name].”. This prompt, which we denote as ty , is then encoded
into embeddings gφ(ty). To reduce notational clutter, thereafter we will use x and t to refer to
embeddings fθ(x) and gφ(t) respectively where unambiguous. For an image x, we predict the class
with the largest inner product of embeddings:

ŷ = argmax
c∈Y
⟨x, tc⟩ (4)

Datasets Waterbirds (Sagawa et al., 2019) and CelebA (Liu et al., 2018) are two bench-
mark datasets for spurious correlations. Waterbirds is made by artificially superimposing 200
species of birds (terrestrial and aquatic) from the Caltech-UCSD Birds-200-2011 dataset (Wah
et al., 2011) on four backgrounds from the Places dataset (Zhou et al., 2017). The binary
classes are Y = {landbird,waterbird} and the spurious correlation is the background S =
{land background,water background}. The training dataset largely contains images of birds in their
natural habitats, hence the minority groups are landbirds on water and vice versa. CelebA is a natu-
ral image dataset of celebrity faces. The class attribute is hair color Y = {blond, not blond} and the
spurious attribute is gender S = {male, female}. The minority group is blond men.

3 RELATED WORK

CLIP and its variants Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021)
pioneered the use of contrastively matching (Oord et al., 2018) image-caption pairs as an effective, at-
scale pretraining task to learn useful image representations for downstream tasks. Later works have
extensively studied CLIP’s effectiveness and proposed various improvements. Some have tangential
relevance to robustness, for example, a fine-grained variant that matches regions of the image to
specific textual concepts (Zhong et al., 2022), exploiting Hopfield networks to encourage the encoder
to extract richer features from the image (Fürst et al., 2022), and performing max-pooling in CLIP’s
vision encoder to reduce background bias (Li et al., 2022b). Petryk et al. (2022) uses CLIP to
improve the robustness of a vision model by guiding it to use specific parts of the image.

Spurious Correlations and Shortcut Learning Distribution shifts in the form of spurious corre-
lations that do not hold at test-time were identified by Beery et al. (2018), Zech et al. (2018), and
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Figure 1: 2D projections of CLIP image embeddings for the Waterbirds and CelebA test sets, col-
ored by group. For both datasets, the salient feature is not a principal component. However, for
CelebA only, the spurious feature (gender) is a principal component. There are no major differences
between embedding projections produced by the two architectures. Figure 3 in Appendix B shows
the OpenCLIP embeddings, which follow the same trends as the CLIP models here.

Buolamwini & Gebru (2018), amongst others, and more comprehensively formalized and studied
later on by works such as Geirhos et al. (2020) and Moayeri et al. (2022). Literature can broadly
be divided into two categories. If salient features h(x) do not exist, we must rely on additional as-
sumptions, such as counterfactual invariance (Veitch et al., 2021), access to unlabelled data from the
test distribution (Sun et al., 2022), or access to training group labels to learn shortcut-independent
representations (Puli et al., 2021). In the setting (which we consider) where h(x) exists, meth-
ods to learn h assume access to training group labels (Sagawa et al., 2019), last-layer fine-tuning
(Kirichenko et al., 2022), treating initially misclassified training examples as a proxy for minority
groups (Liu et al., 2021), or exploiting the information bottleneck in generative models (Yang et al.,
2022). More recently, works have investigated why ERM fails to learn h, proposing margin-related
inductive biases as the root cause (Puli et al., 2023).

Spurious Correlations in CLIP Zhang et al. (2022) first proposed a contrastive approach for mit-
igating spurious correlations in (unimodal) vision models, whereby spurious attributes are inferred
through Liu et al. (2021) and then used to learn similar representations between majority and minor-
ity samples from the same class. Zhang & Ré (2022) follow up by identifying spurious correlations
as a problem in CLIP specifically, and propose fine-tuning CLIP embeddings in such a contrastive
manner. Yang et al. (2023) also propose fine-tuning CLIP embeddings contrastively but they make
explicit use of group labels. Unlike these earlier work, our paper is the first to (i) highlight that
CLIP’s poor performance is due in part to OOD class prompts, and (ii) propose a method of improv-
ing zero-shot classification without fine-tuning embeddings on downstream datasets.

Finally, recent work by Adila et al. (2023) also aim to improve CLIP’s robustness without fine-
tuning. They query a large language model (LLM) for additional knowledge of the salient feature
to adjust CLIP’s embeddings. Our work is similar to theirs as we also propose augmenting CLIP
with a publicly-available large pretrained model — namely, the image-to-text model BLIP (Li et al.,
2022a). However, our proposed system is much more automated as their approach requires extensive
manual input (knowing the right queries to ask the LLM).

4 SPURIOUS CORRELATIONS IN CLIP: AN INVESTIGATION

To better understand how and why spurious correlations are learnt by CLIP, we began by examining
existing results on Waterbirds and CelebA. Table 1 shows worst-group (WGA) and average accura-
cies on Waterbirds and CelebA for three models: (i) CLIP with the ResNet-50 image encoder, (ii)
CLIP with the ViT-L/14 image encoder, and (iii) OpenCLIP with the ViT-L/14 image encoder. For
(i) and (ii), we use the official implementation by (Radford et al., 2021). For (iii), we use the model
trained with the LAION-400M dataset, the same size as CLIP’s pretraining corpus. OpenCLIP does
not have a ResNet-50 encoder.

CelebA WGA is significantly lower than Waterbirds WGA on a standard ERM model. However,
this trend reverses completely on both CLIP architectures, with the former exceeding the latter by
roughly 30% to 40%. Furthermore, the worst-group gap (the difference between WGA and average
accuracy) on CelebA is only ∼5%, suggesting that the model has not learnt spurious correlations at
all. Even more bewildering, this result cannot be replicated for the OpenCLIP ViT-L/14 model. On
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Waterbirds CLIP ResNet-50 CLIP ViT-L/14 OpenCLIP ViT-L/14
WG Average Gap WG Average Gap WG Average Gap

True Label Prediction (from Table 1) 39.3 77.2 38.0 45.2 84.4 39.2 46.3 73.7 27.5
Species Prediction 18.5 24.6 6.1 29.4 35.0 5.7 43.0 46.1 3.1

Species Prediction (Top-5) 43.6 53.2 9.6 62.6 69.2 6.6 69.7 74.7 5.0
Species Binarized 72.6 86.9 14.3 82.6 94.8 12.3 82.2 92.0 9.7

Background Prediction (from Table 1) 52.8 71.9 19.1 55.7 75.1 19.4 72.3 83.5 11.2
Location Prediction 46.0 63.7 17.7 60.1 74.7 14.6 60.9 80.0 19.2
Location Binarized 69.2 92.9 23.7 74.6 91.9 17.3 72.4 92.8 20.4

Table 2: Results of zero-shot classification on Waterbirds for fine-grained foreground (species) and
background (location) attributes. Rows 1 and 5: Accuracy on the original binary label and spurious
attribute taken from Table 1, shown here for comparison. Rows 2 and 6: Accuracy on the fine-
grained attributes. Row 3: For species, we also report the percentage of samples where the correct
class is one of the top 5 inner products (out of 200 classes). Rows 4 and 7: Accuracy where the
predicted fine-grained attribute is mapped back to the original binary categories.

the OpenCLIP implementation, the CelebA WGA is a paltry 15%, even lower than standard ERM.
The only difference between the CLIP and OpenCLIP implementations is the pretraining dataset.

These results are seemingly inexplicable when we consider the standard narrative of spurious corre-
lations. Recall that the predictive equivalent of the InfoNCE objective is the cross-entropy loss. Spu-
rious correlations learnt by an ERM model trained via cross-entropy loss, as is the case in Sagawa
et al. (2019), will also be learnt by contrastive models like CLIP. As such, the use of contrastive
learning alone does not explain why CelebA WGA improved so drastically.

The obvious and immediate suspect is pretraining support. Table 1 suggests that both CLIP and
OpenCLIP’s pretraining datasets are biased towards majority samples in the case of Waterbirds, re-
sulting in consistent worst-group gaps across all three models. Conversely, for CelebA, we might
reason that OpenCLIP’s dataset is strongly biased whereas CLIP’s dataset contains a sizeable num-
ber of majority and minority samples alike, explaining the discrepancy in WGA between CLIP and
OpenCLIP. However, as we will show in further experiments, this explanation too is inadequate.

4.1 SPURIOUS ATTRIBUTE PREDICTION

It is not possible to directly compare the two pretraining datasets without access to CLIP’s pretrain-
ing dataset. Instead, our first proxy is to establish how strongly each model has learnt the spurious
concept. We perform zero-shot classification using the spurious attribute as label, i.e. predicting
background on Waterbirds and gender on CelebA. Table 1 (last three rows) shows these results.

Our findings are counterintuitive. On the two CLIP models, the Waterbirds WGA is ∼50% — no
better than random and only slightly higher than true label prediction. In other words, CLIP’s zero-
shot performance on background prediction is almost as poor as foreground (label) prediction.
If CLIP’s pretraining distribution was skewed towards majority groups and had allowed the model
to learn background as a spurious correlation, we would accordingly expect the encoder to learn
a strong representation of background features. However, our results show that CLIP is unable to
(correctly and non-spuriously) associate background features with their label.

Furthermore, we observe that the average accuracy has also decreased by 5% to 10% compared
to true label prediction. This indicates that background prediction is relatively poorer for majority
groups than minority groups — further contradicting the naive explanation that pretraining coverage
of Waterbirds is biased towards majority groups.

4.2 EXAMINING THE IMAGE EMBEDDING SPACE

To further support this point, we visually examine CLIP’s image embeddings on both datasets. Fig-
ure 1 plots the first two principal components of images embeddings, split by group. In Waterbirds,
neither foreground nor background correspond to principal directions of separability. As such, poor
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CelebA CLIP ResNet-50 CLIP ViT-L/14 OpenCLIP ViT-L/14
WG Average Gap WG Average Gap WG Average Gap

Original: . . . celebrity with { blond, no blond } hair. 82.2 87.9 5.7 74.3 80.7 6.5 15.6 89.0 73.5
. . . celebrity with { blond, non-blond } hair. 54.8 88.9 38.8 26.3 87.2 60.9 15.6 88.9 73.3

. . . celebrity whose hair is { blond, not blond }. 58.7 82.8 24.2 80.4 85.4 5.0 58.9 90.9 32.0
. . . human with { blond, no blond } hair. 82.2 87.9 5.7 59.3 71.1 11.7 53.5 63.1 9.6

Table 3: Zero-shot classification on CelebA with various class prompts. Even minute differences in
the prompts, e.g. changing “not blond” to “non-blond” result in significant drops of WGA. There
is also little correlation in WGA between the three models.

foreground prediction cannot be fully explained by the model having learnt background as a
spurious correlation, corroborating our findings in Sections 4.1.

Conversely, CelebA images are well-separated by the spurious attribute but not the salient feature.
The fact that (i) the two CLIP models perform well (∼80% WGA) on CelebA, and yet (ii) do not
produce image embeddings that are separable by class is our first clue that the choice of text prompt
plays a significant role. A further indication that the naive spurious correlation explanation does
not hold comes from the OpenCLIP image embeddings (plots shown in Appendix B Figure 3 due
to space constraints). Despite the vast difference in WGA between the CLIP and OpenCLIP ViT-
L/14 models, both models produce almost identical image embeddings — separable by the spurious
feature but not the true label. It is clear that we must examine the text component if we are to explain
these findings adequately.

4.3 VARYING CLASS PROMPTS IN ZERO-SHOT CLASSIFICATION

We performed a series of experiments where we varied the class prompts used at test-time. In both
datasets, we found that changing the class prompts significantly affected zero-shot accuracy.

Waterbirds As noted in Section 2, Waterbirds was made by artificially superimposing natural
images of 200 species of birds on four types of backgrounds (bamboo forest, forest, lake,
ocean). These fine-grained attributes, which we denote as “species” and “location”, were binarized
into { land, water } to form the final dataset. We consider two sets of experiments: (1) direct
zero-shot classification using species and location attributes as labels, and (2) we take the results
of (1) and manually map the predicted species or location to their binary category { landbird,
waterbird } or { land background, water background } respectively.

Table 2 shows the results of these experiments. For the foreground, species prediction (a K = 200
classification problem) is reasonably worse than label prediction, however, by simply expanding the
margin of error to the top five classes, we find that all three models already outperform true label
prediction. In other words, CLIP (and OpenCLIP) has a higher rate of success narrowing down the
bird species to five of 200 possible choices than it has classifying the image as landbird or waterbird.
The same behavior is true for background — CLIP is better at predicting one of four exact locations
than the binarized land or water background.

Furthermore, when we take the fine-grained attribute that the models predict and manually map it
back to the original binary categories, we find that CLIP’s performance improves even further, with
WGA improving up to 82% on the two ViT-L/14 architectures. This implies that CLIP has a much
more robust understanding of the foreground feature than its WGA suggests, yet struggles with the
simpler task of predicting one of two broad categories.

CelebA We design several variants of the original class prompts used by Zhang & Ré (2022) (as
reported in Table 1). Table 3 shows the results of zero-shot classification on each set of prompts. We
see that minute differences in the choice of class prompt lead to drastic drops in WGA. For example,
simply changing the phrase from “no blond hair” to “non-blond hair” reduces WGA by 30-50%
on CLIP. We also see little correlation in the results of the three models: each model performs best
on a different prompt, and what improves WGA on one model can worsen WGA on another.
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Figure 2: (a) Log frequencies of the various bird species on LAION-400M, the pretraining dataset
for OpenCLIP. Both “waterbird” and “landbird” have significantly lower counts than the vast ma-
jority of bird species. Specifically, “landbird” occurs the least frequently. (b) Marginal log proba-
bilities for the same prompts on MetaCLIP. Points in red denote words with zero probability in the
pretraining distribution. We see that “waterbird” has lower probability than about half of the bird
species and “landbird” has zero probability.

In both datasets, we see that zero-shot accuracy is highly sensitive to the choice of prompt.
CelebA WGA can be arbitrarily worsened by making minute, semantic-preserving changes to class
prompts. Conversely, Waterbirds WGA improved on the harder task of predicting more fine-grained
attributes. These findings undermine the conventional understanding that spurious correlations are
the sole reason for poor performance on minority groups.

4.4 OUT-OF-DISTRIBUTION DETECTION OF CLASS PROMPTS

Spurious correlations alone fail to explain our findings above. How, then, can we resolve the dis-
crepancy between the expected and observed WGAs in these benchmark datasets? Our hypothesis
is that choosing class prompts that are OOD with respect to CLIP’s pretraining distribution
significantly impairs zero-shot accuracy. In datasets where spurious correlations occur, this effect
can arbitrarily reinforce or mitigate the worst-group gap.

To verify such a claim, we need to compute the marginal likelihood qpt(t) of the text prompts used
in these datasets. This is not directly possible as the data that CLIP was pretrained on is not pub-
licly available. They cannot be estimated from the inner products ⟨x, t⟩ of image-text embeddings

either, as these products are ratios of joint and product-of-marginal distributions
qpt(x, t)

qpt(x)qpt(t)
and

so individual marginal distributions cannot be extracted from them. Other methods that try to esti-
mate these likelihoods can also present pitfalls (Zhang et al., 2021). Instead, we rely on open-source
versions of CLIP to perform this analysis.

OpenCLIP on Waterbirds On OpenCLIP, we can directly count the frequencies of class tokens
on LAION-400M, its pretraining dataset. Figure 2a compares the log-frequency of the tokens repre-
senting each of the individual bird species, as well as the words “landbird” and “waterbird”. We see
that the tokens for “waterbird” and “landbird” have lower frequencies than the tokens representing
the vast majority of bird species. In particular, we see that the “landbird” token is exceedingly rare,
being about three magnitudes less frequent than the next rarest token.

MetaCLIP on Waterbirds We also consider MetaCLIP Xu et al. (2023), an effort to mimic the
pretraining distribution of CLIP by balancing an open-source dataset (400M Common Crawl image-
text pairs) on CLIP’s metadata, and subsequently training on the balanced dataset. We analyze the
datacard of the ViT-L-14-quickgelu model and plot the log marginal likelihoods of the same
terms in Figure 2b. We see that “waterbird” has lower probability than about half of the bird species.
Furthermore, the word “landbird” has zero probability, i.e. it is not in the pretraining support at all.
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Algorithm 1 BLIP-CLIP Image Classification

Input: training dataset Dtr = {xi, yi}Ntr
i=1, test dataset Dte = {xj}Nte

j=1, CLIP encoders (f, g),
BLIP model b, BLIP preamble t1, hyperparameter k
for i = 1 to Ntr do
wi := g

(
b(xi|t1)

)
end for
for j = 1 to Nte do

{Variant 1: Image-to-Caption k-NN}
{i[1], . . . , i[k]} = argk maxi∈{1,...,Ntr}⟨f(xj),wi⟩
{Variant 2: Caption-to-Caption k-NN}
{i[1], . . . , i[k]} = argk maxi∈{1,...,Ntr}⟨g

(
b(xj |t1)

)
wi⟩

predict ŷj ← I
[
ave{yi[1] , . . . , yi[k]

} ≥ 0.5
]

end for

Both OpenCLIP’s frequencies and MetaCLIP’s likelihoods corroborate each other and suggest that
“waterbird” and “landbird”, the widely-used class prompts for the Waterbirds dataset, are OOD
with respect to pretraining. This presents a possible explanation of our earlier findings in Sec-
tion 4.3. The use of OOD class prompts lead to undefined predictive behavior. In a spurious dataset
like Waterbirds, they have exacerbated the direction of spuriousness, resulting in even lower WGA
than naive ERM. Conversely, the models perform better when we use the fine-grained species as
class prompts, as these tokens are represented in pretraining. The degree of spuriousness learnt by
the model is far lower than zero-shot results with OOD prompts imply.

5 AUTOMATING CLASS PROMPTS USING IMAGE-TO-TEXT GENERATION

Our findings in Section 4 highlight the necessity of using class prompts that have pretraining sup-
port. This begets the key question: how do we ensure that the prompts we use for downstream
classification are in-distribution? Our proposal is simple. Much like we used Llama-2 as a proxy
to to approximate the marginal distribution of specific class prompts, we can similarly leverage a
large pretrained model to generate class prompts, under the same assumption that pretraining on
large-scale data would ensure similar support over joint image-text space.

Instead of manually generating K prompts (one for each class), we propose using a separate image-
to-text model to generate Ntr captions, one for each sample of the downstream training set. These
captions are passed through CLIP’s text encoder to be converted into text embeddings, resulting in a
set of Ntr embeddings: {txi}

Ntr
i=1. For a given test image x∗, prediction is carried out by performing

k-nearest neighbors (k-NN) algorithm on tx∗ and the support set {txi
}Ntr
i=1. We experiment with

two variants of this approach: (1) performing k-NN on the image embedding of x∗, i.e. by passing
the test image into CLIP’s image encoder, and (2) performing k-NN on the text embedding of x∗, i.e.
by passing test image into the image-to-text model, and then converting the resulting caption into a
text embedding via CLIP’s text encoder. The full algorithm (both variants) is shown in Algorithm 1.
We use BLIP (Li et al., 2022a), a widely-used and publicly available captioning model, for our
experiments. We informally dub this approach as BLIP-CLIP.

We verify the performance of BLIP-CLIP in several experiments below.

1. We test on Waterbirds to confirm that using BLIP-CLIP circumvents the OOD text prompt
issue described in Section 4 and mitigates the harmful spurious correlations. We verify that
WGA has improved.

2. Our findings in Section 4 suggest that BLIP-CLIP can be useful even in datasets without
spurious correlations, so long as the dataset contains a distribution shift due to OOD text
prompts. We design such an experiment on ImageNet-1K.

3. We perform some ablations. We ablate on CelebA, where OpenCLIP results are poor (even
though CLIP’s baselines are excellent), and show that BLIP-CLIP improves WGA. We
also ablate for using different templates during the zero-shot evaluation process, which is a
common procedure when classifying with CLIP models.
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ImageNet-1K Waterbirds
Worst-Class Average Gap Worst-Group Average Gap

Baseline Zero-Shot 42.8 64.6 21.8 39.3 77.2 38.0
Contrastive Adapter (Zhang & Ré, 2022) - - - 86.9 96.2 9.3

Yang et al. (2023): Llc + Lvc + Lvs 70.4 75.4 5.1 90.5 96.9 6.4
BLIP-CLIP Image-to-Caption k-NN 83.9 89.2 5.3 60.7 86.2 25.5

BLIP-CLIP Caption-to-Caption k-NN 77.4 82.1 4.7 70.7 80.4 9.7

Table 4: Results of BLIP-CLIP, along with existing methods for comparison. Note that even though
BLIP-CLIP does not surpass the fine-tuned methods on Waterbirds, it is still able to improve upon
vanilla zero-shot classification by ∼20% WGA without needing any fine-tuning or spurious labels.

5.1 EXPERIMENTAL DETAILS AND RESULTS

Spurious Correlations: Waterbirds We test our approach on the Waterbirds dataset and report
our results on Table 4. We show results of both variants of BLIP-CLIP, detailed above and in Algo-
rithm 1. We note that it is still necessary to pass a preamble prompt into BLIP. For this experiments,
the preamble prompt that we pass into BLIP for completion is “This is a picture of the bird called
a”. In addition to vanilla zero-shot classification, we also report the existing results of Zhang &
Ré (2022) and Yang et al. (2023). As noted in Section 3, both of these methods fine-tune CLIP
embeddings on the training dataset. They also make use of spurious attribute labels — Zhang & Ré
(2022) requires spurious annotations on the validation set and Yang et al. (2023) requires spurious
annotations on the test set.

From Table 4, we see that BLIP-CLIP does not surpass fine-tuned methods in WGA. However, it is
still able to bring a ∼20% improvement in WGA compared to vanilla zero-shot classification.
This improvement comes solely from the use of BLIP as a prompt-generating model. In particular,
we stress that unlike the other methods, BLIP-CLIP does not require fine-tuning or spurious
attribute labels.

OOD Text Prompts: ImageNet-1K Our findings in Section 4 suggest that BLIP-CLIP can be
extended beyond spurious correlations to OOD tasks more generally, so long as the distribution shift
is due to text prompts. To verify this intuition, and to validate our approach on a natural image
dataset, we also present an experiment on the ImageNet-1K dataset. We design an experiment as
such: We consider 13 of the 1000 classes in the dataset that correspond to cats. All cats (family
Felidae) are split into two subfamilies. 5 of these 13 families are of the subfamily Pantherinae (the
"big cats"): leopard, snow leopard, jaguar, lion, tiger. The remaining 8 are of the subfamily Felinae:
tabby, tiger cat, Persian cat, Siamese cat, Egyptian cat, cougar, lynx, cheetah. We consider a binary
classification task corresponding to these two labels. We present zero-shot results as well as our
method (BLIP-CLIP). Since the validation set only contains 50 samples of each class, we use the
training set here for evaluation (6500 samples in the first class, and 10400 samples in the second).

We choose this setup specifically because (similar to the Waterbirds dataset) it is difficult to design
in-distribution class prompts for this task, as we might expect technical taxonomic terms such as
Pantherinae or Felinae to be OOD. To prove this, we experiment with a variety of prompts that a
human practitioner might conceivably think of, including using the actual scientific terms and using
layman terms (big cat vs small cat). The baseline results in Table 4 show the best WGA amongst the
various such prompts. BLIP-CLIP surpasses all baselines methods, showing that synthetic captions,
such as BLIP might generate, are better prompts that human-designed captions.

Ablations Table 5 shows the results of two ablations. First, we report BLIP-CLIP on CelebA,
which OpenCLIP does poorly on (as shown earlier in Table 1). We see that BLIP-CLIP leads to high
accuracy on this dataset. Next, we also ablate for using multiple templates on Waterbirds, which is a
common practice done by CLIP practitioners. Specifically, we report the accuracy averaged over the
following four preamble templates: “This is a picture of the bird called a”, “This is an image of the
bird called a”, “This is an picture of the bird known as a”, and “This is an image of the bird known
as a”. Table 5 shows that BLIP-CLIP retains high accuracy and is robust to the choice of template.
This is important not only in showing that BLIP-CLIP works with template averaging, but also that
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CelebA Waterbirds (Multiple Templates)
Worst-Group Average Gap Worst-Group Average Gap

Baseline Zero-Shot 15.6 89.0 73.5 39.3 77.2 38.0
BLIP-CLIP Image-to-Caption k-NN 76.2 79.9 3.7 71.2 79.3 8.1

Table 5: Ablation results. For the CelebA ablation, the baseline zero-shot results are from OpenCLIP.
We note that the original CLIP models perform well on CelebA, as shown in Table 1. For the second
ablation, the baseline zero-shot results are for the CLIP ResNet-50 model.

CLIP’s sensitivity to text prompts that we identify in Section 4 is due to keyword prompts being
OOD and not simply from other arbitrary choices on text such as using a different template.

6 DISCUSSION AND CONCLUSION

Our work is the first to investigate the unexplained differences in spurious correlation behavior be-
tween CLIP and unimodal vision models. In doing so, we uncover the key finding that the choice
of text prompts matters greatly for zero-shot robustness, with CLIP’s performance suffering when
OOD class prompts are used. This is especially harmful in spurious correlation datasets, where the
OOD prompts can reinforce spuriousness. We note that our results and our proposed approach are
not restricted to CLIP or even CLIP-like models: they can be extended to multimodal generative
models more generally, where text is one of the modes of information. As the ImageNet-1K exper-
iment shows, our work also extends to broader distribution shift tasks beyond spurious correlations,
so long as the distribution shift arises from OOD text prompts.

Future Work (1) Testing BLIP-CLIP on non-spurious correlation datasets, to understand if BLIP-
generated captions are universally useful in improving accuracy even when spurious correlations do
not exist. (2) BLIP-CLIP is not fully automated as there is still some manual input in the form of
choosing a reasonable preamble prompt to query BLIP for completion. An automated system for
choosing the preamble prompt will be useful.
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A EXPERIMENTAL DETAILS

Datasets For both datasets, we follow the standard test/train splits. Waterbirds contains 4796
training examples and 5794 test examples. CelebA contains 19962 test examples; we do not use the
training set in CelebA throughout this paper.

CLIP For all experiments, we use the pretrained CLIP implementation from https://github.
com/openai/CLIP out of the box. Unlike Zhang & Ré (2022) and Yang et al. (2023), we experi-
ment with the ResNet-50 and ViT-L/14 image encoder architectures.

BLIP and Llama-2 We use the implementation of BLIP from Hugging Face (https://
huggingface.co/Salesforce/blip-image-captioning-large) and the official im-
plementation of Llama-2 from https://github.com/facebookresearch/llama.

Class Prompts We follow the same prompt templates as Zhang & Ré (2022) for all experiments
in Section 4 except for the CelebA in Table 3 where we intentionally make changes to the class
prompts. For Waterbirds, we use the preamble “This is the image of a [class_name].” For
CelebA, we use the preamble “A photo of a celebrity with {blond, no blond} hair”.

Section 4.4 We plot log q̃(t[2]|t[1]), where t[1] is the preamble template “This is a picture of” that
we have used for Waterbirds and t[2] is the completion of interest. We plot 72 choices of t[2] — the
words “waterbird” and “landbird” themselves, as well as 70 fine-grained bird names. 2 Figure 2
shows that the word “landbird” has one of the lowest likelihoods under Llama-2, lower than almost
all 70 specific bird names. The word “waterbird” has higher likelihood but is still less probable than
half of the specific bird names.

2These 70 bird names are selected by taking the last word of all 200 species of birds in the dataset and
removing duplicates, i.e. different species of birds in the same family will be mapped to a single point. This
ensures a fair comparison to “waterbird” and “landbird”, which are themselves one-word prompts.
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B FURTHER RESULTS

Figure 3: 2D projections of OpenCLIP image embeddings for the Waterbirds and CelebA test sets,
colored by group.
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