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Abstract

Bayesian optimization is a powerful tool for optimizing a black-box function on a compact
Euclidean space under a limited evaluation budget. However, in practice, we may want to
optimize over discretization of the solution space. For example, in scientific and engineer-
ing problems the discretization of the solution space naturally occurs due to measurement
precision or standardized parts. In this work, we consider the problem of optimizing a
black-box function with a discretized solution space. To address this problem, prior work
uses Bayesian optimization on the Cartesian product of graphs. We extend this work to
weighted edges which allow us to exploit the problem structure more effectively. Our pro-
posed method outperforms earlier methods in diverse experiments including neural architec-
ture search benchmarks and physics-based simulations with discretized solution spaces. We
also investigate the impact of adding multi-hop edges to weighted graphs, which improves
performance of our method on the optimization of synthetic benchmark functions.

1 Introduction

Consider a black-box function f : X → R with a compact search space X ⊂ Rd. A black-box function has an
unknown functional form (Hansen et al., 2010; Turner et al., 2020) and may require many function evaluations
in order to determine its optimum. Optimizing black-box functions is thus challenging, particularly when
function evaluations are expensive and evaluation budgets are limited. Previous research (Srinivas et al.,
2010; Snoek et al., 2012; Turner et al., 2020) has shown that Bayesian optimization (Brochu et al., 2010;
Shahriari et al., 2016; Garnett, 2023) is an effective method for optimizing such costly black-box functions.
Its effectiveness has also been demonstrated in various real-world applications such as optimization of antire-
flective glass (Haghanifar et al., 2020), free-electron lasers (Duris et al., 2020), chemical reactions (Shields
et al., 2021), and battery lifetimes (Attia et al., 2020).

We consider problems where the original continuous search space must be discretized. In various problem
domains, searching for a solution on X often leads to the repeated evaluation of points that are too close to
each other, which is unnecessary and inefficient. This is especially pertinent in engineering problems such
as building design, electronic component design, and inventory management. To illustrate, in the context
of structural design, choosing structural members, fasteners, materials, connections, and components often
demands decisions from a predefined set of standard choices. Likewise, in the design of neural network
architectures, diverse variables, i.e., hyperparameters, such as the number of neurons in a layer, learning
rate, and output channel size are defined on a discretized search space.

Moreover, considering irregular increments such as a logarithmic or geometric sequence, discrete variables are
utilized in science and engineering due to physical constraints, fabrication limitations, measurement precision,
and ease of interpretability. In particular, this approach is adopted where the range of a variable is very large
and the order of magnitude of a variable is more important than its exact value. Some examples include the
measurement of earthquake magnitude, sound intensity, and radioactive decay. Electronic components or
structural engineering components often come in series where the values follow a logarithmic or geometric
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sequence. The need to control various properties and trade-offs in design choices, as well as the ineffectiveness
of adjusting variable values by small amounts, also contribute to the use of irregularly discretized variables.

To address the aforementioned practical issue of optimizing a black-box function, we investigate various
strategies for optimizing the function on a discretized search space D ⊂ X ⊂ Rd using the characteristics of
an experiment and the experimenter’s design choices. Inspired by the work of Oh et al. (2019), we present
a Bayesian optimization method that uses the Cartesian product of weighted graphs. Unlike previous work,
our method focuses on a search space of ordinal variables instead of a combinatorial space, where discrete
variables with irregular increments are given. Our approach defines a graph with weighted edges to represent
an ordinal variable. Using the weighted graph, we build a Gaussian process surrogate with diffusion kernels
on the Cartesian product of the weighted graphs and maximize an acquisition function on the graph Cartesian
product to select the next point. Our algorithm demonstrates improved performance compared to several
baseline methods in a range of experiments, including neural network architecture search benchmarks and
physics-based simulations. Additionally, we examine the impact of additional multi-hop edges in weighted
graphs, and we demonstrate that adding them helps to improve the performance of our method on the
optimization of synthetic benchmarks.

We describe the formal problem formulation and our contributions before presenting main concepts.

Problem Formulation. A discretized space D ⊂ X of a compact space X ⊂ Rd is defined as

D = {x
(1)
1 , . . . , x(1)

q1
} × · · · × {x

(d)
1 , . . . , x(d)

qd
}, (1)

where x
(k)
i < x

(k)
j if i < j for k ∈ [d]. We define D as the product of finite sets of candidates for each

continuous variable, where the candidates are determined by the experiment’s characteristics and the exper-
imenter’s design choices; see Section 4.1. Here, we assume that the discretization is relatively coarse, and
therefore, the ordinal variables cannot be considered as continuous variables. While this space design process
is necessarily handcrafted, it allows us to choose a practically or physically feasible query point based on the
experimenter’s knowledge, without additional external treatments.

Given that we are optimizing a black-box function, only a function evaluation of a given point x ∈ D is
available:

y = f(x) + ϵ, (2)

where ϵ is observation noise. Therefore, our objective is to find the optimal solution that minimizes the
black-box function:

x† = arg min f(x), (3)

where x ∈ D.

Contributions. Our work can be summarized as follows.

1. We provide an overview of the motivation for search space discretization using irregular increments.

2. We propose a Bayesian optimization strategy for a search space of ordinal variables that is defined
on the Cartesian product of weighted graphs.

3. We investigate the effects of introducing additional multi-hop edges in weighted graphs.

4. We demonstrate the superior performance of our approach over existing methods in several experi-
ments, including neural network architecture search benchmarks and physics-based simulations.

We have included our implementation in the supplementary material.

2 Related Work

In this section, we discuss prior work related to our paper.
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Bayesian Optimization with Integer-Valued or Ordinal Variables. Several methods have been pro-
posed to handle integer-valued or ordinal variables in Bayesian optimization. Garrido-Merchán & Hernández-
Lobato (2020) analyze two simple methods for integer-valued variables and propose a method with a trans-
formed kernel, which models integer-valued variables directly with a Gaussian process surrogate model.
Oh et al. (2019) propose a combinatorial Bayesian optimization method with the Cartesian product of
variable-wise graphs, using a chain graph for ordinal variables. Picheny et al. (2019) solve ordinal Bayesian
optimization by preserving the ordering of points and using a latent Gaussian process model to determine
distances between points. This method is slow, because it requires choosing a large number of free parameters
for the Gaussian process.

Gaussian Processes on Graphs. Several studies have explored the use of Gaussian processes on graphs.
Kondor & Lafferty (2002) propose a diffusion kernel on graphs based on the heat equation, and Smola &
Kondor (2003) present a kernel on graphs using the concept of a regularization operator. The diffusion
kernel (Kondor & Lafferty, 2002) is a special case of the kernel by Smola & Kondor (2003). Borovitskiy
et al. (2021) introduce a Matérn Gaussian process model on graphs, which has several interesting properties
including the convergence of a graph Matérn kernel on the Euclidean and Riemannian manifolds. Zhi et al.
(2020) propose a spectral kernel learning method for Gaussian processes on graphs, which is capable of
learning a spectral kernel on a discrete space. Blanco-Mulero et al. (2021) use a neighborhood kernel on
graphs to learn a transition function over time for a dynamic graph structure by measuring the interaction
changes between vertices.

Bayesian Optimization with Prior Knowledge. By incorporating prior knowledge on the location
of solution or information on global optimum, diverse approaches have been proposed. Using the previous
similar tasks, approaches to starting an optimization round with better initialization are studied (Poloczek
et al., 2016; Lindauer & Hutter, 2018). Moreover, Feurer et al. (2015) propose a method to initialize
hyperparameter optimization via meta-learning. Similar to the work (Feurer et al., 2015), an approach to
learn meta-features to initialize Bayesian hyperparameter optimization has been suggested (Kim et al., 2017).
Also, Perrone et al. (2019) explore a method with the design of data-driven search spaces via transfer learning
utilizing historical data. In addition, Ramachandran et al. (2020) investigate the use of priors to warp a
search space expanding the space with the prior information, and Souza et al. (2021) propose a method to
directly adjust balance between priors and models using the prior information that guides which locations
yield better performance. Compared to this line of research, our problem formulation does not employ the
prior information on solution locations or global optima, and we consider the measurement precision and
standardized parts, which make our problem discrete. As will be discussed in Section 6, we assume that
points that are not included in D cannot be evaluated because they are practically infeasible.

3 Background

In order to solve the optimization problem involving discretized continuous variables, introduced in Section 1,
we make use of a Bayesian optimization technique. Therefore, we begin by providing a brief description of
the Bayesian optimization procedure.

3.1 Bayesian Optimization

When optimizing a black-box function using Bayesian optimization, the next point to evaluate is determined
sequentially by constructing a surrogate model and maximizing an acquisition function. Because the true
function is not explicitly known, a surrogate model is built at each step using the points that have already
been evaluated and their corresponding function evaluations. To balance exploration and exploitation in the
search space, the surrogate model must provide both a function value estimate and its uncertainty estimate.
This can be achieved using a probabilistic regression model, with a Gaussian process (Rasmussen & Williams,
2006) being a popular choice in Bayesian optimization. Once the surrogate model has been constructed, the
next query point is selected by maximizing an acquisition function that is based on both the function value
and uncertainty estimates produced by the surrogate. These steps are repeated until an evaluation budget
is exhausted. For more details, see the work by Brochu et al. (2010); Shahriari et al. (2016); Garnett (2023).
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Solving the problem on D with Bayesian optimization is challenging due to several reasons:

1. A surrogate model on D should be defined in a distinct manner from a surrogate model for X .

2. Off-the-shelf optimization techniques, such as L-BFGS-B (Liu & Nocedal, 1989) and CMA-
ES (Hansen & Ostermeier, 1997), are not suitable for optimizing an acquisition function on D.

3. If we relax the problem from D to X , it is not trivial to transform back to D.

4. Unlike a combinatorial space with only discrete variables, D includes ordinal and numerical infor-
mation that must be considered in the optimization process.

3.2 Earlier Methods

Simple Transformation. The most basic approach for dealing with integer-valued or ordinal variables
in the optimization problem on D involves solving the problem on a continuous search space X , and then
transforming the resulting query point x‡ ∈ X to a point in D. Specifically, the closest point in D to x‡ is
selected:

x̂‡ = arg min
x∈D

∥x − x‡∥. (4)

Or, to efficiently find the closest point, choose coordinate-wise:

x̂i = arg min
x∈{x

(i)
1 ,...,x

(i)
qi

}
|x − xi|, (5)

for i ∈ [d] where x̂‡ = [x̂1, . . . , x̂d] and x‡ = [x1, . . . , xd]. Henceforth, (4) or (5) is expressed as ⌈x‡⌋.
However, since this method evaluates a different point than the one chosen by Bayesian optimization, it can
be considered as not adhering to the Bayesian optimization policy.

Continuous Variables Keeping. This method is similar to the Simple Transformation in that it follows
the standard Bayesian optimization process defined on X , and then transforms a query point to a point in
D. However, instead of transforming the query point after evaluation, it retains the continuous values of the
query points throughout the optimization process. Before the evaluation, the query point x‡ is transformed
to ⌈x‡⌋ to obtain a response of ⌈x‡⌋. While this method aligns with the underlying principles of Bayesian
optimization, it can result in the acquisition of points that are rounded to the same integer, thereby leading
to suboptimal solutions. The Simple Transformation and the Continuous Variables Keeping methods are
thoroughly discussed in (Garrido-Merchán & Hernández-Lobato, 2020).

Transformed Kernel. In contrast to the Simple Transformation and Continuous Variables Keeping meth-
ods, Garrido-Merchán & Hernández-Lobato (2020) propose a kernel with transformation k(⌈x⌋, ⌈x′⌋), where
k is a kernel for Gaussian process regression, such as the exponentiated quadratic and Matérn kernels, and
x, x′ ∈ X . The transformed kernel outputs discrete values, making it challenging to optimize an acquisition
function with off-the-shelf optimization strategies. Therefore, we sample a sufficient number of candidates
from X to identify the maximizer.

Chain Graph. The method proposed by Oh et al. (2019). represents D as the Cartesian product of
graphs, where each graph represents a single ordinal variable. Each variable is modeled as a chain graph,
consisting of a vertex matrix Vi = [x(i)

1 , . . . , x
(i)
qi ] and an adjacency matrix Ai ∈ {0, 1}qi×qi for i ∈ [d], where

Ai is always symmetric and tridiagonial. For example, if qi = 3, Ai =
[

0 1 0
1 0 1
0 1 0

]
. The resulting Cartesian

product of chain graphs consists of all vertices V = V1 × · · · × Vd ∈ Rq×d, where q = q1q2 · · · qd.

To define a surrogate model on the graph Cartesian product, a diffusion kernel on graphs (Kondor & Lafferty,
2002) is employed, which is computed using the pairs of eigenvalue and eigenvector for the graph Laplacian
L = D − A ∈ Rq×q, where D and A are the degree and adjacency matrices, respectively. The diffusion
kernel is computed over all vertices V:

k(V, V) = [v1, . . . , vq] exp(−βΛ)[v1, . . . , vq]⊤, (6)
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Figure 1: Chain graphs without edge weights and with edge weights for a single ordinal variable, and their
graph Laplacians. For chain graphs, each edge is called a 1-hop edge.

where Λ = diag(λ1, . . . , λq) is a diagonal matrix of eigenvalues and v1, . . . , vq are the respective eigenvectors.
See (Kondor & Lafferty, 2002; Seeger, 2004) for a detailed description of the diffusion kernel. To handle
large q, (6) can be sped up using a Kronecker product decomposition of the Cartesian product of d graphs:

k(V, V) =
d⊗

i=1

qi∑
j=1

v(i)
j exp(−βiλ

(i)
j )v(i)

j

⊤
, (7)

where
⊗

is a Kronecker product and (λ(i)
j , v(i)

j ) is a jth eigenpair of a variable i. The work (Oh et al., 2019)
provides the details of this decomposition process.

To optimize an acquisition function, a fixed number of query candidates are sampled from V and a local
search is performed, because it is hard to use off-the-shelf optimization tools for optimizing a function over
vertices on a graph.

Probabilistic Reparameterization. Along with the aforementioned methods, we use the probabilistic
reparameterization method proposed by Daulton et al. (2022) as a baseline method. To utilize a gradient-
based optimization strategy in optimizing the acquisition function defined on a discrete space or a mixed space
of continuous and discrete variables, this method utilizes a technique of probabilistic reparameterization. As
reported in the work (Daulton et al., 2022), it shows its effectiveness in diverse circumstances including
problems defined on discrete spaces.

4 Proposed Method

In this section, we propose a method to optimize a black-box function on a discretized search space.

4.1 Search Space Design

In order to optimize a black-box function on D, it is necessary to explicitly define D ⊂ X , taking into account
not only simple rounding to integers but also precision and irregular increments. As discussed in Section 1,
we provide several examples of engineering and science problems such as neural network architecture design
and optoelectronic and microfluidic device design. Defining the search space requires careful consideration of
the details of the specific experiment, including minimum units for measurement, fabrication, and manufac-
turing, as well as the experimenter’s design choices, such as scaling for infinitesimal or huge values. Further
information on search space design can be found in Sections 5 and A.

4.2 Weighted Graphs for Ordinal Variables

Here, we present a special cases of weighted graphs for ordinal variables. As will be investigated, we also
define a weighted graph with a particular set of multi-hop edges.
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Algorithm 1 Bayesian Optimization with W-Graphs
Input: A time budget T and a black-box function f
Output: The best solution found x⋄

1: Set up a variable-wise graph structure including edge addition and compute edge weights.
2: Compute the eigenpairs of the graph Laplacian matrices L1, . . . , Ld for d weighted graphs.
3: for t = 1, . . . , T do
4: Construct a Gaussian process model on the Cartesian product of d weighted graphs with the eigenpairs

computed in Line 2.
5: Determine the next query point x‡

t by maximizing an acquisition function using a local search on the
graph Cartesian product.

6: Obtain a function value yt = f(x‡
t ) + ϵt where ϵt is observation noise.

7: end for
8: Compute (x⋄, y⋄) = arg min(x,y)∈{(x‡

i
,yi)}T

i=1
y.

9: return x⋄

We use a chain graph with edge weights to leverage the ordinal and numerical information of a discretized
continuous variable. For a variable i, we define the edge weight as the distance between two vertices:

|x(i)
j − x

(i)
k |, (8)

for j, k ∈ [qi]. Using this definition, we define the adjacency matrix for Vi as follows:

[Ai]jk =
{

|x(i)
j − x

(i)
k | if |j − k| = 1,

0 otherwise,
(9)

for j, k ∈ [qi]. The degree matrix for Vi is a diagonal matrix with entries [Di]jj =
∑qi

k=1[Ai]jk. Using the
chain weighted graph, we can compute the graph Laplacian L = D − A and its eigenpairs, which are used
to construct a surrogate model.

We can further expand the concept of weighted graphs beyond the chain weighted graphs by including
specific edges. As presented in Figures 1 and 5, we refer to an edge between a vertex and k-hop vertex
as a k-hop edge in this paper. For example, edges between −3.2 and 1.3 and between −3.2 and 10.1 are
2-hop and 3-hop edges, respectively. In addition to the graph examples in Figures 1 and 5, we also present
their graph Laplacians. Adding extra edges increases the average degree and creates cycles in the graph.
However, finding the optimal number and combination of edges is challenging due to a vast number of possible
combinations. To address this, we analyze the impact of adding multi-hop edges gradually; see Section 5.4
for the details of these analyses.

4.3 Bayesian Optimization with Weighted Graphs

The algorithm we use, as presented in Algorithm 1, follows the similar procedure of standard Bayesian
optimization, which is also similar to the framework of the work (Oh et al., 2019). Firstly, we establish a
variable-wise graph structure that has its own edges and their corresponding weights. Next, we compute the
eigenpairs of the graph Laplacians for d weighted graphs before proceeding with the iterative step to acquire
and evaluate a query point. In the iterative step, we construct a Gaussian process surrogate on the graph
and maximize an acquisition function to determine the query point.

5 Experiments

In this section, we first provide experimental setup for our proposed method as well as the baseline methods
explained above. Then, we present our results on three types of experiments including NATS-Bench and
physics-based simulations and the impact of additional multi-hop edges.

6



Under review as submission to TMLR

0 100 200 300 400 500
Iteration

−50

0

50

100

150

200

250

300

S
im

p
le

re
gr

et

Simple Transform.

CVs Keeping

Transformed Kernel

Prob. Reparam.

Chain Graph

Chain W-Graph

(a) De Jong 5

0 100 200 300 400 500
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
im

p
le

re
gr

et

Simple Transform.

CVs Keeping

Transformed Kernel

Prob. Reparam.

Chain Graph

Chain W-Graph

(b) Drop Wave

0 100 200 300 400 500
Iteration

0

100

200

300

400

500

600

S
im

p
le

re
gr

et

Simple Transform.

CVs Keeping

Transformed Kernel

Prob. Reparam.

Chain Graph

Chain W-Graph

(c) Eggholder

Figure 2: Results of optimizing synthetic benchmarks. All experiments are repeated 10 times and the
standard error of the sample mean is indicated by the shaded areas. W-Graph and CVs stand for weighted
graph and continuous variables. Note that negative shaded regions are a result of statistical representation
and not indicative of actual negative regrets.

Experimental Settings. For the earlier methods, namely the Simple Transformation, Continuous Vari-
ables Keeping, and Transformed Kernel, we use a Gaussian process with the Matérn 5/2 kernel (Rasmussen
& Williams, 2006) as the surrogate model. We adopt the expected improvement criterion (Močkus et al.,
1978) as the acquisition function for all the methods, including our algorithm. The multi-started L-BFGS-B
method is used to optimize the acquisition function in the Simple Transformation and Continuous Variables
Keeping methods. In contrast, the Transformed Kernel selects a query point from 10,000 sampled points.
For the graph-based approaches, we follow the approach suggested by Oh et al. (2019) and determine the
query point by applying a breadth-first local search from the best 20 out of 20,000 randomly sampled ver-
tices. We start all methods with 5 random initial points chosen from the Sobol’ sequences (Sobol’, 1967),
and repeat each experiment 10 times with 10 random seeds, i.e., 42, 84, . . . , 420, without any other trials.
Our implementation is written in Python with several scientific packages including NumPy (Harris et al.,
2020) and SciPy (Virtanen et al., 2020).

5.1 Synthetic Functions

We carry out the comparisons of our method and various baselines in synthetic function optimization. To
create a discretized search space, we sample a fixed number of points from a compact search space X , and
round a query point to the closest point among the points sampled. We uniformly sample 40 points from
each variable of X for a search space design with irregular increments, unless otherwise specified. As shown
in Figure 2, our method with chain weighted graphs works better than other existing methods.

5.2 NATS-Bench

We tackle a neural network architecture search problem with NATS-Bench (Dong et al., 2021), which pro-
vides a testing ground for three popular datasets: CIFAR-10, CIFAR-100, and ImageNet16-120, where each
benchmark is controlled by five variables and originally contains 32,768 architecture candidates. To create a
search space with irregular increments, we modify the original search space eliminating some of small variable
values; see Section A for the details. The intuition of our search space design is that we use fine increments
for significant regions and coarse increments for less significant regions by utilizing common knowledge in
the deep learning community. As shown in Figure 3, our proposed method with chain weighted graphs finds
high-quality solutions faster than other strategies.
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Figure 3: Bayesian optimization results of NATS-Bench. All experiments are repeated 10 times and the
standard error of the sample mean is indicated by the shaded area.
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Figure 4: Schematic illustration of a structure for electromagnetic shielding and results for optimizing the
structure. All experiments are repeated 10 times and the standard error of the sample mean is depicted.

5.3 Physics-Based Simulations

We conduct physics-based simulations on electromagnetic shielding as a real-world problem that requires
precision in measurement and fabrication. To obtain a response of optical transmission, we assess a nanopho-
tonic structure made of titanium dioxide and silver with the finite difference time-domain method. We utilize
Ansys Lumerical software to create and evaluate structures. As discussed in the work of Li et al. (2022),
a sandwich structure with double-sided nanocones is effective for transparent electromagnetic shielding.
See Figure 4a for a schematic of the structure.

We simulate the transmission at a wavelength of 550 nm by solving the Maxwell’s equation in the time
domain. Periodic boundary conditions on the sides of the simulation supercell and perfectly matched layers
on the top and bottom boundaries of the super cell are applied. We create a mesh grid of minimum size 5
nm over the x, y, and z directions for upper and lower nanocones and over the x and y directions for upper,
lower, and silver film layers. The minimum mesh size over the z direction for each of the three layers is set
as 1 nm. We can compute the electromagnetic interference shielding efficiency using the following equation:

Shielding Efficiency = 20 log
(

1 + η0tAg

2ρ

)
, (10)

where tAg is the thickness of silver, η0 = 377 Ω is the impedance of free space, and ρ = 1.59 × 10−8 Ω · m is
the bulk resistivity of silver. Since the shielding efficiency (10) depends on the thickness of silver, we choose
an optimal structure in terms of transparency. The nanophotonic structure is defined with 10 discretized
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Figure 5: Three graph types with k-hop edges for a single ordinal variable, and their graph Laplacians

continuous variables. Refer to Figure 4a and Section A for the details of the variables and their ranges.
Our method with chain weighted graphs shows the satisfactory performance compared to other methods, as
presented in Figure 4b.

5.4 Impact of Additional Multi-Hop Edges in Synthetic Benchmarks

To show the impact of additional k-hop edges, we evaluate baseline methods and our proposed method on
popular synthetic benchmark functions. For this class of problems, continuous variables are discretized by
sampling a fixed number of values from a search space X , which makes distances between two adjacent values
distinct depending on their sampled values.

The graph Laplacians of weighted graphs with multiple k-hop edges are readily computed by following the
definition of adjacency and degree matrices. For example, without loss of generality, we can define a complete
graph with edge weights, which implies that each vertex is connected to the all other vertices. In this case,
an adjacency matrix for a vertex matrix Vi is defined as the following:

[Ai]jk =
{

0 if j = k,

|x(i)
j − x

(i)
k | otherwise,

(11)

for j, k ∈ [qi].

Interestingly, as shown in Figure 6, adding extra k-hop edges gradually is effective in the performance of
Bayesian optimization. For the cases in Figures 6a, 6c, 6d, 6f, 6g, and 6h, the complete weighted graph
outperforms the other weighted graphs. This consequence implies that extra edges representing complete
distances help in finding a solution. However, as demonstrated in the other cases in Figure 6, the results
with the complete weighted graphs are not the best. In particular, in one case for the Branin function, the
complete weighted graph shows slower convergence than the other graph types including weighted graphs
with 1:2-hop edges, 1:5-hop edges, and 1:10-hop edges. It is worth noting that a weighted graph with 1:k-hop
edges indicates a weighted graph with 1-hop edges to k-hop edges.

To sum up, the use of weighted graphs with 1:k-hop edges can improve the connectivity of the graph and
consequently, the performance of Bayesian optimization. However, this process of adding edges can be
thought of as combinatorial optimization due to the enormous number of possible edge combinations (Ghosh
& Boyd, 2006). Thus, we claim that the performance of Bayesian optimization can be improved more by
knowing the pertinent structure of a weighted graph, but revealing such structures is left to future work.

Furthermore, while it might seem that a weighted graphs with 1:k-hop edges for k > 1 are equivalent to
weighted graphs with 1-hop edges, i.e., for chain weighted graphs, adding k-hop edges for k > 1 can increase
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Figure 6: Bayesian optimization results of the effects of adding k-hop edges gradually. W-Graph w/ 1:k-Hop
Edges indicates a weighted graph with 1, . . . , k-hop edges. Note that negative shaded regions are a result of
statistical representation and not indicative of actual negative regrets.

graph’s connectivity. This observation is consistent with the findings in the work (Ghosh & Boyd, 2006),
that the Fiedler value (Fiedler, 1973), i.e., the second smallest eigenvalue, increases with increasing average
degree, given that all weights are nonnegative and the number of vertices are constant (Holroyd, 2006).
Therefore, these edges are not redundant. Moreover, the research by Wainwright et al. (2000); Sudderth
et al. (2004), has demonstrated that adding edges and creating cycles in graphs can enhance the expressive
power of Gaussian graphical models. These findings suggest that additional edges in the weighted graph can
be beneficial for increasing the representation power of the corresponding graph.
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6 Discussion

In this section, we discuss several topics related to our proposed method and its implications.

Analysis on Numerical Results by Weighted Graphs. Fundamentally, weighted edges help represent
the connectivity of variable values and also understand the precise relation between variable values, while
unweighted edges only represent their connectivity. Our experimental results thus show that such additional
information can improve the performance of Bayesian optimization. However, as can be seen in Figure 6,
chain weighted graphs do not always defeat other methods; in addition, complete weighted graphs do not
always beat other algorithms. We presume that some edges may be more effective in increasing the expressive
power to find a solution, while a few edges may significantly degrade the expressive power. Therefore, the
Fiedler value alone may not be sufficient to analyze and interpret Bayesian optimization results. To address
this issue, it is necessary to conduct more research on rigorous edge addition and selection in the perspective
of Bayesian optimization, and to investigate a representative score for our task.

Global Solutions in X \ D. We assume that points in X \ D are practically or physically infeasible,
making it impossible to evaluate such points; as discussed in our real-world problems in Sections 5.2 and 5.3,
there exist points in X \ D that are impossible to evaluate. As a result, finding a global solution in X \ D is
beyond the scope of this work.

Limitations. While a handcrafted search space may be beneficial in some cases, it can require a great
deal of expertise and effort to construct the search space. The ability to systemically identify a practically
or physically feasible search space would be valuable in making the method more accessible and widely
applicable. It may also help to ensure that the search space is comprehensive and covers all relevant areas,
rather than being limited by the expertise or perspective of the experimenter. Future research could explore
automated or semi-automated approaches to identifying discrete search spaces.

Societal Impacts. While our work does not have any direct negative societal impacts, it is important to
be mindful of any potential ethical implications that may arise in the application of Bayesian optimization
in various domains. However, our work can contribute to the advancement of many real-world problems
by providing an effective optimization algorithm under certain circumstances, which can ultimately have
positive societal impacts.

Future Directions. As previously mentioned, one promising research direction is to develop a technique
for delicate edge addition and selection in order to find an optimal graph structure for Bayesian optimization.
Another potential future direction for our proposed method with weighted graphs is to explore Bayesian
optimization for a space of mixed variables, which is composed of continuous, ordinal, and categorical
variables (Daxberger et al., 2020; Oh et al., 2021; Deshwal et al., 2021). Jointly modeling these variables on
a graph could be a promising research topic for addressing real-world problems.

7 Conclusion

This work addresses practical scientific and engineering problems concerning the precision in measurement
and fabrication in the context of Bayesian optimization. In real-world problems, evaluating a query point
in continuous space may not be feasible or practical, requiring us to discretize continuous variables based
on experiment’s characteristics and design choices. To optimize a black-box function on a space of ordinal
variables, we explore several approaches and propose an algorithm that leverages the Cartesian product
of weighted graphs. We also investigate the impact of multi-hop edges for weighted graphs, and demon-
strate that our method outperforms other approaches across diverse experiments including neural network
architecture search benchmarks and physics-based simulations.
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A Details of Search Spaces

We present the details of the search spaces used in the experiments.

A.1 NATS-Bench

Table 1: Search space for NATS-Bench

Variable Discrete Variable Values

Output channels of 1st convolutional layer {8, 24, 40, 48, 56, 64}
Output channels of 1st cell stage {8, 24, 40, 48, 56, 64}

Output channels of 1st residual block {8, 24, 40, 48, 56, 64}
Output channels of 2nd cell stage {8, 24, 40, 48, 56, 64}

Output channels of 2nd residual block {8, 24, 40, 48, 56, 64}

We use a size search space in NATS-Bench (Dong et al., 2021) as shown in Table 1. To design a search space
with irregular increments, we slightly modify the original size search space. More precisely, we eliminate
output channel sizes 16 and 32 from each variable, in order to consider the characteristics of the variables; in
these experiments large channel sizes are more significant than small channel sizes. As a result, our search
space contains 7,776 architecture candidates.

A.2 Physics-based Simulations

We essentially optimize the following variables:

1. thickness of upper film;

2. thickness of lower film;

3. thickness of silver;

4. top radius of upper cones;

5. bottom radius of upper cones;

6. height of upper cones;

7. top radius of lower cones;

Table 2: Search space for physics-based simulations on electromagnetic shielding. Note that all values except
for two ratios are in nanometers.

Variable Discrete Variable Values

Thickness of upper film {5, 6, 7, 8, 9, 10, 15, 20, . . . , 100}
Thickness of lower film {5, 6, 7, 8, 9, 10, 15, 20, . . . , 100}

Thickness of silver {3, 4, 5, 10, 15, 20}
Ratio of top radius to bottom radius for upper cones {0.01, 0.02, . . . , 0.99}

Bottom radius of upper cones {10, 20, . . . , 200}
Height of upper cones {50, 60, 70, 80, 90, 100, 150, 200, . . . , 400}

Top radius of lower cones {10, 20, . . . , 200}
Ratio of bottom radius to top radius for lower cones {0.01, 0.02, . . . , 0.99}

Height of lower cones {50, 60, 70, 80, 90, 100, 150, 200, . . . , 400}
Grid size {20, 30, . . . , 200}
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8. bottom radius of lower cones;

9. height of lower cones;

10. grid size.

However, to create a physically feasible structure, the structure has to satisfy two constraints that the bottom
radius of upper cones is larger than the top radius of upper cones and the top radius of lower cones is larger
than the bottom radius of lower cones. Thus, we replace the top radius of upper cones and the bottom radius
of lower cones with a ratio of top radius to bottom radius for upper cones and a ratio of bottom radius to
top radius for lower cones, respectively. Eventually, we use ordinal variables, which are described in Table 2.

As shown in Table 2, we design a search space for physics-based simulations with irregular increments, i.e.,
fine increments for relatively small variable values and coarse increments for relatively large variable values,
by considering the significance of variables and manufacturing precision.

B Impact of Additional Multi-Hop Edges in Real-World Problems
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Figure 7: Results to show the impact of extra multi-hop edges in NATS-Bench
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Figure 8: Results to show the impact of extra multi-hop edges in a physics-based simulation for electromag-
netic shielding

Similar to the analysis demonstrated in Section 5.4, we present the impact of additional multi-hop edges in
real-world problems. Unlike the results in Section 5.4, Bayesian optimization results with chain weighted
graphs are better than the results with complete weighted graphs. As discussed in Section 6, we presume that
the performance of Bayesian optimization is affected by problem structures, which are practically unknown.
Such an interesting analysis on more rigorous edge addition and deletion is left to future work.
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C Computational Costs for Calculating Eigenvalues and Eigenvectors

Table 3: Additional computational costs for calculating eigenvalues and eigenvectors

Graph Type Time (sec.)

Chain graph 0.00841 ± 0.00724
Weighted graph with 1-hop edges 0.01008 ± 0.00027

Weighted graph with 1:2-hop edges 0.01434 ± 0.00247
Weighted graph with 1:5-hop edges 0.01795 ± 0.00047
Weighted graph with 1:10-hop edges 0.02300 ± 0.00227
Weighted graph with 1:20-hop edges 0.03487 ± 0.00243

We provide elapsed time to compute eigenvalues and eigenvectors in Table 3. To measure the elapsed time,
an eight-dimensional synthetic function based on the Ackley function is created where more than 21 variable
values exist for each dimension. Also, we conduct this experiment on the same machine by repeating the
calculation 1000 times with 10 different random seeds (i.e., 100 times per seed). As expected, adding extra
edges leads to more elapsed time. However, we can preemptively compute eigenvalues and eigenvectors at
the beginning of a Bayesian optimization round (i.e., Line 2 of Algorithm 1), which implies that it would
not be a significant additional burden.
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