
Published in Transactions on Machine Learning Research (01/2024)

On the Choice of Learning Rate for Local SGD

Lukas Balles‡ lukas.balles@aleph-alpha.com
Aleph Alpha, Heidelberg, Germany. Work done at AWS.

Prabhu Teja S‡ prbuteja@amazon.de
Amazon Web Services, Berlin, Germany.

Cédric Archambeau cedric.archambeau@helsing.ai
Helsing, Berlin, Germany. Work done at AWS.

Reviewed on OpenReview: https: // openreview. net/ forum? id= DPvwr4HJdt

Abstract

Distributed data-parallel optimization accelerates the training of neural networks, but re-
quires constant synchronization of gradients between the workers, which can become a bot-
tleneck. One way to reduce communication overhead is to use Local SGD, where each
worker asynchronously takes multiple local gradient steps, after which the model weights
are averaged. In this work, we discuss the choice of learning rate for Local SGD, showing
that it faces an intricate trade-off. Unlike in the synchronous case, its gradient estimate is
biased, with the bias dependent on the learning rate itself. Thus using learning rate scaling
techniques designed for faster convergence in the synchronous case with Local SGD results
in a performance degradation as previously observed. To analyze the manifestation of this
bias, we study convergence behaviour of Local SGD and synchronous data-parallel SGD
when using their optimal learning rates. Our experiments show that the optimal learning
rate for Local SGD differs substantially from that of SGD, and when using it the perfor-
mance of Local SGD matches that of SGD. However, this performance comes at the cost of
added training iterations, rendering Local SGD faster than SGD only when communication
is much more time-consuming than computation. This suggests that Local SGD may be of
limited practical utility.

1 Introduction

Gradient-based optimization techniques like Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951)
and its variants (Qian, 1999; Sutskever et al., 2013; Kingma & Ba, 2015) have contributed enormously to
the success of deep learning models in the past decade. With increasing scale of both models and datasets,
distributed training has become commonplace. The predominant distributed training paradigm is data-
parallel training, where each of K workers computes a gradient using an independently drawn minibatch of
data in parallel. These individual gradients are then averaged across all workers before an optimizer update
is applied, effectively increasing the batch size by a factor of K.

The use of larger batch sizes results in an improved gradient estimate, its variance being inversely proportional
to the total batch size (Bottou et al., 2018). However, fully capitalizing on this reduced variance requires
higher learning rates. Goyal et al. (2018) propose to increase the learning rate linearly with the number
of workers. The goal is to achieve what is called perfect linear scaling, i.e., to converge in K times fewer
iterations when using K workers. This has been shown to succeed for a moderate number of workers,

‡Equal Contribution.

1

https://openreview.net/forum?id=DPvwr4HJdt

Published in Transactions on Machine Learning Research (01/2024)

K = 8, H = 2

K = 16, H = 2

K = 24, H = 2

K = 8, H = 8

K = 16, H = 8

K = 24, H = 8

K = 8, H = 32

K = 16, H = 32

K = 24, H = 32

55 59 63 67 71

Local-Ada Local-Lin

Figure 1: Why is Local SGD’s performance lower
than SGD? Existing experimental works on Local
SGD (Lin et al., 2020) use linear scaling that was
designed for synchronous SGD and thus result in
poorer performance when number of local steps H is
large (Local-Lin). When using a automatic learning
rate scaling method (Local-Ada) based on optimal
learning rates, we find that Local SGD performs sim-
ilarly for a large range of K and H. These results are
for a Wide ResNet-28 being trained on ImageNet32.
Each line represents a K, H configuration and accu-
racy increases moving away from the center.

20 21 22 23 24 25 26

Ratio of Communication time to Computation time

22

23

24

25

26

27

28

T

K

8

16

24

Method

Autoscaled
Accum SGD

Autoscaled
Local SGD

Figure 2: When is Local SGD useful in practice?
With adaptive learning rate scaling methods mod-
ulating the number of training iterations, we exam-
ine when Local SGD (Local-Ada) faster than SGD
(Acc-Ada). We see that Local SGD is faster than
the synchronous case only when communication costs
much more than computation (m ≥ 2), thus making
Local SGD of utility only in scenarios of extreme com-
munication costs. We show on x-axis the communi-
cation to computation costs of a hypothetical system,
and pseudo-wall clock time on y-axis (see §6.2). The
plots in shades correspond to various H, and the dark
lines to the minimum skyline for each cost factor and
K across all values of H. The cross-over from SGD
to Local SGD happens only for high costs (m).

but performance deteriorates for large K. In general, using a larger K requires a learning rate increase
by factor smaller than K and, consequently, training for more than 1/K times the number of iterations.
AdaScale (Johnson et al., 2020) uses estimates of gradient variance and magnitude to compute a local
scaling factor for each update step, which is used to modulate the learning rate, as well as to stretch the
number of training iterations.

While data-parallel training can significantly speed up model training, it necessitates synchronization among
workers at each iteration. As the number of workers increases, the communication time required to syn-
chronize begins to dominate the computation time (see Ortiz et al., 2021, Figure 1). This is exacerbated by
compute infrastructure with low bandwidth and/or high-latency connections between workers. A straight-
forward remedy for communication overhead is gradient accumulation, where each worker averages gradients
from H > 1 minibatches locally before synchronization. However, this increases the effective batch size by
a factor of K ×H, which quickly enters a regime of diminishing returns. It has been shown to deteriorate
performance, even for moderate values of H, when using linear learning rate scaling (Lin et al., 2020).

An alternative approach to reduce communication overhead is Local SGD (Stich, 2019; Yun et al., 2022),
which performs H > 1 gradient steps locally on each worker, after which the model weights are averaged and
synchronized across K workers. While theoretical work has shown that Local SGD converges at the same
rate as synchronous data-parallel SGD, empirical studies (Lin et al., 2020; Ortiz et al., 2021) have observed
deteriorating model performance when using Local SGD.

In this paper, we study this apparent discrepancy between the theory and empirical findings on Local SGD.
We, specifically, answer the following three questions:

2

Published in Transactions on Machine Learning Research (01/2024)

1. Why does Local SGD’s performance lag that of SGD? Empirical works that study the performance of
Local SGD use learning rate scaling methods borrowed from SGD literature (see §2). We surface that
this is problematic for Local SGD. As in the synchronous case, increasing the number of workers reduces
the variance of the virtual gradient estimate used by Local SGD, which warrants a learning rate increase.
As we show, Local SGD’s gradient estimate is biased, and the bias depends on the learning rate itself.
Thus, a naive application of known learning rate scaling techniques may adversely affect the quality of
Local SGD’s gradient estimate and, thus, its convergence behavior; this explains the results by Lin et al.
(2020); Ortiz et al. (2021) who use linear learning rate scaling and show that Local SGD performs worse
than standard SGD (see §4).

2. Can the performance gap between Local SGD and SGD be bridged? We examine the optimal learning
rates for Local SGD and SGD, and devise automatic learning rate scaling methods that scale the learning
rate based on gradient statistics. In this process, we recover the well-known technique for SGD called
AdaScale (Johnson et al., 2020) that was previously proposed as a heuristic (see §5). We show that using
our proposed scaling technique, Local SGD reliably maintains the target accuracy across a wide range
of values for K and H as shown in Figure 1 in blue. This is in contrast to previous works that observe
deteriorating performance when using Local SGD with linear learning rate scaling as shown in the green
curve in Figure 1 (see §6.1).

3. When is Local SGD empirically preferable to SGD? When using automatic learning rate scaling methods,
we show that Local SGD converges faster than large batch SGD realized through gradient accumulation
for large H. However, this does not trivially translate into wall-clock speedups, as these automatic learning
rate scaling methods also modulate the number of training iterations. In Figure 2, we show that Local
SGD improves wall-clock time convergence compared to synchronous data-parallel SGD, when comparing
under optimal learning rate scaling, only in extreme scenarios of communication being substantially more
time-consuming than computation. This finding casts fundamental aspersions on the practicality of Local
SGD especially when scaling only the learning rate, one we find missing in prior works (see §6.2).

2 Related Work

The literature on distributed optimization is vast, so we focus on the most closely related works. For instance,
we do not discuss fully asynchronous methods like HogWild (Recht et al., 2011) or approaches to compress
gradients for communication (e.g., Alistarh et al., 2017; Basu et al., 2019). Cao et al. (2023) present a survey
of such methods.

Learning rate scaling To our knowledge, the first practical recommendation for learning rate modulation
in distributed optimization was proposed by Krizhevsky (2014), who introduced a linear scaling rule in terms
of the number of workers. They found it to work well for small numbers of workers but observed performance
drops for larger numbers. Goyal et al. (2018) showed that linear scaling could be made to work at larger
scales with the use of a warmup phase that gradually increases the learning rate towards the target value.
They found the duration of the warm-up to be critical to the performance. As an alternative to linear
scaling, Krizhevsky (2014) as well as Hoffer et al. (2017) experimented with a less aggressive square-root
heuristic, which ultimately did not prove successful. Going beyond simple scaling factors, AdaScale (Johnson
et al., 2020) adaptively scales the learning rate based on estimates of the gradient variance and magnitude
and has been shown to retain performance for a much higher number of workers. We will discuss this method
in detail in §5. Methods for improved generalization, like cyclical learning rate (Smith, 2017), can be seen
orthogonal to our work, as we investigate optimal scaling factors for the learning rates.

Large-batch optimizers Optimizers like Lars (You et al., 2017) and Lamb (You et al., 2020) have been
proposed with the explicit goal of handling large batch sizes, but their utility has been questioned. Nado
et al. (2021) find that, with suitable hyperparameters, both SGD and Adam match the performance of Lars
and Lamb. Based on the assumption that small batch training generalizes better, Adasum (Maleki et al.,
2021) tries to mimic small batch training while using larger batch sizes using a more complex operation to
fuse the gradients instead of summation. Refuting the claims that the stochastic nature of SGD is important

3

Published in Transactions on Machine Learning Research (01/2024)

for its performance, Geiping et al. (2022) show that with explicit regularization, even full-batch gradient
descent can attain the performance of small batch SGD.

Local SGD The method now known as LocalSGD has been studied both empirically (Povey et al., 2014;
Zhang et al., 2016; Lin et al., 2020; Gu et al., 2023), and theoretically (Dekel et al., 2012; Zhou & Cong, 2018;
Stich, 2019; Haddadpour et al., 2019; Khaled et al., 2020; Woodworth et al., 2020; Deng et al., 2022; Yun
et al., 2022). Deep learning models trained using Local SGD have been shown to achieve lower performance
than using fully synchronous training. Lin et al. (2020) remedy this by post-Local SGD, where they switch to
Local SGD after training the network with synchronous SGD for a certain number of iterations. Ortiz et al.
(2021) show that the point of the switch is a sensitive hyperparameter. They change the global averaging
step to a moving average as in Wang et al. (2020) and find it partially alleviates that sensitivity. Note that
both Lin et al. (2020) and Ortiz et al. (2021) attempt to achieve perfect linear scaling (i.e., reducing the
number of iterations by a factor of K) and apply the linear learning rate scaling rule of Goyal et al. (2018)
to Local SGD. A closely related work by Wang & Joshi (2019) shows that the number of local steps H
needs to be decreased as model reaches closer to convergence. They consider a fixed known learning rate,
and optimize H, whereas we do the opposite. Thus, the two approaches are flip-sides of the same coin.
Recently, Gu et al. (2023) find that Local SGD performs like SGD when using a small learning rate and
training long enough. Hence, this scenario while useful for analysis, is of limited utility, as in practice we are
interested in getting a high enough performance in the shortest time possible.

Federated learning A plethora of Local SGD variants have been used and studied in federated learn-
ing (Wang et al., 2021), where workers access fixed subsets of data, which are not necessarily iid. Under
these conditions of data heterogeneity, Murata & Suzuki (2021) remark that the gradient estimate of Local
SGD is biased but do not quantify it. Works in federated learning that examine learning rate scaling have
focussed on heuristics like linear and square-root scaling presented above (e.g., Charles et al., 2021). Data
heterogeneity poses additional challenges compared to our setting and is not considered here.

3 Preliminaries

In this section, we introduce some preliminary material and define notation.

3.1 Problem Setup

Training a neural network requires solving an empirical risk minimization problem with an objective of the
following form:

f(w) = 1
N

N∑
i=1

f(w; xi), (1)

where w are the model weights and f(·; xi) denotes the loss of the i-th training example. Throughout this
paper, we assume f to be L-smooth, i.e., its gradient is Lipschitz: ∥∇f(w′)−∇f(w)∥ ≤ L∥w′ −w∥ for all
w, w′ in the domain of f . This implies the well-known local quadratic bound f(w′) ≤ f(w) +∇f(w)T (w′−
w) + L

2 ||w
′ −w||2, which we will use in our analysis.

Gradient descent iteratively minimizes the objective with updates of the form wt+1 = wt−γt∇f(wt), where
γt is the learning rate at iteration t. For large datasets, it is inefficient to compute the gradient over all data
points in each iteration. Instead, we resort to Stochastic Gradient Descent (SGD), where we approximate
the gradient using a stochastic gradient

gt = 1
B

∑
i∈B
∇f(wt; xi), (2)

computed on a randomly-sampled minibatch B ⊂ {1, 2 · · ·N} of size |B| = B ≪ N .

4

Published in Transactions on Machine Learning Research (01/2024)

In synchronous data-parallel SGD, each worker computes a stochastic gradient gk
t using an independent

minibatch. These are then averaged, g̃t = 1
K

∑K
k=1 gk

t , before an optimization step is applied. Each gk
t is

an unbiased estimate of the gradient, Et[gk
t] = ∇ft := ∇f(wt) with a variance that we denote as σ2

t :=
Vart[gk

t]. Consequently, the averaged gradient g̃t unbiasedly estimates ∇ft with a variance of σ2
t/K. Here

and throughout this paper, Et denotes the conditional expectation given wk
t , ∀k ∈ {1, 2 · · ·K}.

3.2 Local SGD

Synchronous data-parallel SGD is equivalent to each worker taking a local gradient step, followed by an av-
eraging of the model weights. This requires a synchronization of the weights after every iteration, which may
cause a large communication overhead, depending on the number of workers and the compute infrastructure.

In Local SGD, each worker takes H > 1 local gradient steps before the weights are averaged:

wk
t+1 =

{
1
K

∑K
k=1(wk

t − γtgk
t), if H | t + 1,

wk
t − γtgk

t , otherwise.
(3)

This reduces the communication frequency without affecting the rate of convergence (Stich, 2019). In
practice, each of those H iterations can be replaced by a more complex update step, such as using momentum
or even adaptive gradient methods like Adam (Singh et al., 2021; Wang et al., 2020).

4 Local SGD’s Learning Rate Conundrum

The analysis of Local SGD is based on the virtual sequences

w̄t := 1
K

K∑
k=1

wk
t , ḡt := 1

K

K∑
k=1

gk
t , (4)

which are the averages of the per-worker iterates and gradients at each iteration. These sequences are tools
for the mathematical analysis and are not computed by Local SGD at every iteration. They evolve as
w̄t+1 = w̄t − γtḡt, resembling an SGD trajectory with an “implicit” gradient estimate ḡt.

Theoretical works on Local SGD show that this sequence behaves almost like synchronous data-parallel
SGD under certain restrictions on the learning rate. This indicates that the implicit gradient estimate
ḡt approximates the gradient ∇f(w̄t) just as well as a hypothetical standard stochastic gradient g̃t with
Et[g̃t] = ∇f(w̄t) and a variance of

Et[∥g̃t −∇f(w̄t)∥2] = σ2
t

K
. (5)

The meaning of “just as well” is relatively opaque in existing works on Local SGD. Here, we make it
explicit. As we will see, the quality of ḡt is influenced by the preceding steps taken since the most recent
synchronization point. We, therefore, consider a single constant step size γ across H consecutive steps,
starting from a synchronization point, and assume a local bound on the gradient variance. This is formalized
as follows.
Assumption 4.1. Assume we run H consecutive steps of Local SGD using a constant step size γ, starting
from a synchronization point t : H | t. Assume the gradient variance across these H steps is bounded, i.e.,
for all k ∈ [K] and t′ ∈ [t, t + H), we have Vart′ [gk

t′] ≤ σ̄2
t for some σ̄t .

With that, we can derive a bound on the mean-squared error (MSE) of Local SGD’s implicit gradient
estimate ḡ. The proof is given in Appendix C.1.

5

Published in Transactions on Machine Learning Research (01/2024)

Proposition 4.2. Under Assumption 4.1, the MSE of Local SGD’s implicit gradient estimate (Eq. 4) sat-
isfies

Et

[
∥ḡt′ −∇f(w̄t′)∥2

]
≤ σ̄2

t

K
+ (H−1)L2γ2σ̄2

t (6)

Variance Biasfor all t′ ∈ [t, t + H).

The bias originates from the fact that the per-worker gradients, gk
t in Equation (4), are computed at slightly

different locations in the parameter space due to differences in the local trajectories. The extent of this
diffusion depends on the number of local steps H and, crucially, the learning rate γ used in preceding steps.

The published convergence theory for Local SGD assumes restrictions to the learning rate γ which control
the bias term such that the error is dominated by the variance term and its 1/K behavior. Therefore, those
results have to be understood in the following way: For a given value of H, there is a small enough learning
rate γ at which Local SGD converges at the same speed as synchronous data-parallel SGD. However, this
learning rate will not be optimal, neither for synchronous data-parallel SGD nor for Local SGD.

Equation (6) shows that Local SGD faces a fundamentally different trade-off when setting the learning rate
compared to synchronous data-parallel SGD. Increasing K decreases the variance, which warrants a learning
rate increase. However, a larger learning rate increases the bias term.

Empirical studies (Lin et al., 2020; Ortiz et al., 2021) observing the poor practical performance of Local
SGD for large values of H could in part be explained by this. Since they adopt the linear scaling rule for
Local SGD, for large values of K and H, the bias term will dominate the total error in Equation (6). The
same argument explains the observations of Wang & Joshi (2019); when the learning rate is fixed, the only
way of reducing the gradient error (and therefore facilitating convergence) is to reduce the communication
interval H, leading to their heuristic. In the next section, we propose a learning rate scaling rule for Local
SGD that directly tackles the trade-off surfaced in Equation (6).

5 Adaptive Learning Rate Scaling for Synchronous and Local SGD

To gauge the real potential of Local SGD, we need to be able to scale its learning rate appropriately. We
have seen in the previous section that Local SGD faces a fundamentally different trade-off with respect to
the learning rate, compared to synchronous SGD. In this section, we first derive an optimal learning rate
scaling technique for SGD. We then carry-over the ideas to derive an optimal learning rate scaling technique
for Local SGD.

5.1 Optimal learning rate scaling for SGD – AdaScale

From the assumption of Lipschitz gradients in §3.1, f satisfies

E[f(wt+1)] ≤ f(wt)− γt∇fT
t · E[gt] + L · γ2

t

2 E[||gt||2] (7)

for two consecutive iterates wt, wt+1 with an SGD step. The optimal learning rate that maximizes the
expected decrease over one step is given by

γt = 1
L
· ∥∇ft∥2

∥∇ft∥2 + σ2
t

. (8)

The optimal learning rate requires L which is difficult to estimate in practice, and thus not used in practice.
Consequently, when the variance of our gradient estimate is reduced by a factor of 1/K due to an increase in
number of workers to K, the optimal learning rate changes by the following factor:

rt = ||∇ft||2 + σ2
t

||∇ft||2 + σ2
t

K

∈ [1, K). (9)

6

Published in Transactions on Machine Learning Research (01/2024)

This is the gain ratio proposed by Johnson et al. (2020). Thus, we reinterpret the AdaScale gain ratio as
the ratio of optimal learning rates for the case of K workers to 1 worker. We present a detailed derivation
in Appendix B.

For ∥∇ft∥2 ≪ σ2
t , we recover the linear scaling rule of Goyal et al. (2018) with a gain ratio of rt ≈ K.

In practice, however, the gain ratio will be smaller than K. When ∥∇ft∥2 ≫ σ2
t , the gradient estimate is

already very accurate, and the gain ratio is close to 1, implying that using a higher number of workers has
no benefit. This is related to the concept of a critical batch size (McCandlish et al., 2018), which is the point
after which a further increase in batch size has diminishing returns in terms of convergence speed.

In addition to using rt as a scaling factor for the learning rate, Johnson et al. (2020) propose the concept
of scale-invariant iterations. When using the standard linear scaling rule (Goyal et al., 2018), the iteration
counter is incremented by a factor of K for a forward-backward pass. However, AdaScale interprets the gain
ratio rt to be the effective number of workers used at iteration t. Incorporating this into the training process,
they maintain an accumulator st =

∑t−1
t′=0 rt′ , which replaces the standard iteration counter. Since rt < K,

the use of scale-invariant iterations increases the total number of passes over the training set (true epochs)
and “stretches” the learning rate schedule accordingly; see Lines 1 and 7 of Algorithm 2 in the Appendix.
Thus, scaling to a larger number of workers may necessitate more true epochs but will typically still result
in a substantial wall-clock time speedup, as shown by Johnson et al. (2020).

AdaScale estimates ∥∇ft∥ and σ2
t from the K iid per-worker gradients. We adopt their estimation procedure

for our scaling method for Local SGD.

5.2 Optimal learning rate scaling for Local SGD– LocalAdaScale

We now derive a learning rate scaling method similar to AdaScale for Local SGD, named LocalAdaScale
using the same principle underlying our derivation of AdaScale. We first derive an optimal step size for Local
SGD, depending on the number of workers K and local steps H. A gain ratio is obtained by dividing by the
optimal step size for the base case (K = H = 1) and will be used exactly as in AdaScale, both as a scaling
factor for the learning rate, as well as the basis for a scale-invariant iteration counter.

Optimal step size for Local SGD Finding the optimal step size for Local SGD is more complicated
than for synchronous data-parallel SGD since the step size used in previous steps influences the quality of
the (implicit) gradient estimate used in the current step. To simplify this, we adopt Assumption 4.1 from §4
and consider H consecutive steps using a constant step size. As we show in Appendix C.2, these steps lead
to an expected decrease in function value, which is bounded as follows:

Et[f(w̄t+H)] ≤ f(w̄t)−H

(
γ

2 Ḡt + γ

2 Āt −
γ2L

2 Āt −
γ2L

2
σ̄2

t

K
− γ3L2

4 (H − 1)σ̄2
t

)
, (10)

where

Ḡt = 1
H

t+H−1∑
t′=t

Et[∥∇f(w̄t′)∥2], Āt = 1
K

∑
k

1
H

t+H−1∑
t′=t

Et[∥∇f(wk
t′)∥2]. (11)

This expected function decrease bound features the cumbersome terms Ḡt and Āt, which are expected squared
gradient magnitudes along the trajectories of the virtual averaged iterates, and the per-worker iterates,
respectively. These quantities are, in principle, dependent on η, since the choice of step size influences the
gradient magnitude along that trajectory. We ignore this secondary effect by assuming Āt ≈ ∥∇f(w̄t)∥2 ≈
Ḡt, independent of η. This is fulfilled if the gradient magnitude stays approximately constant over the H
subsequent steps. We verify this experimentally in Figure 7 in the Appendix. Using this assumption gives
us an approximate upper bound:

Et[f(w̄t+H)]
≈
≤ f(w̄t)−H

(
γḠt −

γ2L

2 Ḡt −
γ2L

2
σ̄2

t

K
− γ3L2

4 (H − 1)σ̄2
t

)
︸ ︷︷ ︸

▷◁

. (12)

7

Published in Transactions on Machine Learning Research (01/2024)

In the expected decrease bound in Equation (10), the bias discussed in §4 manifests as the γ3 term. To
illustrate that, Appendix D provides a similar H-step bound for synchronous data-parallel SGD, where this
term is absent.

We derive an approximately optimal step size for Local SGD by maximizing the term ▷◁ in Equation (12)
leading to

γt = 1
L
· 2Ḡt

Ḡt+ σ̄2
t

K +
√(

Ḡt+ σ̄2
t

K

)2
+ 3(H−1)Ḡtσ̄2

t

(13)

See Appendix C.3 for a derivation.

Gain ratio Analogous to our derivation of AdaScale, we can now define a gain ratio by dividing the optimal
step size in Equation (13) by the base case (H = K = 1):

ρt =
2
(
Ḡt + σ̄2

t

)
Ḡt+ σ̄2

t

K +
√(

Ḡt+ σ̄2
t

K

)2
+ 3(H−1)Ḡtσ̄2

t

. (14)

When H = 1, this gain ratio recovers AdaScale. To illustrate the difference in behaviors between AdaScale
and LocalAdaScale, we plot the gain ratio ρ in Figure 3 for increasing values of σ̄2/Ḡ. The larger the H, the
smaller the gain ratio at any given value for σ̄2/Ḡ. This is explained by the fact that the gradient estimates
get worse with H as seen in Proposition 4.2. Looking at the inset plot: for a deterministic case, i.e., when
there is no variance (σ̄2 → 0) and thus no advantage to using multiple workers, we see that ρ = 1 for
AdaScale and LocalAdaScale. For a large variance σ̄2 ≫ Ḡ, the gain ratio approaches K for all values of H,
recovering the linear scaling rule. However, for larger H, it takes substantially higher values of σ̄2/Ḡ for that
regime to be reached.

Algorithm 1 Automatic learning rate scaling for Local
SGD– LocalAdaScale.

Input: Initialization w0, step-size γt, #workers K,
#local steps H, scale-inv budget S, t = 0, s = 0,
grad_cache=[], ρ← 1.

1: while s ≤ S do ▷ Scale inv budget not exhausted.
2: for k ∈ [K] do ▷ On each worker
3: Compute gk

t using a batch of data. ▷ Gradient at t.
4: if H | t then ▷ One step after model sync.
5: grad_cache[k] = gk

t . ▷ Save gradient.

6: if H | (t + 1) then ▷ Average every H steps

7: wk
t ← 1

K

∑K
j=1 wj

t .
8: Ḡt, σ̄2

t ← grad_stats(grad_cache) ▷ Eq.15
9: Compute ρ as Equation (14).

10: wk
t+1 ← wk

t − ργ⌈s⌉gk
t . ▷ Local update.

11: s← s + ρ
12: t← t + 1
13: return the last iterate wt.

101 102 103 104 105 106

σ̄2

G

0

2

4

6

8

L
o
ca

lA
d
a
sc

a
le

g
a
in
ρ

0 5 10

0

2

H
1

2

8

16

64

Figure 3: LocalAdaScale gain ratio from
Equation (14) with K = 8. We plot σ̄2/Ḡ on
the x-axis and the gain ratio on the y-axis. In
the inset, we show the plot for very small val-
ues of the ratio σ̄2/Ḡ. We see that synchronous
SGD (AdaScale with H = 1) and Local SGD
(LocalAdaScale H > 1) have different scal-
ing behaviour. AdaScale reaches its maximum
gain factor for much lower values of σ̄2/Ḡ than
LocalAdaScale. In practice, this translates to
Local SGD needing a lower learning rate, and
more iterations than SGD. When this is vio-
lated, Local SGD exhibits poorer convergence
behaviour, further evidencing the arguments in
§4

8

Published in Transactions on Machine Learning Research (01/2024)

Implementing LocalAdaScale To implement LocalAdaScale, we need to estimate Ḡt and σ̄2
t . We take

the approach of estimating these quantities only at synchronization points, and then using the resulting
gain throughout the following H local steps. This is in line with our assumption that gradient magnitude
and variance are approximately constant over H steps. At a synchronization point t, we have access to K
per-worker gradients computed at the same location. This allows us to estimate gradient variance and mean
exactly as in AdaScale:

σ̄2
t ≈

1
K − 1

K∑
k=1
∥gk

t ∥2 − K

K − 1∥ḡt∥2, Ḡt ≈ ∥ḡt∥2 − 1
K

σ̄2
t . (15)

Following AdaScale, these estimates are smoothed using an exponential moving average for additional sta-
bility. The algorithms LocalAdaScale and AdaScale are summarized in Algorithm 1, as LocalAdaScale is
equivalent to AdaScale when H = 1.

When using Local SGD, computing the estimates in Equation (15) requires the synchronization of gradients
in addition to the weights, doubling the amount of data communicated. We partially alleviate this issue
as follows. We cache the gradients computed right after synchronization and delay their communication
(and thereby the computation of the gain ratio) until the next synchronization step.1 This way, we can
synchronize weights and gradients simultaneously and only incur the latency overhead once. Of course,
this does not alleviate communication time incurred due to bandwidth limitations. Note, however, that
we devised LocalAdaScale primarily as a tool for the analysis of Local SGD and did not further optimize
our implementation. In future work, one could devise approximate versions of LocalAdaScale that avoid
additional communication.

6 Experiments

Our experiments compare Local SGD to the gradient accumulation baseline under two scaling approaches,
amounting to a total of four different methods. We compare these methods under identical numbers of
workers (K) and communication/synchronization intervals H:

1. Gradient accumulation of H steps with linear scaling (Acc-Lin).
2. Gradient accumulation of H steps with AdaScale (Acc-Ada).
3. Local SGD with H local steps with linear scaling (Local-Lin).
4. Local SGD with H local steps adaptive scaling (Local-Ada), the method derived in §5.

These four methods process the same number of samples between two consecutive synchronizations. The lin-
ear scaling variants perform exactly n true epochs, where n is set based on prior work for each model/dataset
combination (see Appendix H.1). The adaptive scaling variants are allocated a budget of n scale-invariant
epochs. Recall from §5.1 that this results in a variable number of true epochs.

For linear scaling, we follow prior work and perform a linear warmup from γbase to the final value of Kγbase

for 5% of the total iteration budget. For AdaScale, we use the implementation from FairScale (FairScale
authors, 2021) which supports gradient accumulation. We compare these methods at different values for the
number of workers K, as well as the communication interval H. The latter is used as the number of local
steps or accumulation steps, respectively.

We train a ResNet-18 (He et al., 2016) on CIFAR-10 (Krizhevsky, 2009), a WideResnet-28-2 (Zagoruyko &
Komodakis, 2016) on ImageNet-32 (Chrabaszcz et al., 2017), and a ResNet-50 on ImageNet (Deng et al.,
2009; Russakovsky et al., 2015). We use a base learning rate schedules from previously published works, which
are well-tuned to the respective architecture and dataset, which we take to be the optimal learning rates
for the base case i.e., K = 1, H = 1. Note that we are comparing learning rate scaling techniques and not
specific learning rate schedules. Additional details of our experimental setup can be found in Appendix H.1.

1In Appendix E, we perform an ablation study showing that this delayed communication of gradients does not alter the
behavior of the method significantly.

9

Published in Transactions on Machine Learning Research (01/2024)

6.1 Local SGD with automatic learning rate scaling LocalAdaScale maintains Target Accuracy

In Figure 4 we show the test accuracy reached by the four methods. The target performance for each
experiment is the performance we get when training on one worker (K = 1) with the standard hyperparameter
settings (in Appendix H). For CIFAR-10 it is a top-1 accuracy of 93%, for ImageNet32 it is a top-5 accuracy
of 69%, and for ImageNet it is a top-5 accuracy of 93%. See Appendix H.1 for attributions.

We see that Acc-Lin breaks down very quickly for all datasets. Performance starts dropping when the
total scaling (K ×H) exceeds 32, in line with the findings by Goyal et al. (2018). This is overcome by using
AdaScale (Acc-Ada), which maintains the target accuracy even for large H across all our experiments. In the
Local SGD family, Local-Lin performs considerably better but we still see notable drops in test accuracy
around H ≥ 8. Finally, adaptive learning rate scaling for Local SGD maintains the target performance
across all K and H considered. Thus, we have demonstrated that appropriate learning rate scaling can fix
the performance gap of Local SGD observed in previous works using Local-Lin (Lin et al., 2020; Ortiz
et al., 2021).

6.2 Should I Use Local SGD?

We have established with the results in Figure 4 that both Local SGD and gradient accumulation can
maintain high accuracy in the presence of appropriate learning rate scaling. As described in §5, Acc-Ada
and Local-Ada not only modulate the learning rate but also increase the number of iterations by using
scale-invariant epochs. Therefore the question of whether the reduced communication time makes up for the
increased number of iterations arises.

Our experiments help answer this question. In Figure 5, we compare the number of iterations required by
each method. We see that increasing H, both adaptive scaling methods increase the number of iterations
quite drastically. For H < 8, Acc-Ada converges in slightly fewer iterations than Local-Ada, whereas
Local-Ada is more iteration efficient for more infrequent communication (larger H). See also the tabulated
results in Appendix H for details.

But which H should we choose in practice? Answering this question requires us to make assumptions about
the relative cost of communication and computation. We let m denote the relative communication overhead,
i.e., the ratio of time taken for one communication round to the time taken for one minibatch gradient
computation without any synchronization. This is determined by the hardware and, therefore, beyond our
control on the algorithmic side. Given the total number of epochs n(K,H) observed in our experiments for
Local-Ada and Acc-Ada (Figure 5), we compute a pseudo-wall-clock training time as follows:

T
(K,H)
method = n

(K,H)
method

K
×

 1 + m

H

 . (16)

Iterations Computation

Communication

In Equation (16), we do not show dependence on per-device batch size B and dataset size explicitly in the
term for number of iterations as they are constant scalars across methods. We plot this wall-clock time
in Figure 6 for CIFAR-10 and ImageNet32 at K = 24 and H ∈ {1, 2, 8}; additional results may be found
in Appendix H.3. For CIFAR-10, we see that SGD is faster than Local SGD for all H when m ≤ 3, and
Local SGD otherwise. However, a different picture emerges for ImageNet-32; small values of H (say 2, 8)
for both gradient accumulation and Local SGD result in faster convergence than SGD. This is possibly
because the overall batch size (B×24) is smaller than the critical batch size and thus gradient accumulation
results in faster convergence. Local SGD is faster than SGD (for some H) when the dotted lines are below
the solid ones in Figure 6, and we see that Local SGD is faster than SGD (with gradient accumulation)
only when m ≥ 4. Additional plots may be found in Figure 11 in the Appendix. Such large values of m
are atypical in most training set-ups. Ortiz et al. (2021) show that even when using K = 256, m stays
around 3. A substantially larger communication overhead is plausible for some setups, e.g., crowd-sourced

10

Published in Transactions on Machine Learning Research (01/2024)

21 22 23 24 25 26

80

85

90

95

100

C
IF

A
R

1
0

T
o
p

-1
A

cc
u

ra
cy

K=8

21 22 23 24 25 26

K=16

21 22 23 24 25 26

K=24

21 22 23 24 25 26

50

60

70

Im
a
g
eN

et
3
2

T
o
p

-5
A

cc
u

ra
cy

21 22 23 24 25 26 21 22 23 24 25 26

21 23 25

H

80

85

90

95

Im
a
g
eN

et
T

o
p

-5
A

cc
u

ra
cy

21 23 25

H

21 23 25

H

Acc-Ada Acc-Lin Local-Ada Local-Lin

Figure 4: Test accuracies achieved for different numbers of workers (K) and communication intervals (H).
Linear scaling with gradient accumulation deteriorates quickly. Linear scaling with Local SGD is more
robust but suffers for large values of H. Using adaptive scaling, both gradient accumulation and Local SGD
maintain the target performance across a large range of values for K and H.

21 22 23 24 25 26

1000

2000

C
IF

A
R

1
0

T
ru

e
E

p
o
ch

s

K=8

21 22 23 24 25 26

0

2000

4000

6000

K=16

21 22 23 24 25 26

0

2500

5000

7500

K=24

21 22 23 24 25 26

100

200

Im
a
g
eN

et
3
2

T
ru

e
E

p
o
ch

s

21 22 23 24 25 26

200

400

21 22 23 24 25 26

200

400

600

21 23 25

H

100

200

300

Im
a
g
eN

et
T

ru
e

E
p

o
ch

s

21 23 25

H

200

400

21 23 25

H

200

400

600

Figure 5: Number of epochs used by each method. While linear scaling operates under a fixed budget, the
adaptive scaling methods stretch the learning rate schedule, which increases the total number of epochs. For
values of H ≤ 8, Acc-Ada uses slightly fewer epochs than Local-Ada. For large values of H, Local-Ada
is drastically more iteration-efficient.

11

Published in Transactions on Machine Learning Research (01/2024)

or volunteer computing (Ryabinin & Gusev, 2020). However, such scenarios come with a host of other issues
like stragglers, fault tolerance that have propelled their own lines of research (Learning@home team, 2020;
Borzunov et al., 2022a;b; Ryabinin et al., 2021; Blanchard et al., 2017). Therefore, our findings cast doubts
on the practical utility of Local SGD in commonplace distributed training environments.

7 Conclusion

25

26

27

28

29

210

T
ra

in
in

g
ti

m
e
T

CIFAR10

20 21 22 23 24 25 26

Relative cost m

22

23

24

25

26

27
T

ra
in

in
g

ti
m

e
T

ImageNet32

H

1

2

8

Method

Acc-Ada

Local-Ada

Figure 6: Which method is faster? We plot pseudo-
wall-clock time T on the y-axis for different assumed
values of the relative communication overhead m, see
Eq.(16)). We see that LocalAdaScale (using large val-
ues of H) converges faster for high communication
overheads. For lower m, synchronous SGD with few
gradient accumulation steps is preferable.

Summary of Findings The previously published
literature on Local SGD suffers from a certain dis-
crepancy between theory and practice. Previous
theoretical results have been interpreted as: “Lo-
cal SGD behaves just like synchronous data-parallel
SGD”. In contrast to that, empirical studies have
reported performance degradation when using Lo-
cal SGD compared to synchronous SGD.

We show that this discrepancy may be attributed
to the choice of learning rate. Theoretical results
have assumed restrictive upper bounds on the learn-
ing rate. This recovers the behavior of synchronous
SGD at the same learning rate, but that learning
rate is clearly non-optimal. Empirical works have
used learning rate scaling techniques tailored to syn-
chronous SGD. We show that this is likewise non-
optimal, since Local SGD faces a fundamentally dif-
ferent trade-off than synchronous data-parallel SGD
where the error of its gradient estimate depends on
the learning rate itself.

To further study the behavior of Local SGD, we de-
vise an optimal learning rate scaling method, called
LocalAdaScale, mirroring the AdaScale method for
synchronous SGD. Our experiments demonstrate
that LocalAdaScale bridges the gap in performance between Local SGD and synchronous SGD and that
Local SGD converges in fewer iterations than gradient accumulation for large communication intervals.
However, in wall-clock time, we find that Local SGD is faster than synchronous data-parallel SGD only for
very high communication overheads, shedding new light on the practicality of Local SGD.

Limitations and Future Work The optimality of learning rate in this work is based on the training loss
and not the test loss. Thus, the claims of optimality have to be seen in the limited context of training perfor-
mance and optimization, not generalization. Several techniques that target improved generalization (Orvieto
et al., 2022) have been investigated, and studying them for Local SGD is beyond the scope of the current
work.

Our paper is limited to analyzing the effect of the learning rate while keeping other hyperparameters fixed.
Tuning other hyperparameters, such as momentum, may be useful to improve convergence or generalization.
We also performed our comparison at a fixed communication interval H. A comparison of Local SGD vs.
gradient accumulation under varying H (e.g., such as in post-local SGD (Lin et al., 2020)) may be interesting.

The optimal step size for Local SGD in Equation (13) involves multiple approximations. Firstly, like AdaS-
cale, it is based on a Lipschitz bound which may be loose for some objective functions. Secondly, we assume
the gradient magnitude along H consecutive Local SGD steps to be approximately constant. Finally, we

12

Published in Transactions on Machine Learning Research (01/2024)

estimate gradient magnitude using imperfect empirical estimates, rendering our learning rate scaling only
approximately optimal.

We have restricted our analysis to the case of homogeneous data distribution on each worker. An extension
of our learning rate scaling technique to the federated learning scenario with heterogeneous data would be
interesting future work. Our experiments are limited to computer vision tasks and for models based on
convolutional nets. Thus, our findings on the value of Local SGD might be limited to those conditions.
Broader generalizations require further experimentation.

As discussed in §5, our implementation of LocalAdaScale synchronizes both the model weights and gradients,
which adds communication compared to plain Local SGD. We did not attempt to alleviate this, since we
devised LocalAdaScale primarily as a tool for the analysis of Local SGD. In future work, one could devise
approximate versions of LocalAdaScale that avoid additional communication. A possible avenue would be
to approximate gradient magnitude and variance from the pseudo-gradients (Reddi et al., 2021) given by the
displacement wt+H −wt.

Beyond that, our work can be extended in several ways. While we have compared gradient accumulation
and local steps as alternatives, one may realize a desired communication interval H using a combination of
both. (For example, 8 local steps, each using 4 gradient accumulations, achieves a communication interval
of 32.) Relatedly, one may alter the communication interval for different phases of the optimization process.
Both decisions will influence learning rate scaling and may, in turn, be informed by gradient statistics.

References

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. Advances in Neural Information Processing Systems,
30:1709–1720, 2017. 3

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning rates. In
Gal Elidan, Kristian Kersting, and Alexander T. Ihler (eds.), Proceedings of the Thirty-Third Conference
on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press,
2017. URL http://auai.org/uai2017/proceedings/papers/141.pdf. 19

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Distributed SGD with
Quantization, Sparsification, and Local Computations. arXiv:1906.02367 [cs, math, stat], November 2019.
3

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. Advances in neural information processing systems,
30, 2017. 12

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem Chu-
machenko, Pavel Samygin, and Colin Raffel. Petals: Collaborative inference and fine-tuning of large
models. arXiv preprint arXiv:2209.01188, 2022a. URL https://arxiv.org/abs/2209.01188. 12

Alexander Borzunov, Max Ryabinin, Tim Dettmers, Quentin Lhoest, Lucile Saulnier, Michael Diskin, Yacine
Jernite, and Thomas Wolf. Training transformers together. In NeurIPS 2021 Competitions and Demon-
strations Track, pp. 335–342. PMLR, 2022b. 12

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learn-
ing. SIAM Review, 60(2):223–311, 2018. doi: 10.1137/16M1080173. URL https://doi.org/10.1137/
16M1080173. 1

Xuanyu Cao, Tamer Başar, Suhas Diggavi, Yonina C. Eldar, Khaled B. Letaief, H. Vincent Poor, and
Junshan Zhang. Communication-efficient distributed learning: An overview. IEEE Journal on Selected
Areas in Communications, 41(4):851–873, 2023. doi: 10.1109/JSAC.2023.3242710. 3

13

http://auai.org/uai2017/proceedings/papers/141.pdf
https://arxiv.org/abs/2209.01188
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173

Published in Transactions on Machine Learning Research (01/2024)

Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On large-cohort
training for federated learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
Kb26p7chwhf. 4

Kai Chen and Qiang Huo. Scalable training of deep learning machines by incremental block training with
intra-block parallel optimization and blockwise model-update filtering. In 2016 ieee international confer-
ence on acoustics, speech and signal processing (icassp), pp. 5880–5884. IEEE, 2016. 24

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of ImageNet as an alternative
to the CIFAR datasets. arXiv preprint arXiv:1707.08819, 2017. 9, 28

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using
mini-batches. Journal of Machine Learning Research, 13(1), 2012. 4

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009. 9

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Local SGD optimizes overparameterized
neural networks in polynomial time. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera
(eds.), Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume
151 of Proceedings of Machine Learning Research, pp. 6840–6861. PMLR, 28–30 Mar 2022. URL https:
//proceedings.mlr.press/v151/deng22a.html. 4

FairScale authors. Fairscale: A general purpose modular pytorch library for high performance and large
scale training. https://github.com/facebookresearch/fairscale, 2021. 9

Jonas Geiping, Micah Goldblum, Phil Pope, Michael Moeller, and Tom Goldstein. Stochastic training is
not necessary for generalization. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ZBESeIUB5k. 4

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.
arXiv:1706.02677 [cs], April 2018. 1, 3, 4, 7, 10, 28

Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local SGD generalize
better than SGD? In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=svCcui6Drl. 4

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local SGD with
periodic averaging: Tighter analysis and adaptive synchronization. In Advances in Neural Information
Processing Systems, pp. 11080–11092, 2019. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90. URL
https://doi.org/10.1109/CVPR.2016.90. 9, 23

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the generalization gap
in large batch training of neural networks. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 1729–1739, Red Hook, NY, USA, 2017. Curran Associates
Inc. ISBN 9781510860964. 3

Tyler Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. AdaScale SGD: A user-friendly algorithm
for distributed training. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4911–
4920. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/johnson20a.html. 2, 3, 7,
19, 24

14

https://openreview.net/forum?id=Kb26p7chwhf
https://openreview.net/forum?id=Kb26p7chwhf
https://proceedings.mlr.press/v151/deng22a.html
https://proceedings.mlr.press/v151/deng22a.html
https://github.com/facebookresearch/fairscale
https://openreview.net/forum?id=ZBESeIUB5k
https://openreview.net/forum?id=svCcui6Drl
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.mlr.press/v119/johnson20a.html

Published in Transactions on Machine Learning Research (01/2024)

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. Tighter theory for local SGD on identical
and heterogeneous data. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, pp. 4519–4529. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.press/
v108/bayoumi20a.html. 4, 20, 27

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.
1

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. 9, 23

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014. 3

Learning@home team. Hivemind: a Library for Decentralized Deep Learning. https://github.com/
learning-at-home/hivemind, 2020. 12

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches, use local
SGD. In International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=B1eyO1BFPr. 2, 3, 4, 6, 10, 12, 24

Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Olli Saarikivi, Tianju Xu, Vadim Eksarevskiy, Jaliya
Ekanayake, and Emad Barsoum. Scaling distributed training with adaptive summation. Proceedings of
Machine Learning and Systems, 3, 2021. 3

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of large-batch
training. arXiv:1812.06162 [cs, stat], December 2018. 7

David E Muller. A method for solving algebraic equations using an automatic computer. Mathematical
tables and other aids to computation, 10(56):208–215, 1956. 23

Tomoya Murata and Taiji Suzuki. Bias-variance reduced local SGD for less heterogeneous federated learning.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 7872–7881. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/murata21a.html. 4

Zachary Nado, Justin M. Gilmer, Christopher J. Shallue, Rohan Anil, and George E. Dahl. A large batch
optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv:2102.06356 [cs,
stat], June 2021. 3

Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat, Ari Morcos, and Nicolas Ballas. Trade-offs of
local sgd at scale: An empirical study. arXiv preprint arXiv:2110.08133, 2021. 2, 3, 4, 6, 10

Antonio Orvieto, Hans Kersting, Frank Proske, Francis Bach, and Aurelien Lucchi. Anticorrelated noise
injection for improved generalization. In International Conference on Machine Learning, pp. 17094–17116.
PMLR, 2022. 12

Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of dnns with natural gradient and
parameter averaging. arXiv preprint arXiv:1410.7455, 2014. 4

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151,
1999. 1

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to paral-
lelizing stochastic gradient descent. Advances in neural information processing systems, 24, 2011. 3

15

https://proceedings.mlr.press/v108/bayoumi20a.html
https://proceedings.mlr.press/v108/bayoumi20a.html
http://arxiv.org/abs/1412.6980
https://github.com/learning-at-home/hivemind
https://github.com/learning-at-home/hivemind
https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=B1eyO1BFPr
https://proceedings.mlr.press/v139/murata21a.html

Published in Transactions on Machine Learning Research (01/2024)

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=LkFG3lB13U5. 13

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951. 1

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252, 2015. 9

Max Ryabinin and Anton Gusev. Towards crowdsourced training of large neural networks using decentralized
mixture-of-experts. Advances in Neural Information Processing Systems, 33:3659–3672, 2020. 12

Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhimenko. Moshpit sgd:
Communication-efficient decentralized training on heterogeneous unreliable devices. Advances in Neu-
ral Information Processing Systems, 34:18195–18211, 2021. 12

Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Squarm-SGD: Communication-efficient
momentum SGD for decentralized optimization. IEEE Journal on Selected Areas in Information Theory,
2(3):954–969, 2021. 5

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on
applications of computer vision (WACV), pp. 464–472. IEEE, 2017. 3

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=S1g2JnRcFX. 2, 4, 5, 27

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pp. 1139–1147. PMLR,
2013. 1

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-runtime trade-off
in local-update sgd. Proceedings of Machine Learning and Systems, 1:212–229, 2019. 4, 6

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. SlowMo: Improving communication-
efficient distributed SGD with slow momentum. 2020. URL https://openreview.net/forum?id=
SkxJ8REYPH. 4, 5, 24

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera y Arcas,
Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas Diggavi,
Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew Hard,
Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara Javidi, Peter Kairouz,
Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar
Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik, Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi,
Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake
Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang
Zheng, Chen Zhu, and Wennan Zhu. A Field Guide to Federated Optimization. arXiv:2107.06917 [cs],
July 2021. 4

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In Proceedings of the 37th
International Conference on Machine Learning, pp. 10334–10343. PMLR, November 2020. 4

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017. 3

16

https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=SkxJ8REYPH
https://openreview.net/forum?id=SkxJ8REYPH

Published in Transactions on Machine Learning Research (01/2024)

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
BERT in 76 minutes. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=Syx4wnEtvH. 3

Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs local SGD with shuffling: Tight convergence
bounds and beyond. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=LdlwbBP2mlq. 2, 4

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016. 9

Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. Parallel SGD: When does averaging
help? arXiv preprint arXiv:1606.07365, 2016. 4

Fan Zhou and Guojing Cong. On the convergence properties of a K-step averaging stochastic gradient
descent algorithm for nonconvex optimization. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pp. 3219–3227, 2018. 4

17

https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=LdlwbBP2mlq
https://openreview.net/forum?id=LdlwbBP2mlq

Published in Transactions on Machine Learning Research (01/2024)

Contents

1 Introduction 1

2 Related Work 3

3 Preliminaries 4
3.1 Problem Setup . 4
3.2 Local SGD . 5

4 Local SGD’s Learning Rate Conundrum 5

5 Adaptive Learning Rate Scaling for Synchronous and Local SGD 6
5.1 Optimal learning rate scaling for SGD – AdaScale . 6
5.2 Optimal learning rate scaling for Local SGD– LocalAdaScale 7

6 Experiments 9
6.1 Local SGD with automatic learning rate scaling LocalAdaScale maintains Target Accuracy . 10
6.2 Should I Use Local SGD? . 10

7 Conclusion 12

A Glossary of Symbols 19

B Derivation of AdaScale 19

C Details on Local SGD 20
C.1 MSE of Local SGD’s Gradient Estimate (Equation 6) . 20
C.2 Expected Decrease (Equation 10) . 21
C.3 Optimal Step Size (Equation 13) . 23

D Expected Decrease for H Steps of Synchronous SGD 24

E Avoiding Stale Gradients in Computing the Gain Ratio 24

F How accurate are our approximations in Equation (14)? 26

G Need to Modulate Step Size for Larger Batch Sizes 27
G.1 With Constant Learning Rate . 27
G.2 Using AdaScale . 27

H Details of Experiments 28
H.1 Experimental Setup . 28
H.2 Tabulated Results . 28
H.3 Additional Results for Pseudo-Wall Clock Time . 30
H.4 Behavior of the Gain Ratio . 30

18

Published in Transactions on Machine Learning Research (01/2024)

A Glossary of Symbols

Symbol Meaning
K Number of workers
H Number of local steps

γbase Unscaled learning rate for K = 1
B Batch size per worker/Base batch size

(·)t Quantity (·) at time t
∇ft Gradient of function f at wt

σ2
t Variance of gradient estimation at time t

gk
t Gradient estimate on worker k at time t

Ḡt, σt Virtual Gradient magnitude and variance estimate for Local SGD
wk

t Model weights on worker k at time t

Table 1: Glossary of symbols used

B Derivation of AdaScale

In this section, we derive the AdaScale rule of (Johnson et al., 2020) using ideas from Balles et al. (2017).
This view of AdaScale being the learning rate scaling that maximizes the function decrease is novel to the
best of our knowledge. Pseudo-code for AdaScale is shown in Algorithm 2.

By definition, f satisfies the following property.

f(y) ≤ f(x) +∇f(x)T (y − x) + L

2 ||y − x||2 (17)

for x, y ∈ dom(f). Plugging in x = wt and y = wt+1 = wt − γtgt, and computing the expected value of
f(wt+1) given wt ,where gt is the stochastic gradient at t, we get

E[f(wt+1)] ≤ f(wt)− γt∇fT
t · E[gt] + Lγ2

t

2 E[||gt||2] (18)

The optimal learning rate is the one that minimizes the right-hand side, thereby maximizing the expected
decrease of the function value.

Differentiating the right side of Equation (18) and setting it to zero gives the optimal learning rate as

γt = ∇fT
t E[gt]

L · E[||gt||2] = 1
L

Ḡt

(σ2
t + Ḡt)

(19)

where Et[gt] = ∇ft, ||∇ft||2 := Ḡt and Et[||gt||2] = Ḡt + σ2
t .

When we increase the batch size by a factor of K, the variance is reduced by a factor of K. Thus, the
optimal learning rate becomes

γK
t = 1

L

Ḡt(
σ2

t

K + Ḡt

) . (20)

Thus, the relative change in the learning rate when the batch size is increased K times is

rt = σ2
t + Ḡt

σ2
t

K + Ḡt

, (21)

and is termed the gain ratio. As it is evident, it takes a maximum value of K when Ḡ≪ σ2.

19

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 2 AdaScale for synchronous gradient descent
Input: Initialization w, t = 0, learning rate function γt, # workers K, scale-invariant iteration budget
S, s = 0 t = 0.

1: while s ≤ S do ▷ Scale invariant budget not exhausted
2: for k ∈ [K] do ▷ On each worker
3: Compute gk

t using a batch of data. ▷ Compute local gradients.
4: Compute rt ∈ [1, K] as given in Equation (21).
5: Update wt+1 ← wt − γ⌈s⌉ × rtg̃t ▷

(
g̃t := 1

K

∑K
k=1 gk

t

)
.

6: t← t + 1. ▷ Iteration counter increment.
7: s← s + rt. ▷ Budget is computed from the scaling obtained.
8: return Last iterate wt.

C Details on Local SGD

This section contains details regarding Local SGD which have been omitted from the main text, in particular
the derivation of the MSE of its implicit gradient estimate (Appendix C.1) as well as the optimal step size
(Appendix C.3).

Local SGD was introduced in §3, in particular Equation (3). In practice, Local SGD is often used with local
steps other than a vanilla SGD step, e.g., momentum variants. Algorithm 3 provides pseudocode; Line 5
calls an update function, which may apply any gradient-based optimization step, like SGD or momentum
SGD or adaptive gradient methods like Adam.

Algorithm 3 Local SGD
Input: Initialization w0, step-size γt, #workers K, #local steps H, budget T

1: t← 0
2: while t ≤ T do ▷ Training budget not exhausted.
3: for k ∈ [K] do ▷ On each worker
4: Compute gk

t using a batch of data.
5: wk

t+1 ← Update(wk
t , γt, gk

t). ▷ Local update
6: if t + 1 | H then ▷ Average every H steps
7: wk

t+1 ← 1
K

∑K
k′=1 wk′

t+1

8: t← t + 1
9: return Averaged iterate 1

K

∑K
k=1 wk

T .

C.1 MSE of Local SGD’s Gradient Estimate (Equation 6)

We derive the error in estimating the gradient for Local SGD, stated in Proposition 4.2. We first give the
following Lemma, a variant of Lemma 1 in Khaled et al. (2020) using our local variance bound.

Lemma C.1. Let Assumption 4.1 hold and let t′ ∈ [t, t + H). Define Vt′ = 1
K

∑K
k=1

∥∥wk
t′ − w̄t′

∥∥2. Then

Et[Vt′] ≤ (H − 1)γ2σ̄2
t (22)

Proof. See Lemma 1 of Khaled et al. (2020).

We are now ready to prove Proposition 4.2.

20

Published in Transactions on Machine Learning Research (01/2024)

Proof of Proposition 4.2. Using the definition of ḡt (Equation (4)), for every t′ ∈ [t, t + H), we have

Et′

[
∥ḡt′ −∇f(w̄t′)∥2

]
= Et′

∥∥∥∥∥ 1
K

K∑
k=1

(gk
t′ −∇f(w̄t′)

∥∥∥∥∥
2 (23)

= Et′

∥∥∥∥∥ 1
K

K∑
k=1

(
gk

t′ −∇f(wk
t′)
)

+ 1
K

K∑
k=1

(
∇f(wk

t′)−∇f(w̄t′)
)∥∥∥∥∥

2 (24)

= Et′

∥∥∥∥∥ 1
K

K∑
k=1

(
gk

t′ −∇f(wk
t′)
)∥∥∥∥∥

2
︸ ︷︷ ︸

Term 1

+

∥∥∥∥∥ 1
K

K∑
k=1

(
∇f(wk

t′)−∇f(w̄t′)
)∥∥∥∥∥

2

︸ ︷︷ ︸
Term 2

(25)

(26)

For Term 1, the variance bound in Assumption 4.1 gives us

Et′

∥∥∥∥∥ 1
K

K∑
k=1

(
gk

t′ −∇f(wk
t′)
)∥∥∥∥∥

2 = 1
K2

∑
i,j

E[(gi
t′ −∇f(wi

t′))T (gj
t′ −∇f(wj

t′))]︸ ︷︷ ︸
≤σ̄2

t δij

≤ σ̄2
t

K
. (27)

For Term 2, we use Jensen’s inequality and L-smoothness to get∥∥∥∥∥ 1
K

K∑
k=1

(
∇f(wk

t′)−∇f(w̄t′)
)∥∥∥∥∥

2

≤ 1
K

K∑
k=1

∥∥(∇f(wk
t′)−∇f(w̄t′)

)∥∥2 ≤ L2 1
K

K∑
k=1

∥∥wk
t′ − w̄t′

∥∥2

︸ ︷︷ ︸
=:Vt′

. (28)

Plugging that back in and taking the expectation Et, we find

Et′

[
∥ḡt′ −∇f(w̄t′)∥2

]
≤ σ̄2

t

K
+ L2Et[Vt′] ≤ σ̄2

t

K
+ (H − 1)L2γ2σ̄2

t . (29)

C.2 Expected Decrease (Equation 10)

We now derive an upper bound on the expected decrease achieved by H consecutive steps of Local SGD.
This result was stated in Equation (10). The following Proposition states the bound, where we factorize the
learning rate as γ = η

L ; this is solely for the readability of the proof.
Proposition C.2. Let f be L-smooth. We consider H consecutive steps of Local SGD (Equation (3))
starting from a synchronization point H | t. We assume a fixed step size γ = η/L across these H steps.
Then

Et[f(w̄t+H)] ≤ f(w̄t)−H

(
η

2L
Ḡt + η

2L
Āt −

η2

2L
Āt −

η2

2L

σ̄2
t

K
− η3

4L
(H − 1)σ̄2

t

)
, (30)

where

Ḡt = 1
H

t+H−1∑
t′=t

Et[∥∇f(w̄t′)∥2], Āt = 1
K

∑
k

1
H

t+H−1∑
t′=t

Et[∥∇f(wk
t′)∥2]. (31)

Proof. From L-smoothness, we have for any t′

Et′ [f(w̄t′+1)] ≤ f(w̄t′)− η

L
∇f(w̄t′)TEt′ [ḡt′] + η2

2L
Et′ [∥ḡt′∥2]

= f(w̄t′)− η

L
∇f(w̄t′)T

(
1
K

∑
k

∇f(wk
t′)
)

+ η2

2L
Et′ [∥ḡt′∥2]

(32)

21

Published in Transactions on Machine Learning Research (01/2024)

Regarding the linear term, we have

∇f(w̄t′)T

(
1
K

∑
k

∇f(wk
t′)
)

= 1
2

(
1
K

∑
k

∥∇f(wk
t′)∥2 + ∥∇f(w̄t′)∥2 − 1

K

∑
k

∥∇f(wk
t′)−∇f(w̄t′)∥2

)

≥ 1
2

 1
K

∑
k

∥∇f(wk
t′)∥2

︸ ︷︷ ︸
=:At′

+∥∇f(w̄t′)∥2 − L2 1
K

∑
k

∥wk
t′ − w̄t′∥2

︸ ︷︷ ︸
=:Vt′

 .

(33)

Furthermore, we have

Et′ [∥ḡt′∥2] = ∥Et′ [ḡt′]∥2 + Vart′ [ḡt′] ≤

∥∥∥∥∥ 1
K

∑
k

∇f(wk
t′)

∥∥∥∥∥
2

︸ ︷︷ ︸
≤At′

+ σ̄2
t

K
.

(34)

Plugging Equations (33) and (34) back into Equation (32), we get

Et′ [f(w̄t′+1)] ≤ f(w̄t′)− η

2L
∥∇f(w̄t′)∥2 − η

2L
At′ + Lη

2 Vt′ + η2

2L
At′ + η2

2L

σ̄2
t

K
. (35)

Iterating this bound backward from t′ = t + H − 1 while taking the expectation Et yields

Et[f(w̄t+H)] = Et[Et+H−1[f(w̄t+H)]]

≤ Et

[
f(w̄t+H−1)− η

2L
∥∇f(w̄t+H−1)∥2 − η

2L
At+H−1 + Lη

2 Vt+H−1 + η2

2L
At+H−1 + η2

2L

σ̄2
t

K

]
≤ . . .

≤ f(w̄t)−
η

2L

t+H−1∑
t′=t

Et[∥∇f(w̄t′)∥2]︸ ︷︷ ︸
=HḠt

− η

2L

t+H−1∑
t′=t

Et[At′]︸ ︷︷ ︸
=HĀt

+ η2

2L

t+H−1∑
t′=t

Et[At′]︸ ︷︷ ︸
=HĀt

+ η2

2L
H

σ̄2
t

K
+ Lη

2

t+H−1∑
t′=t

Et[Vt′]︸ ︷︷ ︸
(∗)

(36)

It remains to bound the term (∗). From Lemma C.1 we know that Vt obeys the recursion

Et[Vt′] ≤ E[Vt′−1] + γ2σ̄2
t , γ = η

L
(37)

Since Vt = 0, we get Et[Vt′] ≤ (t′ − t)σ̄2
t

η2

L2 and

t+H−1∑
t′=t

Et[Vt′] ≤ σ̄2
t η2 1

L2

t+H−1∑
t′=t

(t′ − t) = σ̄2
t η2 (H − 1)H

2L2 . (38)

Plugging that back in gives

Et[f(w̄t+H)] ≤ f(w̄t)−
η

2L
HḠt −

η

2L
HĀt + η2

2L
HĀt + η2

2L
H

σ̄2
t

K
+ η3

4L
(H − 1)Hσ̄2

t
(39)

22

Published in Transactions on Machine Learning Research (01/2024)

0 500 1000 1500 2000

Training step

10−3

10−2

10−1

100

S
t
d

(‖
∇
f
t
:t

+
H
‖)

M
e
a
n

(‖
∇
f
t
:t

+
H
‖)

H
2

16

64

Figure 7: Examining the assumption in Equation (40). We plot the standard deviation of the full-gradient
magnitude over H steps for a ResNet-9 (He et al., 2016) trained on CIFAR-10 (Krizhevsky, 2009). It is
evident that the gradient magnitude changes very little over the course of training and thus the assumption
over a small number of H gradient steps the magnitude remains constant is a reasonable approximation.

This expected function decrease bound features terms Ḡt and Āt, which are expected squared gradient
magnitudes along the trajectories of the virtual averaged iterates, and the per-worker iterates, respectively.
These quantities are not computed in practice, and in principle, dependent on η, since the choice of step size
influences the gradient magnitude along that trajectory. We make a simplifying assumption that

Āt ≈ ∥∇f(w̄t)∥2 ≈ Ḡt (40)

Equation (40) signifies that between two synchronizations the average virtual gradient magnitude and the
local gradient magnitudes computed on each worker do not change too much and can be approximated by the
gradient magnitude computed at the point of synchronization (w̄t). We study the validity of this assumption
in Figure 7. We train a small ResNet-9 on CIFAR-10 using SGD. We are interested in how the gradient
magnitude (not stochastic gradient magnitude) evolves over a short horizon of H steps, and thus we plot
the ratio standard deviation of the gradient magnitude over H steps to the average gradient magnitude over
those H steps, commonly termed coefficient of variation. It is apparent from Figure 7 that the coefficient of
variation is well below is almost < 1 except at the start of the training. This provides evidence that we can
reuse the gradient magnitude for H steps due to its relative constancy.

Substituting Equation (40) into Equation (39) gives us

Et[f(w̄t+H)] ≤ f(w̄t)−H

(
γḠt −

γ2L

2 Ḡt −
γ2L

2
σ̄2

t

K
− γ3L2

4 (H − 1)σ̄2
t

)
(41)

C.3 Optimal Step Size (Equation 13)

We can now find the learning rate η that minimizes our bound on E[f(w̄t+H)] in Equation (41). Setting the
derivative of the right-hand side w.r.t. γ to zero reads

Ḡt − γLḠt − γL
σ̄2

t

K
− 3

4γ2L2(H − 1)σ̄2
t = 0 (42)

This quadratic equation in γ can be solved by the standard quadratic formula. We instead use Muller’s
method (Muller, 1956) which gives the roots of a quadratic of form ax2 + bx + c = 0 as

x = 2c

−b±
√

b2 − 4ac
(43)

23

Published in Transactions on Machine Learning Research (01/2024)

Ignoring the negative root, we get

γ = 1
L

2Ḡt

Ḡt + σ̄2
t /K +

√
(Ḡt + σ̄2

t /K)2 + 3(H − 1)Ḡtσ̄2
t

. (44)

In our experiments, following Johnson et al. (2020), we use SGD with momentum. Momentum buffers are
maintained locally on each machine and not synchronized. We leave the investigation of different approaches
to momentum buffers (Lin et al., 2020; Wang et al., 2020; Chen & Huo, 2016) to future work.

D Expected Decrease for H Steps of Synchronous SGD

To elucidate the expected decrease bound for Local SGD in Equation (41), we contrast it with a similar bound
for H consecutive steps of synchronous data-parallel SGD using a constant learning rate γ. Analogously
to our analysis for Local SGD, we assume gradient variance and magnitude to be bounded across these H
steps,

Et′ [gk
t′] ≤ σ̄2

t , ∥∇f(wt′)∥2 ≥ Ḡt, t′ ∈ [t, t + H). (45)

For the averaged gradient across K workers, this results in Vart′ [g̃t′] ≤ σ̄2
t

K .

By smoothness, we get

Et′ [f(wt′+1)] ≤ f(wt′)− γ∇f(wt′)TEt′ [g̃t′] + Lγ2

2 Et′

[
∥g̃t′∥2

]
= f(wt′)−

(
γ∥∇f(wt′)∥2 − Lγ2

2
[
∥∇f(wt′)∥2 + Vart′ [g̃t′]

])
≤ f(wt′)−

(
γḠt −

Lγ2

2

[
Ḡt + σ̄2

t

K

])
.

(46)

Using this recursively for H steps from t to t + H while taking the expectation Et, we get

Et[f(wt+H)] ≤ f(wt)−H ·
(

γḠt −
γ2L

2 Ḡt −
γ2L

2
σ̄2

t

K

)
︸ ︷︷ ︸

Expected decrease for SGD

.
(47)

Contrast this with Equation (30), restated here:

Et[f(w̄t+H)] ≤ f(w̄t)−H ·
(

γḠt −
γ2L

2 Ḡt −
γ2L

2
σ̄2

t

K
− γ3L2

4 (H − 1)σ̄2
t

)
. (48)

We see that Local SGD has an additional cubic term that results from the biased estimation of gradients.

E Avoiding Stale Gradients in Computing the Gain Ratio

To implement LocalAdaScale, we need to estimate Ḡt and σ̄2
t . In Algorithm 1, we proposed a method that

synchronizes once every H steps to average the weights and the cached stale gradients simultaneously. As
an ablation study, we compare this against an alternative strategy where we synchronize the gradients one
step after weight synchronization in Algorithm 4. While this incurs latency overhead twice, the resulting
gain ratio is computed with more recent gradient evaluations and should therefore be more accurate.

In Figure 9, we compare the two variants Local-Ada, and Local-Ada-NoStale. Across all datasets,
we find that there are very small differences between the two variants in the final accuracy obtained or the
number of epochs to convergence. The difference in the number of epochs for Local-Ada and Local-Ada-
NoStale is explained by the fact that underestimating the gain ratio ρ due to using stale gradients results
in longer training durations.

24

Published in Transactions on Machine Learning Research (01/2024)

21 22 23 24 25 26

94

95

96

97

C
IF

A
R

1
0

T
o
p
-1

A
cc

u
ra

cy

K=8

21 22 23 24 25 26

K=16

21 22 23 24 25 26

K=24

21 22 23 24 25 26

67

68

69

70

71

Im
a
g
eN

et
3
2

T
o
p
-5

A
cc

u
ra

cy

21 22 23 24 25 26 21 22 23 24 25 26

21 23 25

H

90

92

94

Im
a
g
eN

et
T

o
p
-5

A
cc

u
ra

cy

21 23 25

H

21 23 25

H

Local-Ada-NoStale Local-Ada

Figure 8: Comparison of test accuracies achieved for different numbers of workers (K) and communication
intervals (H) by the two implementation variants of LocalAdaScale. Accuracy stays nearly identical between
the two implementations, and the minor variations are within random seed variations.

21 22 23 24 25 26

500

1000

C
IF

A
R

1
0

T
ru

e
E

p
o
ch

s

K=8

21 22 23 24 25 26

500

1000

1500

2000

K=16

21 22 23 24 25 26

1000

2000

K=24

21 22 23 24 25 26

75

100

125

Im
a
g
eN

et
3
2

T
ru

e
E

p
o
ch

s

21 22 23 24 25 26

100

150

200

21 22 23 24 25 26

100

200

21 23 25

H

150

200

Im
a
g
eN

et
T

ru
e

E
p

o
ch

s

21 23 25

H

200

300

21 23 25

H

200

300

400

500

Figure 9: Number of epochs used by each method. When K > 8, both variants converge in a nearly identical
number of epochs. Local-Ada trains for marginally more iterations, as it underestimates the gain ratio
due to the utilization of cached gradients

25

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 4 LocalAdaScale with two synchronizations – Local-Ada-NoStale
1: Input: Initialization w0, step-size γt, #workers K, #local steps H, Scale inv budget S, t = 0, s = 0.
2: while s ≤ S do ▷ Scale inv budget not exhausted.
3: for k ∈ [K] do ▷ On each worker
4: Compute gk

t using a batch of data. ▷ Gradient at t.
5: if H | t then ▷ One step after model sync.
6: Ḡt, σ̄2

t ← grad_stats(gk
t) ▷ Equation (15)

7: Compute ρ as Equation (14).
8: if H | (t + 1) then ▷ Average model every H steps
9: wj

t ← 1
K

∑K
j=1 wj

t ∀j.
10: wk

t+1 ← wk
t − ργ⌈s⌉gk

t . ▷ Local update.
11: if H | (t + 1) then ▷ Average every H steps
12: wj

t ← 1
K

∑K
j=1 wj

t ∀j.
13: s← s + ρt

14: t← t + 1
15: return the last iterate wi.

F How accurate are our approximations in Equation (14)?

We study the tightness of our assumptions by studying a generalized version of Equation (14) as

ρt(c) =
2
(
Ḡt + σ̄2

t

)
Ḡt + σ̄2

t

K +
√(

Ḡt + σ̄2
t

K

)2
+ 3 c (H − 1)Ḡtσ̄2

t

. (49)

Here when ρt(0) reduces to AdaScale and ρt(1) is LocalAdaScale, and thus ρt(c) for c ∈ [0, 1] interpolates
AdaScale and LocalAdaScale. Modulating c scales the learning rate as well as the number of training
iterations.

64

66

68

T
o
p

-5
A

cc
u

ra
cy

ImageNet-32

0.0 0.5 1.0 1.5

c

50

100

150

200

T
ru

e
E

p
o
ch

s

ImageNet-32
H

16

32

Figure 10: Ablation over c in Equation (49). We plot c vs Top-5 Accuracy and Number of epochs ImageNet32
for K = 16 for H = 16, 32. We see that c ≥ 0.6 results recovering the Target Accuracy.

26

Published in Transactions on Machine Learning Research (01/2024)

We show in Figure 10 the effect of c on the performance. Using AdaScale’s gain formula (c = 0) for Local
SGD is has the advantage of fastest convergence albeit with poorer generalization as the learning rate used is
likely too aggressive, and consequently training iterations too few. As c is increased from 0, we see improved
performance and the performance shows diminishing returns when c ≥ 0.6. This threshold can vary with
the dataset and network architecture in addition to the number of workers, and cannot be interpreted as
a universal threshold. We see that our proposed method scales the learning rate conservatively and our
threshold works well for very high communication gap of H = 32. This figure is further evidence that scaling
methods that were designed for synchronous data-parallel SGD do not perform well for Local SGD and the
delayed communication (H ≥ 2) has to be accounted for, as we seen in the case of c = 0 where there is a
substantial performance difference between the two cases H = 16 and H = 32.

G Need to Modulate Step Size for Larger Batch Sizes

G.1 With Constant Learning Rate

Khaled et al. (2020); Stich (2019) analyze the convergence of Local SGD under a different condition for
learning rate: either constant, or decreasing with time, but not the optimal learning rate. We can analyze
this choice by mapping that idea to SGD in Equation (18). Let γ be the learning rate that is small enough
(additional upper bounds exist). We can see that with that learning rate the loss function decreases by

E[f(wt+1)|wt] ≤ f(wt)−
(

γ∥∇ft∥2 − ∥∇ft∥2 + σ2
t

2 Lγ2
)

(50)

By keeping the learning rate the same value and when the number of workers goes up K fold, the variance
reduces by the same factor, we get

E[f(wt+1)|wt] ≤ f(wt)−
(

γ∥∇ft∥2 −
∥∇ft∥2 + σ2

t

K

2 Lγ2

)
(51)

Comparing Equations (50) and (51), it is apparent that merely increasing the batch size results in an update
that results in a larger reduction of the function value without having to tinker with the learning rate at all.
However, this is suboptimal as a practitioner would be interested in tuning the learning rate that results in
the largest reduction (implying faster training). Here lies the difference between prior works and our results.

G.2 Using AdaScale

In Appendix B, we derived the optimal learning rate, which results in the largest decrease in the function
value. Thus, when the number of workers is increased from 1 to K, any learning rate smaller than the
optimal, will also result in the decrease of the function value in Equation (18), however, will be lesser than
optimal. We make this more formal here.

Substituting Equation (19) into Equation (18), we get

E[f(wt+1)|wt] ≤ f(wt)−
(

||∇ft||2

(σ2
t + ||∇ft||2)

||∇ft||2

L
−
(
σ2

t + ||∇ft||2
)

2L

||∇ft||4

(σ2
t + ||∇ft||2)2

)

= f(wt)−

 1
2L

||∇ft||4

(σ2
t + ||∇ft||2)︸ ︷︷ ︸

Reduction factor

 (OptRednSGD-1 Worker)

27

Published in Transactions on Machine Learning Research (01/2024)

Similarly, we can show that the optimal reduction in the function value when K workers are used as

E[f(wt+1)|wt] ≤ f(wt)−

1

2L

||∇ft||4(
σ2

t

K + ||∇ft||2
)

︸ ︷︷ ︸
Reduction factor

 (OptRednSGD-K Worker)

The reduction factor in Equation (OptRednSGD-K Worker) ≥ Equation (OptRednSGD-1 Worker), as the
denominator in Equation (OptRednSGD-K Worker) is smaller than Equation (OptRednSGD-1 Worker) and
all other terms are identical. A learning rate adaptation is required to capitalize on the availability of K
workers.

H Details of Experiments

H.1 Experimental Setup

CIFAR-10 We used ResNet model code and training hyperparameters from the GitHub repository https:
//github.com/kuangliu/pytorch-cifar. They report a test accuracy of 93.02% for ResNet-18 in the
single-worker base setting.

ImageNet32 We used Wide ResNet model code from https://github.com/weiaicunzai/
pytorch-cifar100 and training hyperparameters from the paper proposing ImageNet32 (Chrabaszcz
et al., 2017). They report a top-5 test accuracy of 69.08% for WRN-28-2 in the single-worker base setting.

ImageNet We used ResNet model from the torchvision library and training hyperparameters from Goyal
et al. (2018). The torchvision library reports a top-5 test accuracy of 92.86%.

Training hyperparameters are listed in the following table:

Dataset γbase Momentum Weight decay LR schedule Epochs
CIFAR-10 0.1 0.9 5× 10−4 Cosine-decay 200
ImageNet32 0.01 0.9 5× 10−4 Step (×0.5 every 10 epochs) 40
ImageNet 0.1 0.9 5× 10−4 Step (×0.1 every 30 epochs) 90

H.2 Tabulated Results

Tabulated results of our experiments may be found in Tables 2 to 4.

28

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/weiaicunzai/pytorch-cifar100

Published in Transactions on Machine Learning Research (01/2024)

Table 2: Accuracy [%] and number of epochs for CIFAR-10.
Accuracy Epochs

K H Acc-Ada Acc-Lin Local-Ada Local-Lin Acc-Ada Acc-Lin Local-Ada Local-Lin

8

2 95.12 94.73 95.07 95.16 291 200 338 200
4 95.11 93.92 94.94 95.26 353 200 405 200
8 94.81 88.06 95.77 95.22 496 200 469 200
16 94.70 53.09 96.02 94.98 791 200 604 200
32 94.28 13.19 95.85 94.25 1450 200 813 200
64 94.53 10.70 95.71 93.61 2260 201 1056 200

16

2 95.35 94.13 95.11 95.24 360 200 422 200
4 95.15 87.36 95.55 94.69 502 200 525 200
8 94.65 36.52 95.71 93.82 812 200 666 200
16 94.43 14.18 95.74 93.35 1330 200 890 200
32 94.64 14.12 94.74 91.95 2499 201 1735 200
64 93.24 10.12 95.47 90.83 6157 202 1846 200

24

2 94.52 90.02 95.24 94.21 443 200 515 200
4 94.79 79.58 95.72 93.63 617 200 634 200
8 94.55 13.87 95.72 92.99 1006 200 813 200
16 93.65 10.76 95.39 91.68 1634 200 1132 200
32 93.96 11.08 95.92 86.69 3688 201 1671 200
64 92.73 11.48 95.28 66.22 8542 203 2535 200

Table 3: Accuracy [%] and number of epochs for ImageNet32.
Accuracy Epochs

K H Acc-Ada Acc-Lin Local-Ada Local-Lin Acc-Ada Acc-Lin Local-Ada Local-Lin

8

2 69.01 68.00 69.41 68.32 49 40 56 40
4 69.15 67.84 69.51 68.13 57 40 65 40
8 69.48 62.59 69.06 67.31 74 40 75 40
16 69.50 51.15 68.86 66.19 104 40 89 40
32 69.91 41.72 68.89 64.76 161 40 113 40
64 69.94 28.45 68.87 63.96 283 40 142 40

16

2 68.88 67.35 69.24 68.27 58 40 72 40
4 69.16 61.09 69.42 67.22 73 40 87 40
8 69.66 53.42 68.97 65.80 104 40 101 40
16 70.01 48.60 68.61 63.44 162 40 123 40
32 70.02 29.78 68.41 60.93 286 40 163 40
64 69.54 6.30 68.44 59.27 518 40 219 40

24

2 68.99 66.51 69.51 67.02 65 40 84 40
4 69.45 45.41 69.36 65.81 87 40 103 40
8 69.71 47.79 68.60 64.05 133 40 121 40
16 69.58 32.45 68.27 60.80 218 40 154 40
32 69.77 7.91 67.91 56.53 409 40 209 40
64 68.97 4.84 67.89 54.18 744 40 279 40

Table 4: Accuracy [%] and number of epochs for ImageNet.
Accuracy Epochs

K H Acc-Ada Acc-Lin Local-Ada Local-Lin Acc-Ada Acc-Lin Local-Ada Local-Lin

8
2 92.32 92.66 92.93 92.31 108 90 122 90
8 92.54 90.70 92.89 92.30 157 90 156 90
32 92.14 59.23 92.98 90.72 328 90 240 90

16
2 92.15 92.37 92.66 92.54 127 90 149 90
8 92.54 85.40 92.85 91.64 213 90 217 90
32 91.74 0.58 92.89 88.40 568 90 377 90

24
2 92.84 91.81 92.83 92.49 141 90 177 90
8 92.35 77.93 92.72 90.83 260 90 272 90
32 91.12 0.62 92.24 84.08 761 90 536 90

29

Published in Transactions on Machine Learning Research (01/2024)

H.3 Additional Results for Pseudo-Wall Clock Time

In Figure 11, we plot the full communication tradeoffs for all the datasets, and workers (K) considered.

24

25

26

27

28

29

210

211

T
ra

in
in

g
ti

m
e
T

K = 8

24

25

26

27

28

29

210

211
K = 16

24

25

26

27

28

29

210

211

C
IF

A
R

1
0

K = 24

22

23

24

25

26

27

28

29

T
ra

in
in

g
ti

m
e
T

22

23

24

25

26

27

28

29

22

23

24

25

26

27

28

29

Im
a
g
eN

et3
2

20 21 22 23 24 25 26 27

Relative cost m

23

24

25

26

27

28

29

210

T
ra

in
in

g
ti

m
e
T

20 21 22 23 24 25 26 27

Relative cost m

23

24

25

26

27

28

29

210

20 21 22 23 24 25 26 27

Relative cost m

23

24

25

26

27

28

29

210

Im
a
g
eN

et

H

1

2

8

32

64

Method

Acc-Ada

Local-Ada

Figure 11: When is LocalAdaScale preferable to Acc-Ada? On the x-axis, we plot the relative cost m of
communication to computation, and on the y-axis, we plot pseudo-wallclock time T . We see that LocalAdaS-
cale converges faster than gradient accumulation for higher H, and also for a higher cost of communication.
For lower m, gradient accumulation with fewer steps is preferable to LocalAdaScale.

H.4 Behavior of the Gain Ratio

Figures 12 and 13 show the gain ratios used by AdaScale and LocalAdaScale. We plot ρ (Eq. 14) for Local-
Ada and the “effective gain” r

H (Eq. 9) for Acc-Ada, accounting for the different scales of ρ and r. Since
different methods take different numbers of iterations, we adjust the x-axis to correspond to scale-invariant
epochs. We see that both methods approach the maximum gain ratio of K for small values of H. The
average gain ratio achieved by Acc-Ada is slightly higher for small H, resulting in fewer iterations as
observed before. For large H, this is reversed, and Local-Ada achieves higher average gains. In all settings
and for both methods, the gain ratio generally increases smoothly over time, reflecting a diminishing gradient
magnitude.

30

Published in Transactions on Machine Learning Research (01/2024)

0

2

4

6

8

G
a
in

K = 8

0

4

8

12

16
K = 16

0

4

8

12

16

20

24

H
=

2

K = 24

0

2

4

6

8

G
a
in

0

4

8

12

16

0

4

8

12

16

20

24

H
=

8

0 50 100 150 200

Epochs

0

2

4

6

8

G
a
in

0 50 100 150 200

Epochs

0

4

8

12

16

0 50 100 150 200

Epochs

0

4

8

12

16

20

24

H
=

3
2

Method

Acc-Ada

Local-Ada

Figure 12: Gain ratios for CIFAR-10 on ResNet-18. Each row corresponds to a communication interval H
and each column to the number of workers K. Acc-Ada reaches higher gain ratios for small H and thus
is more iteration efficient than Local-Ada. This trend reverses for large H, where we see that Acc-Ada
reaches higher scaling only towards the end of training. The x-axis has been linear downsampled to fit into
200 epochs for visualization.

0

2

4

6

8

G
a
in

K = 8

0

4

8

12

16
K = 16

0

4

8

12

16

20

24

H
=

2

K = 24

0

2

4

6

8

G
a
in

0

4

8

12

16

0

4

8

12

16

20

24

H
=

8

0 10 20 30 40

Epochs

0

2

4

6

8

G
a
in

0 10 20 30 40

Epochs

0

4

8

12

16

0 10 20 30 40

Epochs

0

4

8

12

16

20

24

H
=

3
2

Method

Acc-Ada

Local-Ada

Figure 13: Gain ratios for ImageNet-32 on WRN-28-2. Each row corresponds to a communication interval
H and each column to the number of workers K. Acc-Ada reaches higher gain ratios for small H and thus
is more iteration efficient than Local-Ada. This trend reverses for large H, where we see that Acc-Ada
reaches higher scaling only towards the end of training. The x-axis has been linear downsampled to fit into
40 epochs for visualization. The step structure of the gain is due to the step learning rate decay schedule
and does not align across plots because LocalAdaScale uses scale invariant epochs, which corresponds to
different number of epochs in each K, H setting.

31

	Introduction
	Related Work
	Preliminaries
	Problem Setup
	Local SGD

	Local SGD's Learning Rate Conundrum
	Adaptive Learning Rate Scaling for Synchronous and Local SGD
	Optimal learning rate scaling for SGD – AdaScale
	Optimal learning rate scaling for Local SGD– LocalAdaScale

	Experiments
	Local SGD with automatic learning rate scaling LocalAdaScale maintains Target Accuracy
	Should I Use Local SGD?

	Conclusion
	Glossary of Symbols
	Derivation of AdaScale
	Details on Local SGD
	MSE of Local SGD's Gradient Estimate ()
	Expected Decrease ()
	Optimal Step Size ()

	Expected Decrease for H Steps of Synchronous SGD
	Avoiding Stale Gradients in Computing the Gain Ratio
	How accurate are our approximations in Eqn 12?
	Need to Modulate Step Size for Larger Batch Sizes
	With Constant Learning Rate
	Using AdaScale

	Details of Experiments
	Experimental Setup
	Tabulated Results
	Additional Results for Pseudo-Wall Clock Time
	Behavior of the Gain Ratio

