
Improving the Robustness of Conditional Language
Models by Detecting and Removing Input Noise

Kundan Krishna1∗ Yao Zhao2 Jie Ren2 Balaji Lakshminarayanan2

Jiaming Luo2 Mohammad Saleh2 Peter J Liu2∗
1Carnegie Mellon University, work done while at Google Research

2Google Research
∗Correspondence to: kundank@andrew.cmu.edu, peterjliu@google.com

Abstract

The evaluation of conditional language modeling tasks such as abstractive sum-
marization typically uses test data that is identically distributed as training. In
real-world practice, documents to be summarized may contain input noise caused
by text extraction artifacts or data pipeline bugs. The robustness of model perfor-
mance under distribution shift caused by such noise is relatively under-studied.
We present a large empirical study quantifying the sometimes severe loss in per-
formance – up to 12 ROUGE-1 points – from different types of input noise for
a range of datasets and model sizes. We then propose a light-weight method for
detecting and removing such noise in the input during model inference without
requiring any extra training or auxiliary models, which effectively mitigates the
loss in performance, recovering up to 11 ROUGE-1 points.

1 Introduction
Despite rapid progress in conditional language modeling and abstractive summarization in particular
in recent years [9, 17, 21], virtually all works have tested models using identically distributed data as
training, and little attention has gone into studying their robustness to input distribution shift caused
by input noise. Different forms of data which are summarized can often contain noise — chats may
contain URLs or unseen emojis, news articles on the web may have embedded ads or tweets, and
scanned documents may contain OCR errors [5]. However, the impact of different kinds of noise
on modern abstractive summarization systems, and how to accurately detect and remove that noise,
remains largely unknown. In contrast, much work has been done for anomaly segmentation of images,
i.e. detecting and localizing unknown objects in images [3, 1, 12], suggesting a gap between the
study on vision and language in fine-grained input noise detection.

In this work, we study how noise in the input affects the output generated by conditional language
models, and propose a method to detect and remove it without relying on an external model. We
use summarization as a case study. We inject 4 commonly observed types of noise to 4 abstractive
summarization datasets with diverse styles [13, 8, 2, 19], and quantify the drop in aggregate metrics
for the output summaries (Section 2). We also study how the quality of generated summaries
varies with factors such as the amount of noise and size of the models. For our experiments, we
use PEGASUS [21] models - Transformer-based pre-trained models which deliver competitive
performance across abstractive summarization benchmarks.

We experiment with methods to detect and remove noisy spans in the input, and show that we can
recover a large fraction of the drop in output quality resulting from the addition of noise (Section
3). Our approach for detecting noisy spans is based on variations of the out-of-distribution (OOD)
detection techniques proposed by Ren et al. [18] — RMD Input Score, which uses the embeddings
computed by the summarization model’s encoder without requiring any additional model or training.
Figure 1 shows our method’s impact on a sample noisy document.

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: Effect of noise addition and filtering on the model generated summary for a sample
document. Random URLs are injected to the original document as noise. The color indicates the
value of our proposed OOD score for a text span — red represents positive and blue represents
negative OOD scores, with saturation proportional to the magnitude. Removing the detected noisy
parts from input and feeding to summarization model results in a summary closer to the ground truth.

A summary of our contributions:

• We quantify the impact of various kinds of noise on state-of-the-art summarization models,
demostrating drops in output quality measuring as large as 12 ROUGE-1 points.

• We show this noise can be detected using our proposed out-of-distribution methods, without
ever seeing it in training. Much of the performance drop can be recovered (up to around 11
ROUGE-1), improving robustness and safety for real-world model deployment.

2 Impact of noise addition
We inject noisy text spans in between sentences of the clean articles. The insert position of each
noisy text span is sampled independently and uniformly at random (see Figure A.1 in Appendix for
an example). Overall, we consider the following choices of a noisy text span:

• Code - a random line of code from a corpus of Python programs [4]

• Emoji - randomly sampled emojis taken from the version 15 release on unicode.org

• Randomsent - a random sentence from the first 1% of validation set of the Colossal Common
Crawl Corpus(C4) [17].

• URL - a random URL from the first 1% of validation set of the C4 corpus.

We experiment with different amounts of noise added to the input which is treated as a hyper-
parameter. We measure the amount of noise in terms of the number of noisy tokens added to the
input divided by the total number of tokens in the input after noise addition. We experiment with 4
different datasets — XSUM [13], CNN/DailyMail [19], SAMSum [2] and RedditTIFU-long [7]. Our
datasets span a variety of domains, where the first two datasets deal with summarizing news articles,
and the remaining two consider summarizing conversations and social media posts respectively. For
all experiments with each summarization dataset, we use PEGASUS models [21] finetuned on that
dataset. We evaluate the performance of models using ROUGE scores [10] of the corresponding
summaries generated by the them.

Effect of noise amount: We compare four different levels of noise, 5%, 10%, 25%, and 50% (50%
means the amount of noise tokens equals to the amount of the clean tokens.). As shown in Figure 2,
we see a near monotonic decrease in output quality as more noise is added to the data. In Figure 2a,
we group it by datasets while averaging across model sizes and noise types. This reveals that some
datasets are more robust to noise than others (e.g. CNN/DailyMail is most robust), and the relative
trends in performance drops remain similar across different noise amounts. In Figure 2b, we group
the performance drops by noise types while averaging across datasets and model sizes. We see a clear
gap between the drops for Code and Randomsent vs Emoji and URL, with the gap widening as the
noise amount is increased.

2

Effect of noise type: In general, we see the models are more robust to URLs and emojis, and less
robust to Randomsent and Code noise types as demonstrated by performance drops (averaged across
model sizes) shown in Figure 2c. We suspect that some of the this could be due to the presence of
URLs and emojis in the training dataset itself, due to which the model may have learned to be robust
to those noise types. Models trained on different datasets have varying sensitivity to different kinds of
noises (Figure 2c). For example, SAMSum is notoriously susceptible to Randomsent noise, leading
to a drop of about 10 Rouge-1 points averaged across model sizes, whereas for CNN/DailyMail Code
is the most harmful type of noise.

Effect of model size: We compare PEGASUS models of 3 different sizes (number of parameters) —
Small (50M), Base (200M), and Large (500M). As shown by performance drops (averaged over noise
types) in Figure 2d, one might expect larger models to be less susceptible to noise, but it does not
seem to be the case in general and simply scaling up models may not solve robustness. In some cases,
large models can still suffer loss of over 10 ROUGE-1 points with addition of noise (see Table A.1 in
Appendix).

(a) Effect of noise amount by dataset (b) Effect of noise amount by noise type

(c) Effect of noise type by dataset (d) Effect of model size by dataset

Figure 2: Change in output quality upon addition of noise to inputs, while varying different factors
— noise amount in (a) and (b), noise type in (c), and model size in (d). In (c) and (d) we also show
the quality after noise removal (the shaded area). Quality is measured as the geometric mean of
ROUGE-1/2/L scores and averaged over the non-varying factors. We set noise amount to 0.5 in (c)
and (d).

3 Noise detection and quality recovery
3.1 Noise detection

Ren et al. [18] studied various methods for detecting OOD inputs for conditional language generation
tasks, including summarization. They showed that the proposed embedding-based OOD detection
method Relative Mahalanobis distance (RMD) worked well. Specifically, given an input sequence
x = x1 . . . xt, the method obtains the input embedding z = 1

t Σihi by averaging the encoder’s
final-layer hidden state vectors hi corresponding to the input sequence token xi. The OOD score is
defined as the difference between two Mahalanobis distances (MD),

S(x) := RMD(z) := MDin(z)−MD0(z), (1)

where MDin(z) = (z − µ)TΣ−1(z − µ) measures the distance from z to the fitted in-domain
Gaussian distribution N (µ,Σ), and MD0(z) = (z − µ0)TΣ−1

0 (z − µ0) measures the distance to

3

the fitted background Gaussian N (µ0,Σ0). The in-domain distribution is fitted using the in-domain
training data, and the background distribution is fitted using the same number of examples from C4
[16] which is represents a large and broad set of domains. Instead of computing OOD score for the
entire input sequence as in [18], in this work, we focus on detecting smaller sub-parts of OOD noise
within the sequence. We propose three variants:

Leaveout-Sentence (LO-Sent) In this case, we compute the OOD scores of the input with and
without a sentence in it. The negative of the change in the OOD score after removing the sentence
denotes the OOD score of that sentence. Intuitively, if removing the sentence decreases the overall
OOD score, that sentence is assigned a positive OOD score and vice-versa.

SLO-Sent(xi:j) = S(x1:t)− S(x1:i;j:t) (2)

Leaveout-Token (LO-Tok) This is very similar to the previous method LO-Sent except that instead
of removing a sentence, we remove a token at a time and hence get OOD scores for each token,

SLO-Tok(xi) = S(x1:t)− S(x1:i;(i+1):t). (3)

Sentencewise (Sent) Instead of computing the score based on embeddings averaged over the tokens
in the whole document, we fit Gaussian distributions at the sentence level by averaging the token
embeddings in a sentence zi:j = 1

j−i+1

∑j
k=i hk. We use the sentence embeddings from in-domain

data and C4 data to fit the two Gaussian distributions, N (µsent,Σsent) and N (µsent
0 ,Σsent

0).

Ssent(xi:j) = RMDsent(zi:j) = MDsent
in (zi:j)−MDsent

0 (zi:j) (4)

where MDsent
in and MDsent

0 are MDs to N (µsent,Σsent) and N (µsent
0 ,Σsent

0) respectively.

To calculate performance of models at noise detection, we compare the assigned OOD score for each
token with its ground truth label and we compute the ROC AUC scores for comparison. For the
two sentence level scores, SLO-Sent(xi:j) and Ssent(xi:j), we assign each token’s OOD score to be
the sentence level OOD score for the sentence to which the token belongs. We compute evaluation
metrics in two ways - (1) per-example basis where the AUC score is computed for each example
and then they are all averaged across the dataset. (2) overall basis where all the predictions across
the entire dataset are pooled together before computing a single AUC score. In general, the LO-Tok
method performs the worst of the three methods, while Sent and LO-Sent perform comparably. We
show the scores averaged across the 4 datasets in (Table 1). Sent performs better for Code and
Randomsent and LO-Sent performs better for Emoji and URL noise types. For its simplicity, we use
the Sent method for OOD detection in rest of the paper.

Table 1: Performance of different methods for noise detection aggregated across datasets (using the
base model size and 0.5 noise amount)

Method Overall AUC Per-example AUC
Code Emoji Randomsent URL Code Emoji Randomsent URL

LO-Tok 77.10 84.25 73.63 85.41 78.52 84.17 74.74 86.83
LO-Sent 88.04 88.83 85.43 95.66 89.46 87.94 87.00 96.08
Sent 89.37 82.73 90.65 90.64 91.70 82.80 93.83 93.64

3.2 Quality recovery after noise filtering

To remove noise from the input, we simply remove all sentences that have an OOD score greater than
a threshold, and then evaluate how much output quality gets recovered after this. We set the threshold
of OOD score for filtering to be the 99 percentile value of the OOD scores computed for sentences in
the clean version of the dataset (without any noise). The chosen percentile is set to be this high to
minimize false positives which can lead to removal of useful non-noisy information from the input.
Since the threshold is computed using only the clean dataset and the model trained on that, we do not
need any prior information about the noise (similar to OOD score computation).

We show the performance of noise filtering for different noise types, model sizes and datasets in
Table 2. For succinctness, we show the geometric mean of the ROUGE-1,2 and L variants, and point
the reader to the Appendix (Table A.1) for detailed results with individual variants of ROUGE. After
noise filtering, we can recover a large part of the drop in ROUGE scores that occurred due to the
added noise. In cases of large drop such as the Randomsent noise type with XSUM and SAMSum
datasets, we can recover 4-6 and 6-7 points respectively depending on the model size (Table 2).

4

Table 2: ROUGE scores on clean input and changes when adding different kinds of noise, and after
the noise is filtered out using Sent method (Noise amount: 0.5)

Model size Clean Code Emoji Randomsent URL
Add Filter Add Filter Add Filter Add Filter

XSum
Small 31.66 21.43 27.50 23.28 31.33 22.28 28.44 25.50 30.30
Base 35.18 27.64 32.01 30.03 34.49 26.28 32.32 26.87 33.97
Large 37.18 35.86 36.89 36.36 36.83 31.68 35.09 35.81 36.77

CNN-Dailymail
Small 31.96 25.27 23.37 31.24 31.46 30.01 30.38 29.69 30.39
Base 33.09 26.27 25.39 32.53 32.70 31.31 31.53 30.74 31.25
Large 33.44 29.60 30.99 33.11 33.02 31.97 32.36 32.03 32.67

Samsum
Small 37.96 33.00 36.80 36.83 36.73 28.11 35.18 34.17 37.31
Base 39.74 36.95 38.89 39.18 38.97 31.96 37.51 36.89 39.47
Large 41.63 38.80 40.91 41.46 41.42 31.85 38.58 39.19 40.81

Reddit-TIFU
Small 15.51 11.53 13.55 12.97 15.21 13.40 14.70 13.41 14.09
Base 17.54 12.16 14.55 13.33 14.42 14.18 16.62 15.71 16.23
Large 18.15 13.33 16.06 14.89 15.76 13.92 17.32 15.96 16.88

We also present aggregate trends of recovery of output quality using our filtering approach in Figure 2.
We can see that we recover over half of the drop in the performance on 9 out of 16 combinations of
datasets and noise types (Figure 2c), with the best performance observed on XSUM and SAMSum
datasets and the worst on CNN/DailyMail. The method also succeeds in recovering performance
across all 3 model sizes (Figure 2d).

4 Related Work
Research on the behavior of summarization models on noisy inputs is quite sparse. Jing et al.
[5] investigated how the performance of extractive summarization models is impacted by noise
due to OCR errors while summarizing scanned documents. More recently, Meechan-Maddon [11]
studied the effect of noise in the form of ASR errors on abstractive summarization models based
on convolutional neural networks. In contrast, we experiment with pre-trained Transformer models
which are now preferred in popular use due to their superior performance [9, 21, 17], and address a
wide variety of noise types and summarization datasets.

The effect on noisy inputs has been studied in NLP tasks other than summarization, such as machine
translation [14] and question answering [15]. Multiple works across machine translation [6, 20],
question answering [15] and summarization [5] have used synthetic noise to create noisy inputs.
Similar to these works, we also create synthetic noisy inputs due to lack of a dataset with naturally
occurring labeled noise. One significant distinction of our work is our noise detection/removal method
works even without exposing the model to the noise in training, which is closer to practical scenarios
where unknown types of noise can be encountered after a model is deployed.

5 Conclusion and Future Work
In this work, we quantified the impact that noisy inputs can have on the output quality of summa-
rization models, for a variety of datasets and noise types. We then proposed a method to detect
and remove noise from the input without using any extra models, training, or prior information
about noise types, and demostrated its efficacy. In future work, we plan to investigate what makes
certain models more susceptible to specific noise types. We also plan to carry out experiments with
real-world noisy data rather than synthetically created noise.

5

References
[1] R. Chan, K. Lis, S. Uhlemeyer, H. Blum, S. Honari, R. Siegwart, M. Salzmann, P. Fua, and

M. Rottmann. Segmentmeifyoucan: A benchmark for anomaly segmentation. arXiv preprint
arXiv:2104.14812, 2021.

[2] B. Gliwa, I. Mochol, M. Biesek, and A. Wawer. SAMSum corpus: A human-annotated dialogue
dataset for abstractive summarization. In Proceedings of the 2nd Workshop on New Frontiers in
Summarization, pages 70–79, Hong Kong, China, Nov. 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-5409. URL https://aclanthology.org/D19-5409.

[3] D. Hendrycks, S. Basart, M. Mazeika, M. Mostajabi, J. Steinhardt, and D. Song. Scaling
out-of-distribution detection for real-world settings. arXiv preprint arXiv:1911.11132, 2019.

[4] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt. Codesearchnet challenge:
Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436, 2019.

[5] H. Jing, D. Lopresti, and C. Shih. Summarization of noisy documents: a pilot study. In
Proceedings of the HLT-NAACL 03 Text Summarization Workshop, pages 25–32, 2003.

[6] V. Karpukhin, O. Levy, J. Eisenstein, and M. Ghazvininejad. Training on synthetic noise
improves robustness to natural noise in machine translation. In Proceedings of the 5th Workshop
on Noisy User-generated Text (W-NUT 2019), pages 42–47, 2019.

[7] B. Kim, H. Kim, and G. Kim. Abstractive summarization of reddit posts with multi-level
memory networks, 2018.

[8] B. Kim, H. Kim, and G. Kim. Abstractive summarization of Reddit posts with multi-level
memory networks. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2519–2531, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1260. URL https://www.aclweb.
org/anthology/N19-1260.

[9] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and
L. Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 7871–7880, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL
https://aclanthology.org/2020.acl-main.703.

[10] C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics. URL https://aclanthology.org/W04-1013.

[11] A. Meechan-Maddon. The effect of noise in the training of convolutional neural networks for
text summarisation, 2019.

[12] J. Mukhoti, J. van Amersfoort, P. H. Torr, and Y. Gal. Deep deterministic uncertainty for
semantic segmentation. arXiv preprint arXiv:2111.00079, 2021.

[13] S. Narayan, S. Cohen, and M. Lapata. Don’t give me the details, just the summary! topic-aware
convolutional neural networks for extreme summarization. In 2018 Conference on Empirical
Methods in Natural Language Processing, pages 1797–1807. Association for Computational
Linguistics, 2018.

[14] X. Niu, P. Mathur, G. Dinu, and Y. Al-Onaizan. Evaluating robustness to input perturbations for
neural machine translation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8538–8544, 2020.

[15] D. Peskov, J. Barrow, P. Rodriguez, G. Neubig, and J. Boyd-Graber. Mitigating noisy inputs for
question answering. arXiv preprint arXiv:1908.02914, 2019.

6

https://aclanthology.org/D19-5409
https://www.aclweb.org/anthology/N19-1260
https://www.aclweb.org/anthology/N19-1260
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/W04-1013

[16] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/
20-074.html.

[17] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu, et al.
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21(140):1–67, 2020.

[18] J. Ren, J. Luo, Y. Zhao, K. Krishna, M. Saleh, B. Lakshminarayanan, and P. J. Liu. Out-of-
distribution detection and selective generation for conditional language models, 2022. URL
https://arxiv.org/abs/2209.15558.

[19] A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL
https://aclanthology.org/P17-1099.

[20] V. Vaibhav, S. Singh, C. Stewart, and G. Neubig. Improving robustness of machine translation
with synthetic noise. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1916–1920, 2019.

[21] J. Zhang, Y. Zhao, M. Saleh, and P. Liu. Pegasus: Pre-training with extracted gap-sentences
for abstractive summarization. In International Conference on Machine Learning, pages
11328–11339. PMLR, 2020.

7

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2209.15558
https://aclanthology.org/P17-1099

A Appendix

Table A.1: ROUGE scores on clean input and changes when adding different kinds of noise, and after
the noise is filtered out using our method (Noise amount: 0.5)

Variant Noise type ROUGE-1 / 2 / L
XSum

Small Base Large

Clean - 43.35 / 20.49 / 35.73 47.03 / 23.72 / 39.05 48.92 / 25.65 / 40.95

Noisy

Code 31.54 / 12.44 / 25.07 38.74 / 17.34 / 31.43 47.53 / 24.48 / 39.63
Emoji 31.79 / 15.10 / 26.29 40.08 / 20.32 / 33.24 47.86 / 25.02 / 40.16
Randomsent 32.38 / 13.10 / 26.09 36.54 / 16.63 / 29.87 42.67 / 21.06 / 35.38
URL 36.47 / 15.45 / 29.42 37.56 / 16.91 / 30.55 47.37 / 24.45 / 39.64

Filtered

Code 38.72 / 17.00 / 31.61 43.50 / 20.98 / 35.94 48.55 / 25.45 / 40.64
Emoji 42.94 / 20.24 / 35.38 46.04 / 23.29 / 38.27 48.41 / 25.41 / 40.61
Randomsent 39.84 / 17.81 / 32.42 43.88 / 21.30 / 36.11 46.65 / 23.84 / 38.85
URL 41.86 / 19.30 / 34.43 45.69 / 22.69 / 37.80 48.41 / 25.34 / 40.54

CNN-Dailymail
Small Base Large

Clean - 44.50 / 22.74 / 32.27 45.70 / 23.72 / 33.43 46.20 / 24.08 / 33.61

Noisy

Code 36.74 / 16.58 / 26.50 38.54 / 17.22 / 27.32 42.23 / 20.32 / 30.23
Emoji 43.97 / 22.11 / 31.35 45.25 / 23.21 / 32.77 45.95 / 23.74 / 33.27
Randomsent 42.63 / 21.02 / 30.16 44.09 / 22.17 / 31.40 44.81 / 22.75 / 32.07
URL 42.19 / 20.57 / 30.17 43.60 / 21.45 / 31.05 44.89 / 22.69 / 32.27

Filtered

Code 33.64 / 15.60 / 24.33 36.66 / 16.97 / 26.31 43.45 / 21.78 / 31.46
Emoji 44.14 / 22.27 / 31.68 45.30 / 23.40 / 33.00 45.84 / 23.68 / 33.17
Randomsent 42.99 / 21.34 / 30.58 44.26 / 22.35 / 31.70 45.16 / 23.08 / 32.51
URL 42.77 / 21.27 / 30.87 43.89 / 21.97 / 31.65 45.34 / 23.43 / 32.83

Samsum
Small Base Large

Clean - 50.56 / 25.66 / 42.16 51.73 / 27.80 / 43.64 53.50 / 29.53 / 45.68

Noisy

Code 44.81 / 21.32 / 37.62 48.32 / 25.29 / 41.30 50.24 / 26.85 / 43.29
Emoji 49.27 / 24.41 / 41.54 50.75 / 27.37 / 43.30 53.31 / 29.25 / 45.70
Randomsent 39.81 / 17.27 / 32.31 42.79 / 21.30 / 35.83 42.22 / 21.35 / 35.85
URL 46.46 / 22.25 / 38.60 48.31 / 25.22 / 41.21 50.51 / 27.57 / 43.24

Filtered

Code 49.22 / 24.56 / 41.24 50.70 / 26.94 / 43.07 52.43 / 28.87 / 45.23
Emoji 49.00 / 24.41 / 41.42 50.49 / 27.25 / 43.03 53.32 / 29.21 / 45.64
Randomsent 47.36 / 23.31 / 39.43 49.47 / 25.64 / 41.60 50.40 / 26.56 / 42.89
URL 49.65 / 25.16 / 41.58 51.29 / 27.63 / 43.39 52.56 / 28.70 / 45.07

Reddit-TIFU
Small Base Large

Clean - 24.06 / 7.81 / 19.86 26.74 / 9.20 / 21.95 27.45 / 9.65 / 22.56

Noisy

Code 17.95 / 5.74 / 14.87 18.72 / 6.21 / 15.46 20.35 / 6.91 / 16.85
Emoji 20.25 / 6.47 / 16.65 20.09 / 7.14 / 16.51 22.51 / 7.90 / 18.55
Randomsent 21.15 / 6.62 / 17.18 22.09 / 7.14 / 18.08 21.47 / 7.09 / 17.73
URL 21.02 / 6.66 / 17.23 24.25 / 8.09 / 19.76 24.55 / 8.17 / 20.26

Filtered

Code 20.98 / 6.83 / 17.37 22.24 / 7.58 / 18.27 24.31 / 8.46 / 20.15
Emoji 23.49 / 7.71 / 19.42 21.95 / 7.59 / 17.99 23.79 / 8.40 / 19.59
Randomsent 23.05 / 7.32 / 18.81 25.57 / 8.64 / 20.78 26.37 / 9.12 / 21.59
URL 21.96 / 7.10 / 17.94 24.88 / 8.44 / 20.37 25.74 / 8.84 / 21.14

8

Figure A.1: Sample excerpt from an article from XSum dataset corrupted with code noise.

9

