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Abstract

Autonomous Driving Systems (ADSs) are revo-001
lutionizing transportation by reducing human002
intervention, improving operational efficiency,003
and enhancing safety. Large Language Mod-004
els (LLMs), known for their exceptional plan-005
ning and reasoning capabilities, have been006
integrated into ADSs to assist with driving007
decision-making. However, LLM-based single-008
agent ADSs face three major challenges: lim-009
ited perception, insufficient collaboration, and010
high computational demands. To address these011
issues, recent advancements in LLM-based012
multi-agent ADSs have focused on improv-013
ing inter-agent communication and coopera-014
tion. This paper provides a frontier survey015
of LLM-based multi-agent ADSs. We begin016
with a background introduction to related con-017
cepts, followed by a categorization of exist-018
ing LLM-based approaches based on different019
agent interaction modes. We then discuss agent-020
human interactions in scenarios where LLM-021
based agents engage with humans. Finally, we022
summarize key applications, datasets, and chal-023
lenges in this field to support future research1.024

1 Introduction025

Autonomous driving systems (ADSs) are redefin-026

ing driving behaviors, reshaping global transporta-027

tion networks, and driving a technological revolu-028

tion (Yurtsever et al., 2020). Traditional ADSs pri-029

marily rely on data-driven approaches (as detailed030

in Appendix A.1), often focusing on system de-031

velopment while overlooking dynamic interactions032

with the environment. To enhance engagement033

with diverse and complex driving scenarios, agentic034

roles have been incorporated into ADSs (Durante035

et al., 2024) using methods such as reinforcement036

learning (Zhang et al., 2024b) and active learn-037

ing (Lu et al., 2024). Despite notable progress,038

1We provide an open-source library for future study via
the following link: https://anonymous.4open.science/
r/LLM-based_Multi-agent_ADS-3A5C/README.md

these methods struggle with “long-tail" scenarios, 039

where rare but critical driving situations—such as 040

sudden obstacles—pose significant challenges to 041

model performance. Furthermore, their “black- 042

box" nature limits interpretability, making their 043

decisions difficult to trust. 044

LLM-based single-agent ADSs help overcome 045

the limitations of data-driven methods (Wang et al., 046

2024a). Pre-trained on vast, multi-domain datasets, 047

LLMs excel in knowledge transfer and generaliza- 048

tion (Achiam et al., 2023), enabling strong perfor- 049

mance in traffic scenarios under zero-shot settings, 050

thus addressing the long-tail issue (Yang et al., 051

2023). Moreover, techniques such as Reinforce- 052

ment Learning from Human Feedback (RLHF) and 053

Chain-of-Thought (CoT) (Zhao et al., 2023), en- 054

hance language-based interaction and logical rea- 055

soning, allowing LLMs to make human-like, real- 056

time decisions while providing interpretable and 057

trustworthy feedback across various driving condi- 058

tions. For instance, Drive-Like-a-Human (Fu et al., 059

2024) builds a closed-loop system comprising envi- 060

ronment, agent, memory, and expert modules. The 061

agent interacts with the environment, reflects on 062

expert feedback, and ultimately accumulates expe- 063

rience. DiLu (Wen et al., 2024) replaces human 064

experts with a reflection module and integrates an 065

LLM-based reasoning engine to enable continuous 066

decision-making. Agent-Driver (Mao et al., 2024) 067

designs a tool library to collect environmental data 068

and uses LLMs’ cognitive memory and reasoning 069

to improve planning. 070

However, as shown in Figure 1, researchers have 071

identified three critical limitations of LLM-based 072

single-agent ADSs in complex traffic environments: 073

❶ Limited Perception: LLMs can only respond 074

to sensor inputs and lack predictive and generaliza- 075

tion capabilities. As a result, LLM-based single- 076

agent ADSs cannot complement incomplete sensor 077

information and thus miss critical information in 078

driving scenarios, such as pedestrians or vehicles 079
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Figure 1: Limitations of LLM-based single-agent ADSs.
At an intersection without traffic lights, an accident has
occurred ahead, causing Veh1 to be stuck. Due to lim-
ited perception, Veh1 is unable to assess the situation
and cannot proceed. Veh2 intends to go straight, and
Veh3 wants to turn left. However, due to insufficient
collaboration, they are also unable to navigate the inter-
section efficiently. Furthermore, due to high computing
demands, the lightweight agent on Veh1 struggles to
handle the complex driving scenario and has to rely on
a more powerful cloud-based agent for assistance.

hidden in complex intersection environments (Hu080

et al., 2024c). ❷ Insufficient Collaboration: A081

single LLM-based agent cannot coordinate with082

other vehicles or infrastructure, leading to subopti-083

mal performance in scenarios requiring multi-agent084

interactions, such as lane merging or navigating085

roundabouts (Hu et al., 2021). ❸ High Compu-086

tational Demands: With billions of parameters087

in LLMs, these methods demand substantial inde-088

pendent computational resources, making real-time089

deployment challenging, particularly in resource-090

limited in-vehicle systems (Cui et al., 2023).091

To address these limitations, LLM-based multi-092

agent ADSs enable distinct agents to communi-093

cate and collaborate, enhancing safety and perfor-094

mance. First, LLMs enhance contextual aware-095

ness by allowing agents to share data, extend their096

perceptual range, and enhance the detection of oc-097

cluded objects in complex environments (Hu et al.,098

2024c). Second, real-time coordination between099

LLM-based agents mitigates insufficient collabora-100

tion, enabling joint decision-making in scenarios101

such as lane merging and roundabout navigation,102

ultimately leading to safer and more efficient driv-103

ing operations (Hu et al., 2021). Third, LLMs opti-104

mize computational efficiency by distributing tasks105

among agents, reducing individual workloads, and106

enabling real-time processing in resource-limited107

systems (Cui et al., 2023).108

As LLM capabilities continue to advance, they109

are playing an increasingly significant role in ADS110

as intelligent driving assistants. Several reviews111

have focused on two primary aspects: i) the inte- 112

gration of LLMs into data-driven methods (Yang 113

et al., 2023; Li et al., 2023) and ii) the applications 114

of specific LLM types, such as vision-based (Zhou 115

et al., 2024b) and multimodal-based (Fourati et al., 116

2024; Cui et al., 2024c) models in ADSs. However, 117

no comprehensive survey has systematically exam- 118

ined the emerging field of LLM-based multi-agent 119

ADSs. This gap motivates us to provide a thor- 120

ough review that consolidates existing knowledge 121

and offers insights to guide future research and the 122

development of advanced ADSs. 123

In this study, we present a comprehensive sur- 124

vey of LLM-based multi-agent systems. Specif- 125

ically, Section 2 introduces the core concepts of 126

LLM-based multi-agent ADSs, including agent 127

environments and profiles, inter-agent interaction 128

mechanisms, and agent-human interactions. Sec- 129

tion 3 provides a structured review of the state- 130

of-the-art in multi-agent ADS, categorizing exist- 131

ing studies into three key interaction types: multi- 132

vehicle interaction, vehicle-infrastructure interac- 133

tion, and vehicle-assistant interaction. As agent 134

capabilities continue to grow, human-vehicle co- 135

driving is becoming the dominant autonomous driv- 136

ing paradigm, with human involvement playing an 137

increasingly vital role. Humans collaborate with 138

agents by providing guidance or supervising their 139

behavior. Therefore, we consider humans as spe- 140

cial virtual agents and examine human-agent inter- 141

actions in Section 4. Section 5 explores various ap- 142

plications, while Section 6 compiles a comprehen- 143

sive collection of public datasets and open-source 144

resources. Section 7 discusses existing challenges 145

and future research directions and Section 8 con- 146

cludes the study. 147

2 LLM-based Agents for ADS 148

2.1 LLM-based Single-agent ADS 149

Achieving human-level driving is an ultimate goal 150

of ADS. As shown in Figure 2(a), the LLM-based 151

single agent retrieves past driving experiences from 152

the memory, integrates them with real-time envi- 153

ronmental information for reasoning, and makes 154

driving decisions. Additionally, the driving agent 155

reflects on its decision and updates its memory 156

accordingly, ensuring safe and efficient driving ac- 157

tions. However, the complex and dynamic nature 158

of real-world driving scenarios, where interactions 159

with other vehicles significantly impact decision- 160

making, suggests that neglecting these interactions 161
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The drive agent retrieves 
driving experience, reasons 
about traffic conditions based 
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Figure 2: Overview of LLM-based (a) single- and (b) multi-agent ADSs, with key terms and differences highlighted.

can lead to suboptimal or unsafe driving outcomes.162

2.2 LLM-based Multi-agent ADS163

With interactions among multiple agents, LLM-164

based multi-agent ADS leverages collective intelli-165

gence and specialized skills, with each agent play-166

ing a distinct role, communicating and collaborat-167

ing within the system. This enhances the efficiency168

and safety of autonomous driving. Below, we intro-169

duce the LLM-based multi-agent ADS, as shown170

in Figure 2(b), and provide a detailed analysis of171

its three key modules: Agent Environment and172

Profile, LLM-based Multi-Agent Interaction, and173

LLM-based Agent-Human Interaction.174

2.2.1 Agent Environment and Profile175

Similar to the single-agent architecture in Fig-176

ure 2(a), multi-agent systems first obtain rele-177

vant information from their environments, enabling178

them to make informed decisions and take appropri-179

ate actions. The environmental conditions define180

the settings and necessary context for agents in181

LLM-based multi-agent ADS to operate effectively.182

Generally, there are two environment types, i.e.,183

physical environment and simulation environment.184

• Physical environment. It represents the real-185

world setting where driver agents gather infor-186

mation using various sensors, such as cameras187

and LiDAR, and interact with other traffic partic-188

ipants.However, due to the high cost of vehicles189

and strict regulations on public roads, collecting190

large amounts of data in real world is impractical.191

• Simulation environment. As a viable alternative,192

the simulation environment provides a simulated193

setting constructed by humans. It can accurately 194

model specific conditions without incurring the 195

high costs and complexities associated with real- 196

world data collection, allowing agents to freely 197

test actions and strategies across a variety of sce- 198

narios (Dosovitskiy et al., 2017). 199

In LLM-based multi-agent systems, each agent 200

is assigned distinct roles with specific functions 201

through profiles, enabling them to collaborate on 202

complex driving tasks or simulate intricate traffic 203

scenarios. These profiles are crucial in defining 204

the functionality of the agent, its interaction with 205

the environment, and its collaboration with other 206

agents. Existing work (Li et al., 2024) generates 207

agent profiles using three types of methods: Pre- 208

defined, Model-generated, and Data-derived. 209

• Pre-defined methods. In these cases, system 210

designers explicitly define agent profiles based 211

on prior knowledge and the analysis of complex 212

scenarios (Chen et al., 2024a). Each agent has 213

unique attributes and behavior patterns that can 214

be adjusted based on the scenario. In driving en- 215

vironments, the objectives of ADS require the 216

collaboration of vehicle agents, infrastructure 217

agents, and drivers. In particular, ❶ Vehicle 218

agents denote various types of autonomous ve- 219

hicles, traveling according to preset routes and 220

traffic rules, while communicating and collabo- 221

rating with other vehicles and driver agents. ❷ In- 222

frastructure agents, e.g., traffic lights, road condi- 223

tion monitors, and parking facilities, provide real- 224

time traffic information and instructions, influ- 225

encing the behavior of driver and vehicle agents. 226
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Figure 3: Different interaction modes and interaction
structures.

• Model-generated methods. These approaches227

create agent profiles using advanced LLMs based228

on the interaction context and the goals that need229

to be accomplished (Zhou et al., 2024c).230

• Data-derived Profile. They design agent profiles231

based on pre-existing datasets (Guo et al., 2024).232

2.2.2 LLM-based Multi-Agent Interaction233

In LLM-based multi-agent ADS, effective infor-234

mation exchange and action coordination between235

agents are essential to improve collective intelli-236

gence and solve complex traffic scenarios. Agent237

interactions are influenced by both the interaction238

mode and the underlying interaction structure.239

• The interaction mode of LLM-based multi-agent240

ADS can be classified as: cooperative, competi-241

tive, and debate mode. ❶ In cooperative mode,242

agents work together to achieve shared objectives243

by exchanging information (Chen et al., 2024d;244

Jin et al., 2024). ❷ In competitive mode, agents245

strive to accomplish their individual goals and246

compete with others (Yao et al., 2024). ❸ The247

Debate mode enables agents to debate with each248

other, propose their own solutions, criticize the249

solutions of other agents, and collaboratively250

identify optimal strategies (Liang et al., 2024).251

• The interaction structure delineates the archi-252

tecture of communication networks within LLM-253

based multi-agent ADS, including centralized,254

decentralized, hierarchical, and shared message255

pool structures, as shown in Figure 3. Specifi-256

cally, ❶ the centralized interaction structures de-257

fines a central agent or a group of central agents258

to manage interactions among all agents (Zhou259

et al., 2024c). ❷ The decentralized interaction260

structure allows for direct communication be-261

tween agents, with all agents being equal to each262

other (Hu et al., 2024b). ❸ Hierarchical struc- 263

tures focus on interactions within a layer or with 264

adjacent layers (Ohmer et al., 2022). ❹ The 265

shared memory interaction structure maintains a 266

shared message pool, allowing agents to send and 267

extract the necessary information (Jiang et al., 268

2024). We provide a more detailed introduction 269

to LLM-based multi-agent ADSs based on their 270

interaction structures and modes in Section 3. 271

2.2.3 LLM-based Agent-Human Interaction 272

Recent studies have shown that human-machine co- 273

driving systems leverage LLMs to improve agent- 274

human interactions, enabling autonomous vehi- 275

cles to communicate and collaborate seamlessly 276

with human drivers through natural language (Feng 277

et al., 2024). This capability allows vehicles to 278

better understand and respond to human intent, 279

provide context-aware responses, enhance driving 280

safety and comfort, and offer personalized recom- 281

mendations based on driver preferences. Further- 282

more, humans play a crucial role in guiding and 283

supervising agent behavior, enhancing the agents’ 284

capabilities while ensuring safety and compliance 285

with legal standards. We explore the role of humans 286

as special virtual agents in LLM-based multi-agent 287

ADS and examine the intricate dynamics of agent- 288

human interactions in Section 4. 289

3 LLM-based Multi-Agent Interaction 290

Mutual interaction is central to multi-agent ADSs, 291

enabling systems to solve complex problems be- 292

yond the capabilities of a single agent. Through 293

information exchange and coordinated decision- 294

making, multiple agents effectively complete 295

shared tasks and achieve overarching objectives (Li 296

et al., 2024). This section reviews recent stud- 297

ies on multi-agent ADSs, emphasizing interactions 298

among vehicles, infrastructures, and assisted agents 299

in driving scenarios. As shown in Figure 4, we cate- 300

gorize existing methods into three interaction types: 301

multi-vehicle interaction, vehicle-infrastructure in- 302

teraction, and vehicle-assistant interaction. 303

3.1 Multi-Vehicle Interaction 304

Multi-vehicle interactions involve multiple au- 305

tonomous vehicles powered by LLMs exchanging 306

real-time information, such as locations, speeds, 307

sensor data, and intended trajectories. By shar- 308

ing partial observations of the environment or ne- 309

gotiating maneuvers, multiple vehicles overcome 310

the inherent limitations of single-agent ADS, such 311
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Figure 4: A taxonomy of LLM-based Multi-Agent Autonomous Driving Systems.

as restricted perception and lack of collaboration.312

Typically, these interactions operate in a coopera-313

tive mode. LanguageMPC (Sha et al., 2023) em-314

ploys a centralized structure, where a central agent315

acts as the “brain” of the fleet, providing coordina-316

tion and control commands to each vehicle agent.317

In contrast, other decentralized approaches (Fang318

et al., 2024; Dona et al., 2024) treat all agents319

equally, allowing direct communication between320

multiple agents. For instance, AgentsCoDriver (Hu321

et al., 2024a) designs a communication module that322

generates messages for inter-agent communication323

when the agent deems it necessary. AgentsCoM-324

erge (Hu et al., 2024b) and CoDrivingLLM (Fang325

et al., 2024) incorporate agent communication into326

the reasoning process, facilitating intention sharing327

and negotiation before decision-making. Addition-328

ally, KoMA (Jiang et al., 2024) and CoMAL (Yao329

et al., 2024) build a shared memory pool, allowing330

agents to send and retrieve the necessary informa-331

tion to facilitate interaction between agents.332

3.2 Vehicle-Infrastructure Interaction333

The interaction between vehicles and external334

agents, such as traffic lights, roadside sensors, and335

LLM-powered control centers, not only helps au-336

tonomous vehicles make more intelligent decisions337

but also alleviates on-board computing require-338

ments. This enables LLM-based multi-agent ADSs339

to operate effectively in real-world environments.340

EC-Drive (Chen et al., 2024a) proposes an Edge-341

Cloud collaboration framework with a hierarchical342

interaction structure. The edge agent processes real- 343

time sensor data and makes preliminary decisions 344

under normal conditions. When anomalies are de- 345

tected or the edge agent generates a low-confidence 346

prediction, the system flags these instances and up- 347

loads them to the cloud agent equipped with LLMs. 348

The cloud agent then performs detailed reasoning 349

to generate optimized decisions and combines them 350

with the output of the edge agent to update the driv- 351

ing plan. Following a similar architecture, Tang 352

et al. (2024) uses agents deployed on remote clouds 353

or network edges to assist connected driving agents 354

in handling complex driving decisions. 355

3.3 Vehicle-Assistant Interaction 356

Beyond the interactions between the primary 357

agents in driving scenarios, additional interactions 358

among assisted agents play a crucial role in LLM- 359

based multiagent ADSs. Both ChatSim (Wei et al., 360

2024) and ALGPT (Zhou et al., 2024c) employ a 361

manager (PM) agent to interpret user instructions 362

and coordinate tasks among other agents. Chat- 363

Sim (Wei et al., 2024) adopts a centralized struc- 364

ture in which the PM agent decouples an overall 365

demand into specific subtasks and dispatches in- 366

structions to other team agents. Similarly, the PM 367

agent in ALGPT (Zhou et al., 2024c) formulates 368

a work plan upon receiving user commands and 369

assembles an agent team with the plan. Specifi- 370

cally, agents no longer communicate point-to-point 371

with each other but instead communicate through a 372

shared message pool, greatly improving efficiency. 373
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Additionally, hierarchical agent architectures fur-374

ther enhance the performance and effectiveness375

of LLM-based multi-agent ADSs. AD-H (Zhang376

et al., 2024c) assigns high-level reasoning tasks to377

the multimodal LLM-based planner agent while378

delegating low-level control signal generation to379

a lightweight controller agent. These agents inter-380

act through mid-level commands generated by the381

multimodal LLMs. In LDPD (Liu et al., 2024a),382

the teacher agent leverages the LLM for complex383

cooperative decision reasoning and trains smaller384

student agents via its own decision demonstrations385

to achieve cooperative decision-making. Surre-386

alDriver (Jin et al., 2024) introduces a CoachAgent387

to evaluate DriverAgent’s driving behavior and pro-388

vide guidelines for continuous improvement.389

Different from the conventional collaborative390

interaction mode, V-HOI (Zhang et al., 2024a) pro-391

poses a hybrid interaction mode that blends collab-392

oration with debate. It establishes various agents393

across different LLMs to evaluate reasoning logic394

from different aspects, enabling cross-agent reason-395

ing. This process culminates in a debate-style inte-396

gration of responses from various LLMs, improv-397

ing predictions for enhanced decision-making.398

4 LLM-based Agent-Human Interaction399

Depending on the roles of human assume when in-400

teracting with agents, we classify current methods401

as: instructor paradigm and partnership paradigm.402

4.1 Instructor Paradigm403

In Figure 5, the instructor paradigm involves agents404

interacting with humans in a conversational man-405

ner, where humans act as “tutors" to offer quan-406

titative and qualitative feedback to improve the407

agent’s decision-making (Li et al., 2017). Quantita-408

tive feedback typically includes binary evaluations409

or ratings, while qualitative feedback consists of410

language suggestions for refinement. The agent411

incorporates these suggestions to adapt and en-412

hance its performance in complex driving scenarios.413

For instance, Wang et al. (2023) propose “Expert-414

Oriented Black-box Tuning", a method where do-415

main experts provide feedback to optimize model416

performance. Similarly, Ma et al. (2024) present417

a human-guided learning pipeline that integrates418

driver feedback to refine agent decision-making.419

4.2 Partnership Paradigm420

In Figure 5, the partnership paradigm empha-421

sizes collaboration, where agents and humans in-422

Partnership paradigmInstructor paradigm
I’m approaching a busy 
intersection. 
I’ll proceed at normal speed to pass 
before the light switches.

Pedestrians may appear 
unexpectedly. Could we adjust your 
approach? (Qualitative feedback)

I’ll reduce acceleration and 
continuously monitor the crosswalk 
and sidewalks for pedestrians.

Good. After crossing, let’s reflect.
The improved decision is scored 
9/10. (Quantitative feedback)

Please drive to the 
Miami. I need to apply 
for a passport.

Okay, I will drive to 
the Miami and take 
the seaside route 
base users interests.

The weather is so nice 
today!

It really is a beautiful 
day, and I've found the 
perfect music to match 
it.

Figure 5: Two modes of agent-human interaction.

teract as equals to accomplish complex driving 423

tasks. In this paradigm, agents assist in decision- 424

making by adapting to individual driver prefer- 425

ences and real-time traffic conditions. For instance, 426

Talk2Drive (Cui et al., 2023), DaYS (Cui et al., 427

2024a) and Receive (Cui et al., 2024b) utilize mem- 428

ory modules to store human-vehicle interactions, 429

enabling a more personalized driving experience 430

based on individual driver preferences, such as 431

overtaking speed and following distance. Addition- 432

ally, infrastructure agents in AccidentGPT (Wang 433

et al., 2024b) and ConnectGPT (Tong and Solmaz, 434

2024) connect vehicles to monitor traffic condi- 435

tions, identify potential hazards, and provide proac- 436

tive safety warnings, blind spot alerts, and driving 437

suggestions through agent-human interaction. 438

5 Applications 439

5.1 Collaborative Perception 440

Despite significant advancements in the perception 441

modules of ADS, LLM-based single-agent ADS 442

continues to face substantial challenges, including 443

constrained sensing ranges and persistent occlusion 444

issues (Han et al., 2023). These two key limitations 445

hinder their comprehensive understanding of the 446

driving environment and can lead to suboptimal 447

decision-making, especially in complex and dy- 448

namic traffic scenarios (Hu et al., 2024c). 449

(Dona et al., 2024) propose a multi-agent coop- 450

erative framework that enhances the ego vehicle’s 451

field-of-view (FOV) by integrating complementary 452

visual perspectives through inter-vehicle dialogues 453

mediated by onboard LLMs, significantly expand- 454

ing the ego vehicle’s environmental comprehen- 455

sion. However, in complex road scenarios, reliance 456

on a single LLM can lead to erroneous interpreta- 457

tions and hallucinatory predictions when process- 458

ing complex traffic situations. To address this lim- 459
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itation, V-HOI MLCR (Zhang et al., 2024a) in-460

troduces a collaborative debate framework among461

different LLMs for video-based Human-Object In-462

teraction (HOI) detection tasks. This framework463

first implements a Cross-Agent Reasoning scheme,464

assigning distinct roles to various agents within an465

LLM to conduct reasoning from multiple perspec-466

tives. Subsequently, a cyclic debate mechanism is467

employed to evaluate and aggregate responses from468

multiple agents, culminating in the final outcome.469

5.2 Collaborative Decision-Making470

After obtaining environmental information, the471

ADS performs three core functions: route planning,472

trajectory optimization, and real-time decision-473

making. In complex traffic scenarios such as round-474

about navigation and lane merging, LLM-based475

multi-agent systems enable coordinated motion476

planning through three key mechanisms: ❶ real-477

time intention sharing between agents, ❷ adaptive478

communication protocols, and ❸ dynamic negoti-479

ation frameworks. This collaborative architecture480

allows ADS to precisely coordinate their trajecto-481

ries, maneuver strategies, and environmental inter-482

actions while maintaining operational safety.483

LanguageMPC (Sha et al., 2023) uses LLMs484

to perform scenario analysis and decision-making.485

Additionally, it introduces a multi-vehicle control486

method where distributed LLMs govern individ-487

ual vehicle operations, while a central LLM facil-488

itates multi-vehicle communication and coordina-489

tion. AgentsCoDriver (Hu et al., 2024a) presents490

a comprehensive LLM-based multi-vehicle collab-491

orative decision-making framework with life-long492

learning capabilities, moving the field towards prac-493

tical applications. This framework consists of five494

parts, as follows: the observation module, cogni-495

tive memory module, and reasoning engine sup-496

port the high-level decision-making process for497

AD; the communication module enables negotia-498

tion and collaboration among vehicles; and the rein-499

forcement reflection module reflects the output and500

decision-making process. Similarly, AgentsCoM-501

erge (Hu et al., 2024b) combines vision-based and502

text-based scene understanding to gather essential503

environmental information and incorporates a hier-504

archical planning module to allow agents to make505

informed decisions and effectively plan trajecto-506

ries. Instead of directly interacting with each other,507

agents in KoMA (Jiang et al., 2024) analyze and508

infer the intentions of surrounding vehicles via an509

interaction module to enhance decision-making. It510

also introduces a shared memory module to store 511

successful driving experiences and a ranking-based 512

reflection module to review them. 513

5.3 Other Collaborative Assistance-Tools 514

The long-term data accumulation in both industry 515

and academia has enabled great success in highway 516

driving and automatic parking (Liu et al., 2024b). 517

However, collecting real-world data remains costly, 518

especially for multi-agents or customized scenar- 519

ios. Additionally, the uncontrollable nature of real 520

scenarios makes it challenging to capture certain 521

corner cases. To address these issues, many LLM- 522

based studies focus on simulating multi-agent ADS, 523

offering a cost-effective alternative to real-world 524

data collection. For example, ChatSim (Wei et al., 525

2024) provides editable photo-realistic 3D driv- 526

ing scenario simulations via natural language com- 527

mands and external digital assets. The system 528

leverages multiple LLM agents with specialized 529

roles to decompose complex commands into spe- 530

cific editing tasks, introducing novel McNeRF and 531

Mclight methods that generate customized high- 532

quality output. HumanSim (Zhou et al., 2024a) 533

integrates LLMs to simulate human-like driving 534

behaviors in multi-agent systems via pre-defined 535

driver characters. By employing navigation strate- 536

gies, HumanSim facilitates behavior-level control 537

of vehicle movements, making it easier to generate 538

corner cases in multi-agent environments. 539

Although many innovative studies have ex- 540

plored the application of LLM-based multi-agent 541

ADS, significant technical challenges remain in 542

deploying LLMs locally on autonomous vehicles 543

due to their huge computational resource require- 544

ments (Sun et al., 2024). To address these issues, 545

Tang et al. (2024) apply remote LLMs to provide as- 546

sistance for connected autonomous vehicles, which 547

communicate between themselves and with LLMs 548

via vehicle-to-everything technologies. Moreover, 549

this study evaluates LLMs’ comprehension of driv- 550

ing theory and skills in a manner akin to human 551

driver tests. However, remote LLM deployment 552

can introduce inference latency, posing risks in 553

emergency scenarios. To further improve system 554

efficiency, Chen et al. (2024a) introduce a novel 555

edge-cloud collaborative ADS with drift detection 556

capabilities, using small LLMs on edge devices 557

and GPT-4 on cloud to process motion planning 558

data and complex inference tasks, respectively. 559

In addition, ALGPT (Zhou et al., 2024c) uses a 560

muti-agent cooperative framework to enable open- 561
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Table 1: Single-agent and multi-agent autonomous driving datasets.

Datasets Dataset Type Sensor Type Tasks
KITTI (Geiger et al., 2012) Single-agent Camera, LiDAR 2D/3D detection, tracking, depth estimation
nuScenes (Geiger et al., 2020) Single-agent Cameras, LiDAR, Radars 3D detection, tracking, trajectory forecasting
BDD100K (Yu et al., 2020) Single-agent Camera Object detection, lane detection, segmentation
Waymo (Sun et al., 2020) Single-agent Camera, LiDAR, Radars 2D/3D detection, tracking, domain adaptation
BDD-X (Kim et al., 2018) Single-agent BDD Object detection, driving scenario captioning
nuScenes-QA (Qian et al., 2024) Single-agent nuScenes 3D detection, tracking, visual QA
DriveLM (Sima et al., 2025) Single-agent nuScenes, Waymo Multi-modal planning, question answering
DAIR-V2X (Yu et al., 2022) Multi-agent Camera, LiDAR (multi-vehicle) Cooperative perception, tracking
TUMTraf-V2X (Zimmer et al., 2024) Multi-agent Multi-vehicle camera, LiDAR Cooperative perception, multi-agent tracking
V2V4Real (Xu et al., 2023) Multi-agent Multi-vehicle camera, LiDAR Cooperative detection, tracking
V2XSet (Xu et al., 2022) Multi-agent Multi-vehicle camera, LiDAR Multi-agent detection, tracking

vocabulary and multimodal auto-annotation for au-562

tonomous driving. ALGPT introduces a Standard563

Operating Procedure that clarifies the role of each564

agent and shares project documentation, thereby565

enhancing the effectiveness of multi-agent interac-566

tions. Moreover, ALGPT establishes a specialized567

knowledge base for each type of agent, using CoT568

and In-Context Learning (Brown et al., 2020).569

6 Datasets570

We organize the latest state-of-the-art open-source571

work to foster research of more advanced ADSs.572

And we summarize mainstream ADS datasets in573

Table 1. More details are listed in Appendix A.3.574

7 Challenges and Future Directions575

This section explores key open challenges and po-576

tential opportunities for future research.577

• Hallucination Problem. It refers to LLMs gener-578

ating outputs that are factually incorrect or non-579

sensical (Huang et al., 2023). In complex driving580

scenarios, a single driving agent’s hallucinations581

in an LLM-based multi-agent ADS can be ac-582

cepted and further propagated by other agents in583

the network via the inter-agent communication,584

potentially leading to serious accidents. Conse-585

quently, detecting and mitigating hallucinations586

at the individual agent level and managing the587

flow of information between agents are crucial588

issues for future research (Fan et al., 2024).589

• Multi-Modality Ability. Agents in current multi-590

agent systems primarily use LLMs for scene un-591

derstanding and decision making. These methods592

convert the outputs of perception algorithms into593

textual representations through manual prompts594

or interpreters, which are then fed into an LLM595

to produce decisions. This approach heavily de-596

pends on the performance of the perception al-597

gorithm and can lead to loss of environmental598

information (Gao et al., 2023). Therefore, inte- 599

grating language understanding with the ability 600

to process and fuse multiple data modalities to de- 601

velop a multimodal multi-agent ADS represents 602

a promising direction for future research. 603

• Scalability Problem. LLM-based multi-agent 604

ADS can scale up by adding more agents to han- 605

dle increasingly complex driving scenarios. How- 606

ever, more LLM agents increase the demand for 607

computing resources, while their interactions im- 608

pose strict requirements on communication effi- 609

ciency, which is critical for real-time decision- 610

making (Huang et al., 2024b). Therefore, un- 611

der limited computing resources, it is crucial to 612

develop a system architecture that supports dis- 613

tributed computing and efficient communication, 614

as well as agents capable of adapting to various 615

environments and tasks, to optimize multi-agent 616

ADS within resource constraints. 617

8 Conclusion 618

This paper systematically outlines LLM-based 619

multi-agent ADS and comprehensively reviews 620

the latest research in this field. Our study first 621

traces the development trajectory of LLM-based 622

multi-agent ADS from single-agent ADS to multi- 623

agent ADS. Subsequently, we provide a detailed 624

description of the LLM-based multi-agent ADS 625

from the perspectives of agent-environments and 626

profiles, inter-agent interaction mechanisms, and 627

agent-human interactions. We also systematically 628

classify and introduce existing studies from the per- 629

spectives of multi-agent interaction, agent-human 630

interaction, and different applications. Finally, this 631

paper provides comprehensive public datasets and 632

open source codes, and deeply explores the cur- 633

rent challenges and future research directions of 634

LLM-based multi-agent ADS. We hope that this re- 635

view can bring new inspiration and ideas to future 636

research on LLM-based multi-agent ADS. 637
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Limitations638

Emerging Research and Limited Data. As the639

field of LLM-based multi-agent ADS is still rela-640

tively new, existing research is limited, which may641

restrict the scope of our classification and analysis.642

Some Unverified Work. Since LLM-based multi-643

agent ADS is a novel topic, some of the papers644

summarized in this review are from unreviewed645

arXiv preprints. As these works have not been646

formally published, their conclusions may require647

further investigation to confirm their validity. Lim-648

ited Discussion on Real-world Applications. As649

LLM-based multi-agent ADS is still in the theoret-650

ical stage, although many companies have begun651

deploying practical applications in this area, this652

review does not cover discussions on real-world653

deployments due to a lack of up-to-date internal654

information from these companies.655
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A Appendix1020

A.1 Data-driven Autonomous Driving System1021

Traditional ADS rely on data-driven approaches,1022

which are categorized into modular and end-to-end1023

frameworks (Chen et al., 2024b). Modular-based1024

systems break the entire autonomous driving pro-1025

cess into separate components, such as perception1026

module, prediction module, and planning module.1027

Perception modules are responsible for obtaining1028

information about the vehicle’s surrounding envi-1029

ronment, aiming to identify and locate important1030

traffic elements such as obstacles, pedestrians, and1031

vehicles near the autonomous vehicle, usually in-1032

cluding tasks such as object detection (Wang et al.,1033

2021) and object occupancy prediction (Tong et al.,1034

2023). Prediction modules estimate the future mo-1035

tions of surrounding traffic participants based on1036

the information provided by the perception module,1037

usually including tasks such as trajectory predic-1038

tion and motion prediction (Shi et al., 2022). Plan-1039

ning module aims to derive safe and comfortable1040

driving routes and decisions through the results1041

of perception and prediction (Sauer et al., 2018).1042

Each module is individually developed and inte-1043

grated into onboard vehicles to achieve safe and1044

efficient autonomous driving functions. Although1045

modular methods have achieved remarkable results1046

in many driving scenarios, the stacking design of1047

multiple modules can lead to the loss of key infor-1048

mation during transmission and introduce redun-1049

dant calculations. Furthermore, due to the inconsis-1050

tency in the optimization objectives of each module,1051

the modular-based system may accumulate errors,1052

which can negatively impact the vehicle’s overall1053

decision-making performance. End-to-end-based1054

systems integrate the entire driving process into a1055

single neural network, and then directly optimize1056

the entire driving pipeline from sensor inputs to pro-1057

duce driving actions (Chen et al., 2024b). However,1058

this approach introduces the “black box” problem,1059

meaning a lack of transparency in the decision-1060

making process, complicating interpretation and1061

validation.1062

A.2 LLMs in Autonomous Driving System1063

As shown in Figure 6, 7, LLMs, with their powerful1064

open-world cognitive and reasoning capabilities,1065

have shown significant potential in ADSs (Yang1066

et al., 2023; Li et al., 2023). LC-LLM (Peng1067

et al., 2024) is an explainable lane change predic-1068

tion model that leverages LLMs to process driving1069

Reasoning OutputScenario Description
You are driving on a highway 
road with 8 lanes, and you are 
currently driving in the rightmost. 
Your current speed is 25.0 m/s,
acceleration is 0.0 m/s^2, and 
lane position is 360 m.

There are other vehicles around :
Veh1 is driving on the lane to 
your left and is ahead of you. The 
speed of it is 21.2 m/s, 
acceleration is 0.2 m/s^2, and
lane position is 372 m.

Veh2 is driving on the same lane 
as you and is ahead of you. The 
speed of it is 25.0 m/s, 
acceleration is -0.1 m/s^2, and
lane position is 400 m.

You are a driving 
agent. Your task is 
to transport various 
passengers to the 
required location 
and provide as a 
safety comfortable 
riding experience as 
much as possible.

LLMs as the reason 
module of agents

Agent Profile

I should first check if I can accelerate, 
then maintain current speed, finally 
decelerate. I can also try to change 
lanes but with caution. 
At First, I need to observe the veh1. The 
distance between me and veh1 is 400 - 
360 = 40 m, and the difference in speed 
is 25.00 - 25.00 = 0.00 m/s. 
Veh1 is traveling 40 m ahead of me and 
the speed is same. This distance is safe 
but my speed is already at the desired 
level, so I should not accelerate. 
Since I cannot accelerate, I want to 
know if I can maintain my current 
speed. I should observe car veh1.

  Final Answer: maintain current speed

Figure 6: An example of an LLM-based single-agent
ADS (Wen et al., 2024).

scenario information as natural language prompts. 1070

By incorporating CoT reasoning and supervised 1071

finetuning, it not only predicts lane change inten- 1072

tions and trajectories but also provides transpar- 1073

ent and reliable explanations for its predictions. 1074

GPT-Driver (Mao et al., 2023) regards the motion 1075

planning task as a language modeling problem, us- 1076

ing a fine-tuned GPT-3.5 model (Ye et al., 2023) 1077

to generate driving trajectories. DriveGPT4 (Xu 1078

et al., 2024) introduces an interpretable end-to-end 1079

autonomous driving system that uses multimodal 1080

LLMs to process multi-frame video inputs and tex- 1081

tual queries, enabling vehicle action interpretation 1082

and low-level control prediction. By employing a 1083

visual instruction tuning dataset and mixfinetuning 1084

strategy, it provides a novel approach to directly 1085

map sensory inputs to actions, achieving superior 1086

performance in autonomous driving tasks. Driving 1087

with LLM (Chen et al., 2024c) integrates vector- 1088

ized numeric data with pre-trained LLMs to im- 1089

prove context understanding in driving scenarios 1090

and enhances the interpretability of driving deci- 1091

sions. 1092

A.3 Datasets 1093

Single-agent Autonomous Driving Dataset. 1094

Single-agent datasets are obtained from a single ref- 1095

erence agent, which can be the ego vehicle or road- 1096

side infrastructure, using various sensors. Main- 1097

stream singel-agent autonomous driving datasets 1098

like KITTI (Geiger et al., 2012), nuScenes (Geiger 1099

et al., 2020), and Waymo (Sun et al., 2020) provide 1100

comprehensive multimodal sensor data, enabling 1101

researchers to develop and benchmark algorithms 1102

for multiple tasks such as object detection, tracking, 1103

and segmentation. 1104

In addition to these foundational datasets, newer 1105

ones like BDD-X (Kim et al., 2018), Driv- 1106
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Agent Profile & Scenario Description

Veh1’s message: Veh2, I am turning 
right, my speed is 2.03 m/s, and we should 
keep a safe distance to avoid collision.

Veh2’s reasoning process and decision:

Veh2’s message: Veh1, since you are turning 
right and in the intersection area, I will 
decelerate to keep a safe distance with you.

My position and speed: I am 30 m away from the center of 
the intersection and my current speed is 6.34 m/s.

Message from the other vehicle: Veh1 said that it is turning 
right, its speed is 3.06 m/s, and I should keep a safe distance.

Intersection condition: Veh1 is in the intersection area and 
the intersection area is not clear.

I am going to approach the intersection, Veh1 is in the 
interaction area and turning right, and I should decelerate to 
keep a safe distance with it.

Final Answer: Decelerate 

Veh1’s reason process and decision

communication

Agent Profile
You are an intelligent 
agent that can drive 
safely and comfortably

Scenario Description
You are driving at an 
intersection, with speed 
25m/s. Veh2 is driving at 
this intersection too, with 
speed 10m/s.

Figure 7: The communication among multiple agents in
an LLM-based multi-agent system.

eLM (Sima et al., 2025), and nuScenes-QA (Qian1107

et al., 2024) introduce action descriptions, detailed1108

captions, and question-answer pairs that can be1109

used to interact with LLMs. Combining language1110

information with visual data can enrich semantic1111

and contextual understanding, promote a deeper un-1112

derstanding of driving scenarios, and enhance the1113

safety and interaction capabilities of autonomous1114

vehicles.1115

Multi-agent Autonomous Driving Dataset. Be-1116

yond single-vehicle view datasets, integrating more1117

viewpoints of traffic elements, such as drivers, vehi-1118

cles and infrastructures into the data also brings ad-1119

vantages to AD systems. Multi-agent autonomous1120

driving datasets, such as DAIR-V2X (Yu et al.,1121

2022), V2XSet (Xu et al., 2022), V2V4Real (Xu1122

et al., 2023), and TUMTraf-V2X (Zimmer et al.,1123

2024) typically include data from multiple vehi-1124

cles or infrastructure sensors, capturing the inter-1125

actions and dependencies between different agents1126

and additional knowledge regarding the environ-1127

ments. These datasets are essential for researching1128

and developing cooperative perception, prediction,1129

and planning strategies that enable vehicles to over-1130

come the limitations of single agent datasets such1131

as limited field of view (FOV) and occlusion.1132
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