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Abstract

Autonomous Driving Systems (ADSs) are revo-
lutionizing transportation by reducing human
intervention, improving operational efficiency,
and enhancing safety. Large Language Mod-
els (LLMs), known for their exceptional plan-
ning and reasoning capabilities, have been
integrated into ADSs to assist with driving
decision-making. However, LLM-based single-
agent ADSs face three major challenges: lim-
ited perception, insufficient collaboration, and
high computational demands. To address these
issues, recent advancements in LLM-based
multi-agent ADSs have focused on improv-
ing inter-agent communication and coopera-
tion. This paper provides a frontier survey
of LLM-based multi-agent ADSs. We begin
with a background introduction to related con-
cepts, followed by a categorization of exist-
ing LLM-based approaches based on different
agent interaction modes. We then discuss agent-
human interactions in scenarios where LLM-
based agents engage with humans. Finally, we
summarize key applications, datasets, and chal-
lenges in this field to support future research'.

1 Introduction

Autonomous driving systems (ADSs) are redefin-
ing driving behaviors, reshaping global transporta-
tion networks, and driving a technological revolu-
tion (Yurtsever et al., 2020). Traditional ADSs pri-
marily rely on data-driven approaches (as detailed
in Appendix A.l), often focusing on system de-
velopment while overlooking dynamic interactions
with the environment. To enhance engagement
with diverse and complex driving scenarios, agentic
roles have been incorporated into ADSs (Durante
et al., 2024) using methods such as reinforcement
learning (Zhang et al., 2024b) and active learn-
ing (Lu et al., 2024). Despite notable progress,
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these methods struggle with “long-tail" scenarios,
where rare but critical driving situations—such as
sudden obstacles—pose significant challenges to
model performance. Furthermore, their “black-
box" nature limits interpretability, making their
decisions difficult to trust.

LLM-based single-agent ADSs help overcome
the limitations of data-driven methods (Wang et al.,
2024a). Pre-trained on vast, multi-domain datasets,
LLMs excel in knowledge transfer and generaliza-
tion (Achiam et al., 2023), enabling strong perfor-
mance in traffic scenarios under zero-shot settings,
thus addressing the long-tail issue (Yang et al.,
2023). Moreover, techniques such as Reinforce-
ment Learning from Human Feedback (RLHF) and
Chain-of-Thought (CoT) (Zhao et al., 2023), en-
hance language-based interaction and logical rea-
soning, allowing LLMs to make human-like, real-
time decisions while providing interpretable and
trustworthy feedback across various driving condi-
tions. For instance, Drive-Like-a-Human (Fu et al.,
2024) builds a closed-loop system comprising envi-
ronment, agent, memory, and expert modules. The
agent interacts with the environment, reflects on
expert feedback, and ultimately accumulates expe-
rience. DilLu (Wen et al., 2024) replaces human
experts with a reflection module and integrates an
LLM-based reasoning engine to enable continuous
decision-making. Agent-Driver (Mao et al., 2024)
designs a tool library to collect environmental data
and uses LLMs’ cognitive memory and reasoning
to improve planning.

However, as shown in Figure 1, researchers have
identified three critical limitations of LLM-based
single-agent ADSs in complex traffic environments:
® Limited Perception: LLMs can only respond
to sensor inputs and lack predictive and generaliza-
tion capabilities. As a result, LLM-based single-
agent ADSs cannot complement incomplete sensor
information and thus miss critical information in
driving scenarios, such as pedestrians or vehicles
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Veh2: I want to
g0 straight.

Figure 1: Limitations of LLM-based single-agent ADSs.
At an intersection without traffic lights, an accident has
occurred ahead, causing Vehl to be stuck. Due to lim-
ited perception, Vehl is unable to assess the situation
and cannot proceed. Veh2 intends to go straight, and
Veh3 wants to turn left. However, due to insufficient
collaboration, they are also unable to navigate the inter-
section efficiently. Furthermore, due to high computing
demands, the lightweight agent on Vehl struggles to
handle the complex driving scenario and has to rely on
a more powerful cloud-based agent for assistance.

hidden in complex intersection environments (Hu
et al., 2024c). @ Insufficient Collaboration: A
single LLM-based agent cannot coordinate with
other vehicles or infrastructure, leading to subopti-
mal performance in scenarios requiring multi-agent
interactions, such as lane merging or navigating
roundabouts (Hu et al., 2021). & High Compu-
tational Demands: With billions of parameters
in LLMs, these methods demand substantial inde-
pendent computational resources, making real-time
deployment challenging, particularly in resource-
limited in-vehicle systems (Cui et al., 2023).

To address these limitations, LLM-based multi-
agent ADSs enable distinct agents to communi-
cate and collaborate, enhancing safety and perfor-
mance. First, LLMs enhance contextual aware-
ness by allowing agents to share data, extend their
perceptual range, and enhance the detection of oc-
cluded objects in complex environments (Hu et al.,
2024c). Second, real-time coordination between
LLM-based agents mitigates insufficient collabora-
tion, enabling joint decision-making in scenarios
such as lane merging and roundabout navigation,
ultimately leading to safer and more efficient driv-
ing operations (Hu et al., 2021). Third, LLMs opti-
mize computational efficiency by distributing tasks
among agents, reducing individual workloads, and
enabling real-time processing in resource-limited
systems (Cui et al., 2023).

As LLM capabilities continue to advance, they
are playing an increasingly significant role in ADS
as intelligent driving assistants. Several reviews

have focused on two primary aspects: i) the inte-
gration of LLMs into data-driven methods (Yang
et al., 2023; Li et al., 2023) and ii) the applications
of specific LLM types, such as vision-based (Zhou
et al., 2024b) and multimodal-based (Fourati et al.,
2024; Cui et al., 2024¢) models in ADSs. However,
no comprehensive survey has systematically exam-
ined the emerging field of LLM-based multi-agent
ADSs. This gap motivates us to provide a thor-
ough review that consolidates existing knowledge
and offers insights to guide future research and the
development of advanced ADSs.

In this study, we present a comprehensive sur-
vey of LLM-based multi-agent systems. Specif-
ically, Section 2 introduces the core concepts of
LLM-based multi-agent ADSs, including agent
environments and profiles, inter-agent interaction
mechanisms, and agent-human interactions. Sec-
tion 3 provides a structured review of the state-
of-the-art in multi-agent ADS, categorizing exist-
ing studies into three key interaction types: multi-
vehicle interaction, vehicle-infrastructure interac-
tion, and vehicle-assistant interaction. As agent
capabilities continue to grow, human-vehicle co-
driving is becoming the dominant autonomous driv-
ing paradigm, with human involvement playing an
increasingly vital role. Humans collaborate with
agents by providing guidance or supervising their
behavior. Therefore, we consider humans as spe-
cial virtual agents and examine human-agent inter-
actions in Section 4. Section 5 explores various ap-
plications, while Section 6 compiles a comprehen-
sive collection of public datasets and open-source
resources. Section 7 discusses existing challenges
and future research directions and Section 8 con-
cludes the study.

2 LLM-based Agents for ADS

2.1 LLM-based Single-agent ADS

Achieving human-level driving is an ultimate goal
of ADS. As shown in Figure 2(a), the LLM-based
single agent retrieves past driving experiences from
the memory, integrates them with real-time envi-
ronmental information for reasoning, and makes
driving decisions. Additionally, the driving agent
reflects on its decision and updates its memory
accordingly, ensuring safe and efficient driving ac-
tions. However, the complex and dynamic nature
of real-world driving scenarios, where interactions
with other vehicles significantly impact decision-
making, suggests that neglecting these interactions
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Figure 2: Overview of LLM-based (a) single- and (b) multi-agent ADSs, with key terms and differences highlighted.

can lead to suboptimal or unsafe driving outcomes.

2.2 LLM-based Multi-agent ADS

With interactions among multiple agents, LLM-
based multi-agent ADS leverages collective intelli-
gence and specialized skills, with each agent play-
ing a distinct role, communicating and collaborat-
ing within the system. This enhances the efficiency
and safety of autonomous driving. Below, we intro-
duce the LLM-based multi-agent ADS, as shown
in Figure 2(b), and provide a detailed analysis of
its three key modules: Agent Environment and
Profile, LLM-based Multi-Agent Interaction, and
LLM-based Agent-Human Interaction.

2.2.1 Agent Environment and Profile

Similar to the single-agent architecture in Fig-
ure 2(a), multi-agent systems first obtain rele-
vant information from their environments, enabling
them to make informed decisions and take appropri-
ate actions. The environmental conditions define
the settings and necessary context for agents in
LLM-based multi-agent ADS to operate effectively.
Generally, there are two environment types, i.e.,
physical environment and simulation environment.

* Physical environment. It represents the real-
world setting where driver agents gather infor-
mation using various sensors, such as cameras
and LiDAR, and interact with other traffic partic-
ipants.However, due to the high cost of vehicles
and strict regulations on public roads, collecting
large amounts of data in real world is impractical.

* Simulation environment. As a viable alternative,
the simulation environment provides a simulated

setting constructed by humans. It can accurately
model specific conditions without incurring the
high costs and complexities associated with real-
world data collection, allowing agents to freely
test actions and strategies across a variety of sce-
narios (Dosovitskiy et al., 2017).

In LLM-based multi-agent systems, each agent
is assigned distinct roles with specific functions
through profiles, enabling them to collaborate on
complex driving tasks or simulate intricate traffic
scenarios. These profiles are crucial in defining
the functionality of the agent, its interaction with
the environment, and its collaboration with other
agents. Existing work (Li et al., 2024) generates
agent profiles using three types of methods: Pre-
defined, Model-generated, and Data-derived.

* Pre-defined methods. In these cases, system
designers explicitly define agent profiles based
on prior knowledge and the analysis of complex
scenarios (Chen et al., 2024a). Each agent has
unique attributes and behavior patterns that can
be adjusted based on the scenario. In driving en-
vironments, the objectives of ADS require the
collaboration of vehicle agents, infrastructure
agents, and drivers. In particular, @ Vehicle
agents denote various types of autonomous ve-
hicles, traveling according to preset routes and
traffic rules, while communicating and collabo-
rating with other vehicles and driver agents. @ In-
frastructure agents, e.g., traffic lights, road condi-
tion monitors, and parking facilities, provide real-
time traffic information and instructions, influ-
encing the behavior of driver and vehicle agents.
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Figure 3: Different interaction modes and interaction
structures.

* Model-generated methods. These approaches
create agent profiles using advanced LLMs based
on the interaction context and the goals that need
to be accomplished (Zhou et al., 2024c).

* Data-derived Profile. They design agent profiles
based on pre-existing datasets (Guo et al., 2024).

2.2.2 LLM-based Multi-Agent Interaction

In LLM-based multi-agent ADS, effective infor-
mation exchange and action coordination between
agents are essential to improve collective intelli-
gence and solve complex traffic scenarios. Agent
interactions are influenced by both the interaction
mode and the underlying interaction structure.

* The interaction mode of LLM-based multi-agent
ADS can be classified as: cooperative, competi-
tive, and debate mode. @ In cooperative mode,
agents work together to achieve shared objectives
by exchanging information (Chen et al., 2024d;
Jin et al., 2024). @ In competitive mode, agents
strive to accomplish their individual goals and
compete with others (Yao et al., 2024). @ The
Debate mode enables agents to debate with each
other, propose their own solutions, criticize the
solutions of other agents, and collaboratively
identify optimal strategies (Liang et al., 2024).

* The interaction structure delineates the archi-
tecture of communication networks within LLM-
based multi-agent ADS, including centralized,
decentralized, hierarchical, and shared message
pool structures, as shown in Figure 3. Specifi-
cally, @ the centralized interaction structures de-
fines a central agent or a group of central agents
to manage interactions among all agents (Zhou
et al., 2024¢c). @ The decentralized interaction
structure allows for direct communication be-
tween agents, with all agents being equal to each

other (Hu et al., 2024b). ® Hierarchical struc-
tures focus on interactions within a layer or with
adjacent layers (Ohmer et al., 2022). @ The
shared memory interaction structure maintains a
shared message pool, allowing agents to send and
extract the necessary information (Jiang et al.,
2024). We provide a more detailed introduction
to LLM-based multi-agent ADSs based on their
interaction structures and modes in Section 3.

2.2.3 LLM-based Agent-Human Interaction

Recent studies have shown that human-machine co-
driving systems leverage LLMs to improve agent-
human interactions, enabling autonomous vehi-
cles to communicate and collaborate seamlessly
with human drivers through natural language (Feng
et al., 2024). This capability allows vehicles to
better understand and respond to human intent,
provide context-aware responses, enhance driving
safety and comfort, and offer personalized recom-
mendations based on driver preferences. Further-
more, humans play a crucial role in guiding and
supervising agent behavior, enhancing the agents’
capabilities while ensuring safety and compliance
with legal standards. We explore the role of humans
as special virtual agents in LLM-based multi-agent
ADS and examine the intricate dynamics of agent-
human interactions in Section 4.

3 LLM-based Multi-Agent Interaction

Mutual interaction is central to multi-agent ADSs,
enabling systems to solve complex problems be-
yond the capabilities of a single agent. Through
information exchange and coordinated decision-
making, multiple agents effectively complete
shared tasks and achieve overarching objectives (Li
et al., 2024). This section reviews recent stud-
ies on multi-agent ADSs, emphasizing interactions
among vehicles, infrastructures, and assisted agents
in driving scenarios. As shown in Figure 4, we cate-
gorize existing methods into three interaction types:
multi-vehicle interaction, vehicle-infrastructure in-
teraction, and vehicle-assistant interaction.

3.1 Multi-Vehicle Interaction

Multi-vehicle interactions involve multiple au-
tonomous vehicles powered by LLMs exchanging
real-time information, such as locations, speeds,
sensor data, and intended trajectories. By shar-
ing partial observations of the environment or ne-
gotiating maneuvers, multiple vehicles overcome
the inherent limitations of single-agent ADS, such
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Figure 4: A taxonomy of LLM-based Multi-Agent Autonomous Driving Systems.

as restricted perception and lack of collaboration.
Typically, these interactions operate in a coopera-
tive mode. LanguageMPC (Sha et al., 2023) em-
ploys a centralized structure, where a central agent
acts as the “brain” of the fleet, providing coordina-
tion and control commands to each vehicle agent.
In contrast, other decentralized approaches (Fang
et al., 2024; Dona et al., 2024) treat all agents
equally, allowing direct communication between
multiple agents. For instance, AgentsCoDriver (Hu
et al., 2024a) designs a communication module that
generates messages for inter-agent communication
when the agent deems it necessary. AgentsCoM-
erge (Hu et al., 2024b) and CoDrivingLLLM (Fang
et al., 2024) incorporate agent communication into
the reasoning process, facilitating intention sharing
and negotiation before decision-making. Addition-
ally, KoMA (Jiang et al., 2024) and CoMAL (Yao
et al., 2024) build a shared memory pool, allowing
agents to send and retrieve the necessary informa-
tion to facilitate interaction between agents.

3.2 Vehicle-Infrastructure Interaction

The interaction between vehicles and external
agents, such as traffic lights, roadside sensors, and
LLM-powered control centers, not only helps au-
tonomous vehicles make more intelligent decisions
but also alleviates on-board computing require-
ments. This enables LLM-based multi-agent ADSs
to operate effectively in real-world environments.
EC-Drive (Chen et al., 2024a) proposes an Edge-
Cloud collaboration framework with a hierarchical

interaction structure. The edge agent processes real-
time sensor data and makes preliminary decisions
under normal conditions. When anomalies are de-
tected or the edge agent generates a low-confidence
prediction, the system flags these instances and up-
loads them to the cloud agent equipped with LLMs.
The cloud agent then performs detailed reasoning
to generate optimized decisions and combines them
with the output of the edge agent to update the driv-
ing plan. Following a similar architecture, Tang
et al. (2024) uses agents deployed on remote clouds
or network edges to assist connected driving agents
in handling complex driving decisions.

3.3 Vehicle-Assistant Interaction

Beyond the interactions between the primary
agents in driving scenarios, additional interactions
among assisted agents play a crucial role in LLM-
based multiagent ADSs. Both ChatSim (Wei et al.,
2024) and ALGPT (Zhou et al., 2024c) employ a
manager (PM) agent to interpret user instructions
and coordinate tasks among other agents. Chat-
Sim (Wei et al., 2024) adopts a centralized struc-
ture in which the PM agent decouples an overall
demand into specific subtasks and dispatches in-
structions to other team agents. Similarly, the PM
agent in ALGPT (Zhou et al., 2024c) formulates
a work plan upon receiving user commands and
assembles an agent team with the plan. Specifi-
cally, agents no longer communicate point-to-point
with each other but instead communicate through a
shared message pool, greatly improving efficiency.



Additionally, hierarchical agent architectures fur-
ther enhance the performance and effectiveness
of LLM-based multi-agent ADSs. AD-H (Zhang
et al., 2024c¢) assigns high-level reasoning tasks to
the multimodal LL.M-based planner agent while
delegating low-level control signal generation to
a lightweight controller agent. These agents inter-
act through mid-level commands generated by the
multimodal LLMs. In LDPD (Liu et al., 2024a),
the teacher agent leverages the LLM for complex
cooperative decision reasoning and trains smaller
student agents via its own decision demonstrations
to achieve cooperative decision-making. Surre-
alDriver (Jin et al., 2024) introduces a CoachAgent
to evaluate DriverAgent’s driving behavior and pro-
vide guidelines for continuous improvement.

Different from the conventional collaborative
interaction mode, V-HOI (Zhang et al., 2024a) pro-
poses a hybrid interaction mode that blends collab-
oration with debate. It establishes various agents
across different LLMs to evaluate reasoning logic
from different aspects, enabling cross-agent reason-
ing. This process culminates in a debate-style inte-
gration of responses from various LLMs, improv-
ing predictions for enhanced decision-making.

4 LILM-based Agent-Human Interaction

Depending on the roles of human assume when in-
teracting with agents, we classify current methods
as: instructor paradigm and partnership paradigm.

4.1 Instructor Paradigm

In Figure 5, the instructor paradigm involves agents
interacting with humans in a conversational man-
ner, where humans act as “tutors" to offer quan-
titative and qualitative feedback to improve the
agent’s decision-making (Li et al., 2017). Quantita-
tive feedback typically includes binary evaluations
or ratings, while qualitative feedback consists of
language suggestions for refinement. The agent
incorporates these suggestions to adapt and en-
hance its performance in complex driving scenarios.
For instance, Wang et al. (2023) propose “Expert-
Oriented Black-box Tuning", a method where do-
main experts provide feedback to optimize model
performance. Similarly, Ma et al. (2024) present
a human-guided learning pipeline that integrates
driver feedback to refine agent decision-making.

4.2 Partnership Paradigm

In Figure 5, the partnership paradigm empha-
sizes collaboration, where agents and humans in-
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Figure 5: Two modes of agent-human interaction.

teract as equals to accomplish complex driving
tasks. In this paradigm, agents assist in decision-
making by adapting to individual driver prefer-
ences and real-time traffic conditions. For instance,
Talk2Drive (Cui et al., 2023), DaYS (Cui et al.,
2024a) and Receive (Cui et al., 2024b) utilize mem-
ory modules to store human-vehicle interactions,
enabling a more personalized driving experience
based on individual driver preferences, such as
overtaking speed and following distance. Addition-
ally, infrastructure agents in AccidentGPT (Wang
et al., 2024b) and ConnectGPT (Tong and Solmaz,
2024) connect vehicles to monitor traffic condi-
tions, identify potential hazards, and provide proac-
tive safety warnings, blind spot alerts, and driving
suggestions through agent-human interaction.

S5 Applications

5.1 Collaborative Perception

Despite significant advancements in the perception
modules of ADS, LLM-based single-agent ADS
continues to face substantial challenges, including
constrained sensing ranges and persistent occlusion
issues (Han et al., 2023). These two key limitations
hinder their comprehensive understanding of the
driving environment and can lead to suboptimal
decision-making, especially in complex and dy-
namic traffic scenarios (Hu et al., 2024c¢).

(Dona et al., 2024) propose a multi-agent coop-
erative framework that enhances the ego vehicle’s
field-of-view (FOV) by integrating complementary
visual perspectives through inter-vehicle dialogues
mediated by onboard LLMs, significantly expand-
ing the ego vehicle’s environmental comprehen-
sion. However, in complex road scenarios, reliance
on a single LLM can lead to erroneous interpreta-
tions and hallucinatory predictions when process-
ing complex traffic situations. To address this lim-



itation, V-HOI MLCR (Zhang et al., 2024a) in-
troduces a collaborative debate framework among
different LLMs for video-based Human-Object In-
teraction (HOI) detection tasks. This framework
first implements a Cross-Agent Reasoning scheme,
assigning distinct roles to various agents within an
LLM to conduct reasoning from multiple perspec-
tives. Subsequently, a cyclic debate mechanism is
employed to evaluate and aggregate responses from
multiple agents, culminating in the final outcome.

5.2 Collaborative Decision-Making

After obtaining environmental information, the
ADS performs three core functions: route planning,
trajectory optimization, and real-time decision-
making. In complex traffic scenarios such as round-
about navigation and lane merging, LLM-based
multi-agent systems enable coordinated motion
planning through three key mechanisms: @ real-
time intention sharing between agents, @ adaptive
communication protocols, and ® dynamic negoti-
ation frameworks. This collaborative architecture
allows ADS to precisely coordinate their trajecto-
ries, maneuver strategies, and environmental inter-
actions while maintaining operational safety.
LanguageMPC (Sha et al., 2023) uses LLMs
to perform scenario analysis and decision-making.
Additionally, it introduces a multi-vehicle control
method where distributed LLMs govern individ-
ual vehicle operations, while a central LLM facil-
itates multi-vehicle communication and coordina-
tion. AgentsCoDriver (Hu et al., 2024a) presents
a comprehensive LLM-based multi-vehicle collab-
orative decision-making framework with life-long
learning capabilities, moving the field towards prac-
tical applications. This framework consists of five
parts, as follows: the observation module, cogni-
tive memory module, and reasoning engine sup-
port the high-level decision-making process for
AD; the communication module enables negotia-
tion and collaboration among vehicles; and the rein-
forcement reflection module reflects the output and
decision-making process. Similarly, AgentsCoM-
erge (Hu et al., 2024b) combines vision-based and
text-based scene understanding to gather essential
environmental information and incorporates a hier-
archical planning module to allow agents to make
informed decisions and effectively plan trajecto-
ries. Instead of directly interacting with each other,
agents in KoMA (Jiang et al., 2024) analyze and
infer the intentions of surrounding vehicles via an
interaction module to enhance decision-making. It

also introduces a shared memory module to store
successful driving experiences and a ranking-based
reflection module to review them.

5.3 Other Collaborative Assistance-Tools

The long-term data accumulation in both industry
and academia has enabled great success in highway
driving and automatic parking (Liu et al., 2024b).
However, collecting real-world data remains costly,
especially for multi-agents or customized scenar-
ios. Additionally, the uncontrollable nature of real
scenarios makes it challenging to capture certain
corner cases. To address these issues, many LLM-
based studies focus on simulating multi-agent ADS,
offering a cost-effective alternative to real-world
data collection. For example, ChatSim (Wei et al.,
2024) provides editable photo-realistic 3D driv-
ing scenario simulations via natural language com-
mands and external digital assets. The system
leverages multiple LLM agents with specialized
roles to decompose complex commands into spe-
cific editing tasks, introducing novel McNeRF and
Mclight methods that generate customized high-
quality output. HumanSim (Zhou et al., 2024a)
integrates LLMs to simulate human-like driving
behaviors in multi-agent systems via pre-defined
driver characters. By employing navigation strate-
gies, HumanSim facilitates behavior-level control
of vehicle movements, making it easier to generate
corner cases in multi-agent environments.

Although many innovative studies have ex-
plored the application of LLM-based multi-agent
ADS, significant technical challenges remain in
deploying LLMs locally on autonomous vehicles
due to their huge computational resource require-
ments (Sun et al., 2024). To address these issues,
Tang et al. (2024) apply remote LLMs to provide as-
sistance for connected autonomous vehicles, which
communicate between themselves and with LLMs
via vehicle-to-everything technologies. Moreover,
this study evaluates LLMs’ comprehension of driv-
ing theory and skills in a manner akin to human
driver tests. However, remote LLM deployment
can introduce inference latency, posing risks in
emergency scenarios. To further improve system
efficiency, Chen et al. (2024a) introduce a novel
edge-cloud collaborative ADS with drift detection
capabilities, using small LLMs on edge devices
and GPT-4 on cloud to process motion planning
data and complex inference tasks, respectively.

In addition, ALGPT (Zhou et al., 2024c) uses a
muti-agent cooperative framework to enable open-



Table 1: Single-agent and multi-agent autonomous driving datasets.

Datasets Dataset Type

Sensor Type

Tasks

KITTI (Geiger et al., 2012)
nuScenes (Geiger et al., 2020)
BDDI100K (Yu et al., 2020)
Waymo (Sun et al., 2020)
BDD-X (Kim et al., 2018)
nuScenes-QA (Qian et al., 2024)
DriveLLM (Sima et al., 2025)

Single-agent
Single-agent
Single-agent
Single-agent
Single-agent
Single-agent
Single-agent

DAIR-V2X (Yu et al., 2022) Multi-agent
TUMTraf-V2X (Zimmer et al., 2024)  Multi-agent
V2V4Real (Xu et al., 2023) Multi-agent

V2XSet (Xu et al., 2022) Multi-agent

Camera, LIDAR
Cameras, LiIDAR, Radars
Camera
Camera, LiIDAR, Radars

nuScenes
nuScenes, Waymo
Camera, LiDAR (multi-vehicle)
Multi-vehicle camera, LiIDAR
Multi-vehicle camera, LIDAR
Multi-vehicle camera, LIDAR

2D/3D detection, tracking, depth estimation
3D detection, tracking, trajectory forecasting
Object detection, lane detection, segmentation
2D/3D detection, tracking, domain adaptation
Object detection, driving scenario captioning
3D detection, tracking, visual QA
Multi-modal planning, question answering
Cooperative perception, tracking
Cooperative perception, multi-agent tracking
Cooperative detection, tracking
Multi-agent detection, tracking

BDD

vocabulary and multimodal auto-annotation for au-
tonomous driving. ALGPT introduces a Standard
Operating Procedure that clarifies the role of each
agent and shares project documentation, thereby
enhancing the effectiveness of multi-agent interac-
tions. Moreover, ALGPT establishes a specialized
knowledge base for each type of agent, using CoT
and In-Context Learning (Brown et al., 2020).

6 Datasets

We organize the latest state-of-the-art open-source
work to foster research of more advanced ADSs.
And we summarize mainstream ADS datasets in
Table 1. More details are listed in Appendix A.3.

7 Challenges and Future Directions

This section explores key open challenges and po-
tential opportunities for future research.

* Hallucination Problem. 1t refers to LLMs gener-
ating outputs that are factually incorrect or non-
sensical (Huang et al., 2023). In complex driving
scenarios, a single driving agent’s hallucinations
in an LLM-based multi-agent ADS can be ac-
cepted and further propagated by other agents in
the network via the inter-agent communication,
potentially leading to serious accidents. Conse-
quently, detecting and mitigating hallucinations
at the individual agent level and managing the
flow of information between agents are crucial
issues for future research (Fan et al., 2024).

* Multi-Modality Ability. Agents in current multi-
agent systems primarily use LLMs for scene un-
derstanding and decision making. These methods
convert the outputs of perception algorithms into
textual representations through manual prompts
or interpreters, which are then fed into an LLM
to produce decisions. This approach heavily de-
pends on the performance of the perception al-
gorithm and can lead to loss of environmental

information (Gao et al., 2023). Therefore, inte-
grating language understanding with the ability
to process and fuse multiple data modalities to de-
velop a multimodal multi-agent ADS represents
a promising direction for future research.

* Scalability Problem. LLM-based multi-agent
ADS can scale up by adding more agents to han-
dle increasingly complex driving scenarios. How-
ever, more LLM agents increase the demand for
computing resources, while their interactions im-
pose strict requirements on communication effi-
ciency, which is critical for real-time decision-
making (Huang et al., 2024b). Therefore, un-
der limited computing resources, it is crucial to
develop a system architecture that supports dis-
tributed computing and efficient communication,
as well as agents capable of adapting to various
environments and tasks, to optimize multi-agent
ADS within resource constraints.

8 Conclusion

This paper systematically outlines LLM-based
multi-agent ADS and comprehensively reviews
the latest research in this field. Our study first
traces the development trajectory of LLM-based
multi-agent ADS from single-agent ADS to multi-
agent ADS. Subsequently, we provide a detailed
description of the LLM-based multi-agent ADS
from the perspectives of agent-environments and
profiles, inter-agent interaction mechanisms, and
agent-human interactions. We also systematically
classify and introduce existing studies from the per-
spectives of multi-agent interaction, agent-human
interaction, and different applications. Finally, this
paper provides comprehensive public datasets and
open source codes, and deeply explores the cur-
rent challenges and future research directions of
LLM-based multi-agent ADS. We hope that this re-
view can bring new inspiration and ideas to future
research on LLM-based multi-agent ADS.



Limitations

Emerging Research and Limited Data. As the
field of LLM-based multi-agent ADS is still rela-
tively new, existing research is limited, which may
restrict the scope of our classification and analysis.
Some Unverified Work. Since LLM-based multi-
agent ADS is a novel topic, some of the papers
summarized in this review are from unreviewed
arXiv preprints. As these works have not been
formally published, their conclusions may require
further investigation to confirm their validity. Lim-
ited Discussion on Real-world Applications. As
LLM-based multi-agent ADS is still in the theoret-
ical stage, although many companies have begun
deploying practical applications in this area, this
review does not cover discussions on real-world
deployments due to a lack of up-to-date internal
information from these companies.
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A Appendix

A.1 Data-driven Autonomous Driving System

Traditional ADS rely on data-driven approaches,
which are categorized into modular and end-to-end
frameworks (Chen et al., 2024b). Modular-based
systems break the entire autonomous driving pro-
cess into separate components, such as perception
module, prediction module, and planning module.
Perception modules are responsible for obtaining
information about the vehicle’s surrounding envi-
ronment, aiming to identify and locate important
traffic elements such as obstacles, pedestrians, and
vehicles near the autonomous vehicle, usually in-
cluding tasks such as object detection (Wang et al.,
2021) and object occupancy prediction (Tong et al.,
2023). Prediction modules estimate the future mo-
tions of surrounding traffic participants based on
the information provided by the perception module,
usually including tasks such as trajectory predic-
tion and motion prediction (Shi et al., 2022). Plan-
ning module aims to derive safe and comfortable
driving routes and decisions through the results
of perception and prediction (Sauer et al., 2018).
Each module is individually developed and inte-
grated into onboard vehicles to achieve safe and
efficient autonomous driving functions. Although
modular methods have achieved remarkable results
in many driving scenarios, the stacking design of
multiple modules can lead to the loss of key infor-
mation during transmission and introduce redun-
dant calculations. Furthermore, due to the inconsis-
tency in the optimization objectives of each module,
the modular-based system may accumulate errors,
which can negatively impact the vehicle’s overall
decision-making performance. End-to-end-based
systems integrate the entire driving process into a
single neural network, and then directly optimize
the entire driving pipeline from sensor inputs to pro-
duce driving actions (Chen et al., 2024b). However,
this approach introduces the “black box” problem,
meaning a lack of transparency in the decision-
making process, complicating interpretation and
validation.

A.2 LLMs in Autonomous Driving System

As shown in Figure 6, 7, LLMs, with their powerful
open-world cognitive and reasoning capabilities,
have shown significant potential in ADSs (Yang
et al., 2023; Li et al., 2023). LC-LLM (Peng
et al., 2024) is an explainable lane change predic-
tion model that leverages LLMs to process driving

13

Reasoning Output
1 should first check if I can accelerate,
then maintain current speed, finally
decelerate. I can also try to change
lanes but with caution.
At First, I need to observe the vehl. The
distance between me and vehl is 400 -
360 = 40 m, and the difference in speed
is 25.00 - 25.00 = 0.00 m/s.
Vehl is traveling 40 m ahead of me and
the speed is same. This distance is safe

Scenario Description
You are driving on a highway

road with 8 lanes, and you are = @ =
currently driving in the rightmost.

Your current speed is 25.0 m/s, 11 Ms as the reason
module of agents

i

Agent Profile
You are a driving
agent. Your task is
to transport various
passengers to the
required location
and provide as a
safety comfortable
riding experience as
much as possible.

acceleration is 0.0 m/s"2, and
lane position is 360 m

There are other vehicles around :
Vehl is driving on the lane to
your left and is ahead of you. The
speed of it is 21.2 m/s,
acceleration is 0.2 m/s"2, and

but my speed is already at the desired
level, so I should not accelerate.
Since I cannot accelerate, I want to
know if I can maintain my current
speed. I should observe car vehl.

lane position is 372 m

Veh2 is driving on the same lane
as you and is ahead of you. The

speed of it is 25.0 m/s, maintain current speed

acceleration is -0.1 m/s"2, and
lane position is 400 m

Figure 6: An example of an LLM-based single-agent
ADS (Wen et al., 2024).

scenario information as natural language prompts.
By incorporating CoT reasoning and supervised
finetuning, it not only predicts lane change inten-
tions and trajectories but also provides transpar-
ent and reliable explanations for its predictions.
GPT-Driver (Mao et al., 2023) regards the motion
planning task as a language modeling problem, us-
ing a fine-tuned GPT-3.5 model (Ye et al., 2023)
to generate driving trajectories. DriveGPT4 (Xu
et al., 2024) introduces an interpretable end-to-end
autonomous driving system that uses multimodal
LLMs to process multi-frame video inputs and tex-
tual queries, enabling vehicle action interpretation
and low-level control prediction. By employing a
visual instruction tuning dataset and mixfinetuning
strategy, it provides a novel approach to directly
map sensory inputs to actions, achieving superior
performance in autonomous driving tasks. Driving
with LLM (Chen et al., 2024c) integrates vector-
ized numeric data with pre-trained LLMs to im-
prove context understanding in driving scenarios
and enhances the interpretability of driving deci-
sions.

A.3 Datasets

Single-agent Autonomous Driving Dataset.
Single-agent datasets are obtained from a single ref-
erence agent, which can be the ego vehicle or road-
side infrastructure, using various sensors. Main-
stream singel-agent autonomous driving datasets
like KITTI (Geiger et al., 2012), nuScenes (Geiger
et al., 2020), and Waymo (Sun et al., 2020) provide
comprehensive multimodal sensor data, enabling
researchers to develop and benchmark algorithms
for multiple tasks such as object detection, tracking,
and segmentation.

In addition to these foundational datasets, newer
ones like BDD-X (Kim et al., 2018), Driv-



Agent Profile & Scenario D('\L‘/'I;)I/(}H[}@E} Vehl's reason process and decision

Veh1’s message: Veh2, [ am turning Veh2’s message:
right, my speed is 2.03 m/s, and we should <«
keep a safe distance to avoid collision.
communication
Agent Profile Veh2’s reasoning process and decision:
You are an intelligent My position and speed: I am 30 m away from the center of
agent that can drive the intersection and my current speed is 6.34 m/s.
safely and comfortably Intersection condition: Vehl is in the intersection area and
: : the intersection area is not clear.
[> C> Message from the other vehicle: Vehl said that it is turning

s _— right, its speed is 3.06 m/s, and I should keep a safe distance
Scenario Description
You are driving at an

T am going to approach the intersection, Vehl is in the
intersection, with speed

interaction area and turning right, and I should decelerate to
25m/s. Veh2 is driving at keep a safe distance with it.

this intersection too, with

speed 10m/s. Decelerate

Figure 7: The communication among multiple agents in
an LLM-based multi-agent system.

eLLM (Sima et al., 2025), and nuScenes-QA (Qian
et al., 2024) introduce action descriptions, detailed
captions, and question-answer pairs that can be
used to interact with LLMs. Combining language
information with visual data can enrich semantic
and contextual understanding, promote a deeper un-
derstanding of driving scenarios, and enhance the
safety and interaction capabilities of autonomous
vehicles.

Multi-agent Autonomous Driving Dataset. Be-
yond single-vehicle view datasets, integrating more
viewpoints of traffic elements, such as drivers, vehi-
cles and infrastructures into the data also brings ad-
vantages to AD systems. Multi-agent autonomous
driving datasets, such as DAIR-V2X (Yu et al.,
2022), V2XSet (Xu et al., 2022), V2V4Real (Xu
et al., 2023), and TUMTraf-V2X (Zimmer et al.,
2024) typically include data from multiple vehi-
cles or infrastructure sensors, capturing the inter-
actions and dependencies between different agents
and additional knowledge regarding the environ-
ments. These datasets are essential for researching
and developing cooperative perception, prediction,
and planning strategies that enable vehicles to over-
come the limitations of single agent datasets such
as limited field of view (FOV) and occlusion.
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