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Abstract

This paper presents a novel reinforcement learn-
ing framework that leverages DeepONet priors to
stabilize the Kuramoto—Sivashinsky (KS) equa-
tion. DeepONet first learns a generalized control
operator offline, which is refined online using
Deep Deterministic Policy Gradient (DDPG) to
adapt to trajectory-specific dynamics. The ap-
proach achieves a 55% energy reduction within
0.2 time units and narrows chaotic fluctuations
significantly, outperforming traditional feedback
control. DeepONet reduces MSE by 99.3%, while
the RL agent improves mean episode reward by
59.3%. The method offers a scalable and ef-
fective solution for controlling complex, high-
dimensional nonlinear systems.

1 Introduction

Controlling chaotic systems is a core challenge in applied
mathematics and engineering, impacting fields such as fluid
dynamics, combustion, and autonomous systems. The Ku-
ramoto—Sivashinsky (KS) equation—a nonlinear fourth-
order PDE introduced by Kuramoto (Kuramoto, 1978) and
Sivashinsky (Sivashinsky, 1977; 1980) to model flame front
instabilities—has become a benchmark for studying spa-
tiotemporal chaos and turbulence-like behavior.

Conventional control methods like linear feedback
(Christofides & Armaou, 2000) and backstepping control
(Krstic, 1999) rely on accurate system models and lineariza-
tion, limiting their scalability in chaotic settings. Alter-
natives such as Dynamic Mode Decomposition (DMD)
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(SCHMID, 2010) and neural predictors (Pathak et al., 2018)
focus on short-term forecasting, not real-time control. Data-
driven approaches offer promising alternatives. Model-free
Reinforcement Learning (RL), notably DDPG (Lillicrap
etal., 2015), has succeeded in fluid control tasks like drag re-
duction (Rabault et al., 2019) and actuator placement (Paris
et al., 2023). Simultaneously, Operator Learning techniques
like DeepONet (Lu et al., 2021) and its variants (Li et al.,
2020) effectively learn mappings for nonlinear PDEs. How-
ever, RL typically requires large data volumes, and Deep-
ONet struggles with adaptability to dynamic changes. Hy-
brid approaches such as Physics-Informed Reinforcement
Learning (PIRL) (Banerjee et al., 2025) attempt to bridge
this gap but still depend on known governing equations.
This work introduces a unified framework—Reinforcement
Learning with DeepONet prior—which offers the follow-
ing key innovative contribution of the study: (1) Presents
a novel reinforcement learning approach that incorporates
DeepONet priors to achieve model-free stabilization of the
Kuramoto—Sivashinsky equation, (2) A two-stage frame-
work is employed: DeepONet learns a generalized operator
offline, and DDPG refines it online using trajectory-specific
feedback, (3) The method achieves up to 85% energy reduc-
tion, significantly outperforming traditional controllers.

2 Methodology

This study uses DeepONet and DDPG in an RL framework
to control the KS equation, achieving better stability and
energy reduction than conventional methods.

2.1 Problem Formulation: Kuramoto-Sivashinsky
Equation

The KS equation models chaotic dynamics in systems such

as fluid flows or flame fronts:
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where u(z,t) € R is the state variable, z € [0, L] with
L = 100,¢t > 0, v = 1 is the viscosity parameter, and
f(z,t) € R is the control term. Periodic boundary con-
ditions u(x + L,t) = u(z,t) are enforced. The nonlin-
ear term ug—g induces chaos, counteracted by second- and
fourth-order diffusion terms. The control objective is to
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design f(x,t) to minimize the system energy:
Ny = 512. )

where z; are discretized spatial points, reflecting stabiliza-
tion of the chaotic dynamics.

Figure 1. RL with DeepONet prior RL to Stabilize KS Equation

2.2 Numerical Solution Using Spectral Methods
To solve the KS equation numerically, a Fourier spectral
method is employed, leveraging the periodic boundary
conditions. The spatial domain [0, L] is discretized into
n, = 512 points with spacing Ax = L/n,. Wavenumbers
are defined as:

o = %Tm m e {f%%—l} 3)
computed via the Fast Fourier Transform (FFT). The state
u(x, t) is transformed into Fourier space:

ng—1
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In Fourier space, the KS equation becomes:
% = (K — k)i~ SF(’} + . 5)

with linear and nonlinear operators:
ik
L(k) = k2 — vk*, N(k,t) = —%]—'{uQ}. ©)

Time integration uses an implicit-explicit (IMEX) scheme
with step size At = 0.002:

a(k,t) + At (3N (k,t) — AN (k,t — At))
21 - AtL(k)2 +f(k.2).
@)

a(k, t + At) =

The initial condition combines low- and high-frequency
modes:

2rx A
u(z,0) = cos (L) + 0.1 cos <L> . )

Algorithm 1 RL with DeepONet prior for Stabilizing KS
Equation
Initialize KS solver: L = 100, n, = 512, v =1, At =
0.002
Define wave numbers k = 2 -fftfreq(n,,, Az), operators
L(k) and N (k,t)
Set initial state u(z, 0) = cos(232) + 0.1 cos(42%)
Initialize DeepONet (branch: u € R%'2, trunk: t € R),
4 layers x 256 neurons
Generate training data: 200 noisy trajectories with f =
—u — 0.10,u
Train DeepONet: Adam (Ir=0.0005), 1500 epochs, mini-
mize MSE loss
Setup RL environment: state u, action a € [—1, 1]
reward based on energy and smoothness
Precompute 05, and 0p,,, from 20 trajectories
Train DDPG agent (2 layers x 512, Ir=5 X 1075, 50000
steps):
for each timestep do
Get DeepONet control f, add noise: a ~ 7(u) +
N(0,0.5)
Compute clipped control ¢ = clip(f + a,—1,1), up-
date @ in Fourier space
Recover u(x, t) via inverse FFT, clip to [—38, 8]
Evaluate reward r, update DDPG
end for
Compare RL vs Feedback (f = —1.5u — 0.10,u) over
200 steps
Output u(z, t) and energy E(t) = ;- > u?

512
b

Spatial and temporal derivatives, critical for RL, are com-
puted as:
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2.3 Feedback Control (Traditional Baseline)
A conventional feedback control is implemented to suppress
chaotic dynamics:

ou

U K =15,
or

flz,t) = —Ku(z,t) — K, K,=0.1.
(10)
where the control is computed at each time step using the
current state u(z, t) and its spatial gradient from the spec-
tral solver. This linear feedback serves as a baseline for

comparison.

2.4 DeepONet for Learning the Control Operator
DeepONet is employed to learn the operator G : u +—>
f(x,t), mapping system states to control functions across
varying conditions. Its architecture comprises:

Branch Network: Encodes the spatial state u(x,t) € R512
through four fully connected layers (three hidden layers
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with 256 units, ReLU activations, and a 256-unit output):

. R512 Lin(512,256)  Lin.(256,256) R256

Y

Trunk Network: Processes the scalar time input t € R
through four layers (three hidden with 256 units, ReL.U
activations, and a 256-unit output):

Branch(u)

Linear(1,256) Linear(256,256) s
. ]Rl . RQB()

Trunk(¢) . (12)
Fusion and Output: The branch and trunk outputs are
combined via element-wise multiplication:

z = Branch(u) ® Trunk(¢). (13)
and mapped to the control signal:
f(z,t) = Linear(256,512)(z) + bo. (14)

ensuring the output matches the spatial resolution of 512
points.

Training Procedure of DeepONet: Training data consists
of 200 simulated trajectories with perturbed initial condi-
tions:

u(z,0) = cos <277Tx> +0.1cos <47TT$> +e, e~ N(0,0.2%).
(15)

sampled at 512 spatial points, with time ¢ uniformly drawn
from [0, 15]. The target control is defined as:

flz,t) = —u Ou

t) —0.1—. 16
The loss function is the mean squared error (MSE):

N
L) = 5 -Gl (1) — G (@) (t)]* N = 200.

7)
optimized using the Adam optimizer (learning rate 0.0005)
over 1500 epochs. Consistent loss reduction during training
confirms DeepONet’s ability to generalize control mappings
across diverse states.

2.5 Reinforcement Learning via DDPG with
DeepONet prior

While DeepONet offers a strong initial control estimate,
it lacks trajectory-specific adaptability. To overcome this,
a DDPG agent is employed to learn residual corrections
in real time, enhancing stabilization. The architecture and
workflow are illustrated in Figure 1 and Algorithm 1. A
custom KS environment (KSEnv) is defined as follows:

State Space: The discretized KS field at time ¢:
sy = {u(x1,t),. .., u(xs12,t)} € [-5, 5] (18)

Action Space: A control correction a; € [—1,1]°!2, added
to the DeepONet output: Cygjusted = fDeepONet + Q-

Reward Function: Designed to promote low energy,
smooth control, and stable dynamics:

r(u,a) = 7i<u2) — 0.005(a®) — 0‘002«8””7”)2> - 0‘001M.
0.5 Cogu Toyu

19

where (u?) = ;L 37" u(z;,t)?, and similarly for other

terms. The scaling factors o, ,, and 0p,, are computed as

the mean plus standard deviation of ((9,u)?) and ((9u)?)

over 20 trajectories, normalizing the gradient penalties.

DDPG Architecture: The actor maps s; — a;, and the
critic estimates Q) (s, a;). Both networks have two hidden
layers with 512 ReLU units. Adam optimizer (learning rate
5 x 10~°) and target networks are used for stable training.

Exploration Strategy: Gaussian noise A (0,0.5) is added
to actions during training to promote exploration and dis-
cover optimal control across varying trajectories.

2.6 Training Procedure of the DDPG Agent

This two-stage setup uses DeepONet for offline operator
learning, followed by DDPG to adaptively refine control
online with trajectory-specific feedback. Training combines
DeepONet’s supervised learning and DDPG’s RL. In this
KS environment (KSEnv), the DDPG agent is trained over
50,000 timesteps, using system states s; € R?'? to learn
control corrections a that stabilize the field. A replay buffer
of size 20,000 stores transitions (¢, a;, 7, S¢+1) to sam-
ple and update the actor and critic networks. The agent
maximizes cumulative rewards to minimize energy and en-
sure smooth evolution, enabling trajectory-specific policy
adaptation in chaotic KS dynamics.

2.7 Rationale for Methodological Choices

Deep RL with a DeepONet prior was chosen to stabilize the
KS equation, as RL optimizes control policies for chaotic,
high-dimensional systems without explicit modeling. Deep-
ONet reduces RL’s sample complexity by approximating
PDE dynamics. DDPG was selected for efficient continuous
control, fitting the KS equation’s state and action spaces.
Compared to SAC or PPO, DDPG offers better sample ef-
ficiency and lower computational cost, though SAC and
PPO are planned for future exploration. A hard-coded linear
feedback controller was used as a baseline for its simplicity
and PDE control relevance, enabling comparison with our
RL-DeepONet approach. Computational limits excluded
additional learnable baselines (e.g., neural controllers), but
they are considered for future work.

3 Results and Discussion

3.1 Training Performance

The DeepONet-based RL framework demonstrated strong
training results. DeepONet’s MSE dropped from 0.5279 to
0.0037 over 2900 epochs—a 99.3% reduction—with 96.6%
of the decrease occurring in the first 500 epochs, indicating



ROL with DeepONet for Stabilizing the Kuramoto-Sivashinsky Equation

rapid and effective learning. The final MSE outperformed
benchmarks from related PDE control tasks. Simultane-
ously, the DDPG agent showed steady policy improvement.
The mean episode reward rose by 59.3%, from —423 to —172
over 50,000 timesteps. Actor loss increased from 5.83 to
34.9 and stabilized after 20,000 steps, while critic loss re-
mained low and stable (0.000378-0.0098, average 0.002),
confirming convergence.

DeepOnet Training Loss Over Epochs Reward Over Epochs
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Figure 2. DeepONet MSE loss over epochs (left) and RL agent
reward trajectory (right).

Actor Loss Over Epochs Critic Loss Over Epochs
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Figure 3. Actor loss (left) and critic loss (right) during RL training.

3.2 Energy Stabilization

Energy, measured as the spatial average of u(x,t)2, was
used to evaluate stabilization. As shown in Figure 4 (bot-
tom), the RL-controlled system reduced energy from 0.55
to approximately 4 units by 0.4 time units—a fivefold de-
crease. Moreover, a rapid 55% reduction occurred within
the first 0.2 time units. In contrast, traditional feedback
control caused the energy to increase to over 20 units by
1.0 time unit, marking a 3536% rise, clearly illustrating its
inability to suppress chaotic growth.

3.3 Spatiotemporal Dynamics

Figure 4 (top) presents the spatiotemporal evolution of
u(x, t) under both control strategies. The RL-controlled sys-
tem confined the solution within [—8, 4], with oscillations
decaying by 0.6 time units. Particularly in regions with high
spatial gradients (e.g., z € [0,20] and z € [60, 80)), the
RL policy effectively dissipated instabilities. In contrast,
traditional control exhibited wider fluctuations ranging from
[—16, 12], with persistent, high-amplitude oscillations over
time. This lack of suppression reflects its limited adaptabil-
ity to the KS equation’s nonlinear dynamics.

3.4 Control Efficiency

The control effort of the RL agent—measured as the mean
action magnitude—was approximately 0.5653, indicating
moderate and efficient interventions. This is significantly
lower than in many fluid control applications, where actions
often exceed a magnitude of 1.0. In contrast, traditional
control required stronger, less effective actions, leading to
system instability despite higher effort.

DeepONet-Guided RL Control Traditional Feedback Control
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Figure 4. Spatiotemporal plots of u(x, t) under RL (top-left) and
traditional control (top-right), and corresponding energy evolution
(bottom).

3.5 Comparative Summary

The reinforcement learning (RL) approach achieved a five-
fold reduction in system energy, whereas traditional control
resulted in a 3536% increase. In terms of speed, RL re-
duced energy by 55% within just 0.2 time units. Regarding
stability, the RL-controlled system maintained the solution
within the range u(z,t) € [—8, 4], while traditional control
allowed it to expand to [—16,12]. RL also proved more
efficient, achieving stabilization with smaller, more targeted
control actions.

4 Conclusion

This study presents a reinforcement learning framework that
combines DeepONet for operator learning with DDPG to
stabilize the KS equation. The method significantly out-
performs traditional feedback control, achieving substantial
energy reduction and enhanced spatiotemporal stability. De-
spite computational demands, the framework is scalable
and adaptable, showing strong potential for broader appli-
cations in chaotic and high-dimensional systems, including
turbulence and fluid dynamics. Future work includes ex-
tending the framework to 3D and multiphysics scenarios
and exploring improved training strategies and alternative
RL algorithms to boost efficiency and generalization.
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Impact Statement

This work advances the field of Machine Learning by in-
tegrating operator learning with reinforcement learning to
control chaotic partial differential equations. While pri-
marily theoretical, the framework has potential real-world
applications in stabilizing complex systems such as fluid
flows and combustion processes, which may contribute to
improved efficiency and safety in engineering and environ-
mental systems. We do not foresee any immediate ethical
concerns arising from this work.
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