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Abstract

The spectrum sharing in a cognitive radio system is related with a secondary user
sharing common spectrum with a primary user for power transmit without induc-
ing harmful inference. The deep reinforcement learning has been considered as
an intelligent power control method via an agent continuously interacting with en-
vironment. Traditional deep Q-network in the frame work of deep reinforcement
learning utilizes a deep neural network for learning a nonlinear function which
maps the state or observation to accumulated rewards conditional on current state
and agent action also called Q-value. The state or observation in the radio sys-
tem is collected from wireless network and corrupted by noises. The deep neural
network may therefore yield undesirable result due to the presence of noises and
induced degraded network parameters. Considering that the kernel-based adaptive
filter is beneficial for adaptive filtering, we aim to apply the kernel-based adaptive
filter into traditional deep Q-network for smoothing network outputs. In addi-
tion, a weighting approach on the basis of past Q-values also works together with
the deep neural network for further network output smoothing. The weighting
approach is especially beneficial for alleviating the over-smoothing issue of the
kernel-based adaptive filter. Simulation results have shown the efficiency of the
proposed smoothing deep Q-network in spectrum sharing in cognitive radios in
comparison with traditional deep Q-network.

video link:
https://drive.google.com/file/d/1yomrCRflQ344ubQPY-eZYHcN4PosRuCt/view?usp=sharing

1 Introduction

There is an urgent need to enhance the spectrum efficiency with increasing demand for spectrum
resources or low utilization rate of some bands in a cognitive radio system. Consider a cognitive
radio system consisting of a primary user and a secondary user [1 ,2]. A passive primary user model
and an active primary user model are common operations of spectrum sharing [3]. For the passive
primary model, the secondary user performs spectrum sensing to explore idle spectrum and there
is no need for the primary user updating its transmission parameters. In the active model, however,
dynamic power control strategies are required for all users such that a minimum quality of service
(QoS) for successful data transmission is fulfilled for both primary and secondary users, which is
considered in our work.

Apart from solving the power control issue from an optimization perspective [4 ,5], reinforcement
learning [6 ,7, 8] as a subfield of machine learning [9] has gained popularity and been applied in
intelligent power control due to its theoretical and technical achievements in efficiency and gener-



alization. The reinforcement learning problem is in general modeled as a Markov decision process
(MDP) which is defined over the state transition probabilities and rewards dependent only on the
state of environment and the action taken by the agent [10]. The reinforcement learning aims for be-
havioural decision making via interacting with the real world and receiving reward feedback. More
concretely, the agent in reinforcement learning chooses an action on the basis of its current state and
then receives feedback and reaches a new state. Therefore, the key point of reinforcement learning
is about learning an optimal policy mapping the state to one agent action so that accumulated reward
in the future is maximized.

Common reinforcement learning algorithms are categorized into model-based and model-free meth-
ods according to whether a complete knowledge of the MDP model is available [11, 12, 13]. Model-
based methods, also referred to as planning methods, require a complete description of the model in
terms of the transition and reward functions, while model-free methods, also referred to as learning
methods, learn an optimal policy based on received observations and rewards. The model-based
techniques mainly include two different approaches, i.e., value iteration and policy iteration [14].
However, the mathematic model is not always tractable in most applications. For solving this is-
sue, model-free methods are developed for learning optimal policy via interacting with environment.
Commonly used model-free approaches include Monte Carlo [11], temporal difference (TD) [11],
SARSA [11, 15] and Q-learning [16, 17]. In particular, Q-learning is one of the most popular
model-free approach updating Q-values in the form of a Q-table due to its simplicity and efficiency.

However, it is not feasible for using a look-up table for listing the expected Q-value for a pair of
state and action with large number of states and actions. For dealing with this issue, the deep Q-
network (DQN) under the framework of deep reinforcement learning replaces the Q-table by a deep
neural network [18, 19]. In deep Q-network, the deep neural network is utilized for yielding target
Q-value and estimated Q-value on the basis of agent states and received rewards which are stored at
an experience pool [20]. The network parameters are then optimized via the nonlinear function of
target Q-value and estimated Q-value [21].

The deep Q-network indeed behaves high efficiency in finding optimal policy but may suffer from
noises in the process of updating network parameters, yielding degraded network outputs. This moti-
vates us to combine deep Q-network with kernel-based adaptive filters [22]. Kernel methods aim to
solve nonlinear filtering in a linear form in the reproduce kernel Hilbert space (RKHS) [23, 24, 25].
Commonly used kernel adaptive filters (KAFs) include the kernel least mean square algorithm
(KLMS) [26], kernel affine projection algorithm (KAPA) [27] and kernel recursive least squares
(KRLS) [28]. Among these algorithms, the KLMS performs desirable filtering performance with
the lowest computational cost which is considered in our work. It is, however, not an easy work for
the KLMS to choose an appropriate step size. A small step size may be not enough for the KLMS to
behave desirable smoothing efficiency. By contrast, a large step size is indeed beneficial for smooth-
ing but the KLMS may be trapped in over-smoothing issue. Therefore, a weighting approach on
the basis of past Q-values is further considered. In the weighting approach, each sample within the
experience pool is equipped with a sub-pool which stores its corresponding past Q-values. These
past Q-values are considered for yielding a new smoothing output which is also beneficial for allevi-
ating over-smoothing issue. A novel smoothing deep Q-network (SDQN) is therefore proposed by
incorporating the KLMS algorithm and the weighting approach into deep Q-network for smoothing
the outputs produced by the deep neural network. Simulation results have shown the efficiency of
the proposed smoothing deep Q-network in the application of spectrum sharing in cognitive radios.

The remaining part of the paper proceeds as follows. Section 2 gives a brief overview of spectrum
sharing in the cognitive radio system. Section 3 describes traditional deep reinforcement learning
and its application in cognitive radios. Section 4 proposes a novel smoothing deep Q-network.
Section 5 investigates the efficiency of the proposed smoothing deep Q-network in spectrum sharing
in the cognitive radio system. Section 6 gives a conclusion.

2 Review of Spectrum Sharing in Cognitive Radios

Consider a cognitive radio network which is comprised of a primary user and a secondary user,
respectively. Both users are expected to transmit their data successfully with required quality of
service (Qos) [3]. In particular, the primary user adjusts its transmit power only on the basis of its
own power control policy. In consideration of improving the efficiency of spectrum sharing, the
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secondary user is expected to intelligently share a common spectrum resource with the primary user
without inducing harmful inference to the primary user. Assume that there is no communication
between the primary user and secondary user. This means that the secondary user has no knowledge
about the power control policy of the primary user.

Consider the transmit power of the primary and secondary user by p1 and p2, respectively. The
required quality of service (Qos) is measured from aspect of the signal-to-interference-plus-noise
ratio (SINR) for the primary user or secondary user receivers which is defined by [29]

SINRi =
|hii|2pi∑

j ̸=i

|hji|2pj + αi
, i = 1, 2 (1)

Notation hji represents the channel gain from the transmitter Txj to the receiver Rxi with noise
power αi at the receiver Rxi. Both primary and secondary users are expected to transmit their data
successfully with no less than the minimum SINR requirement for reception, i.e., SINRi ≥ ηi, i =
1, 2.

For the primary user, the power p1 is adaptively adjusted by its own power control policy. Two
common power control strategies are considered. In [20], the transmit power is updated as follows:

p1(k + 1) = D

(
η1p1(k)

SINR1(k)

)
(2)

where SINR1(k) and p1(k) denote the SINR measured at the primary receiver and transmit power
at the k-th time frame. The notation D(·) is used for discretizing continuous values into following
discrete values

P1 = {pp1, · · · , p
p
L1
}, pp1 ≤ · · · ≤ ppL1

. (3)

In addition, D(x) is defined as the nearest discrete level no less than x. Assume the transmit power
at the k-th time frame as p1(k) = ppj ∈ P1. The second strategy updates the transmit power by the
following piece-wise function.

p1(k + 1) =


ppj+1 if ppj ≤ ϖ ≤ ppj+1 and j + 1 ≤ L1

ppj−1 if ϖ ≤ ppj−1 and j − 1 ≥ 1
ppj otherwise

(4)

with ϖ = η1p1(k)/SINR1(k).

The measurements which is related with the primary user and secondary user like the received signal
strength (RSS) are collected from N sensors in a wireless network. Denote the path loss between
the primary transmitter, secondary transmitter and sensor n by g1n and g2n, formulated as

gmn =

(
ζ

4πdmn

)
,m = 1, 2 (5)

with the signal wavelength ζ and d1n(d2n) representing the distance between the primary (sec-
ondary) transmitter and node n. Consider the following model for simulating RSS measurements.

P r
n(k) = p1(k)g1n + p2(k)g2n + wn(k), n = 1, · · · , N (6)

where p1(k) and p2(k) denote the transmit power of the primary and secondary user, respectively.
Notation wn(k) represents a zero mean Gaussian noise with variance δ2n explaining for the random
variation induced by shadowing effect and estimation errors. The secondary user takes the transmit
power from the following finite set

P2 = {ps1, · · · , psL2
}, ps1 ≤ · · · ≤ psL2

. (7)

An intelligent method is expected to let the secondary user adjust its own transmit power on the basis
of available RSS information {P r

n(k)}Nn=1 so that both primary and secondary users meet their Qos
requirements for power transmission.
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3 Review of Deep Reinforcement Learning and Its Application in Cognitive
Radios

Reinforcement learning is in fact described as a Markov decision process (MDP) (S,A,P,R, γ)

which consists of the agent’s state s ∈ S , action a ∈ A, P describing the transition density p(s
′ |s, a)

taking the action a from the current s to the next state s
′
, R describing the instantaneous reward

r(s, a) and the discount factor γ. Since the mathematical model described by P is not always
tractable in practice, a quadruple (s, a, r, s

′
) in general characterizes one interaction between the

agent and environment. More concretely, one policy π provides a guideline for allowing the agent to
choose an action given a state s. The agent then returns the reward r as feedback from environment
and updates the state from s to s

′
.

There is no doubt that the key of reinforcement learning is about the design of the optimal policy
mapping the state s to the expected action a. The expected long term reward given current state
and action also called Q-value is expected to be maximized under the framework of value-based
reinforcement learning. Consider the Q-value given state s, action a and implicit policy π starting
from the discrete time k [30].

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt+k+1|sk = s, ak = a

]
(8)

with the expectation operator E(·). Notation rt+k+1 represents the instantaneous reward at the
discrete time t+ k+1. The optimal Q-value is defined by Q∗(s, a) = max

π
Qπ(s, a) and fulfills the

following Bellman equation [31]

Q∗(s, a) = E

[
rk+1 + γ max

a′
Q∗(sk+1, a

′
)|sk = s, ak = a

]
. (9)

Commonly used Q-learning updates Q-values in the form of the Q-table as follows:

Q(s, a) = Q(s, a) + α

(
r + γ max

a′
Q(s

′
, a

′
)−Q(s, a)

)
. (10)

However, it is not feasible for using a look-up table to list the expected Q-value for a pair of state and
action with large number of states and actions. The loop-up table can be replaced by a deep neural
network (DNN) parameterized by θ, i.e., Q(s, a; θ), which is called deep Q-network (DQN) in the
framework of deep reinforcement learning. In deep Q-network, an experience pool is constructed
for storing a quadruples (S,A,R,S ′) including current state s ∈ S, taking the action a ∈ A from
the current s ∈ S to the next state s

′ ∈ S ′ and the instantaneous reward r(s, a) ∈ R. The deep
Q-network then aims for finding the following nonlinear function once a batch size of samples is
randomly chosen from the experience pool.

fθ(s, a) = Q(s, a; θ) (11)

which maps the state into Q-values corresponding to multiple actions. In particular, the DQN opti-
mizes the parameter θ in (11) by minimizing the difference between the output of the deep neural
network and target, i.e., [20]

Lk(θ) =
1

|Ωk|
∑
i∈Ωk

(Qta(i)−Q(s(i), a(i); θ))
2 (12)

where Ωk and |Ωk| denote the index set of the randomly chosen minibatch at the k-th iteration and
its corresponding cardinality. In addition, the target Q-value Qta(i) in correspond to s(i) and a(i)
in (12) is constructed by

Qta(i) = r(i) + γ max
a′

Q(s(i+ 1), a′; θ), ∀i ∈ Ωk. (13)

In (6), the RSS information {P r
n(k)}Nn=1 is collected from N sensors and has a role of the state s(k),

i.e.,

s(k) = [P r
1 (k), P

r
2 (k), · · · , P r

N (k)] . (14)
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As shown in (13), the deep Q-network aims to utilize the deep neural network for finding a well-
learnt nonlinear function which maps the state s(k) to Q-values corresponding to multiple agent
actions. The action a(k) = p2(k + 1) corresponding to the maximum Q-value is then taken for
reaching the next state s(k + 1). The agent receives corresponding reward r(k) as the feedback of
taking the action a(k) = p2(k + 1) where the reward r(k) in the application of cognitive radios is
set as

r(k) =

{
c, SINR1(k + 1) ≥ η1 and SINR2(k + 1) ≥ η2
0, otherwise (15)

with the positive number c not too small and set as c = 10 in our work.

4 Smoothing Deep Q-Network

In deep Q-network, the target Q-value and estimated Q-value are all calculated by the deep neu-
ral network directly. The deep neural network may be not only sensitive to noises but also greatly
affected by unsatisfactory trained network parameters, which yields undesirable Q-values. In con-
sideration of adaptive filters beneficial for dealing with noises, it is natural to combine adaptive
filters with the traditional deep neural network for producing smoothing Q-values. Since kernel
adaptive filters exhibit superior filtering performance in comparison with adaptive filters, the kernel
least mean square (KLMS) as one commonly used kernel adaptive filter is considered in our work
due to its simplicity and desirable filtering precision.

There exist some issues to be addressed due to the incorporation of the KLMS. Although the KLMS
exhibits superior filtering accuracy, the KLMS inherits the drawback of the kernel approach, i.e.,
linearly growing scale of the weight parameter. Different strategies can be adopted for alleviating or
solving this issue like quantized kernel adaptive filters [32] or fixed budget quantized kernel adaptive
filters [33]. In consideration of simplicity, the KLMS in this section adopts the way of discarding
and re-training the parameter after samples are randomly chosen from the experience pool.

In addition, it is also necessary to notice that the KLMS is a commonly used supervised machine
learning. This means that difference between target or label and its corresponding estimator is in
general considered for updating the weight parameter of the KLMS. Therefore, it seems reasonable
that the KLMS not only yields estimator but also constructs its own desirable target Q-value like
those in deep Q-network. However, this may be not efficient. This is mainly because over-smoothing
issue may occur if the KLMS yields estimator and target Q-value simultaneously. One way to
alleviate this issue is about replacing the KLMS-based estimator or target value by the one yielded
by the deep neural network. In our work, the former is considered which means only network-
generated target Q-value is smoothed since the factor λ in (10) is provided for scaling modified
target Q-value. In consideration of alleviating computational burden, the KLMS adopts a single
output for learning following nonlinear function:

fθklms
(s′) : s′ → max

a′
Q(s′, a′; θ) (16)

where max
a′

Q(s′, a′; θ) represents the maximum Q-value produced by the deep neural network as

shown in (13). As a result, the target Q-value in (13) is reformulated as

Qta = ρ

(
r + γ max

a′
Q(s′, a′; θ)

)
+ (1− ρ)

(r + γQo(s
′; θklms)) (17)

where Qo(s
′; θklms) represents the smoothing maximum Q-value produced by the KLMS.

As for aforementioned strategy, the network information is incorporated into the KLMS in the form
of replacing the KLMS-based estimator by the network-generated estimated output and only the
network-based target Q-value is smoothed. Inspired by this, a weighting approach by using past
network-generated maximum Q-values is further considered for improving smoothing efficiency.
As shown in (12), one experience pool is constructed by the deep neural network for storing a
quadruple (S,R,A,S ′

) including the current state s ∈ S, received reward r ∈ R, adopted action
a ∈ A and next state s′ ∈ S ′

. Apart from this experience pool, the sample with index i,∀i ∈ Ωk is
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equipped with a sub-pool Qm(i) which stores its past maximum Q-values produced by the deep neu-
ral network. For example, a batch size of samples with the corresponding index set Ωk is sampled
from the experience pool for network training. The deep neural network therefore generates |Ωk|
maximum Q-values which are stored at corresponding |Ωk| sub-pools, i.e., Qm(i), i ∈ Ωk, respec-
tively. These past maximum Q-values stored at corresponding sub-pools have a role of alleviating or
avoiding the over-smoothing issue of the KLMS since these Q-values are all produced by the deep
neural network. As a result, the smoothing Q-value for the sample with index i,∀i ∈ Ωk, Qw(i) is
calculated as follows:

Qw(i) =

|Qw(i)|−1∑
j=0

bjQm,|Qm(i)|−j(i)/

|Qm(i)|−1∑
j=0

bj (18)

Notation Qm(i) and |Qm(i)| represent the sub-pool with the corresponding sample index i,∀i ∈ Ωk

and its cardinality. Notation Qm,|Qm
i |−j(i) denote the |Qm(i)| − j-th element within the sub-pool

with the corresponding sample index i. The parameter b ∈ (0, 1) is considered for scaling old Q-
values at sub-pools. In consideration of not adding memory burden, it is necessary to discard old
data for keeping the length of each sub-pool at L when the corresponding length exceeds L.

The Q-target corresponding to the sample with index i,∀i ∈ Ωk is therefore re-formulated as

Qta(i) = ϑe(i)

(
r + γ max

a′
Q(s(i+ 1), a′; θ)

)
+ ϑs(i)(r+

γQw(i)) + (1− ϑe(i)− ϑs(i)) (r + γQo(s(i+ 1); θklms)) (19)

with balanced parameters ϑe(i) ∈ (0, 1) and ϑs(i) ≤ 1 − ϑe(i). As result, the KLMS in (19) is
considered for smoothing the maximum Q-value yielded by the deep neural network. In addition,
the weighting approach in (19) is combined with the KLMS for alleviating the issue of the over-
smoothing issue. Apart from the weighting approach, additive noise is also beneficial for alleviating
the over-smoothing by injecting uncertainty. In the following (20), additive noise is considered in
spite of its limited efficiency in comparison with the weighting approach.

Qta(i) = ϑe(i)

(
r + γ max

a′
Q(s(i+ 1), a′; θ)

)
+ ϑs(i)(r+

γQw(i)) + (1− ϑe(i)− ϑs(i)) (r + γQo(s(i+ 1); θklms))

+v(i) (20)

where v ∼ N(µ, ν) represents the Gaussian noise with mean µ and variance ν. Then, the network
parameter θ is optimized by minimizing the loss function (12) by substituting Qta(i) with (20).

The parameters ϑe(i) and ϑs(i) have a role of balancing the deep Q-network, KLMS and weighting
terms and therefore essential for achieving satisfactory performance for nonlinear function learning.
In particular, the parameter ϑe(i) is mainly used for balancing the deep Q-network term and smooth-
ing one including the KLMS and weighting terms in (20). This motivates us to use the covariance
function ϕ for designing the parameter ϑe(i). Consider an error variable e = x−y with random vari-
ables x and y. The nonlinear stationary covariance function ϕ takes the form of a squared covariance
function, i.e., [34]

ℓ2β(e) = exp

[
−
(
e

β

)2
]

(21)

where β is the kernel size. As the squared covariance function in (21) is sensitive for the squared
kernel width β2 and squared error e2, an exponential covariance function with kernel width β can
be considered, i.e., [34]

ℓiso,β(e) = exp
(
−|e|

β

)
(22)

which represents an isotropic covariance function with only one kernel width β adopted for weight-
ing the absolute value of e. In comparison with the isotropic covariance function, an anisotropic
covariance function ℓani,β(e) is much more beneficial for dealing with the varying magnitude of the
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absolute value of e, where the kernel width β is controlled by a scale factor τiso and a secondary
exponential covariance function, i.e.,

ℓani,β(e) = exp

(
− |e|
τisoℓiso,β(e)

)
. (23)

The parameters ϑe in (20) is therefore designed as

ϑe(i) = exp

(
−

|eϑe(i)|
τisoℓiso,β(eϑe(i))

)
. (24)

The error variable eϑe(i) is defined by

eϑe(i) =max
a′

Q(s(i+ 1), a′; θ)− (zQo(s(i+ 1); θklms)

+ (1− z)Qw(i)) (25)
with the balanced factor z ∈ [0, 1].

However, the design of the parameter ϑe in (24) may be not always preferable for nonlinear function
learning. Since the KLMS and weighting approach all focus on smoothing the outputs of the deep
neural network, the outputs of the KLMS and weighting approach may be far away from that of the
deep neural network, leading to ϑe → 0. This means that the deep Q-network term is neglected
and smoothing term is highlighted as shown in (20). This is however not wise. It is uncertain that
the KLMS and weighting approach perform better than the deep Q-network even if the smoothing
output is far away from the network output. In fact, the smoothing term in (20) has no significant
contribution on nonlinear function learning when the loss function changes slightly. The deep Q-
network term therefore should be highlighted for alleviating over-smoothing. This motivates us
to consider an switch scenario. In this scenario, the smoothing method should be dominant for
smoothing Q-values when the loss function behaves great change. Otherwise, traditional deep Q-
network is highlighted for prohibiting the algorithm to be trapped in over-smoothing. Consider the
following ratio for explaining the change of the loss function.

ℓ =
|Lk(θ)− Lk−1(θ)|

Lk−1(θ)
(26)

where Lk−1(θ) and Lk(θ) represent the loss function in (12) at the discrete time k − 1 and k,
respectively. When the loss function changes greatly, i.e., ℓ larger than the threshold parameter υ,
the parameters ϑe in (20) is designed as

ϑe(i) = exp

(
−

|eϑe(i)|
τβgℓiso,βg (eϑe(i))

)
with ℓ > υ (27)

where ℓiso,βg
(eϑe(i)) denotes the isotropic squared covariance function with kernel width βg and s-

caling factor τβg . Otherwise, the following parameter ϑe in (20) is considered when the loss function
changes slightly, i.e., ℓ not larger than the threshold factor υ.

ϑe(i) = 1− exp

(
−

|eϑe(i)|
τβsℓiso,βs(eϑe(i))

)
with ℓ ≤ υ (28)

where ℓiso,βs(eϑe(i)) represents the isotropic squared covariance function with kernel width βs and
scaling factor τβs .

In comparison with the parameter ϑe, the parameter ϑs can be calculated in a much simpler manner.
Since the parameter ϑs mainly focuses on balancing the KLMS and weighting approach which all
focus on smoothing, they can be designed on the basis of deviating from the average smoothing
output, i.e.,

ϑs(i) = exp

(
−

|eϑs(i)|
τβl

ℓiso,βl
(eϑs(i))

)
(29)

with the scaling factor τβl
. The error eϑs(i) is defined by

eϑs(i) = (zQw(i) + (1− z)Qo(s(i+ 1); θklms))−Qw(i) (30)
where the balanced factor z is as same as that in (25). Since the parameter ϑs is not larger than
1− ϑe as shown in (19), we have

ϑs(i) = min

{
1− ϑe(i), exp

(
−

|eϑs(i)|
τℓiso,βl

(eϑs(i))

)}
(31)

where the parameter ϑe is set according to (27) and (28).
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Algorithm 1 Smoothing Deep Q-network in Spectrum Sharing in Cognitive Radios

Initialize replay memory D with buffer capacity O; network Q(s; a; θ) with random weights
θ = θ0.
Initialize the threshold parameter υ for determining whether (27) or (28) is considered.
Initialize p1(1) and p2(1), and generate s(1).
for k = 1, N do

◃ Update p1(k + 1) by the primary user’s power control strategy (2) or (4).
◃ Select an action a(k) with the ϵ-greedy strategy.
◃ Obtain s(k + 1) by the random observation model (6) and receive reward r(k).
◃ Store transition d(k) = {s(k); a(k); r(k); s(k + 1))} in D.
if k ≥ O then
◃ Sample a minibatch of transitions randomly {d(i)|i ∈ Ωk} from D.
◃ Perform deep Q-network for calculating max

a′
Q(s′(i+ 1), a′; θ) in (13), ∀i ∈ Ωk.

◃ Store the maximum Q-value max
a′

Q(s′(i+1), a′; θ) at the sub-pool with the sample index

i, i.e., Qm(i) = {Qm(i),max
a′

Q(s′(i+ 1), a′; θ)},∀i ∈ Ωk.

◃ Perform the KLMS like (16) for computing Q-value Qo(s
′; θklms) shown in (17) with

the desired target max
a′

Q(s′(i+ 1), a′; θ) provided by traditional deep Q-network.

◃ Perform the weighting approach for the sample with index i, ∀i ∈ Ωk, and calculate
Qw(i) in (18).

◃ Calculate the ratio ℓ in (26).
if the ratio ℓ is larger than the threshold υ then

Calculate the balanced parameter θ by (27).
else

Calculate the balanced parameter θ by (28).
end if

◃ Calculate Q-target by (20).
◃ Update θ by minimizing the loss function (12) by substituting Qta(i) with (20).
◃ Set θ0 = argminθL(θ).

end if
if s(k) is a goal state then

Initialize p1(k + 1) and p2(k + 1), and obtain s(k + 1).
end if

end for

5 Simulation Result

In this section, we compare the performance of the proposed smoothing deep Q-network (SDQN)
with that of traditional deep Q-network (DQN) in spectrum sharing in cognitive radios. The per-
formance of the proposed method is evaluated via the success rate (SR) and corresponding ratio of
success rate (RSR) between the DQN and SDQN. In particular, the success rate is calculated as the
ratio of the number of successful experiments to the total number of runs. A successful experiment
is considered as reaching a goal state within 20 iterations. The corresponding ratio of success rate
(RSR) between the DQN and SDQN is defined by

RSR =
SRSDQN − SRDQN

SRDQN
(32)

where SRSDQN and SRDQN represent the success rates of the DQN and SDQN, respectively. In
all experiments, we examine the success rate each 100 iteration for computational efficiency, i.e.,
kL = 100k. Results are averaged over 50 independent runs, in which a random initial state is
selected for each run.

Consider pre-designed sets P1 = P2 = {0.05, 0.1, 0.15, · · · , 0.35, 0.4} which provide transmit
power for both primary and secondary users to choose. The channel gains from the primary us-
er/secondary user transmitter to the primary user/secondary user receiver are set as hij = 1, ∀i, j.
The noise power at the receiver j, j = 1, 2 is set to α1 = α2 = 0.01. For guaranteeing the successful
reception for the primary user and secondary user, the minimum SINR requirements for the primary
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user and the secondary are set as η1 = 1.2 and η2 = 0.7, respectively. In addition, N sensors are
considered for providing the secondary user with the RSS information for learning a power con-
trol policy. The distance dij between the transmitter Txi and the sensor node j is set as uniformly
distributed in the interval (100, 300).

In all experiments, the deep neural network is configured as three hidden layers with the number
of neurons 256, 256 and 512, respectively. Rectified linear units (ReLUs) are considered as the
activation function for the first and the second hidden layers. The tanh function is used as the
activation function for the last hidden layer. In our work, the total number of iterations is set to
K = 104 and the experience pool contains |D| = 320 most recent transitions. The Adam algorithm
is adopted for updating the weight θ with the minibatch size |Ωk| in (12) set as 300 once the scale of
the experience pool is larger than 300. The length of each sub-pool L and scaling factor b in (18) in
the calculation of Qw(i) are set as L = 15 and b = 0.95, respectively. The probability of exploring
a new action at the discrete time k is set as ϵk = 0.8 (1− k/K) for the ϵ-greedy strategy.
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Figure 1: Success rate of DQN and SDQN with first policy for primary user updating its transmit
power
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Figure 2: Ratio of success rate between DQN and SDQN with first policy for primary user updating
its transmit power

Figs. 1–2 present the performance of the SDQN and corresponding RSR between the DQN and
SDQN for learning a power control strategy when the primary user employs the first policy control
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to update its transmit power in (6). In Figs. 1–2, the number of sensors N is set as N = 10 and
the standard deviation of noise δn in (6) is set as δn = (pp1g1n + ps1g2n) /10. The anisotropic
covariance functions in (27) and (28) are configured by kernel parameters βg = βs = 104 and
scaling factors τβg = 60 and τβs = 0.05 for achieving a desirable balance between deep Q network
and smoothing terms including the KLMS and the weighting approach. The threshold parameter υ
in (27) and (28) used for determining how to calculate ϑe(i) is set as υ = 0.2. The kernel parameter
βl and scaling factor τβl

in (29) are set as βl = 104 and τβl
= 1 for balancing the KLMS and

weighting approach. In addition, the balanced parameter z in (25) and (30) is all set as z = 0.1. The
noise v in (20) introduced for alleviating over-smoothing, is set as a Gaussian distributed noise with
mean value µ = 0 and variance ν = 0.3. In Figs. 1–2, the proposed SDQN and traditional DQN
all have the ability of reaching the highest success rate. However, the proposed SDQN achieves the
highest success rate in a much faster rate than the DQN. In addition, the SDQN still has a higher
success rate than the DQN before reaching the highest success rate like from kL = 1 to kL = 10.
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Figure 3: Success rate of DQN and SDQN with second policy for primary user updating its transmit
power

1 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

 k
 L

R
SR

Figure 4: Ratio of success rate between DQN and SDQN with second policy for primary user
updating its transmit power

In Figs. 3–4, the second policy control is considered for the primary user updating its transmit power
like in (6). The settings of parameters are as same as those in Figs. 1–2. Figs. 3–4 show that the
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proposed SDQN is much beneficial for the secondary user to learn an efficient power control policy
when the primary user employs the second control policy for power transmission. Especially, the
proposed SDQN has superior performance in comparison with the traditional DQN before reaching
the highest success rate.

6 Conclusion

The spectrum sharing in cognitive radios is about the secondary user sharing common spectrum
with the primary user without harmful inference to the primary user. The reinforcement learning has
been an intelligent power applied in cognitive radios for spectrum sharing. The traditional deep Q-
network in the framework of deep reinforcement learning may yield undesirable network outputs due
to the presence of noises and degraded network weights. A novel deep Q-network called smoothing
deep Q-network is therefore presented in this paper for improving the efficiency of the traditional
deep Q-network. In the proposed smoothing deep Q-network, the kernel-based nonlinear filter is
considered for smoothing the outputs of the deep neural network, beneficial for the agent taking
optimal action in the process of interacting with environments. In addition, a weighting approach is
also considered which applies past maximal Q-values to further smooth network outputs and also
beneficial for alleviating the over-smoothing issue of the kernel-based adaptive filter. Simulation
results have shown the efficiency of the proposed smoothing deep Q-network in the application of
spectrum sharing in cognitive radios.
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