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ABSTRACT

Segmentation in pathology image requires handling out-of-domain tissue mor-
phologies and new pathologies beyond training distributions, where traditional
closed-set segmentation approaches fail to generalize. Reasoning segmentation
enables zero-shot generalization via prompting with text queries. However, existing
reasoning segmentation models face three barriers when applied to pathology: (1)
the vision encoder lack pathology-specific knowledge and robustness to staining
variations, (2) the large language model (LLM) backbone for reasoning fails to
identify whether it has gathered sufficient semantic context to trigger the segmenta-
tion output, and (3) no reasoning segmentation benchmarks and datasets exist for
pathology analysis. Consequently, we introduce PathChat-SegR1, a reasoning seg-
mentation model built upon pathology-specific vision encoders trained with a novel
stain-invariant self-distillation for robust pathology image representations. More-
over, we propose Segmentation-Optimized GRPO (SO-GRPO), a reinforcement
learning method specifically for reasoning segmentation that learns to determine
optimal segmentation timing based on accumulated reasoning context. Finally,
we construct a pathology-specific reasoning segmentation benchmark of 118,667
triplets of pathology image, ground-truth mask, query, and reasoning chain includ-
ing both public and private pathology images. Zero-shot evaluation on pathology
images with out-of-domain morphologies/pathologies shows 61% improvement
over state-of-the-art segmentation models.

1 INTRODUCTION

Segmentation on pathology images enables quantitative tissue analysis to support clinical diagno-
sis (Zhu et al.,2025bj [Wang et al., 2019; [Zhou et al., |2024b). However, clinical practice routinely
encounters rare pathologies or new morphologies absent from training sets (Schifer et al.,|2024; [Zhou
et al., [2024a)), where closed-set segmentation methods fail to generalize. When pathologists examine
uncommon tumor pathologies/morphologies, they typically apply domain knowledge and clinical
terminology to identify malignant regions, which is a reasoning process that existing closed-set
segmentation models cannot also replicate. Although SAM (Kirillov et al., [2023} [He et al., [2025))
and variants offer open-set segmentation capabilities through prompting (e.g., bounding boxes or
point coordinates), they require intensive-manual clicking for every target instance. Moreover, they
cannot interpret semantic or clinical queries expressed in text. Finally, beyond generalization to new
pathologies/morphologies, clinical pathology workflows also require explainable segmentation mod-
els, which can articulate diagnostic reasoning rather than making predictions solely (van Veldhuizen
et al.l 2025 [Wu et al., 2023)).

Reasoning segmentation offers a promising pathway for open-set segmentation in pathology im-
ages. Specifically, reasoning segmentation takes queries encoded in natural language to guide the
segmentation on unseen objects via semantic understanding and reasoning (Lai et al.| [2024). More-
over, reasoning segmentation models may generate explicit reasoning chains, such that pathologists
can validate against clinical knowledge (Moor et al. 2023} |Lin et al., [2025). Formally, Table E]
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Table 1: Comparison of segmentation methods for pathology. Abbreviations: “Unseen Gen.”:
Generalization to unseen morphologies/objects; “Path. Spec.”: Pathology-specific models; “Reason.”:
Capability for general visual reasoning and language understanding; “Stain Rob.” for stain-variation-
invariant representations; “RL-Seg” for segmentation-specific reinforcement learning.

Method Unseen Gen. Path. Spec. Reason. Stain Rob. RL-Seg Interaction
nnU-Net (Isensee et al.|[2021) X X X X X X
MedSAM (Ma et al.|[[2024) v X X X X Point/Box
SAM-Path (Zhang et al.|[2023) v v X X X Point/Box
SegAnyPath (Wang et al.[|2024c) v 4 X 4 X Point/Box
BiomedParse (Zhao et al.|[2024) v X X X X Text
Seg-Zero (Liu et al.[|2025b) v X v X X Text
LISA (Lai et al.[[2024) v X v X X Text
MMR (Jang et al.[[2025) v X v X X Text
PathChat-SegR1 (Ours) v v v v v Text

compares reasoning segmentation methods with existing closed-set segmentation methods for pathol-
ogy analysis. However, existing reasoning segmentation models rely on general-domain vision
encoder that lack specialized understanding of pathological features, as well as the robustness to
stain variations (Wang et al., [2024b; [Ke et al., [2025). Consequently, these models exhibit suboptimal
generalization ability when applied to new pathologies/morphologies. Moreover,LISA’s paradigm of
inserting <SEG> tokens at predetermined positions prevents autonomous determination of optimal
segmentation timing. Additionally, although reinforcement learning methods such as GRPO (Shao
et al., [2024) can train reasoning segmentation models to generate reasoning chains and segmentation
accuracy concurrently (Liu et al [2025b)), they fail to identify when the reasoning segmentation
model has accumulated sufficient semantic context to trigger segmentation output. This also results in
suboptimal performance in pathology segmentation, which requires more complex reasoning. Finally,
there is no existing reasoning segmentation dataset or benchmarks for pathology.

To address these limitations, we introduce PathChat-SegR1, a pathology-specific reasoning segmenta-
tion model. Specifically, PathChat-SegR1 builds upon the pathology-specific vision encoder with
novel reinforcement learning designed for segmentation. We reformulate <SEG> token emission
from fixed insertion to autonomous generation. To further improve performance, we also train the
visual encoder in PathChat-SegR1 with stain-invariant self-distillation to handle stain variations.

In brief, the major contributions of this paper are three-fold. First, we propose PathChat-SegR1, a
reasoning segmentation model for pathology with a pathology-specific vision encoder fine-tuned
with a novel stain-invariant self-distillation. Second, we propose Segmentation-Optimized GRPO
(SO-GRPO), which extends standard GRPO specifically for reasoning segmentation by identifying
the optimal <SEG> generation timing during LLM reasoning. Specifically, we introduce a differ-
entiable segmentation-performance reward, and sparsity-aware reward for controlling redundant
generation, together with an adaptive scheduling for ensuring training stability. Finally, we construct
a large-scale PathChat-SegR1 benchmark comprising 118,667 triplets of pathology image, ground-
truth mask, query, and reasoning chain, spanning across both public and private pathology images.
Correspondingly, we propose a novel semi-automated pipeline to annotate the reasoning chain.

2 RELATED WORKS

Pathological Image Segmentation Segmentation on pathology images helps quantify tissue mor-
phology to support clinical diagnosis and treatment planning. Traditional closed-set segmentation
approaches leverage general medical segmentation models (e.g., nnU-Net, MedSAM, BiomedParse)
trained on with pre-defined categories of pathology and limited morphology types. Yet, these methods
lack pathology-specific understanding and therefore fail to generalize to new tumor-pathologies
and morphologies absent from training distributions. SAM-based adaptations attempt to address
generalization via box or point prompting (Kirillov et al.,|2023;Shen et al., 2025aj |Shi et al., [2025).
For example, SAM-Path (Zhang et al.| 2023) adapts SAM (Kirillov et al.| 2023)) via trainable class
embeddings to represent different morphologies, but requires extensive data set-specific fine-tuning
for each new pathology/morphology type, similarly to SegAnyPath (Wang et al.,|2024c; Shen et al.|,
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2025d). However, prompting in SAM variants demands intensive manual efforts, rendering them
impractical for whole slide images containing hundreds of cellular structures.

In summary, existing pathology segmentation methods achieve strong performance in training
distributions under closed-set assumptions; or open-set capabilities at the cost of heavy manual
prompting efforts, but not both simultaneously (Shen et al., [2025a; |Shi et al., 2025)).

Reasoning Segmentation Reasoning segmentation generates pixel masks from text queries to avoid
time-consuming point/box prompting (Lai et al.,|2024; Shen & Zhang|, |2025} |Shen et al., [2025b).
There are three major paradigms for building a reasoning segmentation model. The first paradigm
employs multimodal LLMs (MLLMs) to generate prompts, i.e., points or bounding boxes, to guide a
separate frozen segmentation model For example, SAM4MLLM and Seg-Zero (Chen et al., [2024;
Liu et al.| 2025b)) generates coordinates from MLLM’s reasoning to prompt SAM (Kirillov et al.|
2023) for subsequent segmentation.

However, these types of methods suffer from performance limitations and remain sensitive to prompts
as the point prompting inadequately captures the complex spatial information in pathology images.
The second paradigm integrates the segmentation capability directly into LLM by connecting the
segmentation decoder to LLM with special tokens. For example, LISA (Lai et al.| 2024) introduces the
<SEG> token whose hidden representation feeds into a mask decoder to guide the mask segmentation,
while MMR (Jang et al., 2025) extends this approach to enable multi-granularity reasoning for
hierarchical tissue structures. The third paradigm reformulates segmentation as text generation (Shen
et al., [2025c¢)), with Text4Seg++ (Lan et al.,|2025) labeling image patches using textual categories
to enable a direct text-to-mask pathway. Despite these advances, existing reasoning segmentation
models rely on a general-domain vision encoder that lacks specialized understanding of pathology
features and robustness to staining variations, resulting in limited performance.

Reinforcement Learning for Segmentation Reinforcement learning formulates segmentation as
sequential decision-making to improve model performance Existing methods intervene at different
stages, including pixel-level approaches (Liu et al.l 2025a};|Araslanov et al., 2019) treat each pixel as
an agent with actor-critic policies but remain computationally costly for whole slide images, while
auxiliary localization methods (Y1 et al., 2023) train boundary-seeking controllers under PPO to
reduce annotation requirements. Recent work focuses on prompting and reasoning optimization,
where agents learn to produce informative prompts for foundation models. For example, Align-
SAM (Huang et al.,[2024) applies PPO for point-prompt selection, while Seg-Zero, MedReasoner,
and LENS (Liu et al., 2025b; Yan et al., [2025; Zhu et al., [2025a) jointly optimize chain-of-thought
reasoning and spatial prompts via GRPO. However, standard GRPO assigns rewards uniformly across
complete generation trajectories, preventing segmentation models from identifying optimal timing
for segmentation generation during the reasoning process.

3 METHODS

3.1 OVERVIEW OF PATHCHAT-SEGR 1

Fig. [T] illustrates the architecture of PathChat-SegR1. Given a pathology image and text query,
PathChat-SegR1 produces both a reasoning chain in text and a segmentation mask through its three
components. First, the vision-language model (VLM) backbone leverages the RuiPath encoder
to extract pathology-specific features that inform reasoning chain generation, which contains a
<SEG> token to initiate segmentation. Secondly, the MedSAM encoder processes the pathology
image separately to capture fine-grained spatial information needed for accurate mask generation.
Finally, an adapter then bridges the <SEG> token representation from the VLM to guide the mask
decoder in producing the final segmentation output. Training of PathChat-SegR1 goes through three
stages. During pre-training, the VLM learns pathology-specific knowledge, where the MedSAM
encoder undergoes stain-invariant self-distillation concurrently to handle staining variations. During
supervised fine-tuning, RathChat-SegR 1 learns to align vision and language embeddings for reasoning
segmentation. To save training costs, this stage applies LoRA to the VLM, adapters to the vision
encoders, and full-parameter training to the mask decoder. During SO-GRPO reinforcement learning,
RathChat-SegR1 improves its reasoning ability by learning to determine when a sufficient semantic
context has accumulated to generate the <SEG> token in the appropriate reasoning steps.
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Figure 1: PathChat-SegR1 architecture overview.

3.2 STAIN-INVARIANT VISUAL PRE-TRAINING

Pathology images exhibit staining variations from different preparation protocols and laboratory
practices, causing reasoning segmentation models trained on specific staining appearances to fail
when reasoning about tissue morphology in images with different staining styles (Shen et al., 2022
Wang et al., [2024b; [Ke et al [2025)). To address this, we apply stain-invariant self-distillation
to the pre-training of MedSAM vision encoder through masked auto-encoding combined with
LAB color space augmentation to learn features that remain consistent across stain variations.
Specifically, for each pathology image x;, we generate two virtually re-stained views (with z{* and
2% denoting its embedding) through random channel-wise linear transformations in the LAB color
space via RandStainNA (Ke et al., [2023; Shen et al.|[2022)). The MedSAM vision encoder learns to
reconstruct the masked patches from pathology images via masked autoencoding (He et al.| 2021}
while maintaining consistent feature representations across the two staining variations. Formally, the
pre-training objective Lgsr, of MedSAM vision encoder is formulated as:

N
a
Lssi. = N Z;COS(SM, si2)|l2f — 2201* 4+ Lvae Y]

where « is a balancing coefficent, s; 1 = [Ay 1, D, 1] and s; 2 = [A, 2, D, 2] represent stain template
vectors extracted from the two augmented views (Shen et al.|[2022; [Wang et al.,[2024b)), with A and D
denoting the mean and STD of the color distribution in LAB space. The cosine distance term weights
the feature discrepancy by the magnitude of the stain variation, assigning higher penalties when
the staining differences are larger. The masked auto-encoding loss Lyag enforces reconstruction of
masked regions. Here, the MedSAM vision encoder serves to extract fine-grained spatial features
needed for precise mask generation. MedSAM processes the pathology image independently from
the VLM pathway, providing complementary spatial information that the adapter later combines with
the <SEG> token representation.

Meanwhile, the VLM backbone of PathChat-SegR1 leverages Qwen2.5VL (Bai et al.}|2025) and re-
places the vision encoder with RuiPath, a foundation model pre-trained on large-scale histopathology
data using DINOvV2 (Oquab et al., 2024])). RuiPath provides pathology-specific visual understanding,
including tissue architecture, cellular morphology, and disease patterns absent from natural image
datasets. The stain-invariant self-distillation described above also applies to the RuiPath vision en-
coder during the pre-training of VLM. During VLM pre-training, we also train the LLM on pathology
image-text pairs through next-token prediction, where the LLM learns to generate textual descriptions
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Figure 2: PathChat-SegR1 benchmark statistics and examples. (a) Anatomical distribution showing
coverage, with both public and proprietary sources mapped to their corresponding anatomical origins.
(b) Magnification-level distribution. (c) Dataset composition. (d) Representative intraoperative frozen
section examples with associated reasoning chains.

conditioned on visual features from RuiPath. This stage freezes the LLM backbone while training the
RuiPath encoder and intermediate projection layer to establish vision-language alignment.

3.3 SUPERVISED FINE-TUNING

After pre-training, supervised fine-tuning teaches PathChat-SegR1 to generate reasoning chains
containing <SEG> token while establishing the alignment between language-based reasoning from
the VLM and pixel-wise mask generation from the segmentation decoder. To preserve pre-trained
knowledge from both pathology and language domains, we adopt parameter-efficient fine-tuning
strategies. For the LLM backbone, and RuiPath encoder in VLM, we apply LoRA (Hu et al.| 2021)
to the self-attention blocks. For the MedSAM encoder, we insert lightweight adapters after the
multi-head attention layer and parallel to the MLP layer in each ViT block (Chen et al., [2022),
which allow MedSAM encoder to adjust its spatial features. On the contrary, the mask decoder and
the adapter that bridges the <SEG> token to the decoder undergo full parameter training, because
these components are initialized randomly. The supervised fine-tuning objective jointly optimizes
reasoning chain generation and mask prediction, depicted as:

Lser = AcoT - LcE + Aseg * (Lpice + LBCE) 2

where the first term represents an auto-regressive cross-entropy loss for reasoning chain generation.
The second term combines the Dice loss Lpic. and the binary cross-entropy loss Lpcg for the
segmentation mask. Parameters Acor and A, balance these two terms.

3.4 REINFORCEMENT LEARNING WITH SO-GRPO

Standard GRPO assigns rewards uniformly, preventing the VLM in reasoning segmentation from
identifying when sufficient semantic context has accumulated to trigger segmentation. We propose
Segmentation-Optimized GRPO (SO-GRPO), which extends GRPO to address three challenges: (1)
determining optimal <SEG> token generation timing, (2) enabling gradient flow from segmentation
quality to reasoning representations, and (3) controlling generation sparsity.

<SEG> token assignment via GAE. To identify when the VLM has accumulated sufficient seman-
tic context for segmentation, we replace trajectory-level advantage estimation with Generalized Ad-
vantage Estimation (GAE) (Schulman et al., 2018)). Formally, it assigns credit to individual time steps
during reasoning generation, formulated as ASAE(s;, a,) = >0 (YA) 6441, where s represents the
reasoning state at time step ¢ (comprising the text query, visual features, and all previously generated
reasoning tokens), a; denotes the token generation action at that step §; = r¢ + YV (s¢11) — V(s¢) is
the temporal difference (TD) residual that measures the reward improvement between consecutive
reasoning states. The state value function V'(s;) estimates the expected cumulative reward from state
s¢ onward, quantifying how much the current reasoning context contributes to the final segmentation
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quality. The discount factor v determines how much future rewards influence current decisions,
while A controls the bias-variance trade-off in advantage estimation. By computing advantages at
each reasoning step through exponentially weighted sums of temporal difference residuals, GAE
evaluates whether generating the <SEG> token at the current step would yield better segmenta-
tion outcomes than continuing reasoning. The VLM learns to generate the <SEG> token when

AGAE(st, a; = <SEG>) is maximized, indicating that the accumulated reasoning context contains
sufficient semantic information and that further text generation would not improve segmentation

2T
quality. Moreover, GAE reduces the gradient variance by a factor of % compared to Monte

Carlo estimation, enabling more stable policy updates at the decisive generation step where the model
must decide whether to trigger segmentation or continue reasoning.

Differentiable segmentation performance reward. Standard segmentation metrics such as Dice
and IoU are discrete and non-differentiable. Therefore, using these metrics as performance reward
prevents gradient flow from to the <SEG> token representation. We introduce differentiable approx-
2>, pigite
Zi Ej"ngl gite’
where p; = 0 (Mpred,;) are softened probabilities from the predicted segmentation mask, g; are ground
truth, and € < 10~7 ensures numerical stability. The softening operation converts discrete masks
into continuous probability distributions, enabling a differentiable path R — Mpreq — hspc where
gradients flow from segmentation performance directly to the <SEG> token representation. During

optimization, the gradient g,?%;gg guides hggg to encode spatial locations and semantic properties that

maximize overlap with ground truth masks.

imations through probability softening as the performance reward, namely Ry =

Sparsity-aware reward. Reasoning segmentation model may generate <SEG> tokens excessively
or prematurely, degrading both computational efficiency and segmentation performance. We formulate
this as an information problem, introducing a sparsity-aware reward that encourages generation only
when the reasoning chain provides sufficient segmentation-relevant information:

Rsparse = Bsparse : H(St € Sspalial) — Ysparse * I[(st ¢ Sspatial)> 3)

where Sypaial denotes states containing spatial-semantic information detected via rule-based patterns
(e.g., presence of location descriptors such as “boundary” or “region”), I(-) represents the indicator
function, and Bsparse and Ysparse are balancing coefficients. This reward formulation penalizes <SEG>
generation at non-spatial states by —~spare While encouraging it at spatial states by +Bsparse. Math-
ematically, this is equivalent to maximizing mutual information I (My; a; = <SEG>|s;) between
token generation and segmentation targets.

Overall reward formulation. Finally, the overall reward function comprises segmentation quality
(Rsoft), sparsity control (Rparse), spatial grounding (Rgpaial), format correctness (Rgormar), and con-
ciseness penalty (Rjen). The spatial reward Rgpaiar verifies whether the predicted mask centroid aligns
with location keywords extracted from the text query following previous work (Liu et al.,2025b). The
format reward enforces structured reasoning with proper special token usage like <SEG> (DeepSeek+
Al et al.l 2025). The conciseness penalty discourages overly long chain-of-thought sequences via
Rien = —Aien - max (0, In(L — Lo +1)), where L denotes reasoning length and Ly is a grace threshold.
The overall reward in SO-GRPO can be formulated as

Js0.6rp0(0) = By | Y A9 (sy, 1) log mg(arst)
t
+ )\soft . Rsoft + )\sparse . Rsparse (4)
+ Aspatial : Rspatial + >\f0rmat . Rformat
+ Rien — AkL - LkL

where Lk prevents excessive policy deviation from the supervised initialization, and Asfi, Asparses
Aspatial> AMformat> AKL are the balancing coefficients.

Convergence guarantees through adaptive scheduling. To ensure stable optimization during
PathChat-SegR1 reinforcement learning, we employ learning rate schedules v, = /(1 + nk)
satisfying Robbins-Monro conditions Y, o, = oo and >, a7 < co. Combined with KL regulariza-

tion that constrains policy updates via Lyapunov function V' (0) = E,.,[KL(7*||7s)], we establish
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monotonic improvement V (041) < V(0x) — n||VV (6x)||3. This inequality guaranties that each
policy update decreases the divergence from the optimal policy, with the magnitude of the descent
controlled by the gradient norm || V'V (6},)||3, ensuring convergence to a local optimum.

3.5 PATHCHAT-SEGR1 BENCHMARK

Data Statistics. We introduce the PathChat-SegR1 benchmark comprising 118,667 triplets of
pathology image, ground-truth mask, query, and reasoning chain spanning diverse pathology types
of different morphologies, magnification levels, and clinical scenarios, as shown in Fig. [2] The
benchmark integrates pathology images from six public datasets, namely Camelyon16 (Bejnordi
et al.,|2017), Camelyon17 (Bandi et al.,|2019), CRAG (Zhang, [2022), DigestPath (Da et al.,|2022),
GlaS (Sirinukunwattana et al. 2017), WSSS4LUAD (Han et al, 2022), covering breast, lymph
node, colorectal, digestive system, and lung pathologies, accounting for 65.0% of the total dataset.
To evaluate performance under authentic diagnostic conditions, we also contribute 43,847 private
intraoperative frozen section pathology images from 493 real surgical procedures where patholo-
gists must deliver diagnoses within minutes to guide resection decisions. These frozen sections
include preparation artifacts such as ice crystal distortions and tissue folding that occur during rapid
cryosectioning, mimicking the challenging conditions pathologists encounter during intraoperative
consultations (Wang et al., 2025} [2024a). The PathChat-SegR 1 benchmark includes both intraop-
erative microscope images and postoperative whole slide images, including rare pathologies such
as chondromyxoid fibroma and chondroblastoma that are typically absent from standard training
datasets. We also include a pulmonary metastasis from a private bone tumors dataset containing
25,764 images with heterogeneous scanner protocols to evaluate cross-domain and cross-stain-style
generalization. The benchmark spans four magnification levels (5x, 10x, 20x, 40x) with 40x magni-
fication comprising the largest portion to reflect clinical practice where higher resolution is needed
for diagnostic assessment.

Data Annotation Process. For the public data, we reuse the ground-truth masks and provide
annotation for the reasoning chain and reasoning segmentation query. For the private data, we
additionally first annotate the segmentation masks. Reasoning chain annotations articulate diagnostic
logic rather than simple category labels, requiring downstream models to explain their segmentation
decisions through pathology-relevant terminology. We developed a semi-automated annotation
pipeline. Specifically, Gemini-2.5-Pro first analyzes annotated regions to generate morphological
descriptions contrasting target areas with surrounding tissue. DeepSeek-R1 (DeepSeek-Al et al.,[2025)
then transforms these descriptions into structured reasoning chains following pathology diagnostic
protocols, and three board-certified pathologists with 8-15 years of experience manually review all
generated reasoning chain to verify clinical accuracy and diagnostic soundness, where revisions are
made correspondingly. This pipeline ensures that reasoning annotations reflect authentic pathology
diagnostic workflows while maintaining scalability for large-scale dataset construction.

4 EXPERIMENTS

Table 2: Performance comparison across in-domain public benchmarks and private intraoperative
frozen sections measured by Dice coefficient. Closed-set methods are trained separately on each
dataset, while reasoning segmentation baselines and PathChat-SegR1 use unified training across all
eight benchmarks and tested in a zero-shot manner. FS-Mic: Frozen Sections (Microscope); FS-WSI:
Frozen Sections (Whole Slide Image).

Category | Methods | Cam16 Caml7 GlaS Digest CRAG WSSS FS-Mic FS-WSI
MedSAM (Ma et al.|[2024) 0.69 0.71 0.82 0.64 0.71 0.38 0.62 0.76
Closed-Set SAM-Path (Zhang et al.[[2023) 0.64 0.67 0.78 0.55 0.77 0.72 0.54 0.73
h nnU-Net (Isensee et al.[[2021) 0.74 0.79 091 0.67 0.94 0.84 0.69 0.82
BiomedParse (Zhao et al.[|2024) 0.61 0.64 0.83 0.47 0.51 0.12 0.53 0.71
LISA-7B (Lai et al.||2024) 0.48 0.45 0.52 0.46 0.60 0.47 0.39 0.42
OVSeg (Liang et al..[2023) 0.41 0.39 0.43 0.38 0.49 0.39 0.31 0.34
Reasoning Seg SAMAMLLIM (Chen et al.|[2024) 0.47 0.51 0.62 0.57 0.64 0.52 0.51 0.56
s | Seg-Zero (Liu et al.|[2025b) 0.54 0.55 0.66 0.52 0.59 0.38 0.42 0.51
MMR-7B (Jang et al.|[2025) 0.57 0.59 0.72 0.58 0.74 0.68 0.56 0.62
Ours 0.76 0.78 0.87 0.74 0.92 0.78 0.74 0.84
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Implementation Details. All experiments run on 8§ NVIDIA H800 GPUs using PyTorch 2.1 with
AdamW optimizer (learning rate 1 x 10~%) and cosine annealing schedule. The training process
uses batch size 64 with gradient accumulation over 2 steps. LoRA adapters apply rank » = 16 with
dropout probability 0.1 to the attention layers. The MedSAM encoder operates with patch size 16
and applies 75% masking ratio during stain-invariant self-distillation pretraining. SO-GRPO training
balances multiple reward components with Ayt = 0.3, Aparse = 0.2, Aspatial = Aformar = 0.1, and
KL divergence penalty Ak, = 0.01 to maintain policy stability throughout reinforcement learning.
We use an 8:1:1 split between training, validation, and testing sets on the proposed PathChat-SegR1.
Zero-shot generalization is evaluated in 39,611 unseen pathological images spanning two scenarios,
namely the Pulmonary Metastasis of Bone Tumors (PMBT) dataset with 25,764 images, and Rare
Disease (RD) with 13,847 images of atypical pathologies such as chondroblastoma-like osteosarcoma
and chondromyxoid fibroma that are absent from the training distribution. We further assess in a
one-shot manner by providing a single annotated reference during inference on the RD dataset.

PathChat-
SegR1

Figure 3: Qualitative comparison of segmentation performance on challenging pathologies in one-shot
in-context learning manner. Right panel shows training-free one-shot adaptation on chondromyxoid
fibroma, where PathChat-SegR1 analyzes given image and annotation to extract morphological
features and applies them to segment calcification in an unlabeled image with different staining
appearance.

In-Domain Performance Evaluation. Tab. 2]compares PathChat-SegR1 against closed-set and
reasoning segmentation methods across eight benchmarks spanning public datasets and clinical frozen
sections. PathChat-SegR1 achieves 0.76 Dice on Camelyon16, outperforming the strongest reasoning
baseline MMR-7B by 33% relative improvement. In gland segmentation tasks, PathChat-SegR1
reaches 0.87 Dice on GlaS and 0.92 Dice on CRAG in a zero-shot manner, approaching dataset-
specific tuned nnU-Net performance while maintaining unified training across all benchmarks. These
results demonstrate that pathology-specific visual encoding combined with reasoning capabilities
enables strong reasoning segmentation performance of PathChat-SegR1 across diverse tissue types
and pathology imaging conditions without requiring task-specific adaptation.

Table 3: Out-of-domain evaluation on unseen pathologies measured by Dice coefficient. PMBT:
Pulmonary Metastasis from Bone Tumors; RD: Rare Diseases; RDw/E: Rare Diseases with one-shot
example provided during inference.

Methods Zero-shot One-shot
PMBT RD RDw/E
LISA-7B (Lai et al.||2024) 0.30 0.24 0.37
OVSeg (Liang et al.|[2023) 0.29 0.25 0.36
SAMAMLLM (Chen et al.||2024) 0.37 0.28 0.41
Seg-Zero (Liu et al.[[2025b) 0.39 0.29 0.44
MMR-7B (Jang et al.||2025) 0.36 0.33 0.47
PathChat-SegR1 (Ours) 0.58 0.53 0.72

Out-of-Domain Evaluation on Unseen Pathologies. Tab. 3]evaluates performance in completely
unseen domains under zero-shot and one-shot conditions. On the PMBT dataset containing pulmonary
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metastases from bone tumors with heterogeneous staining protocols and scanner variations, PathChat-
SegR1 achieves 0.58 Dice under zero-shot evaluation, representing 61% relative improvement over
MMR-7B (0.36 Dice). On the RD collection comprising atypical pathologies absent from the training
data, including chondroblastoma-like osteosarcoma and chondromyxoid fibroma, PathChat-SegR1
achieves 0.53 Dice compared to MMR-7B’s 0.33 Dice. In a one-shot manner in which a single
annotated reference is provided during inference, PathChat-SegR 1 reaches 0.72 Dice in the RD dataset,
showing a 53% improvement over MMR-7B (0.47 Dice). These results indicate that PathChat-SegR1
can be applied to clinical settings where new pathologies/morphologies are encountered.

One-Shot In-Context Learning for Novel Pathologies. PathChat-SegR1 enables training-free
adaptation through in-context visual learning, where a single annotated reference image provides
morphological context for segmenting novel pathologies. Fig.[3|demonstrates this capability on a
chondromyxoid fibroma case, where the PathChat-SegR1 receives a teaching pathology image with
annotated regions, osteoclast-like giant cells, and chondroblast-like cells. When presented with an
unlabeled image exhibiting different staining style, PathChat-SegR1 can identify calcification based
on structural features rather than color matching. This one-shot prompting improves RD collection
performance from 0.53 Dice under zero-shot conditions to 0.72 Dice, surpassing MMR-7B (0.47
Dice) by 53%. The one-shot prompting capabilities can address the annotation burden inherent to
rare pathologies.

Table 4: Component ablation study on the PMBT dataset measured by Dice coefficient. Architecture
ablations remove pathology-specific encoders, training ablations remove pretraining stages and
supervision objectives, and reward ablations remove SO-GRPO reward components.

Ablation Type Component Dice Score
- Full Model 0.58
w/o Ruipath Encoder 0.42
Architecture w/o Seg-Adapter 0.52
w/o Auto-emission 0.51
w/o MedSAM Encoder Pre-training 0.51
Training w/o SFT 0.44
w/o RL 0.40
w/o Length Reward 0.56

Reward Function w/o Spatial Reward 0.53

Ablation on Model Architecture and Training Components. Tab. 4|evaluates component contri-
butions on the PMBT dataset. Removing the RuiPath encoder reduces performance by 0.16 Dice,
removing reinforcement learning by 0.18 Dice, and removing SFT by 0.14 Dice. The RuiPath en-
coder degradation validates that general-domain vision encoders lack pathology-specific knowledge
needed to recognize tissue morphologies in out-of-domain samples where morphology differs from
natural image distributions. Removing MedSAM encoder pre-training with self distillation reduces
performance to 0.51, confirming that stain-invariant self-distillation addresses stain variations. The
reinforcement learning ablation demonstrates that SFT alone cannot optimize segmentation token
timing, as SFT provides uniform supervision across all reasoning steps rather than learning when
semantic context suffices for mask generation.

Ablation on SO-GRPO Components. Tab.[5|analyzes SO-GRPO improvements over standard
GRPO on the PMBT dataset. Standard GRPO improves performance from 0.40 Dice (SFT only) to
0.53 Dice, while SO-GRPO reaches 0.58 Dice with faster convergence (18K vs 24K training steps).
Removing GAE reduces performance to 0.55, confirming that trajectory-level advantage estimation
in standard GRPO cannot identify optimal segmentation token timing, whereas GAE assigns credit to
individual reasoning steps. Removing differentiable rewards reduces performance to 0.56, as discrete
Dice metrics block gradient flow from segmentation quality to token representations.

Ablation on Reasoning Quality. Tab. [¢|evaluates reasonign chain generation quality on FS-WSI
and PMBT datasets measured by BLEU-4 and F1 scores. PathChat-SegR1 achieves 0.315 BLEU-4
and 0.612 F1 on FS-WSI, exceeding reasoning segmentation baselines LISA (0.281, 0.568) and
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Table 5: SO-GRPO component ablation on the PMBT dataset. Performance measured by Dice
coefficient, convergence measured by training steps to reach optimal performance, and training
stability measured by gradient variance during policy updates.

Configuration Dice Steps Grad. Var.
Full SO-GRPO 0.58 18K 0.031
Baseline Methods

SFT only 0.40 - -
Standard GRPO 0.53 24K 0.048
SO-GRPO Ablations

w/o GAE 055 22K 0.042
w/o Differentiable reward 056 20K 0.038
w/o Sparsity-aware reward ~ 0.57 19K 0.035
w/o Adaptive scheduling 0.57 21K 0.033

Seg-Zero (0.279, 0.571), as well as medical VLMs LLaVA-Med (0.285, 0.579) and Med-PaLM
(0.291, 0.581). The improvement over Med-PalLM, which incorporates medical text pretraining,
indicates that pathology-specific visual knowledge from RuiPath contributes to reasoning quality
beyond language model capabilities. These results validate that SO-GRPO optimization improves
both segmentation accuracy and reasoning interpretability, addressing the requirement for models to
articulate diagnostic criteria rather than produce opaque predictions.

Table 6: Reasoning chain quality evaluation on intraoperative frozen sections and rare disease datasets.
Quality measured by BLEU-4 for n-gram overlap and F1 for semantic alignment with expert-annotated
reasoning chains. FS-WSI: Frozen Sections (Whole Slide Image); PMBT: Pulmonary Metastasis
from Bone Tumors.

FS-WSI PMBT
Model
BLEU-4 F1 BLEU-4 F1

LISA (Lai et al.,|2024) 0.281 0.568 0.275 0.588
Seg-Zero (Liu et al.|[2025b) 0.279 0.571 0.266 0.575
MMR (Jang et al.,[2025) 0.272 0.562 0.278 0.581
LLaVA-Med 0.285 0.579 0.288 0.595
Med-PaLM 0.291 0.581 0.285 0.589
PathChat-SegR1 (Ours) 0.315 0.612 0.311 0.607

5 CONCLUSION

We present PathChat-SegR1, a comprehensive framework addressing the convergent challenges
of reasoning segmentation in clinical pathology. Our contributions span three dimensions. First,
we develop the PathChat-SegR1 Framework integrating pathology-specific visual encoders with
autonomous <SEG> token generation, departing from fixed injection paradigms to enable context-
aware segmentation timing. Second, we introduce SO-GRPO, extending standard GRPO through
temporal credit assignment, differentiable reward approximation, sparsity control, and convergence
guarantees, providing a principled optimization approach for special token generation tasks. Third,
we construct the PathChat-SegR1 Benchmark comprising 118,667 image-mask-reasoning triplets
including challenging intraoperative frozen sections, establishing comprehensive evaluation protocols
for the field. Our experimental results demonstrate the framework’s robustness in complex clinical
scenarios. On intraoperative frozen sections with severe artifacts, the model maintains 0.74-0.84
Dice scores. In zero-shot evaluation on rare diseases, it achieves 0.53 Dice, with one-shot adaptation
improving to 0.72 without retraining. These results suggest that integrating domain-specific knowl-
edge, reinforcement learning optimization, and structured reasoning can enhance both generalization
and interpretability in medical image segmentation. The framework’s ability to adapt to unseen
pathologies through single-example prompting offers practical value for clinical deployment where
annotated data remains scarce.
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