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Figure 1: The main view of our neural machine translation (NMT) system: (A) Document View with sentences of the document
for the current filtering settings, (B) Metrics View with sentences of the filtering result highlighted, and (C) Keyphrase View with a
set of rare words that may be mistranslated. The Document View initially contains all sentences automatically translated with the
NMT model. After filtering with the Metrics View and Keyphrase View, a smaller selection of sentences is shown. Each entry in the
Document View provides information about metrics, the correction state, and functionality for modification (on the right side next to
each sentence). The Metrics View represents each sentence as one path and shows values for different metrics (e.g., correlation,
coverage penalty, sentence length). Green paths correspond to sentences of the current filtering. One sentence is highlighted
(yellow) in both the Metrics View and the Document View.

ABSTRACT

We introduce a novel visual analytics approach for analyzing, un-
derstanding, and correcting neural machine translation. Our system
supports users in automatically translating documents using neural
machine translation and identifying and correcting possible erro-
neous translations. User corrections can then be used to fine-tune
the neural machine translation model and automatically improve the
whole document. While translation results of neural machine transla-
tion can be impressive, there are still many challenges such as over-
and under-translation, domain-specific terminology, and handling
long sentences, making it necessary for users to verify translation
results; our system aims at supporting users in this task. Our vi-
sual analytics approach combines several visualization techniques
in an interactive system. A parallel coordinates plot with multiple
metrics related to translation quality can be used to find, filter, and
select translations that might contain errors. An interactive beam
search visualization and graph visualization for attention weights
can be used for post-editing and understanding machine-generated
translations. The machine translation model is updated from user
corrections to improve the translation quality of the whole document.
We designed our approach for an LSTM-based translation model
and extended it to also include the Transformer architecture. We
show for representative examples possible mistranslations and how
to use our system to deal with them. A user study revealed that many

*tanja.munz@visus.uni-stuttgart.de
†dirk.vaeth@ims.uni-stuttgart.de
‡thangvu@ims.uni-stuttgart.de
§daniel.weiskopf@visus.uni-stuttgart.de

participants favor such a system over manual text-based translation,
especially for translating large documents.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Visual analytics; Human-
centered computing—Visualization—Visualization systems and
tools; Computing methodologies—Artificial intelligence—Natural
language processing—Machine translation

1 INTRODUCTION

Machine learning and especially deep learning are popular and
rapidly growing fields in many research areas. The results created
with machine learning models are often impressive but sometimes
still problematic. Currently, much research is performed to better
understand, explain, and interact with these models. In this context,
visualization and visual analytics methods are suitable and more
and more often used to explore different aspects of these models.
Available techniques for visual analytics in deep learning were ex-
amined by Hohman et al. [19]. While there is a large amount of
work available for explainability in computer vision, less work exists
for machine translation.

As it becomes increasingly important to communicate in different
languages, and since information should be available for a huge
range of people from different countries, many texts have to be
translated. Doing this manually takes much effort. Nowadays, online
translation systems like Google Translate [13] or DeepL [10] support
humans in translating texts. However, the translations generated that
way are often not as expected or like someone familiar with both
languages might translate them. It may also not express someone’s
translation style or use the correct terminology of a specific domain
or for some occasion. Often, more background knowledge about the
text is required to translate documents appropriately.

With the introduction of deep learning methods, the translation
quality of machine translation models has improved considerably
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Figure 2: The detailed view for a selected sentence consists of the Sentence View (A), the Attention View (B), and the Beam Search View (C).
The Sentence View allows text-based modifications of the translation. The Attention View shows the attention weights (represented by the lines
connecting source words with their translation) for the translation. The Beam Search View provides an interactive visualization that shows different
translation possibilities and allows exploration and correction of the translation. All three areas are linked.

in the last years. However, there are still difficulties that need to
be addressed. Common problems of neural machine translation
(NMT) models are, for instance, over- and under-translation [41]
when words are translated repeatedly or not at all. Handling rare
words [23], which might be available in specific documents, and
long sentences, are also issues. Domain adaption [23] is another
challenge; especially documents from specific domains such as
medicine, law, or science require high-quality translations [7]. As
many NMT models are trained on general data sets, their translation
performance is worse for domain-specific texts.

If high-quality translations for large texts are required, it is in-
sufficient to use machine translation models alone. These models
are computationally efficient and able to translate large documents
with low time effort, but they may create erroneous or inappropriate
translations. Humans are very slow compared to these models, but
they can detect and correct mistranslations when familiar with the
languages and the domain terminology. In a visual analytics system,
both of these capabilities can be combined. Such a system should
provide the translations from an NMT model and possibilities for
users to visually explore translation results to find mistranslated
sentences, correct them, and steer the machine learning model.

We have developed a visual analytics approach to reach the goals
outlined above. First, our system performs automatic translation
of a whole, possibly large, document and shows the result in the
Document View (Figure 1). Users can then explore and modify the
document on different views [34] (Figure 2) to improve translations
and use these corrections to fine-tune the NMT model. We support
different NMT architectures and use both an LSTM-based and a
Transformer architecture.

So far, visual analytics systems for deep learning were mostly
available for computer vision, some text-related areas, focusing on
smaller parts of machine translation [26, 33] or intended for domain
experts to gain insight into the models or to debug them [38, 39].
This work contributes to visualization research by introducing the
application domain of NMT using a user-oriented visual analytics ap-
proach. In our system, we employ different visualization techniques

adapted for usage with NMT. Our parallel coordinates plot (Figure 1
(B)) supports the visualization of different metrics related to text
quality. The interaction techniques in our graph-based visualization
for attention (Figure 2 (B)) and tree-based visualization for beam
search (Figure 2 (C)) are specifically designed for text exploration
and modification. They have a strong coupling to the underlying
model. Furthermore, our system has a fast feedback loop and allows
interaction in real-time. We demonstrate our system’s features in a
video and provide the source code1 [29] of our system along with
the trained models we used in our case study [30].

2 RELATED WORK

This section first discusses visualization, visual analytics, and in-
teraction approaches for language translation in general and then
visual analytics of deep learning for text. Afterward, we provide an
overview of work that combines both areas in the context of NMT.

Many visualization techniques and visual analytics systems exist
for text; see Kucher and Kerren [24] for an overview. However, there
is little work on exploring and modifying translation results. An
interactive system to explore and correct translations was introduced
by Albrecht et al. [1]. While the translation was created by machine
translation, their system did not use deep learning. Lattice structures
with uncertainty visualization were employed by Collins et al. [9] in
the context of machine translation. They created a lattice structure
from beam search where the path for the best translation result is
highlighted and can be corrected. We also use visualization for
beam search, but ours is based on a tree structure. Without the use of
visualization, Green et al. [15] follow a similar approach to ours to
let users correct machine-translated sentences providing suggestions.
They discussed that post-editing of mistranslated sentences reduces
time and creates results with better quality [16, 17].

Recently, much research was done to visualize deep learning
models to understand them better. Multiple surveys [6,12,19,27,50]
are available that provide summaries of existing visual analytics sys-

1https://github.com/MunzT/NMTVis



tems. It is noticeable that not much work exists related to text-based
domains. One of the few examples is RNN-Vis [28], a visual analyt-
ics system designed to understand and compare models for natural
language processing by considering hidden state units. Karpathy et
al. [21] explore the prediction of Long Short-Term Memory (LSTM)
models by visualizing activations on text. Heatmaps are used by Her-
mann et al. [18] in order to visualize attention for machine-reading
tasks. To explore the training process and to better understand how
the network is learning, RNNbow [4] can be used to visualize the
gradient flow during backpropagation training in Recurrent Neural
Networks (RNNs).

While the previous systems support the analysis of deep learning
models for text domains in general, approaches exist to specifically
explore and understand NMT. The first who introduced visualiza-
tions for attention were Bahdanau et al. [2]; they showed the contri-
bution of source words to translated words within a sentence, using
an attention weight matrix. Later, Rikters et al. [33] introduced mul-
tiple ways to visualize attention and implemented exploration of a
whole document. They visualize attention weights with a matrix and
a graph-based visualization connecting source words and translated
words by lines whose thickness represents the attention weight. Bar
charts give an overview for a whole document for multiple attention-
based metrics that are supposed to correlate with the translation
quality. Interactive ordering of these metrics and sentence selection
is possible. However, it is difficult for large documents to compare
the different metrics as each bar chart is horizontally too large to be
entirely shown on a display. The only connection between different
bar charts is that the bars for the currently selected sentence are high-
lighted. Our system also uses such a metrics approach, but instead
of relying on bar charts, a parallel coordinates plot was chosen for
better scalability, interaction, and filtering.

An interactive visualization approach for beam search is provided
by Lee et al. [26]. The interaction techniques supported by their
tree structure are quite limited. It is possible to expand the structure
and to change attention weights. However, it is not possible to add
unknown words, and no sub-word units are considered. Furthermore,
the exploration is limited to single sentences instead of a whole
document.

With LSTMVis, Strobelt et al. [39] introduced a system to explore
LSTM networks by showing hidden state dynamics. Among other
application areas, their approach is also suitable for NMT. While our
approach is rather intended for end-users, LSTMVis has the goal of
debugging models by researchers and machine learning developers.
With Seq2Seq-Vis, Strobelt et al. [38] present a system that uses an
attention view similar to ours, and they also provide an interactive
beam search visualization. However, their system is designed to
translate single sentences, and no model adaption is possible for
improved translation quality. Their system aims at debugging and
gaining insight into the models.

Since there are different architectures available for generating
translations [49], specific visualization approaches may be required.
Often, LSTM-based architectures are used. Recently, the Trans-
former architecture [42] has gained popularity; Vig [43, 44] visually
explores their self-attention layers and Rikters et al. [32] extended
their previous approach for debugging documents to Transformer-
based systems.

All these systems provide different, possibly interactive, visu-
alizations. However, their goal is rather to debug NMT models
instead of supporting users in translating entire documents, or they
are limited to small aspects of the model. Additionally, they are
usually designed for one specific translation model. None of these
approaches provide extended interaction techniques for beam search
or interactive approaches to iteratively improve the translation qual-
ity of a whole document. We did some preliminary work for this
project in a master’s thesis [25].

3 VISUAL ANALYTICS APPROACH

Our visual analytics approach allows the automatic translation, ex-
ploration, and correction of documents. Its components can be split
into multiple parts. First, a document is automatically translated
from one language into another one, then mistranslated sentences in
the document are identified by users, and individual sentences can
be explored and corrected. Finally, the model can be fine-tuned and
the document retranslated.

Our approach has a strong link to machine data processing and
follows the visual analytics process presented by Keim et al. [22].
We use visualizations for different aspects of NMT models, and
users can interact with the provided information.

3.1 Requirements
For the development of our system, we followed the nested model by
Munzner [31]. The main focus was on the outer parts of the model,
including identifying domain issues, feature implementation design,
and visualization and interaction implementation. Additionally, we
used a similar process as Sedlmair et al. [35], especially focusing
on the core phases. Design decisions were made in close coopera-
tion with deep learning and NMT experts, who are also co-authors
of this paper. The visual analytics system was implemented in a
formative process that included these experts. Our system went
through an iterative development that included multiple meetings
with our domain experts. Together, we identified the requirements
listed in Table 1. After implementing the basic prototype of the
system, we demonstrated it to further domain experts. At a later
stage, we performed a small user study with experts for visualiza-
tion and machine translation. For our current prototype, we added
recommended functionality from these experts.

3.2 Neural Machine Translation
The goal of machine translation is to translate a sequence of words
from a source language into a sequence of words in a target language.
Different approaches exist to achieve this goal [40, 49].

Usually, neural networks for machine translation are based on
an encoder-decoder architecture. The encoder is responsible for
transforming the source sequence into a fixed-length representa-
tion known as a context vector. Based on the context vector, the
decoder generates an output sequence where each element is then
used to generate a probability distribution over the target vocabulary.
These probabilities are then used to determine the target sequence; a
common method to achieve this uses beam search decoding [14].

Although different NMT models vary in their architecture, the
previously described encoder-decoder design should apply to a wide
range of architectures and new approaches that may be developed
in the future (R6). In this work, we explored an LSTM architecture
with attention and extended our approach to include the Transformer
architecture, thus verifying its ability to generalize.

One of the first neural network architectures for machine trans-
lation consists of two RNNs with LSTM units [5]. To handle long
sentences, the attention mechanism for NMT [2] was introduced. It
allows sequence-to-sequence models to pay attention to different
sections of the input sequence while predicting the next item of the
output sequence by providing the decoder access to the encoder’s
weighted hidden states. During decoding, the hidden states of the
encoder together with the hidden state of the decoder for the current
step are used to compute the attention scores. Finally, the context
vector for the current step is computed as a sum of the encoder hid-
den states, weighted by the attention scores. The attention weights
can be easily visualized and used to explain why a neural network
model predicted a certain output. Furthermore, the attention weights
can be seen as a soft alignment between source and target sequences.
For each translated word, the weight distribution over the source
sequence indicates which source words were most relevant for pre-
dicting that target word. The Transformer architecture was recently



Table 1: Requirements for our visual analytics system and their imple-
mentations in our approach.

R1 Automatic translation – A document is translated automatically by an
NMT model.

R2 Overview – The user can see the whole document as a list of all source
sentences and their translations (Figure 1 (A)). Additionally, an overview
of the translation quality is provided in the Metrics View that reveals
statistics about different metrics encoded as a parallel coordinates plot
(Figure 1 (B)) showing an overall quality distribution.

R3 Find, filter, and select relevant sentences – Interaction in the parallel
coordinates allows filtering according to different metrics and selecting
specific sentences. It is also possible to select one sentence and order the
other sentences of the document by similarity to verify for similar
sentences if they contain similar errors. Additionally, our Keyphrase View
(Figure 1 (C)) supports selecting sentences containing specific keywords
that might be domain-specific and rarely used in general documents.

R4 Visualize and modify sentences – For each sentence, a beam search and
attention visualization (Figure 2) can be used to interactively explore and
adapt the translation result in order to correct erroneous sentences and
explore how a translation failed. It is also possible to explore alternative
translations.

R5 Update model and translation – The model can be fine-tuned using the
user inputs from translation corrections; this is especially useful for
domain adaption. Afterward, the document is retranslated with the
updated model in order to improve the translation result (the result is
visualized similar to Figure 9).

R6 Generalizability and extensibility – While we initially designed our
visualization system for one translation model, we soon noticed that our
approach should handle data from other translation models as well.
Therefore, our approach should be easily adaptable for new models to
cope with the dynamic development of new deep learning architectures.
Our general translation and correction process is held quite agnostic to be
applied on a variety of models. Model-specific visualizations may have
limitations and need to be adapted or exchanged when using a different
translation architecture.

R7 Target group – The target group for our system should be quite broad
and include professional translators or students who need to translate
documents. However, it should also be able to be used by other people
interested in correcting and possibly better understanding the results of
automated translation.

introduced by Vaswani et al. [42] and gained much popularity. It
uses a more complex attention mechanism with multi-head atten-
tion layers; especially, self-attentions play an important role in the
translation process. We verify its applicability to our approach and
visualize only the part of the attention information that showed an
alignment between source and target sentences comparable to the
LSTM model.

3.3 Exploration of Documents
After uploading a document to our system, it is translated by an
NMT model (R1). The main view of our approach then shows
information about the whole document (R2). This includes a list of
all sentences in the Document View (Figure 1 (A)) and an overview
of the translation quality in the Metrics View (Figure 1 (B)). Using
the Metrics View and Keyphrase View (Figure 1 (C)), sentences
can be filtered to detect possible mistranslated sentences that can be
flagged by the user (R3). Once a mistranslated sentence is found, it
is also possible to filter for sentences containing similar errors (R3).

Metrics View
In the Metrics View, a parallel coordinates plot (Figure 1 (B)) is
used to detect possible mistranslated sentences by filtering sentences
according to different metrics (R3). For instance, it is possible to
find sentences that have low translation confidence.

Multiple metrics exist that are relevant to identify translations
with low quality; we use the following metrics in our approach:

• Confidence: A metric that considers attention distribution for
input and output tokens; it was suggested by Rikters et al. [33].
Here, a higher value is usually better.

• Coverage penalty: This metric by Wu et al. [48] can be used
to detect sentences where words did not get enough attention.
Here, a lower value is usually better.

• Sentence length: The sentence length (the number of words
in a source sentence) can be used to filter very short or long
sentences. For example, long sentences might be more likely
to contain errors.

• Keyphrases: This metric can be used to filter for sentences
containing domain-specific words. As these words are rare in
the training data, the initial translation of sentences containing
them is likely erroneous. The values used for this metric are the
number of occurrences of keyphrases in a sentence weighted
by the frequency of the keyphrases in the whole document.

• Sentence similarity: Optionally, for a given sentence, the
similarity to all other sentences can be determined using cosine
similarity. This helps to find sentences with similar errors to a
detected mistranslated sentence.

• Document index: The document index allows the user to sort
sentences according to their original order in the document,
which can be especially important for correcting translations
where the context of sentences is relevant. Furthermore, this
metric might also show trends like consecutive sentences with
low confidence.

In contrast to Rikters et al. [33], who use bar charts to visualize
different metrics, we chose a parallel coordinates plot [20]. Each
sentence can be mapped to one line in such a plot, and different met-
rics can be easily compared. These plots are useful for an overview
of different metrics and to detect outliers and trends. Interactions
with the metrics, such as highlighting lines or choosing filtering
ranges, are supported. It can be expected that sentences filtered for
both, low confidence and high coverage penalty, are more likely to
be poorly translated than sentences falling into only one of these
categories.

Keyphrase View
It is possible to search for sentences according to keyphrases by
selecting them in the Keyphrase View (Figure 1 (C)) (R3). This
can be visualized as shown in Figure 4. Keyphrases are domain-
specific words and were not often included in the training data used
for our model since we trained our model on general data. As the
model has not enough knowledge on how to deal with these words,
it is important to verify if the respective sentences were translated
correctly. In addition to automatically determined keyphrases, users
can manually specify further keyphrases for sentence filtering.

Document View
A list of all the source sentences in a document and a list of their
translations are shown in the Document View (Figure 1 (A)) (R2).
Each entry in this list can be marked as correct or flagged (Figure 4)
for later correction. A small histogram shows an overview of the pre-
viously mentioned metrics. If a sentence is modified, either through
user-correction or retranslation by the fine-tuned model, changes in
the sentences are highlighted (Figure 9). Both the Metrics View and
the Keyphrase View are connected via brushing and linking [45] to
allow filtering for sentences that are likely to be mistranslated and
should be examined and possibly corrected. Additionally, sentences
can be sorted into a list by similarity to a user-selected reference sen-
tence. In this list, sentences can be selected for further exploration
and correction in more detailed sentence-based views.



Figure 3: Attention visualization: (top) when hovering a source word
(here: ‘verarbeiten’) translated words influenced by the source are
highlighted and (bottom) when hovering a translated word (here: ‘pro-
cess’) source words that influence the translation are highlighted
according to attention weights.

3.4 Exploration and Correction of Sentences
After filtering and selection, a sentence can be further analyzed with
the Sentence, Attention, and Beam Search Views (Figure 2) and
subsequently corrected (R4). These views are shown simultaneously
to allow interactive exploration and modification of translations.

Note, on the sentence level, we use subword units to handle the
problem of rare words, which often occurs in domain-specific docu-
ments, and to avoid unknown words. We use the Byte Pair Encoding
(BPE) method proposed by Sennrich et al. [37] for compressing
text by recursively joining frequent pairs of characters into new sub-
words. This means, instead of using whole words to build the source
and target vocabulary, words are split into subword units consisting
of possibly multiple characters. This method reduces model size,
complexity, and training time. Additionally, the model can handle
unknown words by splitting them into their subword units. As these
subword units are known beforehand, they do not require the intro-
duction of an “unknown” token for translation. Thus, we can adapt
the NMT model to any new domain, including those with vocabulary
not seen at training time.

Sentence View

Similar to common translation systems, the Sentence View (Figure 2
(A)) shows the source sentence and the current translation. It is
possible to manually modify the translation, which in turn updates
the content in the other sentence-based views. After adding a new
word in the text area, the translation with the highest score is used
for the remainder of the sentence. This supports a quick text-based
modification of a translation without explicit use of visualizations.
Currently, changing the translation updates the whole sentence af-
ter the modified word. Therefore, we do not support deleting or
changing words while maintaining the remainder of a sentence.

Attention View

The Attention View depends on the underlying NMT model. It is
intended to visualize the relationship between words of the source
sentence and the current translation as a weighted graph (Figure 2
(B)); such a technique was also used by Strobelt et al. [38]. Both
source and translated words are represented by nodes; links between
such words show the attention weights encoded by the thickness of
the connecting lines (we use a predefined threshold to hide lines for
very low attention). These weights correlate with the importance of
source words for the translated words. Hovering over a source word
highlights connecting lines to translated words starting at this word.
In addition, the translated words are highlighted by transparency
according to the attention weights (Figure 3 top). While this shows
how a source word contributes to the translation, it is also possible
to show for translated words how source words contribute to the
translation (Figure 3 bottom). This interactive visualization sup-
ports users in understanding how translations are generated from the

source sentence words. On the one hand, such a visualization helps
gain insight into the NMT model, and, on the other hand, it helps
detect issues in generated translations. The links between source
sentence and translation can be explored to identify anomalies such
as under- or over-translation. Missing attention weights can be an in-
dication for under-translation and links to multiple translated words
for over-translation. In our case study in Section 4, examples of
these cases are presented. While this technique specifically employs
information of the attention-based LSTM model, we use it in an
adapted form for the Transformer architecture (see Section 4.4).
A visualization more tailored to Transformers, also including self-
attention and attention scores from multiple decoder layers, could
provide additional information. Further models may need different
visualizations for a generalized use of our approach, employing
model-specific information.

Beam Search View

While the Attention View can be used to identify positions with
mistranslations, the Beam Search View supports users in interac-
tively modifying and correcting translations. The Beam Search View
visualizes multiple translations created by the beam search decod-
ing as a hierarchical structure (see Figure 2 (C)). This interactive
visualization can be used for post-editing the translations.

The simplest way of predicting a target sequence is greedy decod-
ing. In each time step, the token with the highest output probability
is chosen as the next predicted token and fed to the decoder in the
following step. This is an efficient and simple way to generate an
output sequence. However, another translation may be better overall,
despite having lower probabilities for the first words. Beam search
decoding [14] is a tradeoff between exhaustive search and greedy
decoding, often used for generating the final translation. At each
time step, a predefined number (k) of hypotheses is considered. For
each hypothesis, the NMT model outputs a probability distribution
over the target vocabulary for the next token. These hypotheses are
sorted by the probability of the final token, and up to k hypotheses
remain in the beam. Hypotheses that end with the End-of-Sequence
(EOS) token are selected to build the result set. Once k hypotheses
stay in the result set, the algorithm stops, and the final hypotheses
are ranked according to a score function that depends on attention
weights and sentence length.

For visualization, we use a similar approach as Strobelt et al. [38],
and Lee et al. [26]: a tree structure reflects the inherently hierarchical
nature of the beam search decoding. This way, translation hypothe-
ses starting with the same prefixes are merged into one branch of this
hierarchical structure. The root node of each translation is associated
with a Start-of-Sequence (SOS) token and all leaf nodes with an
End-of-Sequence (EOS) token. Compared to the visualization of a
list of different suggested translations, showing a tree is more com-
pact, and it is easier to recognize where commonalities of different
translation variants lie.

Each term of the translation is visualized by a circle that repre-
sents the node and a corresponding label. The color of a circle is
mapped to the word’s output probability. This supports users in
identifying areas with a lower probability that might require further
exploration. It can be seen as uncertainty for the prediction of words.
In our visualization, we differentiate between nodes that represent
subwords and whole words. Continuous lines connect subwords
and nodes are placed closer together to form a unit. In contrast, the
connections to whole words are represented by dashed lines.

The beam search visualization can be used to navigate within
a translation and edit it (Figures 7 and 8). The interaction can be
realized with mouse or keyboard input; the latter is more efficient for
fast post-editing. The view supports standard panning-and-zooming
techniques that are especially needed to explore long sentences as
they do not fit common displays. For navigation within the tree,
arrow keys can be used to move through a sentence, or nodes can



Figure 4: Main view of the system: the Document View shows some
flagged sentences for correction. Additionally, the keyphrase filter
(top right) is active: all sentences containing the keyphrase ‘MÜ’ are
shown in the Metrics and Document Views. It is visible that ‘MÜ’ is
never correctly translated to ‘MT’.

be selected by mouse cursor. If the translation of the current node’s
child node is not satisfying, the node can be expanded to show
suggestions for correction. If the user selects a suggested word,
the beam search runs with a lexical prefix constraint, and the tree
structure gets updated. If the suggested words are not suitable, a
custom correction can be performed by typing an arbitrary word that
better fits. The number of suggested translations is initially set to
three and can be increased by adapting the beam size. Increasing this
value may create better translations and provides more alternative
translations. However, the higher the value is, the more information
has to be shown in the visualization. By hovering and selecting
elements in this view, corresponding elements of the Attention View
and Sentence View are shown for reference.

3.5 Model Fine-tuning and Retranslation

After correcting the translation of multiple sentences, the user cor-
rections can be used to fine-tune the NMT model and automatically
improve the translation of the not yet verified sentences (R5). This
approach can be applied repeatedly to improve the document’s trans-
lation quality, especially for domain-specific texts.

Documents often belong to a specific domain, such as legal, med-
ical, or scientific. Each such domain uses a specific vocabulary, and
the same word can even mean different things in different domains.
Therefore, the capability of NMT models to handle different types
of domains is very important. Domain adaptation means that NMT
models trained on general training data (out-of-domain) can adapt
to domain-specific documents (in-domain). This is useful because
there is a large amount of general training data, but domain-specific
data is rare. Since NMT models require a very large amount of train-
ing data to achieve good translation quality, the out-of-domain data
can be used to train a baseline model. The model can be fine-tuned
using in-domain data (R5), which usually contains a small number of
sentences: we use the user-corrected sentences in our system. This
mitigates the problem of training an NMT model where not much
data exists for a particular domain. In our approach, we continue
training for the in-domain data in a reduced way by freezing certain
model weights (for the LSTM-based model, both decoder and the
LSTM layers of the encoder are trained; for the Transformer, only
the decoder is trained).

Figure 5: Example of over-translation: ‘Examples’ is placed twice
as translation for the German word ‘Beispiele’. The Beam Search
View (right) shows possible alternative translations. However, only
increasing the beam size to four shows the translation we would have
expected.

4 CASE STUDY

As a typical use case, we take the German Wikipedia article for
machine translation (Maschinelle Übersetzung) [47] as a document
for translation into English. In the following, we show how to
use our system to improve the translation quality of the document.
Please see our accompanying video for a demonstration with the
Transformer model. The examples in the following were created
with both the LSTM and Transformer models. We trained our models
on a general data set: the German-to-English data set from the 2016
ACL Conference on Machine Translation (WMT’16) [3] shared
news translation task. This is a popular data set for NMT, used, for
instance, by Denkowski and Neubig [11] and Sennrich et al. [36].

4.1 Exploration of Documents
After uploading a document (R1), we have a look at the parallel coor-
dinates plot (R2) for our initial translations and the list of keyphrases
in order to detect possible mistranslations (R3). In the Keyphrase
View, we notice the domain-specific term ‘MÜ’ occurring very often.
This term is the German abbreviation for ‘machine translation’ and
should therefore be translated as ‘MT’. However, none of the transla-
tions use the correct term (Figure 4). Additionally, one could select
and verify sentences with low confidence or with a high coverage
penalty. Here, we especially notice the under-translation of some
sentences. After verifying a translation in the Document View, users
can decide if they are correct (R2). If the users do not agree with the
translation, they can set a flag (Figure 4) to modify the translation
later or switch to the sentence-based views to correct it (R4).

4.2 Exploration and Correction of Sentences
After setting flags for multiple sentences (Figure 4), or the decision
to explore or modify a sentence, a more detailed view for each
sentence can be shown to explore and improve their translations
interactively (Figure 2) (R4).

Over-translation is a common issue of NMT [23]. In the Atten-
tion View, it is possible to see what went wrong by identifying where
the attention weights connect the source and destination words.

For both models, we notice some cases for very short sentences.
Figure 5 shows for the German heading ‘Beispiele’ (en: ‘Examples’),
a translation that uses the translated word multiple times. Also, the
suggested alternatives use this term more than once. Only after
increasing the beam size to four, the correct translation is visible,
which can then be selected as the correction.

More often, only parts of a sentence are translated, and important
words are not considered in our document. Such under-translation
is shown in Figure 6. In the first example, only the beginning of
the sentence is translated, and it is visible that the remaining nodes
have almost zero attention. In the second example, the German
term ‘zweisprachigen’ (en: ‘bilingual’) is skipped in the translation.



Figure 6: Example of under-translation shown in the Attention View: (top) For the LSTM model, the end of the sentence is not translated; attention
weights are very low for this part of the sentence. (Bottom) For the Transformer architecture, the term ‘zweisprachigen’ (en: ‘bilingual’) is not
translated; attention weights are very low for this term.
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Suggested
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Figure 7: Example of a mistranslated sentence containing the
keyphrase ‘MÜ’ shown as beam search visualization: (top) suggested
translation, suggested alternatives, and custom correction; (bottom)
updated translation tree for corrected keyword with new suggestions
for continuing the sentence after the custom change.

While this part of the translation is missing, the translated sentence
is still correct and fluid; it might be difficult to detect such an error
without such attention visualizations.

An example of a wrong translation containing a keyphrase is
visualized in Figure 7. Here, it is also shown that using the beam
search visualization, it is possible to select an alternative translation
interactively starting from the position where the first error occurs.
The beam search provides possible alternative translations, but it is
possible to manually type what the user believes should be the next
term. Here, we enter the correct translation manually. The beam
search visualization automatically updates in real-time according to
the correction.

Finally, it is also possible to change sentences without mistakes.
Sometimes, sentences are correctly translated, but different words
or sentence structures are used as the current user would prefer
for the context of a sentence or to express someone’s own style
(Figure 8). Again, it is possible to explore and select alternative
words or sentences with the Beam Search View. If we wanted to start
the sentence with a different word, an alternative could be selected,
and the remaining sentence would get updated accordingly.

After correcting and accepting multiple translation corrections,
the Document View shows how a translation was changed (Figure 9).

Recommended
sentence and 
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Select
alternative
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Alternative
sentences

Figure 8: Correctly translated sentence is changed to another correct
translation. ‘SOS’ is selected to show alternative beginnings for the
sentence. After choosing an alternative the remaining sentence gets
updated by another correct translation.

4.3 Model Fine-tuning and Retranslation

After users corrected multiple sentences, they can choose to re-
train the current model for not yet accepted sentences (R5). The
model is then fine-tuned using the corrected sentences by the user.
Afterward, the system translates the uncorrected sentences to im-
prove translation quality. Since our document contains 29 times
the keyphrase ‘MÜ’ that is wrongly translated, we retrained our
model after correcting only a few (less than 5) of these terms to
‘MT’. After retranslation, the Document View shows the difference
of the translations compared to before. For both the LSTM and the
Transformer model, all or almost all occurrences of ‘MÜ’ are now
correctly translated. The user can look at the changes and accept
translations or continue with iteratively improving sentences and
fine-tuning the model.

4.4 Architecture-specific Observations

We initially designed our approach for the use with an LSTM-based
model with an attention mechanism. Since other architectures exist
to translate documents, we also adapted it and tested its usefulness



Figure 9: Document View showing corrected translations and changes
to the initial machine-generated translations.

for the current state-of-the-art Transformer architecture [42] (R6).
This architecture is also attention-based, and we analyzed how well
it fits our interactive visualization approach. The general workflow
of our system can be used in the same way as the model we initially
developed it for: the Document and Metrics Views can be used
to identify sentences for further investigation, and sentences can
be updated using the Sentence and Beam Search View. The main
difference between the Transformer model concerning our approach
is the attention mechanism that influences the Attention View and
some calculated metric values.

The Transformer architecture uses multiple layers with multiple
self-attention heads instead of just attentions between encoder and
decoder. There are approaches for the visualization of this more
complex attention mechanism [43, 44]. The attention values for
Transformers could, for example, show different linguistic character-
istics for different attention heads [8]. However, including this into
our system would make our approach more complex and not use-
ful for end-users (R7) with little knowledge about this architecture.
As a simple workaround to apply our visualization, we discard the
self-attention and only use the decoder attention. We explored the
influence of decoder attention values from different layers, averaged
across all attention heads. Similar to Rikters et al. [32], we noticed
that averaging attention from all layers is not meaningful since al-
most all source words are connected to all target words. Using one
of the first layers showed similar results. For the final layer, a better
alignment could be seen; however, the last token of the source word
received too much attention compared to other words. Instead, using
the second last layer showed a similar alignment between source
and target words as it is available for the LSTM model. Therefore,
we adopt this as a compromise for the use in our Attention View and
for calculation of metric values.

Since there are different approaches and architectures developed
for NMT, we could incorporate them as well (R6). Some might
provide better support in gaining insights into the model and offer
different visualization and interaction capabilities. For others, new
ways for visualization will have to be investigated.

5 USER STUDY

We conducted an early user study during the development of our
approach to evaluate our system’s concept. We used a prototype
with an LSTM translation model. The system had the same views
as described before but limited features. A group of visualization
and machine learning experts were invited to test our system online
for general aspects related to visualization, interaction, and useful-
ness. Our goal was to make sure that we considered aspects relevant
from both the visualization and the machine translation perspec-
tive in our system and to improve our approach. The user study
was questionnaire-based to evaluate the effectiveness of the system,
understandability of visualizations, and usability of interaction tech-
niques. A 7-point Likert scale was used. In this study, the German
Wikipedia article for autonomous driving (Autonomes Fahren) [46]
was available to all participants. This allowed the participants to

Table 2: Ratings from our user study for each evaluated view on a
7-point Likert scale; mean and standard deviation values are provided.

View Effectiveness Visualization Interaction

Metrics View 5.9 (1.1) 6.8 (0.4) 6.1 (0.7)

Keyphrase View 4.4 (1.6) 6.5 (1.2) 6.3 (1.1)

Beam Search View 5.6 (1.5) 6 (1.3) 4.5 (1.8)

Attention View 5.6 (0.8) 6.2 (1.2) 5.9 (0.9)

explore the phenomena we showed previously. The participants
claimed to have good English (mean = 5.1, std. dev. = 0.8) and very
good German (mean = 6.2, std. dev. = 1.7) knowledge. While the
visualization experts claimed to have rather low knowledge about
machine learning (mean: 2.5), the machine learning experts similarly
indicated lower knowledge for visualization (mean: 3).

First, participants were introduced to the system with a short
overview of the features. Then, they could explore the system freely
with no time restriction. Afterward, they were asked to participate
in a survey regarding the usefulness of our system and its design
choices. Additionally, there were free-text sections for further feed-
back. We recruited 11 voluntary participants from our university
(six experts on visualization and five for language processing).

The general effectiveness of translating a large document contain-
ing more than 100 sentences with our approach was rated high (mean
= 5.6, std. dev. = 1.0) compared to a small document containing up
to 20 sentences (mean = 4.5, std. dev. = 1.6). The results for effec-
tiveness, ease of understanding and intuitiveness of visualizations,
and ease of interaction are given in Table 2. The ratings for the
visualizations were high for all views. Best rated was the Metrics
View that additionally had the lowest standard deviation. As not all
our user study participants were visualization experts, we noticed
that non-experts could also manage to understand and work with
parallel coordinate plots. We conclude that our design choice for the
visualization of metrics was appropriate. The ratings for interaction
were also very high, but there was more variation. Especially the
interaction for beam search was rated comparatively low and had
the highest standard deviation; two language processing participants
ranked it very low (1 and 2) and two (one from each participant
group) very high (7). This variation might be the result of the learn-
ing curve being different for different participant groups. Since we
conducted the user study, we have also improved the interaction in
this view. For effectiveness, the Keyphrase View had the lowest
rating. We believe the reason is that participants were not able to
detect enough mistranslated sentences with this view. However, this
might be due to our document provided and may differ for other doc-
uments containing more domain-specific vocabulary as we showed
in our case study.

In addition, we asked users for general feedback on our approach.
Especially the Metrics View received positive feedback. Participants
mentioned that it is useful for quickly detecting mistranslations
through brushing and linking. For the Beam Search View, one par-
ticipant noted that the alternatives provided would speed up the
correction of translations. For one participant, the Attention View
was useful in showing the differences in the sentence structure of
different languages. Negative feedback was mostly related to in-
teraction and specific features; some participants suggested new
features. Multiple participants noted that the exploration and correc-
tion of long sentences are challenging in the Beam Search View as
the size of the viewport is limited. Furthermore, a feature to delete
individual words and functionality for freezing areas was suggested.
From the remaining feedback, we already included, for example, an
undo function for the sentence views. Also, to find sentences that
might contain similar errors, one participant recommended showing
sentences similar to a selected sentence, and we added a respective



metric. Additionally, it was mentioned that confidence scores could
be shown in the document list next to each sentence and not only
in the Metrics View. This would be helpful to quickly examine the
confidence value even if the document is sorted by a different metric
(e.g., document order); small histograms were added next to each
sentence as a quick quality overview.

6 DISCUSSION AND FUTURE WORK

To conclude, we present a visual analytics approach for exploring,
understanding, and correcting translations created by NMT. Our
approach supports users in translating large domain-specific docu-
ments with interactive visualizations in different views, and it allows
sentence correction in real-time and model adaption.

Our qualitative user study results showed that our visual analytics
system was rated positively regarding effectiveness, interpretability
of visualizations, and ease of interaction. The participants mastered
the translation process well with our selected visualizations. Espe-
cially, our choice of parallel coordinate plots for visualization of
multiple metrics and the related interaction techniques for brushing
and linking were rated positively. Our approach had a clear pref-
erence for translating large documents compared to a traditional
text-based approach. Right now, users have to use metrics to de-
cide with which sentence they will start correcting the translations.
More research has to be done for better automatic detection of mis-
translated sentences. For example, an additional machine learning
model could be trained with sentences that were already identified
as wrong translations. Additionally, a future step should include a
more in-depth user study including our target group. For example,
we could evaluate the performance of translation tasks by comparing
our interactive approach with a manual method.

We believe that our system is useful for people who have to
deal with large documents and could use the features of interactive
sentence correction and domain adaption. Comparing the use of
our approach for LSTM and the Transfomer architecture showed
almost no difference; for both, we could successfully interactively
improve the translation quality of documents and see model-specific
information. We argue that our general translation and visualization
process can also be used with further models, while in such cases,
some visualization views might need limited adaptation.
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