
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

MEMORY-ADAPTIVE DEPTH-WISE HETEROGENOUS FEDERATED LEARNING

Anonymous Authors1

ABSTRACT
Federated learning is a promising paradigm that allows multiple clients to collaboratively train a model without
sharing the local data. However, the presence of heterogeneous devices in federated learning, such as mobile
phones and IoT devices with varying memory capabilities, would limit the scale and hence the performance of the
model could be trained. The mainstream approaches to address memory limitations focus on width-slimming
techniques, where different clients train subnetworks with reduced widths locally and then the server aggregates
the subnetworks. The global model produced from these methods suffers from performance degradation due
to the negative impact of the actions taken to handle the varying subnetwork widths in the aggregation phase.
In this paper, we introduce a memory-adaptive depth-wise learning solution in FL called FEDEPTH, which
adaptively decomposes the full model into blocks according to the memory budgets of each client and trains blocks
sequentially to obtain a full inference model. Our method outperforms state-of-the-art approaches, achieving
5% and more than 10% improvements in top-1 accuracy on CIFAR-10 and CIFAR-100, respectively. We also
demonstrate the effectiveness of depth-wise fine-tuning on ViT. Our findings highlight the importance of memory-
aware techniques for federated learning with heterogeneous devices and the success of depth-wise training strategy
in improving the global model’s performance.

1 INTRODUCTION

Federated Learning (FL) is a popular distributed learning
paradigm that can address decentralized data and privacy-
preserving challenges by collaboratively training a model
among multiple local clients without centralizing their pri-
vate data (McMahan et al., 2017; Kairouz et al., 2021). FL
has gained widespread interest and has been applied in nu-
merous applications, such as healthcare (Du Terrail et al.,
2022), anomaly detection (Zhang et al., 2021a), recommen-
dation system (Lin et al., 2020b), and knowledge graph
completion (Zhang et al., 2022). However, a defining trait
of FL is the presence of heterogeneity — 1) data hetero-
geneity, where each client may hold data according to a
distinct distribution, leading to a sharp drop in accuracy
of FL (Zhao et al., 2018), and 2) heterogeneous clients,
which are equipped with a wide range of computation and
communication capabilities — challenges the underlying
assumption of conventional FL setting that local models
have to share the same architecture as the global model
(Diao et al., 2021). In the last five years, data heterogeneity
has been largely explored in many studies (Karimireddy
et al., 2019; Lin et al., 2020a; Li et al., 2020a; Seo et al.,
2020; Acar et al., 2021; Zhu et al., 2021; Li et al., 2021;
Tan et al., 2022). However, only a few works aim to address
the problem of heterogeneous clients, particularly memory
heterogeneity in FL (Diao et al., 2021; Hong et al., 2022).

One solution to heterogeneous clients is to use the smallest

model that all clients can train, but this can severely impact
FL performance as larger models tend to perform better
(Frankle & Carbin, 2019; Neyshabur et al., 2019; Bubeck
& Sellke, 2021). Another approach is to prune channels
of the global model for each client based on their memory
budgets and average the resulting local models to produce a
full-size global model (Diao et al., 2021; Hong et al., 2022;
Horvath et al., 2021). However, such approaches suffer from
the issue of under-expression of small-size models, since
the reduction in the width of local models can significantly
degrade their performance due to fewer parameters (Frankle
& Carbin, 2019). The negative impact of aggregating small-
size models in FL is also verified by our case studies in
Section 3.2.

Considering the exceptional performance of the full-size
model, we aim to provide an algorithmic solution to enable
each client to train the same full-size model and acquire
adequate global information in FL. Specifically, we propose
memory-adaptive depth-wise learning, where each client
sequentially trains blocks of a neural network based on the
local memory budget until the full-size model is updated. To
ensure the classifier layer’s supervised signal can be utilized
for training each block, we propose two learning strategies:
1) incorporating a skip connection between training blocks
and the classifier, and 2) introducing auxiliary classifiers.
Our method is suitable for memory-constrained settings as it
does not require storing the full intermediate activation and
computing full intermediate gradients. Additionally, it can

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Memory-adaptive Depth-wise Heterogenous Federated Learning

be seamlessly integrated with most FL algorithms, e.g., Fe-
dAvg (McMahan et al., 2017) and FedProx (Li et al., 2020a).
Apart from providing adaptive strategies for low-memory
local training, we investigate the potential of mutual knowl-
edge distillation (Hinton et al.; Zhang et al., 2018) to address
on-the-fly device upgrades or participation of new devices
with increased memory capacity. Lastly, we consider de-
vices with extremely limited memory budgets such that
some blocks resulting from the finest network decomposi-
tion cannot be trained. We propose a partial training strategy,
where some blocks that are close to the input sides are never
trained throughout. The main contributions of our work are
summarized as follows.

1. Through comprehensive analysis of memory con-
sumption, we develop two memory-efficient training
paradigms that empower each client to train a full-size
model for improving the global model’s performance.

2. Our framework is model- and optimizer-agnostic. The
flexibility allows for deployment in real-world cross-
device applications, accommodating clients with vary-
ing memory budgets on the fly.

3. Our proposed approach is not sensitive to client partici-
pation resulting from unstable communication because
we learn a unified model instead of different local mod-
els as in prior works.

4. Experimental results demonstrate that the performance
of the proposed methods is better than other FL base-
lines regarding top-1 accuracy in scenarios with het-
erogeneous memory constraints and diverse non-IID
data distributions. We also show the negative impact
of sub-networks using width-slimming techniques.

2 RELATED WORK

Federated Learning. FL emerges as an important
paradigm for learning jointly among clients’ decentralized
data (Konečnỳ et al., 2016; McMahan et al., 2017; Li et al.,
2020a; Kairouz et al., 2021; Wang et al., 2021a). One major
motivation for FL is to protect users’ data privacy, where
users’ raw data are never disclosed to the server and any
other participating users (Abadi et al., 2016; Bonawitz et al.,
2017; Sun et al., 2019). Partly opened by the federated
averaging (FedAvg) (McMahan et al., 2017), a line of work
tackles FL as a distributed optimization problem where the
global objective is defined by a weighted combination of
clients’ local objectives (Mohri et al., 2019; Li et al., 2020a;
Reddi et al., 2020; Wang et al., 2020b). The federated
learning paradigm of FedAvg has been extended and mod-
ified to support different global model aggregation meth-
ods and different local optimization objectives and optimiz-
ers (Yurochkin et al., 2019; Reddi et al., 2020; Wang et al.,
2021a;b; 2020a). Theoretical analysis has been conducted,

which demonstrated that federated optimization enjoys con-
vergence guarantees under certain assumptions (Li et al.,
2020b; Wang et al., 2021a).

System-efficiency of Federated Learning. In this realm,
we concentrate on cross-device FL, where participating
users are typically edge devices, e.g., mobile phones, embed-
ded systems, and etc. (Kairouz et al., 2021). Such edge de-
vices are typically resource-constrained, e.g., the computing,
communication, and memory capacities are limited. Several
research efforts have been conducted to enhance the com-
putation and communication efficiency of cross-device FL
via model updates sparsification, quantization, and low-rank
factorization (Konečnỳ et al., 2016; Wang et al., 2018; Yao
et al., 2021; Hyeon-Woo et al., 2021). Training deep neural
networks requires high memory consumption (Sohoni et al.,
2019). To reduce it, prior works focus on deploying meth-
ods, like gradient accumulation, activation materialization,
and partial model training (Huang et al., 2019; Sohoni et al.,
2019; Chen et al., 2016). However, these approaches do
not fundamentally address the memory limitation and typi-
cally suffer from overfitting to the local data and not fully
capturing the global patterns in the data.

Device Heterogeneity in Federated Learning. Especially
for cross-device FL, it is a natural setting that client devices
are with heterogeneous computation power, communica-
tion bandwidth, and/or memory capacity. A few research
efforts have been paid to designing memory heterogeneity-
aware FL algorithms. HeteroFL (Diao et al., 2021) and
FjORD (Horvath et al., 2021) allows model architecture
heterogeneity among participating clients via varying model
widths. The method bears similarity to previously proposed
slimmable neural network (Yu et al., 2018; Yu & Huang,
2019) where sub-networks with various widths and shared
weights are jointly trained with self-distillation (Zhang et al.,
2021b). SplitMix (Hong et al., 2022) tackles the same de-
vice heterogeneity problem via learning a set of base sub-
networks of different sizes among clients based on their
hardware capacities, which are later aggregated on-demand
according to inference requirements. Some recent works
adopt the concept of layer-wise training. Specifically, Inclu-
siveFL (Liu et al., 2022) and DepthFL (Kim et al., 2023)
assign models of different sizes to clients regarding the on-
device capability by adjusting the depth of a network. In
summary, prior research efforts mainly focus on partitioning
the global model weights among participating users given
their hardware resource constraints, which leads each lo-
cal user only to see part of the global model. In this work,
however, we seek a holistic approach to handling device
heterogeneity in FL without the need for partitioning model
weights. Instead, our approach allows each device to train a
full-size model in a sequential manner.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Memory-adaptive Depth-wise Heterogenous Federated Learning

3 EMPIRICAL STUDY

3.1 Preliminaries

This section briefly reviews prior works that aim to address
heterogeneous clients in FL, including HeteroFL (Diao et al.,
2021) and SplitMix (Hong et al., 2022). We then conduct
an extensive analysis of memory consumption of training a
neural network, which has not been explored thoroughly in
the FL community.

Prior works on FL for heterogeneous clients. Exist-
ing works such as HeteroFL (Diao et al., 2021) and Split-
Mix (Hong et al., 2022) address memory heterogeneity by
pruning a single global model in terms of channels, cre-
ating heterogeneous local models. HeteroFL is the first
work in FL that tackles memory heterogeneity via the width-
scaling approach but still produces a full-size global model.
However, HeteroFL suffers from two major limitations: 1)
partial model parameters are under-trained because only par-
tial clients and data are accessible for training the full-size
model; 2) small models’ information tends to be ignored
because of their small-scale parameters. SplitMix was then
proposed to address these two issues, which first splits a
wide neural network into several base sub-networks for in-
creasing accessible training data, then boosts accuracy by
mixing base sub-networks.

Memory consumption analysis. Training a neural net-
work with backpropagation consists of feedforward and
backward passes (Rumelhart et al., 1986). A feed-forward
pass over each block of a neural network generates an acti-
vation or output. These intermediate activations are stored
in the memory for the backward pass to update the neural
network. Although several works of literature (Sohoni et al.,
2019; Gomez et al., 2017; Raihan & Aamodt, 2020; Chen
et al., 2021) demonstrate that activations usually consume
most of the memory in standard training of a neural network
as shown in Figure 1, HeteroFL and SplitMix merely con-
sider the number of model parameters as the memory budget
in their experiments. Specifically, they divide clients into
groups that are capable of different widths, e.g., a 1

8 -width
neural network, which costs approximately 1

8 activations but
only around 1

82 model parameters compared to the full-size
neural network.

3.2 Behaviors of Sub-networks in Prior Works

In this section, we analyze the behaviors and influences of
sub-networks in HeteroFL and SplitMix with respect to the
performance of the global model.

Experimental setting. We follow the configuration on the
CIFAR-10 dataset in SplitMix (Hong et al., 2022), where
10 out of 100 clients participate in training in any given
communication round, and each client has three classes of

Wide-ResNet DC-Transformer

Activation,
387.3 MB

Activation,
2.896 GB

Optimizer,
11.7 MB

Model,
5.8 MB

Optimizer,
464 MB

Model,
155 MB

Figure 1. Training memory consumption for left: WideResNet on
CIFAR-10 and right: DC-Transformer on IWSLT’14 German to
English. Data source: (Sohoni et al., 2019).

the data. In our case studies, we divide clients into four
groups with { 1

8 ,
1
4 ,

1
2 , 1}-width sub-networks in HeteroFL,

and into two groups with {r, 1} in SplitMix, where r =
{ 1
16 ,

1
8 ,

1
4 ,

1
2}. Our observations are summarized below.

1. Small sub-networks make negative contributions
in HeteroFL. Figure 2 presents typical examples of Het-
eroFL (Diao et al., 2021) under non-IID settings. The or-
ange line represents the default setting of HeteroFL, where
all sub-networks of different widths are aggregated. The
other lines indicate specific size of sub-networks that are
not aggregated. For example, the green line indicates that
the smallest (18 -width) sub-networks do not participate in
aggregation. We observe that the global model obtained
via aggregating small sub-networks consistently has worse
performance than the global model obtained via only aggre-
gating the full-size neural networks, indicating that small
size sub-networks make negative contributions.

Figure 2. Performance of the global model in HeteroFL with dif-
ferent sub-networks aggregation strategy.

2. Small sub-networks limit global performance in Split-
Mix. Figure 3 depicts the prediction performance of the
global model in SplitMix (Hong et al., 2022) by mixing base
neural networks with different-width. It clearly illustrated
that slimmer base neural networks produce a less powerful
global model. Intuitive reasoning is that combining very
weak learners leads to an ensemble model with worse gen-
eralization.

3. The full-size net makes a difference. Inadequate pres-
ence of the full-size models incurs degradation of validation
accuracy as shown in Figure 2 and 3. In real-world FL sys-

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Memory-adaptive Depth-wise Heterogenous Federated Learning

Figure 3. Performance of the global model in SplitMix with the
varying-width base model.

tems, communication can be unstable, and clients with the
largest memory budgets may not be available in each round
of communication (Bonawitz et al., 2017). This constraint
limits the practicality of both HeteroFL and SplitMix.

4 METHODOLOGY

Inspired by the observation in the previous section, we in-
troduce a memory-efficient framework FEDEPTH in sec-
tion 4.1 to train full-size neural networks with memory
budget constraints in the FL setting. FEDEPTH aims to em-
pirically solve the optimization problem minW F (W) :=∑K

k=1 pkFk(W). Here, Fk represents the loss function
on the kth clients. pk > 0 for all k and

∑K
k=1 pk = 1.

FEDEPTH features memory-adaptive decomposition, where
a neural network is decomposed into blocks based on the
memory consumption and local clients’ memory budgets.
An implict assumption made is that all blocks can be trained
locally after the decomposition. in Section 4.1, to further ad-
dress extreme case that some blocks still cannot fit into the
memeory even after the finnest decomposition FEDEPTH
integrates the partial training strategy into the local training
stage. In Section 4.3, we consider the possibilty that some
clients with rich memory budgets may suffer from memory
underutilization, hence a variant of FEDEPTH is propsed to
use mutual knowledge distillation (Zhang et al., 2018) to
boost the performance and fully exploit the local memory
of clients.

4.1 FEDEPTH and Its Variants

Memory-adaptive neural network decomposition. Since
various clients could have drastically different memory
budgets, FEDEPTH conducts local training in a memory-
adaptive manner. Specifically, for the k-th client the full
model W is decomposed to into Jk + 1 blocks, i.e., W =
{θk,1, · · · , θk,Jk

, ϕ}, where {θk,j}Jk
j=1 and ϕ denote body

and head of the neural network, respectively. Note that
θk,j can be different from θk′,j for any (k, k′, j) triple, and
the number of parameters contained in θk,j is solely deter-
mined by the kth client’s memory budget, hence FEDEPTH
is memory-adaptive. In practice, the model decomposition

Algorithm 1 FEDEPTH

Require: Total number of clients K; participation rate γ; number
of communication rounds R.

Initialization: Model parameterW0.
1: for t = 0, . . . , R− 1 communication rounds do
2: Sample a subset St of clients with |St| = ⌈γK⌉.
3: BroadcastWt to clients k ∈ St.
4: for each client k ∈ St in parallel do
5: Wt+1

k ← ClientUpdate(Wt, k).
6: end for
7: Aggregate asWt+1 =

∑
k∈St

pk∑
k′∈St pk′

Wt+1
k .

8: end for
9: procedure CLIENTUPDATE(Wt, k)

10: for j = 1, · · · , Jk do
11: Approximately solve the problem (1).
12: end for
13: Set ϕt+1

k = ϕt+1
J

14: ReturnWt
k = {θt+1

k,1 , · · · , θt+1
k,Jk

, ϕt+1
k }.

15: end procedure

can be determined for each client before training via the
estimating memory consumption (Gao et al., 2020). See
Figure 4 for an illustration. Suppose the full-size model is
composed of 6 layers, where each of layer costs memory
of {3, 2, 1, 0.5, 0.5, 0.5} GB, respectively. Assume the kth
and k′th client has 3 GB and 5 GB memory budget, respec-
tively. Then, client k has Jk = 3 and client k′ has Jk′ = 2
trainable blocks, respectively. That is, client k′ will start
with training the first two blocks, then the remaining four
blocks.

Depth-wise sequential learning. Once the decomposition
is determined, the k-th client at the t-th round, locally solves
Jk subproblems in a block-wise fashion, i.e., for all j ∈
{1, . . . , Jk},

(θt+1
k,j , ϕt+1

j) ∈ arg min
θk,j ,ϕ

L(θk,j , ϕ; {zt+1
j−1,i, yi}

nk
i=1), (1)

where L is a loss function, e.g, cross-entropy; {zt+1
j−1,i}

nk
i=1

are activations obtained after the local training samples
forward-passed through the first j blocks, i.e., zt+1

j−1,i =

f(xi; {θt+1
k,ℓ }j−1

ℓ=1) for i ∈ [nk] and f(·; {θt+1
k,ℓ }j−1

ℓ=1) is the
neural network up to the first j − 1 blocks; nk is the total
number of training samples. Specifically, zt+1

0,i = xi for
all i ∈ [nk]. Problem (1) can be solved by any stochastic
gradient-based method. When solving for the j-th subprob-
lem at the tth round, to fully leverage the global model
Wt’s body and the locally newly updated head, we use
(θtj , ϕ

t+1
j−1) as the initial point. See the data flow in Fig-

ure 5 when performing the training for the jth block. We
remark that when the memory budget permits, the activation
{zt+1

j−1,i}
nk
i=1, which no longer requires the gradient, could

be buffered to compute {zt+1
j,i }nk

i=1 once the θt+1
k,j is obtained,

hence saving the redundant forward-pass from the first block
to the jth block. Also, the number computation required

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Memory-adaptive Depth-wise Heterogenous Federated Learning

𝑦"

𝜃!,#

𝜙

𝜃!,$ 𝜃!,%

𝜃!‘,# 𝜃!‘,$

𝑘-th client
decomposition

𝑘′-th client
decomposition

𝑥

Figure 4. Memory-adaptive neural network decomposition. The
second row represents the full neural network with the block size
indicating the memory consumption. The first and third rows ex-
plain the neural network decomposition based on different clients’
memory budgets.

for approximately solving Jk subproblems in the form of
(1) should be similar to approximately solving the prob-
lem minW Fk(W) if we perform the same number of local
updates, and ignore the negligible computation overhead
in updating in the head ϕ. This is because the amount of
computation required by one gradient evaluation ∇WFk is
equivalent to that of the summation of gradient evaluation
of {∇θjL}

Jk
j=1.

Attentive readers may notice that the outputs dimension
of the jth block may not be consistent with the dimension
of the ϕ, hence we use zero-padding on the activations
outputted by the jth block to get the consistent dimension
without introducing extra parameters. Other strategies, like,
convolution filters are also applicable. To account for the
potential noise introduced by the padding, we also develop a
variant called m-FEDEPTH, which adds additional auxiliary
heads {ϕk,j}J−1

j=1 in the local training phase. Specifically,
the jth subproblem in (1) is modified as

(θt+1
k,j , ϕt+1

k,j) ∈ arg min
θk,j ,ϕk,j

L(θk,j , ϕk,j ; {zt+1
j−1,i, yi}

nk
i=1).

and we set θt+1
k = ϕt+1

k,J .

Memory-efficient Inference. Depth-wise inference follows
the similar logic of the frozen-then-pass forward in depth-
wise training. Specifically, for each input x, we store the
activation zj in the hard drive and discard the predecessor
activation zj−1. Then we can reload zj into memory as the
input and get the activation zj+1. The procedure is repeated
until the prediction ŷ is obtained.

We end this section by giving the detailed algorithmic de-
scription in Algorihtm 1.

4.2 Handle Extrem Memory Constraints with Partial
Tranining

According to the memory consumption analysis in Section
3.2, the memory bottleneck of training a neural network is

𝜃!,# 𝜃!,$ 𝜃!,% 𝜙 𝑦#

Frozen
Block

Training
Block

Inactive
Active

𝑥

𝜃!,# 𝜃!,$ 𝜃!,% 𝜙 𝑦#𝑥

𝜃!,# 𝜃!,$ 𝜃!,% 𝜙 𝑦#𝑥

Figure 5. An example of depth-wise sequential learning. There are
three training steps: 1) training the first block and the classifier
with the skip connection (He et al., 2016a); 2) freezing the updated
first block and using its activation to train the second block and
the classifier with the skip connection; 3) freezing the updated first
two blocks and using the activation of the second block to train the
third block and the classifier.

Figure 6. Correspondences between layers of different local neural
networks trained from private datasets in FL under non-IID dis-
tribution. We observe that early layers, but not later layers, learn
similar representations.

related to the block with the largest activations, which some
devices may still not afford. These “large” blocks are usually
the layers close to the input side. To tackle this issue, we
borrow the idea of partial training in FEDEPTH, where we
skip the first few blocks that are too large to fit even after the
finnest blocks decomposition. This mechanism would not
incur significant performance degradation because the input-
side layers learn similar representations on different datasets
(Kornblith et al., 2019), and clients with sufficient memory
will provide model parameters of these input-side layers in
the FL aggregation phase. Figure 6 emeprically validates
such a strategy. We train a customized 14-layer ResNet (13
convolution layers and one classifier) on MNIST with 20
clients under non-IID distribution, respectively and measure
the similarity of neural network representations, using both
canonical correlation analysis (CCA) and centered kernel
alignment (CKA) (Kornblith et al., 2019).

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Memory-adaptive Depth-wise Heterogenous Federated Learning

Figure 7. Visualization of statistical heterogeneity among partial clients on CIFAR-10 dataset, where the x-axis indicates client IDs, the
y-axis indicates class labels, and the size of scattered points indicates the number of training samples for a label available to the client.

4.3 Exploit Sufficient Memory with Mutual
Knowledge Distillation

Previous works on heterogeneous FL ignore the situation
where some clients with rich computing resources may par-
ticipate in the federated training on the fly. Their sufficient
memory budget could be potentially utilized to improve the
performance of FL via regularizing local model training
(Mendieta et al., 2022; Li et al., 2020a). Ensembling mul-
tiple models is an effective way to improve generalization
and reduce variance (Shi et al., 2021; Nam et al., 2021).
However, considering each model is independently trained
in ensemble learning methods, we have to upload/download
all of these models in FL settings leading to a significant
communication burden. Therefore, we design a new training
and aggregation method based on mutual knowledge distil-
lation (MKD) (Hinton et al.; Zhang et al., 2018), where all
student neural networks learn collaboratively and teach each
other. Therefore, clients with sufficient memory only need
to upload one of the local models to the server for aggrega-
tion because the knowledge consensus achieved among all
models through distillation. Formally, assume the kth client
has a rich memory budget to train M > 1 models. Then
locally it solves

min
{W1

k
,··· ,WM

k
}

1

M

M∑
m=1

Fk(Wm
k) +

1

M − 1

M∑
m′ ̸=m

KL
(
hm′
∥hm

)
,

where hm are logits calculated from the modelWm over the local
training set and KL is the Kullback Leibler Divergence. More
concretely, KL

(
hm′
∥hm

)
= 1

nk

∑nk
i=1 KL(hm′

i ∥hm
i), where

hm
i is the logits of the ith sample computed over modelWm.

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate the
effectiveness of FEDEPTH by image classification tasks. In Sec-
tion 5.1, we compare the model performance of FEDEPTH and
m-FEDEPTH with existing methods. Section 5.3 is an extra study
about the robustness of FL algorithms against an imbalanced num-
ber of local data samples. In Section 5.4, we test the depth-wise
finetuning strategy in FL scenarios.

5.1 Experimental Setups

1. Datasets and data partition. Our experiments are conducted
on CIFAR-10 and CIFAR100 (LeCun et al., 1998; Krizhevsky &
Hinton, 2009). To simulate the non-IID setting with class imbal-
ance, we follow (Yurochkin et al., 2019; Acar et al., 2021; Gao

Depth Memory Width Memory

B1∼3 20.02 × 1
8

14.51
B4 14.05 × 1

6
19.34

B5∼6 10.07 × 1
3

38.68
B7 7.21 × 1

2
58.02

B8∼9 5.28 ×1 116.04

Table 1. Memory cost (in MB) with respect to depth and width of
PreResNet-20. Each block consists of 2 convolution layers. B1∼3

indicates Block 1, 2 and 3 in PreResNet-20 have the same memory
cost of 20.02 MB. The values are estimated by pytorch-summary2.

et al., 2022) to distribute each class to clients using the Dirich-
let distribution with α(λ), where λ = {0.3, 1.0}. Besides, we
adopt pathological non-IID data partition β(Λ) that is used by the
selected baselines – HeteroFL and SplitMix (Diao et al., 2021;
Hong et al., 2022), where each device has unique Λ labels with
Λ = {2, 5} for CIFAR-10 while Λ = {10, 30} for CIFAR-100.
We note that the balanced data partition is applied by default,
which makes each client holds the same number of examples. The
unbalanced αu(λ) non-IID, where clients may have a different
amount of samples with different feature distribution skew, is also
used to evaluate the stability of FEDEPTH. We consider 100 clients
in all experiments, and in Figure 7, we show label distributions of 5
out of 100 clients under balanced α(0.3), α(1.0) and unbalanced
αu(0.3), αu(1.0) splits of CIFAR-10.

2. Memory budgets. Using Pre-Activation of ResNet-20
(PreResNet-20) (He et al., 2016b) as an example, we show the
relation of the memory cost of each block between width-wise and
depth-wise training in Table 1. We can see that if clients afford
to train 1

6
-width PreResNet-20, they can train the full-size neural

network via depth-wise training. The training order is { B1 →
B2 → B3 → B4 → B5,6 → B7,8,9 }. Inspired by this example,
we simulate three memory budget scenarios.

• (Fair). The memory budgets depend on the hidden chan-
nel shrinkage ratio, r = { 1

6
, 1
3
, 1
2
, 1}, and are uniformly

distributed into clients. It means 1/4 of clients can train a
PreResNet-20 model within a maximal width of 1

6
-, 1

3
-, 1

2
-

and full width, respectively.

• (Lack). r = { 1
8
, 1
6
, 1
2
, 1}. 1/4 of clients with limited mem-

ory adopt a partial training strategy.

• (Surplus). r = { 1
6
, 1
3
, 1
2
, 2}. 1/4 of clients with sufficient

memory can apply MKD.

2https://github.com/sksq96/pytorch-summary

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Memory-adaptive Depth-wise Heterogenous Federated Learning

Budget Method CIFAR-10 CIFAR-100

α(0.3) α(1.0) β(2) β(5) α(0.3) α(1.0) β(10) β(30)

Unrealistic, r = {1, 1, 1, 1} FedAvg (×1) 61.00 66.33 32.72 69.95 28.44 29.58 31.86 43.84

Fair, r = { 1
6
, 1
3
, 1
2
, 1}

FedAvg (× 1
6

) 48.82 54.57 24.94 52.69 15.52 16.50 12.60 18.48
HeteroFL 52.08 55.53 26.68 56.71 16.76 18.84 19.79 30.26
SplitMix 54.80 57.61 28.88 57.11 22.10 24.25 19.69 25.00
FeDepth 59.79 63.39 29.14 60.43 24.51 25.90 22.74 33.49

m-FeDepth 58.89 62.12 30.50 62.26 30.10 31.26 23.41 38.69

Lack, r = { 1
8
, 1
6
, 1
2
, 1}

FedAvg (× 1
8

) 46.04 52.86 23.78 47.26 14.25 14.48 11.82 15.93
HeteroFL 52.21 55.50 26.71 56.01 16.60 18.99 18.90 29.53
SplitMix 50.34 53.22 25.35 52.73 21.40 22.80 17.91 22.78
FeDepth 56.79 63.30 28.89 59.09 23.51 26.17 23.15 34.91

m-FeDepth 57.72 61.08 28.22 59.06 30.59 31.28 23.78 37.54

Surplus, r = { 1
6
, 1
3
, 1
2
, 2} FeDepth 59.82 65.26 30.79 63.27 25.16 27.33 24.21 35.81

m-FeDepth 60.76 64.76 31.34 65.63 32.07 36.52 25.67 39.90

Table 2. Test results (top-1 accuracy) under balanced non-IID data partitions using PreResNet-20. Grey texts indicate that the training
cannot conform to the pre-defined budget constraint. If not specified, FedAvg denotes the results with ×min(r) -width network. We
highlight the best results with Blue Shadow , Red Shadow , and Bold in the scenarios including clients equipped with fairly sufficient,
insufficient and abundant memory, respectively.

3. Implementation and evaluation. We compare FEDEPTH and
its variants with several methods, including FedAvg (McMahan
et al., 2017), HeteroFL (Diao et al., 2021), and SplitMix (Hong
et al., 2022) in terms of Top-1 Accuracy. The memory budgets are
uniformly distributed to 100 clients. All experiments perform 500
communication rounds with a learning rate of 0.1, local epochs of
10, batch size of 128, SGD optimizer, and a cosine learning rate
scheduler.

5.2 Global Model Evaluation

Results in the Fair Budget scenario. In Table 2, we compare
test results on a global test dataset (10,000 samples) considering a
variety of balanced non-IID data partition and memory constraints.
We highlight the best results under different scenarios. In all cases,
HeteroFL, SplitMix, and FEDEPTH family outperform vanilla Fe-
dAvg, showing their system designs’ effectiveness under balanced
data distribution. Among all methods, our proposed FEDEPTH
and m-FEDEPTH achieve the best performance with significant
improvements. For example, on CIFAR10, under Fair Budget,
FEDEPTH gains 5.44± 2.39% average improvement compared
to HeteroFL while gains 3.59 ± 2.12% average improvement
compared to SplitMix. m-FEDEPTH gains 5.69± 1.18% average
improvement compared to HeteroFL while gains 3.84± 1.33%
average improvement compared to SplitMix. Figure 8 shows con-
vergence curves of FEDEPTH on non-IID CIFAR-10 dataset.

Results in the Lack Budget scenario. We observe that HeteroFL
has slight accuracy drops or increases compared to the fair budget
scenario. The explanation could be deducted from the behaviors
of sub-networks discussed in Section 3.2 and Figure 2 that small
sub-networks slightly influence the global performance because
the small number of model parameters provides limited knowledge
of the global model in the aggregation phase of FL. In contrast,
SplitMix has an apparent performance degradation of an average
of 2.86± 1.41% due to the weaker base learner. The FEDEPTH
and m-FEDEPTH are relatively stable algorithms against insuffi-
cient memory budget, showing 0.45± 1.25% and 0.99± 1.21%
degradation, respectively.

0 200 400
FeDepth on Cifar10

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

(5)
(2)
(0.3)
(1.0)

0 200 400
m-FeDepth on Cifar10

0.0

0.5

1.0

1.5

2.0

Figure 8. Convergence of FEDEPTH family on Cifar10.

Results in the Surplus Budget scenario. We let the new clients
with rich resources r = 2 join in FL and replace the clients with
r = 1. Prior works, like HeteroFL and SplitMix, did not consider
such dynamics, and the clients with more memory budgets still
train×1 neural networks. An alternative way is to train a new large
base model from scratch and discard previously trained ×1 neural
networks, hence wasting computing resources. From Table 2,
we can observe that MKD indeed makes sense for improving the
performance of the global model (still ×1-width). Furthermore,
we note that combining depth-wise training and MKD is a flexible
solution to simultaneously solve dynamic partition, device upgrade,
and memory constraints. For example, when a new client with
r = 7

6
enters into the federated learning, the client can locally

learn two models via regular and depth-wise sequential training,
respectively, and then perform MKD while maintaining an original-
size model for aggregation.

Comparison between FEDEPTH and its variant. As shown in Ta-
ble 2, for CIFAR-10, FEDEPTH and m-FEDEPTH can achieve sim-
ilar prediction accuracy. However, for CIFAR-100, m-FEDEPTH
always outperforms FEDEPTH. It is worth recalling the design of
FEDEPTH, which introduces zero paddings to match the dimension
between two skip-connected blocks. This may inject negligible
noise for the training on more complex data. Replacing the zero
paddings with other modules, such as convolutions, may result
in a better model. However, this usually comes at the cost of

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Memory-adaptive Depth-wise Heterogenous Federated Learning

(0.3) (1.0) (2) (5)
0

20

40

60

80

100
To

p-
1

Ac
cu

ra
cy

(0.3) (1.0) (2) (5)
0

20

40

60

80

100

To
p-

1
Ac

cu
ra

cy

FedAvg (×1) FedAvg FeDepth m-FeDepth

Figure 9. Fine-tuning ViT-T/16 on CIFAR-10 (left) and CIFAR-100 (right) under balanced non-IID data partitions with FedAvg FEDEPTH,
and m-FEDEPTH. FedAvg (×1) assumes each client can afford to train the full-size model with 12 identical encoder blocks, while
FedAvg (× 1

6
) assumes each client trains a 1

6
-width model, whose memory consumption is equal to train two encoder blocks.

CIFAR-10 CIFAR-100
Method

αu(0.3) αu(1.0) αu(0.3) αu(1.0)

FedAvg (× 1
6

) 46.46 52.02 15.62 17.99
HeteroFL 46.14 52.20 16.02 18.36
SplitMix 31.23 44.70 22.68 25.28
FeDepth 52.61 58.55 23.25 26.16

m-FeDepth 51.58 57.91 27.86 29.56

Table 3. Experimental results on unbalanced Dirichlet partitions.
Because of the relatively limited number of samples per class in
CIFAR-100, an unbalanced Dirichlet partition outputs similar sta-
tistical distribution according to the number of local data examples.

extra memory consumption because of the new activations and
parameters, which is usually intolerable to resource-constrained
devices.

5.3 Influence of Unbalanced Non-IID Distribution

Table 3 shows the prediction results on distributed datasets in FL
from the unbalanced Dirichlet partition (Fair Budget). We note that
HeteroFL and SplitMix were not evaluated on such an unbalanced
distribution. Overall, the higher skewed distribution leads to worse
performance for FL, which can be observed by comparing results
on Table 2 and Table 3.

Since the number of samples per class in CIFAR-100 is limited
(there are 500 samples for each class), αu(λ) and α(λ) will output
similar statistical distribution according to the number of samples
on each client in FL. Therefore, we obtain similar CIFAR-100
results on both balanced and unbalanced non-IID data partitions.
Specifically, α(λ) always outputs 400 training samples per client
on average. For CIFAR-100, αu(0.3) outputs 399.40 ± 34.53
training samples per client, αu(1.0) outputs 399.34± 17.74. For
CIFAR-10, αu(0.3) outputs 399.44±150.60 training samples per
client, αu(1.0) outputs 399.39± 77.37.

Regarding CIFAR-10 results, we observe that HeteroFL and Split-
Mix cannot achieve comparable predictions or generalization abil-
ity compared to FedAvg. SplitMix even performs worse than
training with the smallest models in FL. This result indicates that
SplitMix is not robust to unbalanced distribution. One reason for
this phenomenon is that small base models cannot capture repre-
sentative features due to the significant weight divergence between
local clients stemming from a highly skewed distribution (Frankle
& Carbin, 2019; Li et al., 2022). For HeteroFL, as mentioned
in the case study in Section 3.2, the full-size neural networks on
resource-sufficient devices provide the fundamental ability but
small sub-networks trained with unbalanced distribution indeed

affect the global performance. In contrast to HeteroFL and Split-
Mix, our proposed FEDEPTH and m-FEDEPTH gain substantial
improvements of 6.15% and 6.53% on CIFAR-10, and of 12.24%
and 11.57% on CIFAR-100 compared to FedAvg.

5.4 Depth-wise Fine-tuning on ViT

Foundation models or Transformer architectures (Vaswani et al.,
2017; Zhou et al., 2023), such as Vision Transformer (ViT) (Doso-
vitskiy et al., 2020), has shown robustness to distribution shifts
(Bhojanapalli et al., 2021). Recent work has demonstrated that re-
placing a convolutional network with a pre-trained ViT can greatly
accelerate convergence and result in better global models in FL(Qu
et al., 2022). Inspired by this finding, we hypothesize that fine-
tuning ViT with depth-wise learning will still produce a better
global model because 1) decomposing blocks in a depth-wise
manner maintains the knowledge learned from pretraining, and
2) memory consumptions of activations in each ViT’s block are
identical, which indicates that skip connection for handling re-
source constraints does not introduce any noises and extra param-
eters. The memory budgets in terms of the width shrinkage ratio
r = { 1

6
, 1
3
, 1
2
, 1} are uniformly allocated to 100 clients as the

same setting of PreResNet-20 in the scenario of Fair Budget.

For fine-tuning, we choose a learning rate of 5×104 and a training
epoch of 100. Figure 9 shows the test results of ViT-T/16 (Qu
et al., 2022) under balanced Dirichlet data partitions, on which
we observe that exploiting FEDEPTH and m-FEDEPTH can pro-
duce good global models. Specifically, FEDEPTH-ViT signifi-
cantly outperforms FEDEPTH-PreResNet-20 with 36.06±12.79%
and 30.64 ± 4.24% improvements on CIFAR-10 and CIFAR-
100 on average, respectively. m-FEDEPTH-ViT significantly out-
performs m-FEDEPTH-PreResNet-20 with 36.66± 12.88% and
27.41± 3.13% improvements on CIFAR-10 and CIFAR-100 on
average, respectively. We also observe that although local ViTs are
fine-tuned on varying distribution data, we obtain global models
with similar performance. It indicates that ViT is more robust to
distribution shifts and hence improves FL over heterogeneous data.

6 CONCLUSIONS

Despite the recent progress in FL, memory heterogeneity still
remains largely underexplored. Unlike previous methods based
on width-scaling strategies, we propose depth-wise learning for
handling varying memory capabilities. The experimental results
demonstrate our proposed FEDEPTH family outperform the state-
of-the-art algorithms including HeteroFL and SplitMix, and are
robust to data heterogeneity and client participation. FEDEPTH
is a flexible and scalable framework that can be compatible with
most FL algorithms and is reliable to be deployed in practical FL

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Memory-adaptive Depth-wise Heterogenous Federated Learning

systems and applications.

REFERENCES

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov,
I., Talwar, K., and Zhang, L. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pp. 308–318, 2016.

Acar, D. A. E., Zhao, Y., Matas, R., Mattina, M., Whatmough,
P., and Saligrama, V. Federated learning based on dynamic
regularization. In International Conference on Learning Repre-
sentations, 2021.

Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner,
T., and Veit, A. Understanding robustness of transformers for
image classification. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 10231–10241, 2021.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,
H. B., Patel, S., Ramage, D., Segal, A., and Seth, K. Practical
secure aggregation for privacy-preserving machine learning. In
proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Bubeck, S. and Sellke, M. A universal law of robustness via
isoperimetry. Advances in Neural Information Processing Sys-
tems, 34:28811–28822, 2021.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Mahoney, M.,
and Gonzalez, J. Actnn: Reducing training memory footprint
via 2-bit activation compressed training. In International Con-
ference on Machine Learning, pp. 1803–1813. PMLR, 2021.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep nets
with sublinear memory cost. arXiv preprint arXiv:1604.06174,
2016.

Diao, E., Ding, J., and Tarokh, V. Heterofl: Computation and
communication efficient federated learning for heterogeneous
clients. In International Conference on Learning Representa-
tions, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G.,
Gelly, S., et al. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on
Learning Representations, 2020.

Du Terrail, J. O., Ayed, S.-S., Cyffers, E., Grimberg, F., He, C.,
Loeb, R., Mangold, P., Marchand, T., Marfoq, O., Mushtaq, E.,
et al. Flamby: Datasets and benchmarks for cross-silo federated
learning in realistic healthcare settings. In NeurIPS, Datasets
and Benchmarks Track, 2022.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In International Conference
on Learning Representations, 2019.

Gao, L., Fu, H., Li, L., Chen, Y., Xu, M., and Xu, C.-Z. Feddc:
Federated learning with non-iid data via local drift decoupling
and correction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10112–10121,
2022.

Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., and Yang,
M. Estimating gpu memory consumption of deep learning
models. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1342–1352,
2020.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
reversible residual network: Backpropagation without storing
activations. Advances in neural information processing systems,
30, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in deep
residual networks. In European conference on computer vision,
pp. 630–645. Springer, 2016b.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling the knowledge
in a neural network.

Hong, J., Wang, H., Wang, Z., and Zhou, J. Efficient split-mix
federated learning for on-demand and in-situ customization. In
International Conference on Learning Representations, 2022.

Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I., Venieris,
S., and Lane, N. Fjord: Fair and accurate federated learning
under heterogeneous targets with ordered dropout. Advances
in Neural Information Processing Systems, 34:12876–12889,
2021.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M.,
Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe: Efficient
training of giant neural networks using pipeline parallelism.
Advances in neural information processing systems, 32, 2019.

Hyeon-Woo, N., Ye-Bin, M., and Oh, T.-H. Fedpara: Low-rank
hadamard product for communication-efficient federated learn-
ing. arXiv preprint arXiv:2108.06098, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M.,
Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cum-
mings, R., et al. Advances and open problems in federated
learning. Foundations and Trends in Machine Learning, 14
(1-2):1–210, 2021.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U.,
and Suresh, A. T. Scaffold: Stochastic controlled averaging for
on-device federated learning. 2019.

Kim, M., Yu, S., Kim, S., and Moon, S.-M. DepthFL : Depth-
wise federated learning for heterogeneous clients. In The
Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?
id=pf8RIZTMU58.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh,
A. T., and Bacon, D. Federated learning: Strategies for improv-
ing communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Similarity of
neural network representations revisited. In International Con-
ference on Machine Learning, pp. 3519–3529. PMLR, 2019.

https://openreview.net/forum?id=pf8RIZTMU58
https://openreview.net/forum?id=pf8RIZTMU58

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Memory-adaptive Depth-wise Heterogenous Federated Learning

Krizhevsky, A. and Hinton, G. Learning multiple layers of features
from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

Li, Q., He, B., and Song, D. Model-contrastive federated learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10713–10722, 2021.

Li, Q., Diao, Y., Chen, Q., and He, B. Federated learning on
non-iid data silos: An experimental study. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE), pp. 965–
978. IEEE, 2022.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and
Smith, V. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems, 2:429–450,
2020a.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the con-
vergence of fedavg on non-iid data. In International Conference
on Learning Representations, 2020b.

Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble distillation
for robust model fusion in federated learning. Advances in
Neural Information Processing Systems, 33:2351–2363, 2020a.

Lin, Y., Ren, P., Chen, Z., Ren, Z., Yu, D., Ma, J., Rijke, M. d.,
and Cheng, X. Meta matrix factorization for federated rating
predictions. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pp. 981–990, 2020b.

Liu, R., Wu, F., Wu, C., Wang, Y., Lyu, L., Chen, H., and Xie,
X. No one left behind: Inclusive federated learning over het-
erogeneous devices. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp.
3398–3406, 2022.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas,
B. A. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Mendieta, M., Yang, T., Wang, P., Lee, M., Ding, Z., and Chen,
C. Local learning matters: Rethinking data heterogeneity in
federated learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8397–8406,
2022.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic federated learn-
ing. In International Conference on Machine Learning, pp.
4615–4625. PMLR, 2019.

Nam, G., Yoon, J., Lee, Y., and Lee, J. Diversity matters when
learning from ensembles. Advances in Neural Information
Processing Systems, 34:8367–8377, 2021.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and Srebro,
N. The role of over-parametrization in generalization of neural
networks. In International Conference on Learning Representa-
tions, 2019.

Qu, L., Zhou, Y., Liang, P. P., Xia, Y., Wang, F., Adeli, E., Fei-Fei,
L., and Rubin, D. Rethinking architecture design for tackling
data heterogeneity in federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10061–10071, 2022.

Raihan, M. A. and Aamodt, T. Sparse weight activation training.
Advances in Neural Information Processing Systems, 33:15625–
15638, 2020.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive fed-
erated optimization. In International Conference on Learning
Representations, 2020.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning
representations by back-propagating errors. nature, 323(6088):
533–536, 1986.

Seo, H., Park, J., Oh, S., Bennis, M., and Kim, S.-L. Federated
knowledge distillation. arXiv preprint arXiv:2011.02367, 2020.

Shi, N., Lai, F., Kontar, R. A., and Chowdhury, M. Fed-ensemble:
Improving generalization through model ensembling in feder-
ated learning. arXiv preprint arXiv:2107.10663, 2021.

Sohoni, N. S., Aberger, C. R., Leszczynski, M., Zhang, J., and Ré,
C. Low-memory neural network training: A technical report.
arXiv preprint arXiv:1904.10631, 2019.

Sun, Z., Kairouz, P., Suresh, A. T., and McMahan, H. B. Can
you really backdoor federated learning? arXiv preprint
arXiv:1911.07963, 2019.

Tan, A. Z., Yu, H., Cui, L., and Yang, Q. Towards personalized
federated learning. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all
you need. Advances in neural information processing systems,
30, 2017.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos, D., and
Wright, S. Atomo: Communication-efficient learning via atomic
sparsification. Advances in Neural Information Processing
Systems, 31, 2018.

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and Khaza-
eni, Y. Federated learning with matched averaging. In Interna-
tional Conference on Learning Representations, 2020a.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. Tackling the
objective inconsistency problem in heterogeneous federated op-
timization. Advances in neural information processing systems,
33:7611–7623, 2020b.

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B., Al-
Shedivat, M., Andrew, G., Avestimehr, S., Daly, K., Data, D.,
et al. A field guide to federated optimization. arXiv preprint
arXiv:2107.06917, 2021a.

Wang, J., Xu, Z., Garrett, Z., Charles, Z., Liu, L., and Joshi,
G. Local adaptivity in federated learning: Convergence and
consistency. arXiv preprint arXiv:2106.02305, 2021b.

Yao, D., Pan, W., Wan, Y., Jin, H., and Sun, L. Fedhm: Effi-
cient federated learning for heterogeneous models via low-rank
factorization. arXiv preprint arXiv:2111.14655, 2021.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Memory-adaptive Depth-wise Heterogenous Federated Learning

Yu, J. and Huang, T. S. Universally slimmable networks and
improved training techniques. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 1803–1811,
2019.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. In International Conference on Learning
Representations, 2018.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang,
N., and Khazaeni, Y. Bayesian nonparametric federated learning
of neural networks. In International Conference on Machine
Learning, pp. 7252–7261. PMLR, 2019.

Zhang, K., Jiang, Y., Seversky, L., Xu, C., Liu, D., and Song, H.
Federated variational learning for anomaly detection in multi-
variate time series. In 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC), pp. 1–9.
IEEE, 2021a.

Zhang, K., Wang, Y., Wang, H., Huang, L., Yang, C., Chen, X.,
and Sun, L. Efficient federated learning on knowledge graphs
via privacy-preserving relation embedding aggregation. In Find-
ings of the Association for Computational Linguistics: EMNLP
2022, pp. 613–621, Abu Dhabi, United Arab Emirates, 2022.
Association for Computational Linguistics.

Zhang, L., Bao, C., and Ma, K. Self-distillation: Towards efficient
and compact neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4388–4403, 2021b.

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. Deep mutual
learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4320–4328, 2018.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K.,
Ji, C., Yan, Q., He, L., et al. A comprehensive survey on
pretrained foundation models: A history from bert to chatgpt.
arXiv preprint arXiv:2302.09419, 2023.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distillation for
heterogeneous federated learning. In International Conference
on Machine Learning, pp. 12878–12889. PMLR, 2021.

