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Abstract

Latent action models (LAMs) aim to learn action-relevant changes from unlabeled
videos by compressing changes between frames as latents. However, differences
between video frames can be caused by controllable changes as well as exogenous
noise, leading to an important concern – do latents capture the changes caused
by actions or irrelevant noise? This paper studies this issue analytically, present-
ing a linear model that encapsulates the essence of LAM learning, while being
tractable. This provides several insights, including connections between LAM and
principal component analysis (PCA), desiderata of the data-generating policy, and
justification of strategies to encourage learning controllable changes using data
augmentation, data cleaning, and auxiliary action-prediction. These findings are
validated through numerical simulations, as well as experiments in more realistic
settings. This investigation is the first to rigorously investigate how the structure of
observations, actions, and noise influence LAM learning.

1 Introduction

Latent action models (LAMs) aim to infer controllable action changes from streams of image
observations in an unsupervised manner (Rybkin et al., 2018; Menapace et al., 2021). This is valuable
because action-labeled data is typically expensive to source, while unlabeled videos are abundant.
Hence, it offers a route for embodied AI systems to learn from large unlabeled datasets, for instance
using the inferred latent actions as targets for pre-training a policy, while a small amount of labeled
data can be used to learn a mapping from latent to real action controls (Ye et al., 2024). This has
proven effective in learning from videos of 2D video games, robotics, and even broadcast tennis
footage (Menapace et al., 2021; Schmidt and Jiang, 2023; Bruce et al., 2024; Chen et al., 2024b; Ye
et al., 2024; Sun et al., 2024; Cui et al., 2025; Gao et al., 2025).

The success of such LAM-based recipes relies on the inferred latent action labels mapping to the
real control action signals of interest. However, there is concern that this may not always be the
case. For example, there is an intuition that LAM’s inferred latent ‘actions’ simply compress
differences between consecutive frames, even when control actions are not the cause of those
differences (McCarthy et al., 2024). As such, LAMs may only succeed in domains where the cause of
changes between observations can be fully attributed to the control action. A further point of dispute
is whether a bottleneck is required (Schmidt and Jiang, 2023).

To study these issues and more, this paper conducts a theoretical analysis of a linear version of LAM.
By retaining the architecture of recent LAM models, but swapping deep neural network components
with simpler linear layers, we preserve the fundamental challenge of LAM training in an analytically
tractable form. Our analysis of linear LAM firstly provides precise insights into when inferred
latent actions capture true control signals compared to noise, as well as what information is captured
by different components within LAM. Surprisingly, our analysis also reveals additional issues not
currently known to the LAM community – related to the over-parametrization property of LAM
and the randomness of data-generation policy. Finally, we propose and study potential solutions to
ameliorate these issues – data augmentation and predicting action as an auxiliary task.
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Figure 1: Linear LAM is an abstraction of the LAMs used in previous work. Inputting consecutive
observation pairs (o,o′), the LAMs output the second observation via a reconstruction loss, ∥ô′−o′∥22.
An information bottleneck tries to stop the direct copying of o′, with the expectation the latent z
will correspond to the control action a. Linear LAM captures the essence of LAM training whilst
being analytically tractable. The diagrams of previous LAMs are copied from their original papers:
LAPO (Schmidt and Jiang, 2023), LAPA (Ye et al., 2024), Moto (Chen et al., 2024c), Genie (Bruce
et al., 2024), AdaWorld (Gao et al., 2025), and Go-1 (AgiBot-World, 2025).

Concretely, this paper makes several key contributions.

1. Section 3 presents linear LAM, a tractable model preserving the essence of LAMs used in practice.

2. Section 4.1 shows linear LAM reduces to principal component analysis (PCA) on a mixture of
controllable changes and exogenous noise, under certain assumptions. Our analysis justifies the
practical use of LAM when the controllable action signals cause larger changes to observations
than the exogenous noise.

3. Section 4.2 shows correlation between observations and actions decreases LAM’s focus on learning
controllable changes. This suggests that higher randomness in data-generating policies benefits
LAM’s learning.

4. Section 4.3 validates that performing data augmentation during LAM training can mitigate the
over-parametrization issue and thus improve the semantics of the latent.

5. Section 4.4 finds that adding an action-prediction head encourages LAM to prioritize the learning
of controllable changes for the latent.

6. Section 5 verifies that the main findings based on linear LAM still hold on more realistic LAMs.

2 Related Work

The study of learning representations of real actions in reinforcement learning (RL) has a long history.
For instance, PG-RA (Chandak et al., 2019) clusters actions based on the similarity of their impact
on the state to improve generalization in the action space. LASER (Allshire et al., 2021) learns latent
actions through an encoder-decoder architecture trained to reconstruct real actions, resulting in higher
learning efficiency in RL. TAP (Jiang et al., 2022) learns the latent action that can help to reconstruct
the full trajectory (with state, action, and reward) condition on the state. EAR (Hua et al., 2022)
finds that the latent task embedding resulting from the training of multi-task policies turn out to be
good action representations with a geometrically and semantically meaningful structure. AD3 (Wang
et al., 2024) adopts an inverse dynamics model and a forward dynamics model to extract latent action,
similar to popular LAMs, but conditions these models on the real actions.

While the above papers learn action representations based on real actions, our paper focuses on
learning latent actions without access to the real action labels. Removing the need for action
labels during training is advantageous as it allows leveraging internet-scale video datasets in the
pre-training stage (Miech et al., 2019; Chen et al., 2024a; Pei et al., 2025; Wang et al., 2023) –
for example unlabeled demonstrations of humans completing diverse tasks. While high-quality
robotic datasets with action annotations exist (Vuong et al., 2023; Fang et al., 2023; Khazatsky et al.,
2024; AgiBot-World, 2025), they remain limited in scale. Such datasets can be integrated into the
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semi-supervised learning framework to extract latent actions (Nikulin et al., 2025) or the policy
fine-tuning stage (Schmidt and Jiang, 2023; Ye et al., 2024). An alternative approach aims to extract
pre-defined actions from observations using computer vision techniques (Mendonca et al., 2023).

Beginning from Rybkin et al. (2018), LAMs have featured an information bottleneck or auto-encoder
to allow learning in an unsupervised manner. ILPO (Edwards et al., 2019) learns latent actions
along with the training of a policy that outputs the latent action and a world model that conditions
on the latent action. Menapace et al. (2021) proposes a probabilistic action network that extracts a
discrete action label and a continuous action variability embedding from consecutive observations.
This network is trained jointly with an action decoder to generate video controlled by extracted
actions. While these works adopt a bottleneck in the learning of latent actions, their training losses
are complicated by involving policy learning or recurrent networks. LAPO (Schmidt and Jiang, 2023)
proposes a LAM design with an inverse dynamics model extracting a latent action and a forward
dynamics model that reconstructs the next observation based on the latent action. This forms the
template of the modern LAM. Many papers follow a similar architectures to LAPO with a discrete
latent action space such as FICC (Ye et al., 2022), Genie (Bruce et al., 2024), LAPA (Ye et al.,
2024), Moto (Chen et al., 2024c), IGOR (Chen et al., 2024b), Go-1 (AgiBot-World, 2025), and
GR001T N1 (Nvidia, 2025). However, there is a debate whether discrete latent actions are better
than continuous latent actions. For example, Nikulin et al. (2025) finds that using continuous latent
actions with a larger bottleneck can not only result in better predictability on real actions but also
lead to better performance for downstream policies. We consider continuous latent actions in our
linear LAM analysis while vector quantized latents are tested empirically in Section 5.

In contrast to the popularity of LAMs in recent foundation models for embodied AI, issues around
the objective, learnability, and robustness of LAM have received limited attention. Consequently, our
paper aims to investigate these issues.

3 Setup

This section broadly introduces the problem setting, goal and model used in recent LAM work in
practice. We then more formally detail these for the linear model to be used in subsequent analysis.
Finally, we outline the details of our simulation setup to be used in support of our later analysis.

3.1 LAMs in Practice

Setting. The setting tackled by recent LAM work assumes access to a large dataset of pairs of
observations and next observations D = {(oi,o′

i)}Ni=1 and only a small subset of it has action labels
Da = {(oi,o′

i,ai)}
Na
i=1 , with λ := |Da|/|D| ≪ 1. Note we drop the i subscript when we do not

need to refer to specific samples. In practice, o and o′ could be feature vectors extracted from the
original observations (Cui et al., 2025), and o could be a stack of historical observations to account
for partial observability (Bruce et al., 2024). The two datasets are assumed to come from the same
distribution in most LAM work (Menapace et al., 2021; Bruce et al., 2024; Ye et al., 2024)1.

Model. Recent LAM designs (Schmidt and Jiang, 2023; Bruce et al., 2024; Ye et al., 2024; Chen
et al., 2024b; AgiBot-World, 2025) (see Figure 1) take a pair of consecutive observations (o,o′) as
input, and output a latent z as well as a prediction of the next observation ô′. (We subsequently avoid
calling z ‘latent action’ to avoid confusion with the real action.)

LAMs are typically decomposed into an inverse dynamics model (IDM) and forward dynamics model
(FDM), implemented as deep neural networks, and trained via a reconstruction loss,

z = ψIDM(o,o′), ô′ = ψFDM(o, z), L := min
ψIDM,ψFDM

ED
[
∥ô′ − o′∥22

]
. (1)

where ψIDM contains a bottleneck so the dimension of z is smaller than that of o.

Use cases. We identify two primary downstream use cases of LAMs.

• The LAM latents can be used as input to a world model T̂ trained to generate future frames,
T̂ (o′|o, z) (Sun et al., 2024; Chen et al., 2024b; Bruce et al., 2024; Menapace et al., 2021). These

1Certain work explores mismatch case, e.g., D is human videos and Da is robotics data (Chen et al., 2024b).
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Figure 2: Overview of linear LAM. Grey blocks represent learnable parameter matrices, giving
rise to the predictive model ô′ = Ao + B(Co + Do′). Green illustrates linear LAM with data
augmentation to reduce the amount of information the latent contains about the observation (in
Section 4.3). Pink illustrate linear LAM with auxiliary action prediction to encourage the latent to
focus on the controllable actions and suppress the noise signal (in Section 4.4).

world models can generate higher-quality frames than the FDM in LAM, but have been used to
only qualitatively interpret the meaning of the learned latents.

• The LAM latents can be used as labels in the pre-training of a latent policy πlatent(ẑ|o) (similar
to behavior cloning on actions). This policy may later be mapped to real actions, πmap(â|ẑ)
(Bruce et al., 2024; Schmidt and Jiang, 2023), or be followed by a fine-tuning phase on real
actions (Schmidt and Jiang, 2023; Ye et al., 2024; Chen et al., 2024b).

In both use cases, it is hoped that the learned latents can be aligned with the true actions as closely as
possible. As in Schmidt and Jiang (2023), “our hypothesis is ... [this] may allow us to learn a latent
action representation with a structure closely corresponding to the true action space”.

3.2 Linear LAM

Setting. We conduct analysis in the controlled Markov process (CMP) framework (Puterman, 2014)
with (O,A, T ). At a given timestep, the agent receives observation o ∈ O and takes action a ∈ A.
The transition function describes the probability distribution over the next observation, T (o′|o,a).

We consider vector observations, O = Rdo (which could be thought of as image observations
processed with a pre-trained image encoder as in Cui et al. (2025); Chen et al. (2024b)). The action
space A = Rda has lower dimensionality than O, i.e., da ≪ do

2. These actions are mapped to create
controllable changes in observation space via an action effect matrix X ∈ Rdo×da , q = Xa.

We generally assume linear LAM cannot access the action a during the training, but we will make use
of it to evaluate the learned LAM in simulations. We choose the transition function to be an additive
combination of controllable changes q ∈ Rd (the state changes caused by the ego agent’s actions)
and exogenous noise ϵ ∈ Rd (representing environmental stochasticity or other agent’s actions), i.e.
with the next state generated via, o′ = o+ q + ϵ.

Model. For linear LAM, the IDM and FDM consist of linear mappings. Summarized in Figure 2, the
IDM and FDM are given by,

z = ψLinear
IDM (o,o′) := Co+Do′ (2)

ô′ = ψLinear
FDM (o, z) := Ao+Bz = Ao+B(Co+Do′), (3)

where z ∈ Z = Rdz with dz ≪ do is the latent. All matrices are learnable parameters, including
FDM parameters A ∈ Rdo×do , B ∈ Rdo×dz , and IDM parameters C,D ∈ Rdz×do .

As for practical LAM (Eq. 1), the linear LAM is trained via a reconstruction loss,

L(A,B,C,D) = E
[
∥ô′

i − o′
i∥22

]
. (4)

Appendix A summarizes the gap between linear and practical LAM.

2Discrete actions can be represented as one-hot vectors within Rda . While most of analysis (except that on
bottleneck) should also apply to discrete actions, we confine our analysis in continuous actions.
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Goal. Following our discussion of use-cases of LAM cases in Section 3.1, we interpret the desired
latents to contain as much information as possible about the real action, while minimizing the amount
of information about the exogenous noise and the observation. This can be formalized as,

LAM Objective := max
z

[I(z;a)− I(z; ϵ)− I(z;o)] , (5)

where I is mutual information. Hence, an ideal latent should contain all information about the action
label, and no other parts of the environment, consistent with intuitions of previous work – “biasing
[the latent] towards simpler representations is likely preferrable” (Schmidt and Jiang, 2023).

Whilst mutual information is typically a challenging quantity to measure, in our linear model we
can approximate this straightforwardly. After training the linear LAM via Eq. 4 and freezing
the parameters, we fit three additional linear layers predicting (q, ϵ,o) from z, to give (q̂, ϵ̂, ô)
respectively. Note that, under the assumption that the variables x and y are independent multivariate

Gaussian variables, the mutual information I(x,y) = −1

2
log

(
∥ŷ−y∥2

2

Var(y)

)
where ŷ is the least squares

estimate (LSE) of y based on x, and Var(·) indicates the total variance (see e.g., Chapter 8 of (Johnson
et al., 2002)) of a multivariate random variable. Hence, we can define an evaluation metric that
captures the objective of training linear LAM,

Linear LAM Objective (LLO) := max
z

[
−∥q̂ − q∥22

Var(q)
+

∥ϵ̂− ϵ∥22
Var(ϵ)

+
∥ô− o∥22
Var(o)

]
. (6)

Note that we get rid of the log(·) function wrapped around the MSE loss to better calculate the
values for this objective since the value range for the mutual information [0,+∞) is unbounded. This
objective is maximized when z perfectly predicts q while containing no information about ϵ and o,
resulting in the optimal value for LLO equal to 0 + 1 + 1 = 2.

4 Analysis

At times, we will present numerical simulations of linear LAM to visually communicate later analysis.
See the details of simulation in Appendix B and the code in supplementary.

4.1 Analysis 1: Linear LAM is PCA

This section first shows that training linear LAM is equivalent to performing PCA on the mixture of
controllable changes and exogenous noise. This requires that the controllable changes and exogenous
noise q, ϵ are uncorrelated with the observation o (Section 4.2 relaxes this assumption).

We discuss the insight that this connection provides, followed by an analysis of several important
cases covering specific settings of controllable changes and exogenous noise.

Proposition 4.1 (Linear LAM is PCA). Under the linear LAM model and setup defined in Section
3.2, and additionally assuming E[o(q + ϵ)T ] = 0, the objective of linear LAM is equivalent to
performing PCA on a mixture of controllable changes q and exogenous noise ϵ,

L = E
[
∥(BD − I)(q + ϵ)∥22

]
(7)

Note, BD is a low-rank matrix to capture the main components of q + ϵ. See proof in Appendix C.1.

Given that we have transformed the optimization problem of linear LAM into a PCA problem (which
can also be viewed as a linear auto-encoder), PCA’s property applies to linear LAM.

Proposition 4.2 (Linear LAM tries to capture q + ϵ). Denote the covariance matrix of q + ϵ as
Σq+ϵ = E[(q + ϵ)(q + ϵ)T ] and its eigenvalue decomposition Σq+ϵ = UΛUT with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λdo . Under the same conditions of Proposition 4.1, L is optimized when

1. B = Udz spans the subspace of the top dz principal components of Σq+ϵ where Udz
contains the first dz columns of U ;

2. D = UTdz such that the reconstruction BD(q + ϵ) = UdzU
T
dz
(q + ϵ) projects q + ϵ onto

the subspace spanned by Udz .
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Figure 3: LLO (Linear LAM objective (6), higher better) measured in three noise settings. (Left)
ϵ = 0. (Middle) ϵ is i.i.d. noise. (Right) ϵ contains the effect of other agents. Action MSE, noise
MSE, and observation MSE are the three terms in (6). We set real action dimension da = 8 and
exogenous action dimension db = 8 unless otherwise stated, and ensure q has unit variance.

The minimum loss is given by the sum of the eigenvalues of corresponding to the discarded principal
components L∗ =

∑do
i=dz+1 λi.

This proposition is equivalent to the Eckart–Young–Mirsky theorem (Eckart and Young, 1936) whose
proof can be found in Chapter 2.4 of Golub and Van Loan (2013).

Over-parameterization issue. We show that linear LAM is over-parameterized, with multiple
solutions of (A,B,C,D) able to minimize the reconstruction loss objective. Specifically, the latent
z = Co+Do′, in addition to capturing information about q and ϵ, may further contain information
about o. There is no detrimental effect provided the A matrix compensates to ‘knock out’ o’s
information in z. Concretely, there exists a family of solutions B(Co+Do′) = (q + ϵ) + αo and
A = (1−α)I for any α ∈ R such that ô′ = B(Co+Do′) +Ao = (q+ ϵ) + (1−α)o+αo = o′.

We will revisit this issue in Section 4.3, showing that data augmentation handles this over-
parameterization issue. For the purpose of our immediate analysis, we predict (q̂, ϵ̂, ô) from a
surrogate latent z̃ := B−1(ô′ − o) when calculating LLO to get around this issue. This surrogate la-
tent is the same as the original one when A = I , which is the case when data augmentation is adopted.
Hence, we have C = −D which indicates that the semantic meaning of the latent z = Co+Do′

remains the same (no movement) when o′ = o across different observations.

Case 1: ϵ = 0. In the absence of exogenous noise ϵ, linear LAM does capture the true action a in
the latent z, when the bottleneck dimension is set equal or larger than the action dimension.

When ϵ = 0 and q = Xa, the covariance matrix of Σq+ϵ = Σq = E[XaaTX] only has da non-zero
eigenvalues. Following Proposition 4.2, we can make the following conclusions.

• When dz ≥ da, the capacity of the latent is large enough to capture all the information about the
controllable change q, the minimum loss L∗ = 0, and LLO achieves the optimal.

• Specifically, when dz = da, the subspace spanned by the columns of B = Uda is the same to the
subspace spanned by the columns of action effect matrix X (by noting that UdaΛU

T
da

= Σq+ϵ =

XE[aaT ]XT ). In this case, the learned latent z (whose effect is interpreted by B) fully captures
the information of a (whose effect is X), and LLO is maximized. In other words, for this ideal
case linear LAM’s latent perfectly captures the information of the true action a without access to it.

• When dz < da, L∗ > 0 and this linear auto-encoder captures the first dz components in q.

We illustrate how LLO varies across different da and dz through numerical simulation in Figure 3
(left). The simulation validates that linear LAM is optimized in terms of LLO when dz ≥ da.

Case 2: ϵ is i.i.d. noise. We consider i.i.d. noise (independent and identically distributed), which may
be a realistic assumption in the case of sensors or image encoders. We assume ϵ is i.i.d. with zero-
mean E[ϵ] = 0 and isotropic covariance E[ϵϵT ] = σ2

iidI . Considering that q and ϵ are independent,
the covariance matrix Σq+ϵ can be eigenvalue decomposed as Σq+ϵ = UΓ0U

T = U0(Λ0+σ
2
iidI)U

T
0

where U0 and Λ0 are the eigenvectors and eigenvalues of Σq respectively (i.e., when ϵ = 0).
Combining the results in Proposition 4.2, we conclude that, when there is i.i.d. noise, 1) the FDM
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parameter B (and therefore the semantics of the latent since B interpret the latent) remains the
same, and 2) the loss increases since the eigenvalues increase. This conclusion is consistent with the
conclusion on the robustness of PCA (Anderson, 1963; Johnstone, 2001).

Figure 3 (middle) shows how LLO changes for Gaussian noise of differing variance. We observe that
linear LAM is robust to i.i.d. noise up to around σiid = 0.5 (when the noise intensity is half that of
the signal), linear LAM still succeeds with negligible gap to the optimal case.

Case 3: ϵ contains the effect of other agents. In many real-world datasets (such as Ego4d (Grauman
et al., 2022)), the change between two observations may not only be caused by the control action of
the ego-agent (e.g. joints of a robot arm), but additionally can be effected by exogenous noise, such as
‘other agents’ (e.g. a person walking in the background, camera shake). Compared with i.i.d. noise,
this noise is structured and would be predictable if the other agent’s control actions were available.

Here, we assume ϵ = Y b where Y ∈ Rdo×db is the exogenous effect matrix and b represents the
action taken by other agents. In this case, analysis similar to that of Case 1 concludes that linear
LAM will learn to capture effects with largest variances, no matter if they result from the controllable
action or other agents. Moreover, when the columns in Y are not orthogonal to that of X , the FDM
parameter B will be impacted by the exogenous noise.

Simulation results in Figure 3 (right) illustrate which part of information (the controllable q or the
noise ϵ) enters the latent when the latent dimension dz is increased. We observe that: 1) When the
variance of exogenous noise is smaller than q (i.e., σq = 1 > σexo = 0.5), linear LAM learns to fit
the controllable part first, and dz = da is still the optimal configuration. 2) When the variance of
noise exceeds that the signal q (i.e., σq = 1 < σexo = 2.0), linear LAM will first fit the noise, and
the latent fails to exclude the information of the noise no matter how we set dz . To alleviate this issue,
an obvious solution in practice is to preprocess training data to reduce significant noise components
(such as stabilizing camera shake).

4.2 Analysis 2: Effects of Data Collection Policy

Section 4.1 considered the case where both the controllable changes and the exogenous noise are
independent of the observation, i.e., E[o(q+ ϵ)T ] = 0. However, practical LAMs are usually trained
on data created by expert policies, e.g., robotic datasets often consist of human teleoperation. Within
such datasets, the observation is correlated with the action a, and thus the controllable change q,
resulting in E[o(q + ϵ)T ] ̸= 0. This section analyzes this case in linear LAM.

Specifically, we assume the data generating policy acts via a = Πdo + πππs where Πd ∈ Rda×do
represents the deterministic part of the policy and πs ∈ Rda represents the stochastic part of the
policy. We assume that o, ϵ, and πππs are uncorrelated, but there will be correlation between o and a.

In this case, since R[oqT ] ̸= 0, the cross term in the expansion of this loss cannot be ignored, and no
longer reduces to PCA. Letting Σo := E[ooT ] be the covariance matrix of the observation, we can
further solve for A by setting the partial derivative of the loss function w.r.t. A to zero, obtaining

A = I − (BC +BD)− ΣoΠ
T
dX

T (BD − I)TΣ−1
o . (8)

This differs from the previous result for the random policy where A = I − (BC + BD) by the
last term ΣoΠ

T
dX

T (BD − I)TΣ−1
o . The intuitive interpretation for this term is that A will capture

changes caused by the deterministic part of the policy (noting that BD − I can project the vectors
onto the orthogonal complement of the column space of B). This is problematic for LAM, since the
FDM can implicitly absorb deterministic parts of the policy, leaving capacity in the latent available to
absorb exogenous noise. Intuitively, if action a∗ is always selected for observation o∗ , this always
leads to o′∗. The FDM can simply learn that the mapping o∗ → o′∗, without the need for a latent z.

In our simulation, we control the randomness of the policy using a coefficient χ, and let a =
χΠdo + (1 − χ)πππs where Πd is a random projection matrix and πsπsπs is a standard Gaussian vector.
The simulation results in Figure 4 (left) indicate that the more deterministic the data collection policy
is, the less information about a is captured by z. Therefore, the analysis in this section suggests data
collection policies with higher randomness are preferred for LAM training. Trajectories collected by
deterministic expert policies may lead to poor quality LAMs.
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Figure 4: LLO (6) in three settings. (Left) Data generated from policies ranging from fully random to
fully deterministic. (Middle) Linear LAM trained w/ varying strength data augmentation. (Right)
Linear LAM trained w/ and w/o action prediction. We set da = 8 in the experiments.

4.3 Analysis 3: Improvements via Data Augmentation

This section analyzes the augmentation scheme used in Chen et al. (2024b), which will turn out
to resolve a key issue encountered in linear LAM (see the discussion on over-parameterization in
Section 4.1), where information about the observation o enters into the latent z.

The IGOR model (Chen et al., 2024b) applies one shared random crop to both inputs of the IDM,
and a second shared random crop applied to the FDM and reconstruction target. The intuition is
that “by using different croppings [for IDM and FDM], the model is encouraged to learn a more
semantically invariant latent action”. Our subsequent analysis shows this intuition is provably correct
in linear LAM, resulting in new terms to the loss that encourage removal of the latent of any semantic
information about the observation. Sun et al. (2024) also apply a similar scheme, with a single action
preserving crop applied to the IDM which makes it harder “to copy the appearance information
directly from the [IDM]”.

Data augmentation in linear LAM. We extend our linear LAM setup to include a data augmentation
operator Augi[o] := o+ κi that takes an observation as input and adds some random vector κ ∈ Rdo.
Augi[·] applies the same i-th operator to different variables, say Aug1[o] and Aug1[o

′] will apply a
consistent random variable κ1 to each observation.
Proposition 4.3 (Data augmentation addresses over-parameterization). With data augmentation,

z = ψLinear
IDM (Aug1[o],Aug1[o

′]1) := C(o+ κ1) +D(o′ + κ1) (9)

ô′ = ψLinear
FDM (Aug2[o], z) := A(o+ κ2) +Bz. (10)

and assuming E[o(q + ϵ)T ] = 0, optimizing the loss defined in (1) results in A = I and C +D = 0.

See Appendix C.2 for proof. What is the effect of encouraging A = I and C + D = 0? If, A is
the identity, all observation information flows directly through this matrix, and z need not carry
any additional information about o (given our additive transition function). Equivalently, setting
C +D = 0 cancels out o information in z.

z = C(o+ κ1) +D(o′ + κ1) = −D(o+ κ1) +D(o+ q + ϵ+ κ1) = D(q + ϵ) (11)

This condition improves the semantic meaning of the latent action across different observations. For
example, the zero latent z = 0 has the semantic meaning “the frame does not change from o to o′”,
which is consistent across different observations. Hence, this augmentation scheme is a mechanism
to remove information about o from z, explicitly minimizing I(z;o) in the original objective (5).

Simulation. We show the effect of data augmentation under different noise levels in Figure 4
(middle). Starting from here, the simulations calculate LLO based on the true latent z instead of the
pseudo-latent. Due to this change, even when there is no noise σiid = 0, the learned latent z cannot
perfectly predict the real action a without other information. However, adding an augmentation
vector with 0.1 magnitude variance (10% of the observation variance), greatly improves the latent
learned by linear LAM, achieving close to the ideal LLO.

Designing data augmentation. In our linear setting, we have designed the data augmentation κ
as additive and i.i.d. across its elements. This design is based on our knowledge that the semantic
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meaning for the frame change should be invariant to this data augmentation, i.e., o′ − o = (o′ +
κ) − (o + κ), since the dynamics are also additive. For real images, Chen et al. (2024b) adopt
random crops, reflecting a prior that the action is invariant to position (e.g., a robot closing its gripper
should produce the same latent action regardless of its location in the image). Further, the variance
of different augmentations determines how important this term is – a larger augmentation variance
enforces this constraint more strictly. In summary, our analysis justifies the practice of designing
data augmentations that capture a model designer’s domain knowledge about desired invariances to
improve the semantics of the learned latent.

4.4 Analysis 4: Improvements via Auxiliary Action Prediction

This section analyzes the setting when a small dataset of action labeled data Da is available during
training of the LAM. This can be used to help guide the latents to represent controllable changes
rather than exogenous noise. Specifically we consider the a simple auxiliary loss, with latents as input,
predicting the action labels when available. Nikulin et al. (2025) also provide empirically evidence to
show that this is a promising strategy to avoiding focus on ‘distractors’ present in the observations.

Action prediction in linear LAM. Consider a linear prediction head E ∈ Rda×dz at the latent
bottleneck, â = Ez, and a corresponding action reconstruction loss ∥â − a∥22, we optimize this
objective, La := ED

[
∥ô′ − o′∥22

]
+ λEDa

[
∥â− a∥22

]
and where λ = |Da|/|D|.

Proposition 4.4 (Action prediction can denoise). Following the conditions in Proposition 4.3 and
assuming E[qT ϵ] = 0 and dz ≥ da, optimizing La biases the encoder parameter perpendicular to
the noise. For an artificial case where λ→ +∞, we obtain perfect LAM with Dϵ = 000 and Bz = q.

We provide the proof in Appendix C.3. Note that we assume that ϵTX = 0, meaning that the action
effect q = Xa and the noise ϵ are independent. For example, this would hold in the case of table-top
manipulation with passers-by occasionally walking by in the background as the source of ϵ (cf. Case
3 in Section 4.1). The conclusion D ⊥ ϵ indicates that noise will not enter the latent (noting that
C = −D in this case).

Proposition 4.4 indicates that auxiliary action prediction helps linear LAM to reduce the noise in its
latents. Figure 4 (right) present our simulation, we apply different levels of ‘other agents’ noise (case
3 in Section 4.1) with the same settings in Figure 3 (right). Unlike Figure 3 (right), where σexo = 2.0
caused linear LAM to fail, now 1% of action labels in auxiliary action prediction leads to successful
learning. The simulation results indicate that only a small proportion of action labels are needed to
encourage the latent to focus on encoding real actions, and not noise.

5 Beyond Linear LAM Experiments

To test whether the theoretical insights from our linear LAM analysis hold in more realistic settings,
we ran empirical experiments using a more realistic LAM setup, on a carefully designed synthetic
dataset, which allows us to carefully measures proxies for LLO. We use small 4×4 images as
input (instead of vectors), non-linear CNNs in IDM and FDM (instead of linear layers), and vector
quantization (instead of using a reduced linear dimension as a bottleneck). We will show that the
main conclusions in our paper still hold in this more complex setting.

Dataset. We designed a 4×4 grid-world style synthetic dataset. The top 3×4 grid of the observation
contains a square (intensity=1.0) that can be controlled with five actions (up, down, left, right, and
stay still). The bottom 1× 4 grid of the observation contains random Bernoulli noise (with prob 0.5).
An intensity parameter controls the noise magnitude (none=0.0, low=1.0, high=2.0).

Policy. By default, we use a uniform policy, where each action is equally probable. For one
experiment, we also use a correlated policy, where state and action are correlated. With 95% prob, the
action moves the square on a fixed snaking pattern through the grid, and with 5% chance a random
action is selected.

Model. For the IDM, we use a small CNN to encode o and o′, followed by a VQ bottleneck
with codebook size of 5 outputting the latent. Finally, for the FDM, a separate UNet takes the
latent and previous observation o to output the predicted ô′. When predicting actions, codes are
preassigned to actions, and latents are trained to minimize L2 distance to their true action code. For
data augmentation, we shift the 4× 4 image left/right for one grid with periodic padding. Models
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Setting Controllable loss (↓) Stochastic loss (↑)

No noise 0.624 ± 0.087 –
Low noise 0.781 ± 0.079 0.739 ± 0.047
High noise 1.046 ± 0.017 0.607 ± 0.021

Uniform policy 0.781 ± 0.079 0.739 ± 0.047
Correlated policy 1.997 ± 0.022 0.599 ± 0.036

No data augmentation 0.781 ± 0.079 0.739 ± 0.047
Data augmentation 0.415 ± 0.020 0.898 ± 0.049

No action prediction 0.781 ± 0.079 0.739 ± 0.047
1% action prediction 0.295 ± 0.011 0.986 ± 0.002

Table 1: Ablations of performance of practical LAM under different settings. We present the mean
and standard errors of controllable loss (measures prediction loss of true action from latent, lower
means more action information) and stochastic loss (measures prediction loss of noise from latents,
higher means less noise information) over five seeds. Each group corresponds to the analysis of one
sub-section in Section 4 and we bold the losses of the better variant in each group.

.

were trained for 16k updates with the Adam optimizer. Unless specified, we use low stochastic noise,
no action prediction, no data augmentation, and five codebook vectors.

Evaluation. Not being linear, it is not possible to measure the mutual information between latent
and quantities of interest exactly. Instead, since by design the observation separates the controllable
(top half) from stochastic (bottom half) changes, we measure the reconstruction loss on the relevant
portion of the observation to assess how what information the latent has captured following training.
A lower controllable loss means the latent contains more information about the action, and lower
stochastic loss means more noise has been captured. Similar to LLO, this is normalized by the
variance of the signal. Note there is unfortunately no straightforward way to measure the information
about the observation o in the latent for this non-linear case.

Results. We present experiment results containing controllable loss and stochastic loss in Table 1.
Firstly, we train vanilla LAM on different noise levels. Results show that as noise is increased
from none to high, the action information in the latent decreases (increasing controllable loss). At
the same time, the information about the stochastic noise increases (decreasing stochastic loss).
This is consistent with our linear LAM theory in Section 4.1, that latents encode whatever leads to
most variance. Secondly, we see that switching from a uniform to a correlated policy reduces the
information about actions in the latents, while increasing the information about stochastic noise. This
is predicted by our linear LAM theory in Section 4.2, that deterministic data collection policy can
lead to degenerated performance. Thirdly, we see that data augmentation improves LAM learning.
This is consistent with the conclusion in Section 4.3, that data augmentation can help LAM learning.
Finally, we show that incorporating 1% of actions labels into the training process improves over
vanilla LAM by increasing information about actions, and reducing information about noise. This is
consistent with the conclusion in Section 4.4, that predicting true actions improves LAM learning.

6 Conclusion

Latent action models (LAMs) are increasingly used in the pre-training phase of embodied AI models.
However, they have so far been intuitively and empirically motivated, without thorough analysis
into their learnability. This paper bridges this gap by proposing to study LAMs through a simple
model capturing the essence of LAM training while remaining mathematically tractable. Through
our analysis of linear LAM, we made several observations, including showing that under certain
assumptions, it corresponds precisely to PCA. In several noise settings, linear LAM leads to recovery
of the true action – this supports the use of real-world LAM in low noise settings, as well as the
application of preprocessing steps to reduce noise in a dataset. However, we also showed that
when the main cause of variation between consecutive observations is not the controllable signal,
LAM latents will capture noise rather than action information. We observed a further danger so far
undocumented in the literature – a lack of randomization in a data collection policy can harm the
latents learned by LAM. Finally, we provided analytical results justifying techniques emerging in the
LAM literature to improve the quality of latents learned – data augmentation and auxiliary action
prediction.
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A From practical LAM to linear LAM.

Our goal in designing linear LAM was to preserve the key features of LAMs in practice, while
making the resulting model as simple as possible. Here we remark on similarities and differences.

• Function approximation. Linear LAM uses linear layers, while practical LAM uses deep neural
networks. However, linear LAM is compatible with input vectors processed by other non-linear
pre-trained image encoders.

• Bottleneck. Both models have an information bottleneck between in the IDM but this is implemented
in different ways. Practical LAMs usually adopt vector quantization Van Den Oord et al. (2017),
while linear LAM uses a low continuous dimension dz ≪ do.

• Additive changes. We formulate changes between observations as additions of controllable changes
and exogenous noise. This additive structure provides the simplest combination of two elements
which we believe are a primary concern of whether LAM’s latents actually represent actions.

• Noise. While our model constrains the noise as additive, it does not make further assumptions. We
later analyze realistic cases corresponding to real world scenarios, such as when action and noise
are correlated, and action and observations are correlated.

B Simulation Set-ups

We adopt the following setting unless otherwise stated. We provide the source code in the appendix.

• Observations. Observations are sampled from the standard normal distribution, o ∼ N (0, I) with
I as the identity matrix. Note that Var(o) = 1 (i.e., each element in o has unit variance). We set
the dimension of the observations do = 128.

• Actions. We use continuous actions also sampled from a standard normal distribution with di-
mensionality da, so a ∼ N (0, I). Note that Var(a) = 1. We set da = 8 unless otherwise
stated.

• Controllable changes. The action effect matrixX that maps the action a to the controllable changes
q, is chosen as a random orthogonal matrix (using QR decomposition), subsequently normalized to
ensure Var(q) = 1.

• i.i.d. noise. In our simulation we use isotropic Gaussian ϵ ∼ N (0, σ2
ϵ I) with variance σ2

iid as the
i.i.d. noise. For this noise, Var(ϵ) = σ2

iid.

• Exogenous noise. We also consider the noise induced by other agents ϵ = Y bbb = σexoY0bbb where
bbb is other agents’ action, Y is the action effect matrix of other agents, and Y0 is the normalized
matrix of Y0. Similarly, Y0 is chosen as a random orthogonal matrix using QR decomposition to
ensure that Var(ϵ) = σ2

exo.

• Optimization. We implement our system in PyTorch, optimizing trainable parameters via stochastic
gradient descent with the Adam optimizer with batch size 128. We use the default learning rate and
run for 4,000 steps to ensure convergence.

• Evaluation. Our use the quantity defined in (6) as the default evaluation metric. For the experiments
that do not involve noise, we set normalized MSE for noise to 1.

• Data augmentation. Data augmentation is a trick that may improve the learnability of LAM
mentioned in several previous papers (Chen et al., 2024b; Sun et al., 2024). We implement
data augmentation by adding a Gaussian noise κ ∼ N (0, |κ|2I) for linear LAM. Note that
Var(κ) = |κ|2. By default data augmentation is turned off, except for Figure 4 (middle and right).

• Action prediction. Action prediction is another trick proposed in the previous paper (Nikulin et al.,
2025). We implement action prediction by predicting the true action label based on the latent with
a learnable linear transformation for a small proportion of the data samples. We denote the ratio
of the samples that we access their action labels as λ. We find that setting λ = 1% is enough. By
default action prediction is turned off, except for Figure 4 (right).
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C Proofs

C.1 Proof of Proposition 4.1

Proof. Expand the loss function in (4) with the definitions of ô′ (3) and o′ (o′ = o+ q + ϵ), then
rearrange (ignoring the expectation outside the RHS).

L =∥o′ − ô′∥22 (12)

=∥o′ − (Ao+BCo+BDo′)∥22 (13)

=∥(o+ q + ϵ)− (Ao+BCo+BD(o+ q + ϵ))∥22 (14)

=∥(A+BC +BD − I)o+ (BD − I)(q + ϵ)∥22 (15)

=∥(A+BC +BD − I)o∥22 + ∥(BD − I)(q + ϵ)∥22
+ 2oT (A+BC +BD − I)T (BD − I)(q + ϵ) (16)

=∥(A+BC +BD − I)o∥22 + ∥(BD − I)(q + ϵ)∥22
+ 2Tr

(
(A+BC +BD − I)o(q + ϵ)T (BD − I)

)
(17)

Recall that this loss L is found within an expectation in (4). By assumption E[o(q + ϵ)T ] = 0 and
the final term can be ignored (since both expectation and trace are additive).

L = E
[
∥(A+BC +BD − I)o∥22

]
+ E

[
∥(BD − I)(q + ϵ)∥22

]
(18)

Regarding the first term, note that A is full rank do while BC and BD are of rank dz . Since A
only appears in this term and it is of greater or equal rank than BD + BD, it’s optimal value is
A = I −B(C +D), setting the first term is zero. Hence we are left with the middle term.

L = ∥(BD − I)(q + ϵ)∥22 (19)

Note that, under the condition of Proposition 4.1, (A,B,C,D) are over-parameterized. When we
adopting data augmentation in Proposition 4.3, we obtain A = I and C +D = 0, which refines how
the condition A = I −B(C +D) is satisfied.

C.2 Proof of Proposition 4.3

We start by expanding the loss defined in (1) with the data augmentation scheme, and unpack (ignoring
the expectation outside the RHS).

L = ∥Aug2[o
′]− ô′∥22 (20)

= ∥o′ + κ2 − (A(o+ κ2) +B(C(o+ κ1) +D(o′ + κ1)))∥22 (21)

= ∥(o+ q + ϵ) + κ2 − (A(o+ κ2) +B(C(o+ κ1) +D(o+ q + ϵ+ κ1)))∥22 (22)

= ∥(A+BC +BD − I)o+ (BD − I)(q + ϵ) + (BC +BD)κ1 + (I −A)κ2∥22 (23)

= ∥(BD − I)(q + ϵ)∥22 + ∥(A+BC +BD − I)o∥22
+ ∥B(C +D)κ1∥22 + ∥(I −A)κ2∥22 (24)

Where the last line follows since κ1 and κ2 are sampled independently of all other terms and
E[oT (q + ϵ)] = 0. Hence, we are left with the vanilla linear LAM loss in (15) plus two additional
terms.

Minimizing this function can be achieved by exactly setting A = I and C = −D, which zeros
the last three terms simultaneously. In this case, the optimization problem again reduces to PCA
∥(BD − I)(q + ϵ)∥22.

Discussion. In the correlated case E[oT (q + ϵ)] ̸= 0, when the third term (the cross term) in (17)
cannot be ignored, nevertheless there is encouragement to reach A = I and C = −D.
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C.3 Proof of Proposition 4.4

Based on the conclusion in Proposition 4.3, optimizing for the first term in La results in A = I and
C = −D. We consider the case where D and Da come from the same distribution and the availability
of action labels are uniformly random. Therefore, we can ignore the expectation outside the RHS (for
simplicity) and re-write the loss as,

La = ∥(BD − I)(q + ϵ)∥22 + λ∥ED (q + ϵ)− a∥22 (25)

= ∥(BD − I)q∥22 + ∥(BD − I)ϵ∥22 + λ∥EDq − a∥22 + λ∥EDϵ∥22 (26)

= ∥(BDX −X)a∥22 + ∥(BD − I)ϵ∥22 + λ∥(EDX − Ida)a∥22 + λ∥EDϵ∥22 (27)

The second line leverage the fact that E[qT ϵ] = 0. We decompose X as X = UΣV T with
U ∈ Rdo×da (which spans the column space of X), Σ ∈ Rda×da , and V ∈ Rda×da .

We will show that, when λ → +∞, D =

[
UT

0

]
, B = [U, ∗], and E = [V Σ−1, ∗] minimizes La

where ∗ indicates arbitrary entries and ∗ vanishes when dz = da.

First, this solution zeros the last two terms. For the last term, Dϵ =

[
UT

0

]
ϵ = 0 since ϵTX = 0

and U spans the column space of X . For the third term, EDX = [V Σ−1, ∗]
[
UT

0

]
UΣV T = Ida .

Then, since we have determined D, the second term becomes ∥(BD− I)ϵ∥22 = ∥ϵ∥22. We can choose

B = [U, ∗] to zero the first term since BDX = [U, ∗]
[
UT

0

]
X = X . In this way, we obtain the

minimal loss L∗
a = ∥ϵ∥22. We can also verify that Bz = B(Co+Do′) = BDq = UUTq = q.

Though the λ→ +∞ setting is artificial, the analysis show that a positive λ will bias the encoder D
to capture less about the noise ϵ and more about the signal q (or a).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose and analyze linear LAM to provide insight for its practical usage
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In our appendix, we discuss there exists gap between linear LAM and its
practical version.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have stated the assumptions and provide proof in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the experiment setting in the appendix and provide the code as
supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We de not need external data and provide the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experiment details in the main text and the appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We results are mostly qualitative and reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments only need a minimal computation set-up (e.g., a laptop).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical work and does not apply for a discussion on immediate
societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No model or data is released.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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