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Abstract

Latent action models (LAMs) aim to learn action-relevant changes from unlabeled
videos by compressing changes between frames as latents. However, differences
between video frames can be caused by controllable changes as well as exogenous
noise, leading to an important concern – do latents capture the changes caused
by actions or irrelevant noise? This paper studies this issue analytically, present-
ing a linear model that encapsulates the essence of LAM learning, while being
tractable. This provides several insights, including connections between LAM
and principal component analysis (PCA), desiderata of the data-generating policy,
and justification of strategies to encourage learning controllable changes using
data augmentation, data cleaning, and auxiliary action-prediction. We also provide
illustrative results based on numerical simulation, shedding light on the specific
structure of observations, actions, and noise in data that influence LAM learning.

1 Introduction

Latent action models (LAMs) aim to infer controllable action changes from streams of image
observations in an unsupervised manner (Rybkin et al., 2018; Menapace et al., 2021). This is valuable
because action-labeled data is typically expensive to source, while unlabeled videos are abundant.
Hence, it offers a route for embodied AI systems to learn from large unlabeled datasets, for instance
using the inferred latent actions as targets for pre-training a policy, while a small amount of labeled
data can be used to learn a mapping from latent to real action controls (Ye et al., 2024). This has
proven effective in learning from videos of 2D video games, robotics, and even broadcast tennis
footage (Menapace et al., 2021; Schmidt and Jiang, 2023; Bruce et al., 2024; Chen et al., 2024b; Ye
et al., 2024; Sun et al., 2024; Cui et al., 2025; Gao et al., 2025).

The success of such LAM-based recipes relies on the inferred latent action labels mapping to the
real control action signals of interest. However, there is concern that this may not always be the
case. For example, there is an intuition that LAM’s inferred latent ‘actions’ simply compress
differences between consecutive frames, even when control actions are not the cause of those
differences (McCarthy et al., 2024). As such, LAMs may only succeed in domains where the cause of
changes between observations can be fully attributed to the control action. A further point of dispute
is whether a bottleneck is required (Schmidt and Jiang, 2023).

To study these issues and more, this paper conducts a theoretical analysis of a linear version of LAM.
By retaining the architecture of recent LAM models, but swapping deep neural network components
with simpler linear layers, we preserve the fundamental challenge of LAM training in an analytically
tractable form. Our analysis of linear LAM firstly provides precise insights into when inferred
latent actions capture true control signals compared to noise, as well as what information is captured
by different components within LAM. Surprisingly, our analysis also reveals additional issues not
currently known to the LAM community – related to the over-parametrization property of LAM
and the randomness of data-generation policy. Finally, we propose and study potential solutions to
ameliorate these issues – data augmentation and predicting action as an auxiliary task.
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Figure 1: Linear LAM is an abstraction of the LAMs used in previous work. Inputting consecutive
observation pairs (o,o′), the LAMs output the second observation via a reconstruction loss, ∥ô′−o′∥22.
An information bottleneck tries to stop the direct copying of o′, with the expectation the latent z
will correspond to the control action a. Linear LAM captures the essence of LAM training whilst
being analytically tractable. The diagrams of previous LAMs are copied from their original papers:
LAPO (Schmidt and Jiang, 2023), LAPA (Ye et al., 2024), Moto (Chen et al., 2024c), Genie (Bruce
et al., 2024), AdaWorld (Gao et al., 2025), and Go-1 (AgiBot-World, 2025).

Concretely, this paper makes several key contributions.

1. Section 3 presents linear LAM, a tractable model preserving the essence of LAMs used in practice.

2. Section 4.1 shows linear LAM reduces to principal component analysis (PCA) on a mixture of
controllable changes and exogenous noise, under certain assumptions. Our analysis justifies the
practical use of LAM when the controllable action signals cause larger changes to observations
than the exogenous noise.

3. Section 4.2 shows correlation between observations and actions decreases LAM’s focus on learning
controllable changes. This suggests that higher randomness in data-generating policies benefits
LAM’s learning.

4. Section 4.3 validates that performing data augmentation during LAM training can mitigate the
over-parametrization issue and thus improve the semantics of the latent.

5. Section 4.4 finds that adding an action-prediction head encourages LAM to prioritize the learning
of controllable changes for the latent.

6. Section 5 verifies that the main findings based on linear LAM still hold on LAMs in practice.

2 Related Work

The study of learning representations of real actions in reinforcement learning (RL) has a long history.
For instance, PG-RA (Chandak et al., 2019) clusters actions based on the similarity of their impact
on the state to improve generalization in the action space. LASER (Allshire et al., 2021) learns latent
actions through an encoder-decoder architecture trained to reconstruct real actions, resulting in higher
learning efficiency in RL. TAP (Jiang et al., 2022) learns the latent action that can help to reconstruct
the full trajectory (with state, action, and reward) condition on the state. EAR (Hua et al., 2022)
finds that the latent task embedding resulting from the training of multi-task policies turn out to be
good action representations with a geometrically and semantically meaningful structure. AD3 (Wang
et al., 2024) adopts an inverse dynamics model and a forward dynamics model to extract latent action,
similar to popular LAMs, but conditions these models on the real actions.

Different from the above papers that learn action representation based on real actions, our paper
focuses on the model where the latent action is learned without access to the real action labels.
Removing the need for action labels during training is advantageous as it allows leveraging internet-
scale video datasets in the pre-training stage (Miech et al., 2019; Chen et al., 2024a; Pei et al., 2025;
Wang et al., 2023) – unlocking the value of diverse expert demonstrations without action labels.
While high-quality robotic datasets with action annotations exist (Vuong et al., 2023; Fang et al.,
2023; Khazatsky et al., 2024; AgiBot-World, 2025), they remain limited in scale. Such datasets can be
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integrated into the semi-supervised learning framework to extract latent actions (Nikulin et al., 2025)
or the policy fine-tuning stage (Schmidt and Jiang, 2023; Ye et al., 2024). An alternative approach
aims to extract pre-defined actions from observations using computer vision techniques (Mendonca
et al., 2023).

Beginning from Rybkin et al. (2018), LAMs have featured an information bottleneck or auto-encoder
to allow learning in an unsupervised manner. ILPO (Edwards et al., 2019) learns latent actions
along with the training of a policy that outputs the latent action and a world model that conditions
on the latent action. Menapace et al. (2021) proposes a probabilistic action network that extracts a
discrete action label and a continuous action variability embedding from consecutive observations.
This network is trained jointly with an action decoder to generate video controlled by extracted
actions. While these works adopt a bottleneck in the learning of latent actions, their training losses
are complicated by involving policy learning or recurrent networks. LAPO (Schmidt and Jiang,
2023) proposes an LAM design with a inverse dynamics model that extracts the latent action and
a forward dynamics model that reconstructs the next observation based on the latent action. This
marks the template of the modern LAM. Many papers follow a similar architectures to LAPO with a
discrete latent action space such as FICC (Ye et al., 2022), Genie (Bruce et al., 2024), LAPA (Ye
et al., 2024), Moto (Chen et al., 2024c), IGOR (Chen et al., 2024b), Go-1 (AgiBot-World, 2025), and
GR001T N1 (Nvidia, 2025). However, there is a debate whether discrete latent actions are better
than continuous latent actions. For example, Nikulin et al. (2025) finds that using continuous latent
actions with a larger bottleneck can not only result in better predictability on real actions but also
lead to better performance for downstream policies. We consider continuous latent actions in our
paper and leave the analysis of vector quantized latent action to future work.

In contrast to the popularity of LAMs in recent foundation models for embodied AI, issues around
the objective, learnability, and robustness of LAM have received limited attention. Consequently, our
paper aims to investigate these issues.

3 Setup

This section broadly introduces the problem setting, goal and model used in recent LAM work in
practice. We then more formally detail these for the linear model to be used in subsequent analysis.
Finally, we outline the details of our simulation setup to be used in support of our later analysis.

3.1 LAMs in Practice

Setting. The setting tackled by recent LAM work assumes access to a large dataset of pairs of
observations and next observations D = {(oi,o′

i)}Ni=1 and only a small subset of it has action labels
Da = {(oi,o′

i,ai)}
Na
i=1 , with λ := |Da|/|D| ≪ 1. Note we drop the i subscript when we do not

need to refer to specific samples. In practice, o and o′ could be feature vectors extracted from the
original observations (Cui et al., 2025), and o could be a stack of historical observations to account
for partial observability (Bruce et al., 2024). The two datasets are assumed to come from the same
distribution in most LAM work (Menapace et al., 2021; Bruce et al., 2024; Ye et al., 2024)1.

Model. Recent LAM designs (Schmidt and Jiang, 2023; Bruce et al., 2024; Ye et al., 2024; Chen
et al., 2024b; AgiBot-World, 2025) (see Figure 1) take a pair of consecutive observations (o,o′) as
input, and output a latent z as well as a prediction of the next observation ô′. (We subsequently avoid
calling z ‘latent action’ to avoid confusion with the real action.)

LAMs are typically decomposed into an inverse dynamics model (IDM) and forward dynamics model
(FDM), implemented as deep neural networks, and trained via a reconstruction loss,

z = ψIDM(o,o′), ô′ = ψFDM(o, z), L := min
ψIDM,ψFDM

ED
[
∥ô′ − o′∥22

]
. (1)

where ψIDM contains a bottleneck so the dimension of z is smaller than that of o.

Use cases. We identify two primary downstream use cases of LAMs.

• The LAM latents can be used as input to a world model T̂ trained to generate future frames,
T̂ (o′|o, z) (Sun et al., 2024; Chen et al., 2024b; Bruce et al., 2024; Menapace et al., 2021). These

1Certain work explores mismatch case, e.g., D is human videos and Da is robotics data (Chen et al., 2024b).
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Figure 2: Overview of linear LAM. Grey blocks represent learnable parameter matrices, giving
rise to the predictive model ô′ = Ao+B(Co+Do′). The green parts illustrate linear LAM with
data augmentation to reduce the amount of information the latent contains about the observation (in
Section 4.3). The red parts illustrate linear LAM with auxiliary action prediction head to encourage
the latent to focus on the controllable actions and suppress the noise signal (in Section 4.4).

world models can generate higher-quality frames than the FDM in LAM, but have been used to
only qualitatively interpret the meaning of the learned latents.

• The LAM latents can be used as labels in the pre-training of a latent policy πlatent(ẑ|o) (similar
to behavior cloning on actions). This policy may later be mapped to real actions, πmap(â|ẑ)
(Bruce et al., 2024; Schmidt and Jiang, 2023), or be followed by a fine-tuning phase on real
actions (Schmidt and Jiang, 2023; Ye et al., 2024; Chen et al., 2024b).

In both use cases, it is hoped that the learned latents can be aligned with the true actions as closely as
possible. As in Schmidt and Jiang (2023), “our hypothesis is ... [this] may allow us to learn a latent
action representation with a structure closely corresponding to the true action space”.

3.2 Linear LAM

Setting. We conduct analysis in the controlled Markov process (CMP) framework (Puterman, 2014)
with (O,A, T ). At a given timestep, the agent receives observation o ∈ O and takes action a ∈ A.
The transition function describes the probability distribution over the next observation, T (o′|o,a).

We consider vector observations, O = Rdo (which could be thought of as image observations
processed with a pre-trained image encoder as in Cui et al. (2025); Chen et al. (2024b)). The action
space A = Rda has lower dimensionality than O, i.e., da ≪ do

2. These actions are mapped to create
controllable changes in observation space via an action effect matrix X ∈ Rdo×da , q = Xa.

We generally assume linear LAM cannot access the action a during the training, but we will make use
of it to evaluate the learned LAM in simulations. We choose the transition function to be an additive
combination of controllable changes q ∈ Rd (the state changes caused by the ego agent’s actions)
and exogenous noise ϵ ∈ Rd (representing environmental stochasticity or other agent’s actions), i.e.
with the next state generated via, o′ = o+ q + ϵ.

Model. For linear LAM, the IDM and FDM consist of linear mappings. Summarized in Figure 2, the
IDM and FDM are given by,

z = ψLinear
IDM (o,o′) := Co+Do′ (2)

ô′ = ψLinear
FDM (o, z) := Ao+Bz = Ao+B(Co+Do′), (3)

where z ∈ Z = Rdz with dz ≪ do is the latent. All matrices are learnable parameters, including
FDM parameters A ∈ Rdo×do , B ∈ Rdo×dz , and IDM parameters C,D ∈ Rdz×do .

As for practical LAM (Eq. 1), the linear LAM is trained via a reconstruction loss,

L(A,B,C,D) = E
[
∥ô′

i − o′
i∥22

]
. (4)

Appendix A summarizes the gap between linear and practical LAM.

2Discrete actions can be represented as one-hot vectors within Rda . While most of analysis (except that on
bottleneck) should also apply to discrete actions, we confine our analysis in continuous actions.
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Goal. Following our discussion of use-cases of LAM cases in Section 3.1, we interpret the desired
latents to contain as much information as possible about the real action, while minimizing the amount
of information about the exogenous noise and the observation. This can be formalized as,

LAM Objective := max
z

[I(z;a)− I(z; ϵ)− I(z;o)] , (5)

where I is mutual information. Hence, an ideal latent should contain all information about the action
label, and no other parts of the environment, consistent with intuitions of previous work – “biasing
[the latent] towards simpler representations is likely preferrable” (Schmidt and Jiang, 2023).

Whilst mutual information is typically a challenging quantity to measure, in our linear model we
can approximate this straightforwardly. After training the linear LAM via Eq. 4 and freezing
the parameters, we fit three additional linear layers predicting (q, ϵ,o) from z, to give (q̂, ϵ̂, ô)
respectively. Note that, under the assumption that the variables x and y are independent multivariate

Gaussian variables, the mutual information I(x,y) = −1

2
log

(
∥ŷ−y∥2

2

Var(y)

)
where ŷ is the least squares

estimate (LSE) of y based on x, and Var(·) indicates the total variance (see e.g., Chapter 8 of (Johnson
et al., 2002)) of a multivariate random variable. Hence, we can define an evaluation metric that
captures the objective of training linear LAM,

Linear LAM Objective (LLO) := max
z

[
−∥q̂ − q∥22

Var(q)
+

∥ϵ̂− ϵ∥22
Var(ϵ)

+
∥ô− o∥22
Var(o)

]
. (6)

Note that we get rid of the log(·) function wrapped around the MSE loss to better calculate the
values for this objective since the value range for the mutual information [0,+∞) is unbounded. This
objective is maximized when z perfectly predicts q while containing no information about ϵ and o,
resulting in the optimal value for LLO equal to 0 + 1 + 1 = 2.

4 Analysis

At times, we will present numerical simulations of linear LAM to visually communicate later analysis.
See the details of simulation in Appendix B and the code in supplementary.

4.1 Analysis 1: Linear LAM is PCA

This section first shows that training linear LAM is equivalent to performing PCA on the mixture of
controllable changes and exogenous noise. This requires that the controllable changes and exogenous
noise q, ϵ are uncorrelated with the observation o (Section 4.2 relaxes this assumption).

We discuss the insight that this connection provides, followed by an analysis of several important
cases covering specific settings of controllable changes and exogenous noise

Proposition 4.1 (Linear LAM is PCA). Under the linear LAM model and setup defined in Section
3.2, and additionally assuming E[o(q + ϵ)T ] = 0, the objective of linear LAM is equivalent to
performing PCA on a mixture of controllable changes q and exogenous noise ϵ,

L = E
[
∥(BD − I)(q + ϵ)∥22

]
(7)

Note, BD is a low-rank matrix to capture the main components of q + ϵ. See proof in Appendix C.1.

Given that we have transformed the optimization problem of linear LAM into a PCA problem (which
can also be viewed as a linear auto-encoder), PCA’s property applies to linear LAM.

Proposition 4.2 (Linear LAM tries to capture q + ϵ). Denote the covariance matrix of q + ϵ as
Σq+ϵ = E[(q + ϵ)(q + ϵ)T ] and its eigenvalue decomposition Σq+ϵ = UΛUT with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λdo . Under the same conditions of Proposition 4.1, L is optimized when

1. B = Udz spans the subspace of the top dz principal components of Σq+ϵ where Udz
contains the first dz columns of U ;

2. D = UTdz such that the reconstruction BD(q + ϵ) = UdzU
T
dz
(q + ϵ) projects q + ϵ onto

the subspace spanned by Udz .
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Figure 3: LLO (Linear LAM objective (6), higher better) measured in three noise settings. (Left)
ϵ = 0. (Middle) ϵ is i.i.d. noise. (Right) ϵ contains the effect of other agents. Action MSE, noise
MSE, and observation MSE are the three terms in (6). We set real action dimension da = 8 and
exogenous action dimension db = 8 unless otherwise stated, and ensure q has unit variance.

The minimum loss is given by the sum of the eigenvalues of corresponding to the discarded principal
components L∗ =

∑do
i=dz+1 λi.

This proposition is equivalent to the Eckart–Young–Mirsky theorem (Eckart and Young, 1936) whose
proof can be found in Chapter 2.4 of Golub and Van Loan (2013).

Over-parameterization issue. We show that linear LAM is over-parameterized, with multiple
solutions of (A,B,C,D) able to minimize the reconstruction loss objective. Specifically, the latent
z = Co+Do′, in addition to capturing information about q and ϵ, may further contain information
about o. There is no detrimental effect provided the A matrix compensates to ‘knock out’ o’s
information in z. Concretely, there exists a family of solutions B(Co+Do′) = (q + ϵ) + αo and
A = (1−α)I for any α ∈ R such that ô′ = B(Co+Do′) +Ao = (q+ ϵ) + (1−α)o+αo = o′.

We will revisit this issue in Section 4.3, showing that data augmentation handles this over-
parameterization issue. For the purpose of our immediate analysis, we predict (q̂, ϵ̂, ô) from a
surrogate latent z̃ := B−1(ô′ − o) when calculating LLO to get around this issue. This surrogate la-
tent is the same as the original one when A = I , which is the case when data augmentation is adopted.
Hence, we have C = −D which indicates that the semantic meaning of the latent z = Co+Do′

remains the same (no movement) when o′ = o across different observations.

Case 1: ϵ = 0. In the absence of exogenous noise ϵ, linear LAM does capture the true action a in
the latent z, when the bottleneck dimension is set equal or larger than the action dimension.

When ϵ = 0 and q = Xa, the covariance matrix of Σq+ϵ = Σq = E[XaaTX] only has da non-zero
eigenvalues. Following Proposition 4.2, we can make the following conclusions.

• When dz ≥ da, the capacity of the latent is large enough to capture all the information about the
controllable change q, the minimum loss L∗ = 0, and LLO achieves the optimal.

• Specifically, when dz = da, the subspace spanned by the columns of B = Uda is the same to the
subspace spanned by the columns of action effect matrix X (by noting that UdaΛU

T
da

= Σq+ϵ =

XE[aaT ]XT ). In this case, the learned latent z (whose effect is interpreted by B) fully captures
the information of a (whose effect is X), and LLO is maximized. In other words, for this ideal
case linear LAM’s latent perfectly captures the information of the true action a without access to it.

• When dz < da, L∗ > 0 and this linear auto-encoder captures the first dz components in q.

We illustrate how LLO varies across different da and dz through numerical simulation in Figure 3
(left). The simulation validates that linear LAM is optimized in terms of LLO when dz ≥ da.

Case 2: ϵ is i.i.d. noise. We consider i.i.d. noise (independent and identically distributed), which may
be a realistic assumption in the case of sensors or image encoders. We assume ϵ is i.i.d. with zero-
mean E[ϵ] = 0 and isotropic covariance E[ϵϵT ] = σ2

iidI . Considering that q and ϵ are independent,
the covariance matrix Σq+ϵ can be eigenvalue decomposed as Σq+ϵ = UΓ0U

T = U0(Λ0+σ
2
iidI)U

T
0

where U0 and Λ0 are the eigenvectors and eigenvalues of Σq respectively (i.e., when ϵ = 0).
Combining the results in Proposition 4.2, we conclude that, when there is i.i.d. noise, 1) the FDM
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parameter B (and therefore the semantics of the latent since B interpret the latent) remains the
same, and 2) the loss increases since the eigenvalues increase. This conclusion is consistent with the
conclusion on the robustness of PCA (Anderson, 1963; Johnstone, 2001).

Figure 3 (middle) shows how LLO changes for Gaussian noise of differing variance. We observe that
linear LAM is robust to i.i.d. noise up to around σiid = 0.5 (when the noise intensity is half that of
the signal), linear LAM still succeeds with negligible gap to the optimal case.

Case 3: ϵ contains the effect of other agents. In many real-world datasets (such as Ego4d (Grauman
et al., 2022)), the change between two observations may not only be caused by the control action of
the ego-agent (e.g. joints of a robot arm), but additionally can be effected by exogenous noise, such
as other agents (e.g. a person walking in the background, camera shake). Compared with i.i.d. noise,
this noise is structured and partially predictable.

Here, we assume ϵ = Y b where Y ∈ Rdo×db is the exogenous effect matrix and b represents the
action taken by other agents. In this case, analysis similar to that of Case 1 concludes that linear
LAM will learn to capture effects with largest variances, no matter if they result from the controllable
action or other agents. Moreover, when the columns in Y are not orthogonal to that of X , the FDM
parameter B will be impacted by the exogenous noise.

Simulation results in Figure 3 (right) illustrate which part of information (the controllable q or the
noise ϵ) enters the latent when the latent dimension dz is increased. We observe that: 1) When
the variance of exogenous noise is smaller than q (i.e., σexo = 0.5), linear LAM learns to fit the
controllable part first, and dz = da is still the optimal configuration. 2) When the variance of noise
exceeds that the signal q (i.e., σexo = 2.0), linear LAM will first fit the noise, and the latent fails to
exclude the information of the noise no matter how we set dz . To alleviate this issue, an obvious
solution in practice is to preprocess training data to reduce significant noise components (such as
stabilizing camera shake).

4.2 Analysis 2: Effects of Data Collection Policy

Till now, we consider the cases where both the controllable changes and the exogenous noise are
independent of the observation, i.e., E[o(q + ϵ)T ] = 0. Unfortunately, this is usually not true for
practical cases where LAM is trained using data collected by expert policies, e.g., many robot datasets
are collected via teleoperation by humans. Within such datasets, the observation is correlated with
the action a, and thus the controllable change q, resulting in E[o(q + ϵ)T ] ̸= 0. Therefore, we dive
into this scenario to see what is the effect of the data collection policy on linear LAM in this part.

Specifically, we assume the data is collected by a policy that generate action via a = Πdo+πππs where
Πd ∈ Rda×do represents the deterministic part of the policy and πs ∈ Rda represents the stochastic
part of the policy. We assume that o, ϵ, and πππs are uncorrelated.

In this case, since R[oqT ] ̸= 0, the cross term in the expansion of loss (7) remains. Letting
Σo := E[ooT ] to be the covariance matrix of the observation, we can further solve for A by setting
the partial derivative of the loss function w.r.t. A to zero, obtaining

A = I − (BC +BD)− ΣoΠ
T
dX

T (BD − I)TΣ−1
o . (8)

This differs from the previous result for the random policy where A = I − (BC +BD) by the last
term ΣoΠ

T
dX

T (BD − I)TΣ−1
o . The intuitive interpretation for this term is that A can capture the

changes caused by the deterministic part of the policy if these changes are not captured by the latent
(noting that BD − I can project the vectors onto the orthogonal complement of the column space
of B). In other words, the latent may not capture the effect of each real action. Instead, the FDM
would capture the effect of the deterministic part of the policy, whereas the latent would capture the
remaining stochastic part.

In our simulation, we control the randomness of the policy using a coefficient χ, and let a =
χΠdo + (1 − χ)πππs where Πd is a random projection matrix and πs is a standard Gaussian vector.
The simulation results in Figure 4 (left) indicate that the more deterministic the data collection policy
is, the less information about a is captured by z. Therefore, the analysis in this section suggest us
to use the data collected by the policies with higher randomness whenever possible. This may also
indicate that, for LAM training, the trajectories collected by expert policies may not be enough, and
more exploratory trajectories are needed.
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Figure 4: LLO (Linear LAM objective) defined (6) measured when 1) data is collected by policies of
different deterministic levels (left), 2) linear LAM is trained w/ and w/o data augmentation (middle),
and 3) linear LAM is trained w/ and w/o action prediction (right). We set da = 8 in the experiments.

4.3 Analysis 3: Improvements via Data Augmentation

This section analyzes the augmentation scheme used in Chen et al. (2024b), which will turn out
to resolve a key issue encountered in linear LAM (see the discussion on over-parameterization in
Section 4.1), where information about the observation o enters into the latent z.

The IGOR model (Chen et al., 2024b) applies one shared random crop to both inputs of the IDM,
and a second shared random crop applied to the FDM and reconstruction target. The intuition is
that “by using different croppings [for IDM and FDM], the model is encouraged to learn a more
semantically invariant latent action”. Our subsequent analysis shows this intuition is provably correct
in linear LAM, resulting in new terms to the loss that encourage removal of the latent of any semantic
information about the observation. Sun et al. (2024) also apply a similar scheme, with a single action
preserving crop applied to the IDM which makes it harder “to copy the appearance information
directly from the [IDM]”.

Data augmentation in linear LAM. We extend our linear LAM setup to include a data augmentation
operator Augi[o] := o + κi that takes an observation as input and adding some random vector
κ ∈ Rdo. Augi[·] applies the same i-th operator to different variables, say Aug1[o] and Aug1[o

′] will
apply a consistent random variable κ1 to each observation.

Proposition 4.3 (Data augmentation addresses over-parameterization). With data augmentation,

z = ψLinear
IDM (Aug1[o],Aug1[o

′]1) := C(o+ κ1) +D(o′ + κ1) (9)

ô′ = ψLinear
FDM (Aug2[o], z) := A(o+ κ2) +Bz. (10)

and assuming E[o(q + ϵ)T ] = 0, optimizing the loss defined in (1) results in A = I and C +D = 0.

We provide the proof in Appendix C.2. What does it mean for these terms to encourage A = I and
C +D = 0? If, A is the identity, all observation information flows directly through this matrix, and
z need not carry any additional information about o, under the additive assumption on the dynamics.
With similar effect, setting C +D = 0 immediately cancels out o information in z.

z = C(o+ κ1) +D(o′ + κ1) = −D(o+ κ1) +D(o+ q + ϵ+ κ1) = D(q + ϵ) (11)

This condition also hints semantic consistency – the semantic meaning of the latent the frame does
not change from o to o′ will be consistent across different observations. Hence, this augmentation
scheme is a mechanism to remove information about o from z, explicitly minimizing I(z;o) in the
original objective (5). In this way, data augmentation results in latents with better semantics.

Simulation. We show the effect of data augmentation under different noise level in Figure 4 (middle)
The results indicate the by data augmentation can improve the semantics of the latent z by addressing
the over-parameterization issue. Note that, starting here, the simulation calculate LLO based on
the true latent z instead of the pseudo-latent. In this way, even when there is no noise σiid = 0,
the learned latent z cannot perfectly predict the real action a without involving other information.
However, adding in the augmentation vector with 10% variance (compared with that of observation
o), can greatly improve the learning of linear LAM.
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Designing data augmentation. In our linear setting, a natural design for data augmentation is to
have κ i.i.d. across its elements. This design is based on our knowledge that the semantic meaning
for the frame change should be invariant to this data augmentation, i.e., o′−o = (o′+κ)− (o+κ),
since we know the dynamics is additive. For real images, Chen et al. (Chen et al., 2024b) adopts
random crops, reflecting the prior that the semantic meaning about frame change is invariant to this
way of augmentation. Further, the variance of different augmentations determines how important this
term is – a larger augmentation variance enforces this constraint more strictly. This indicates that we
may design a weighted mix of data augmentation that best capture the invariance property to improve
the semantics of the learned latent.

4.4 Analysis 4: Improvements via Auxiliary Action Prediction

This section analyzes the setting when a small dataset of action labeled data Da is available during
training of the LAM. This can be used to help guide the latents to represent controllable changes
rather than exogenous noise. Specifically we consider the a simple auxiliary loss, with latents as input,
predicting the action labels when available. Nikulin et al. (2025) also provide empirically evidence to
show that this is a promising strategy to avoiding focus on ‘distractors’ present in the observations.

Action prediction in linear LAM. Consider a linear prediction head E ∈ Rda×dz at the latent
bottleneck, â = Ez, and a corresponding action reconstruction loss ∥â − a∥22, we optimize this
objective, La := ED

[
∥ô′ − o′∥22

]
+ EDa

[
∥â− a∥22

]
and define λ := |Da|/|D|.

Proposition 4.4 (Action prediction can denoise). Following the conditions in Proposition 4.3 and
assuming ϵTX = 0 and dz ≥ da, optimizing La biases the encoder parameter perpendicular to the
noise. For an artificial case where λ→ +∞, we obtain perfect LAM with Dϵ = 000 and Bz = q.

We provide the proof in Appendix C.3. Note that we assume that ϵTX = 0, which means that
the signal q = Xa and the noise ϵ are disentangled. This can correspond to the case, e.g., where
ϵ is background disturbance and q is the table-top manipulation (cf. Case 3 in Section 4.1). The
conclusion D ⊥ ϵ indicates that noise will not enter the latent (noting that C = −D in this case).

Although Proposition 4.3 considers an artificial case with learn λ, it indicates that auxiliary action
prediction can bias linear LAM to denoise. In our simulation, we induce different levels of noise
caused by other agents with the same setting as in Figure 3 (right), and present the result in Figure 4
(right). In contrast to previous results where σexo fails the learning of linear LAM, using only 1% of
action label in training leads to successful learning. The simulation results indicate that only a small
proportion of action label in training can significantly encourage the latent to encode the real actions
and denoise.

5 Experiments on practical LAM

To understand how our insights from linear LAM analysis transfer to real settings, we provide a set
of experiments using practical LAM. Specifically, we use image as the input (instead of vectors),
non-linear CNNs in IDM and FDM (instead of linear layers), and vector quantization. We show that
the main conclusions in our paper still hold in this complex setting.

Dataset. We designed a 4×4 grid-world style synthetic dataset. The top 3×4 grid of the observation
contains a square (intensity=1.0) that can be controlled with 5 actions (up, down, left, right, and stay
still). The bottom 1× 4 grid of the observation contains random Bernoulli noise (with prob 0.5). An
intensity parameter controls the noise magnitude (none=0.0, low=1.0, high=2.0).

Policy. By default, we use a uniform policy, where each action is equally probable. For one
experiment, we also use a correlated policy, where state and action are correlated. With 95% prob, the
action moves the square on a fixed snaking pattern through the grid, and with 5% chance a random
action is selected.

Model. For the IDM, we use a small CNN to process o and o′, followed by a VQ bottleneck
with codebook size of 5 outputting the latent. Finally, for the FDM, a separate UNet takes the
latent and previous observation o to output the predicted ô′. When predicting actions, codes are
preassigned to actions, and latents are trained to minimize L2 distance to their true action code. For
data augmentation, we shift the 4× 4 image left/right for one grid with periodic padding. Models
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Controllable Loss Stochastic Loss

No noise 0.624 ± 0.087 0.0 ± 0.0
Low noise 0.781 ± 0.079 0.739 ± 0.047
High noise 1.046 ± 0.017 0.607 ± 0.021

Uniform policy 0.781 ± 0.079 0.739 ± 0.047
Correlated policy 1.997 ± 0.022 0.599 ± 0.036

No data augmentation 0.781 ± 0.079 0.739 ± 0.047
Data augmentation 0.415 ± 0.020 0.898 ± 0.049

No action prediction 0.781 ± 0.079 0.739 ± 0.047
1% action prediction 0.295 ± 0.011 0.986 ± 0.002

Table 1: The performance of practical LAM on different scenarios. We present the mean and standard
errors of controllable loss (measuring how well the latent captures the information, lower the better)
and stochastic loss (measure how well the latent captures the noise, higher the better) over 5 seeds.
Each group corresponds to the analysis of one sub-section in Section 4

.

were trained for 16k updates with the Adam optimizer. Unless specified, we use low stochastic noise,
no action prediction, no data augmentation, and 5 codebook vectors.

Evaluation. Not being linear, it is not possible to measure the mutual information between latent
and quantities of interest exactly. Instead, since by design the observation separates the controllable
(top half) from stochastic (bottom half) changes, we measure the reconstruction loss on the relevant
portion of the observation to assess how what information the latent has captured following training.
A lower controllable loss means the latent contains more information about the action, and lower
stochastic loss means more noise has been captured. Similar to LLO, this is normalized by the
variance of the signal. Note there is unfortunately no straightforward way to measure the information
about the observation o in the latent for this non-linear case.

Results. We present experiment results containing controllable loss and stochastic loss in Table 1.
Firstly, we train vanilla LAM on different noise levels. Results show that as noise is increased
from none to high, the action information in the latent decreases (increasing controllable loss). At
the same time, the information about the stochastic noise increases (decreasing stochastic loss).
This is consistent with our linear LAM theory in Section 4.1, that latents encode whatever leads to
most variance. Secondly, we see that switching from a uniform to a correlated policy reduces the
information about actions in the latents, while increasing the information about stochastic noise. This
is predicted by our linear LAM theory in Section 4.2, that deterministic data collection policy can
lead to degenerated performance. Thirdly, we see that using data augmentation can improve LAM
learning. This is consistent with the conclusion in Section 4.3, that data augmentation can help LAM
learning. Finally, we show that incorporating 1% of actions labels into the training process improves
over vanilla LAM by increasing information about actions, and reducing information about noise.
This is consistent with the conclusion in Section 4.4, that predicting true action can improve LAM
learning.

6 Conclusion

Latent action models (LAMs) have become popular in the pre-training phase of many embodied
AI models. In contrast to the popularity, detailed analysis into the learnability of LAMs is missing.
This paper tries to bridge the gap by proposing a linear LAM model that captures the essence of
LAM but remains mathematical tractability. By analyzing linear LAM, we have made several fruitful
observations, including justifying the design of LAM training loss by showing that it corresponds
to PCA and can succeed in recovering the real action, highlighting in the data collection policy’s
impact on the learning of LAM, and showing the functionality of data augmentation and auxiliary
action prediction. We acknowledge that we should also notice the gap between linear LAM and
practical LAM in terms of both the capacity of the FDM and IDM models and the linear dynamics
assumed in linear LAM. Nevertheless, we believe linear LAM can be further used as a quick testbed
for researchers to develop other tricks for LAM learning.
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A From practical LAM to linear LAM.

Our goal in designing linear LAM was to preserve the key features of LAMs in practice, while
making the resulting model as simple as possible. Here we remark on similarities and differences.

• Function approximation. Linear LAM uses linear layers, while practical LAM uses deep neural
networks. However, linear LAM is compatible with input vectors processed by other non-linear
pre-trained image encoders.

• Bottleneck. Both models have an information bottleneck between in the IDM but this is implemented
in different ways. Practical LAMs usually adopt vector quantization Van Den Oord et al. (2017),
while linear LAM uses a low continuous dimension dz ≪ do.

• Additive changes. We formulate changes between observations as additions of controllable changes
and exogenous noise. This additive structure provides the simplest combination of two elements
which we believe are a primary concern of whether LAM’s latents actually represent actions.

• Noise. While our model constrains the noise as additive, it does not make further assumptions. We
later analyze realistic cases corresponding to real world scenarios, such as when action and noise
are correlated, and action and observations are correlated.

B Simulation Set-ups

We adopt the following setting unless otherwise stated. We provide the source code in the appendix.

• Observations. Observations are sampled from the standard normal distribution, o ∼ N (0, I) with
I as the identity matrix. Note that Var(o) = 1 (i.e., each element in o has unit variance). We set
the dimension of the observations do = 128.

• Actions. We use continuous actions also sampled from a standard normal distribution with di-
mensionality da, so a ∼ N (0, I). Note that Var(a) = 1. We set da = 8 unless otherwise
stated.

• Controllable changes. The action effect matrixX that maps the action a to the controllable changes
q, is chosen as a random orthogonal matrix (using QR decomposition), subsequently normalized to
ensure Var(q) = 1.

• i.i.d. noise. In our simulation we use isotropic Gaussian ϵ ∼ N (0, σ2
ϵ I) with variance σ2

iid as the
i.i.d. noise. For this noise, Var(ϵ) = σ2

iid.

• Exogenous noise. We also consider the noise induced by other agents ϵ = Y bbb = σexoY0bbb where
bbb is other agents’ action, Y is the action effect matrix of other agents, and Y0 is the normalized
matrix of Y0. Similarly, Y0 is chosen as a random orthogonal matrix using QR decomposition to
ensure that Var(ϵ) = σ2

exo.

• Optimization. We implement our system in PyTorch, optimizing trainable parameters via stochastic
gradient descent with the Adam optimizer with batch size 128. We use the default learning rate and
run for 4,000 steps to ensure convergence.

• Evaluation. Our use the quantity defined in (6) as the default evaluation metric. For the experiments
that do not involve noise, we set normalized MSE for noise to 1.

• Data augmentation. Data augmentation is a trick that may improve the learnability of LAM
mentioned in several previous papers (Chen et al., 2024b; Sun et al., 2024). We implement
data augmentation by adding a Gaussian noise κ ∼ N (0, |κ|2I) for linear LAM. Note that
Var(κ) = |κ|2. By default data augmentation is turned off, except for Figure 4 (middle and right).

• Action prediction. Action prediction is another trick proposed in the previous paper (Nikulin et al.,
2025). We implement action prediction by predicting the true action label based on the latent with
a learnable linear transformation for a small proportion of the data samples. We denote the ratio
of the samples that we access their action labels as λ. We find that setting λ = 1% is enough. By
default action prediction is turned off, except for Figure 4 (right).
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C Proofs

C.1 Proof of Proposition 4.1

Proof. Expand the loss function in (4) with the definitions of ô′ (3) and o′ (o′ = o+ q + ϵ), then
rearrange (ignoring the expectation outside the RHS).

L =∥o′ − ô′∥22 (12)

=∥o′ − (Ao+BCo+BDo′)∥22 (13)

=∥(o+ q + ϵ)− (Ao+BCo+BD(o+ q + ϵ))∥22 (14)

=∥(A+BC +BD − I)o+ (BD − I)(q + ϵ)∥22 (15)

=∥(A+BC +BD − I)o∥22 + ∥(BD − I)(q + ϵ)∥22
+ 2oT (A+BC +BD − I)T (BD − I)(q + ϵ) (16)

=∥(A+BC +BD − I)o∥22 + ∥(BD − I)(q + ϵ)∥22
+ 2Tr

(
(A+BC +BD − I)o(q + ϵ)T (BD − I)

)
(17)

Recall that this loss L is found within an expectation in (4). By assumption E[o(q + ϵ)T ] = 0 and
the final term can be ignored (since both expectation and trace are additive).

L = E
[
∥(A+BC +BD − I)o∥22

]
+ E

[
∥(BD − I)(q + ϵ)∥22

]
(18)

Regarding the first term, note that A is full rank do while BC and BD are of rank dz . Since A
only appears in this term and it is of greater or equal rank than BD + BD, it’s optimal value is
A = I −B(C +D), setting the first term is zero. Hence we are left with the middle term.

L = ∥(BD − I)(q + ϵ)∥22 (19)

Note that, under the condition of Proposition 4.1, (A,B,C,D) are over-parameterized. When we
adopting data augmentation in Proposition 4.3, we obtain A = I and C +D = 0, which refines how
the condition A = I −B(C +D) is satisfied.

C.2 Proof of Proposition 4.3

We start by expanding the loss defined in (1) with the data augmentation scheme, and unpack (ignoring
the expectation outside the RHS).

L = ∥Aug2[o
′]− ô′∥22 (20)

= ∥o′ + κ2 − (A(o+ κ2) +B(C(o+ κ1) +D(o′ + κ1)))∥22 (21)

= ∥(o+ q + ϵ) + κ2 − (A(o+ κ2) +B(C(o+ κ1) +D(o+ q + ϵ+ κ1)))∥22 (22)

= ∥(A+BC +BD − I)o+ (BD − I)(q + ϵ) + (BC +BD)κ1 + (I −A)κ2∥22 (23)

= ∥(BD − I)(q + ϵ)∥22 + ∥(A+BC +BD − I)o∥22
+ ∥B(C +D)κ1∥22 + ∥(I −A)κ2∥22 (24)

Where the last line follows since κ1 and κ2 are sampled independently of all other terms and
E[oT (q + ϵ)] = 0. Hence, we are left with the vanilla linear LAM loss in (15) plus two additional
terms.

Minimizing this function can be achieved by exactly setting A = I and C = −D, which zeros
the last three terms simultaneously. In this case, the optimization problem again reduces to PCA
∥(BD − I)(q + ϵ)∥22.

Discussion. In the correlated case E[oT (q + ϵ)] ̸= 0, when the third term (the cross term) in (17)
cannot be ignored, nevertheless there is encouragement to reach A = I and C = −D.
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C.3 Proof of Proposition 4.4

Based on the conclusion in Proposition 4.3, optimizing for the first term in La results in A = I and
C = −D. Since ϵTX = 0, we have qT ϵ = 0. We consider the case where D and Da come from
the same distribution and the availability of action labels are uniformly random. Therefore, we can
ignore the expectation outside the RHS (for simplicity) and re-write the loss as,

La = ∥(BD − I)(q + ϵ)∥22 + λ∥ED (q + ϵ)− a∥22 (25)

= ∥(BD − I)q∥22 + ∥(BD − I)ϵ∥22 + λ∥EDq − a∥22 + λ∥EDϵ∥22 (26)

= ∥(BDX −X)a∥22 + ∥(BD − I)ϵ∥22 + λ∥(EDX − Ida)a∥22 + λ∥EDϵ∥22 (27)

We decompose X as X = UΣV T with U ∈ Rdo×da (which spans the column space of X),
Σ ∈ Rda×da , and V ∈ Rda×da .

We will show that, when λ → +∞, D =

[
UT

0

]
, B = [U, ∗], and E = [V Σ−1, ∗] minimizes La

where ∗ indicates arbitrary entries and ∗ vanishes when dz = da.

First, this solution zeros the last two terms. For the last term, Dϵ =

[
UT

0

]
ϵ = 0 since ϵTX = 0

and U spans the column space of X . For the third term, EDX = [V Σ−1, ∗]
[
UT

0

]
UΣV T = Ida .

Then, since we have determined D, the second term becomes ∥(BD− I)ϵ∥22 = ∥ϵ∥22. We can choose

B = [U, ∗] to zero the first term since BDX = [U, ∗]
[
UT

0

]
X = X . In this way, we obtain the

minimal loss L∗
a = ∥ϵ∥22. We can also verify that Bz = B(Co+Do′) = BDq = UUTq = q.

Though the λ→ +∞ setting is artificial, the analysis show that a positive λ will bias the encoder D
to capture less about the noise ϵ and more about the signal q (or a).
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