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ABSTRACT

Learning disentangled representations of concepts and re-composing them in
unseen ways is crucial for generalizing to out-of-domain situations. However, the
underlying properties of concepts that enable such disentanglement and compo-
sitional generalization remain poorly understood. In this work, we propose the
principle of interaction asymmetry which states: “Parts of the same concept have
more complex interactions than parts of different concepts”. We formalize this via
block diagonality conditions on the (n+1)th order derivatives of the generator map-
ping concepts to observed data, where different orders of “complexity” correspond
to different n. Using this formalism, we prove that interaction asymmetry enables
both disentanglement and compositional generalization. Our results unify recent
theoretical results for learning concepts of objects, which we show are recovered
as special cases with n=0 or 1. We provide results for up to n=2, thus extending
these prior works to more flexible generator functions, and conjecture that the
same proof strategies generalize to larger n. Practically, our theory suggests that,
to disentangle concepts, an autoencoder should penalize its latent capacity and the
interactions between concepts during decoding. We propose an implementation
of these criteria using a flexible Transformer-based VAE, with a novel regularizer
on the attention weights of the decoder. On synthetic image datasets consisting
of objects, we provide evidence that this model can achieve comparable object
disentanglement to existing models that use more explicit object-centric priors.

1 INTRODUCTION

A core feature of human cognition is the ability to use abstract conceptual knowledge to generalize
far beyond direct experience (Behrens et al., 2018; Mitchell, 2021; Murphy, 2004; Tenenbaum et al.,
2011). For example, by applying abstract knowledge of the concept “chair”, we can easily infer how
to use a “chair on a beach”, even if we have not yet observed this combination of concepts. This feat
is non-trivial and requires solving two key problems. Firstly, one must acquire an abstract, internal
model of different concepts in the world. This implies learning a separate internal representation of
each concept from sensory observations. Secondly, these representations must remain valid when
observations consist of novel compositions of concepts, e.g., “chair” and “beach”. In machine learn-
ing, these two problems are commonly referred to as learning disentangled representations (Bengio
et al., 2013; Higgins et al., 2018; Schölkopf et al., 2021) and compositional generalization (Fodor
and Pylyshyn, 1988; Goyal and Bengio, 2022; Greff et al., 2020; Lake et al., 2017).

Both problems are known to be challenging due to the issue of non-identifiability (Hyvärinen et al.,
2023). Namely, many models can explain the same data equally well, but only some will learn
representations of concepts which are disentangled and generalize compositionally. To guarantee
identifiability with respect to (w.r.t.) these criteria, it is necessary to incorporate suitable inductive
biases into a model (Hyvärinen and Pajunen, 1999; Lachapelle et al., 2023; Locatello et al., 2019).
These inductive biases, in turn, must reflect some underlying properties of the concepts which give
rise to observed data. This raises a fundamental question: What properties of concepts enable
learning models which provably achieve disentanglement and compositional generalization?

Many works aim to answer this question by studying properties enabling either disentanglement or
compositional generalization in isolation. This is insufficient, however, as disentanglement alone
does not imply compositional generalization (Montero et al., 2022a; 2021; Schott et al., 2022),
while compositional generalization requires first disentangling the concepts to be composed. Only
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Figure 1: Illustration of Interaction Asymmetry. (Left) Observations x result from a generator f applied to
latent slots zBk that represent separate concepts. As indicated by the reflection of the cylinder upon the cube,
slots can interact during generation. Our key assumption, interaction asymmetry, states that these interactions
across slots must be less complex than interactions within the same slot. (Right) This is formalized by assuming
block-diagonality across but not within slots for the (n+1)th order derivatives of the generator, i.e., Dn+1f .

a few studies investigate properties enabling both disentanglement and compositional generaliza-
tion (Brady et al., 2023; Lachapelle et al., 2023; Wiedemer et al., 2024a). Yet, the properties pro-
posed in these works are rather restrictive and specific to objects in simple visual scenes. There
is growing evidence, however, that the principles humans use to learn conceptual knowledge are
not concept-specific, but shared across different concepts (objects, attributes, events, etc.) (Behrens
et al., 2018; Constantinescu et al., 2016; Hawkins et al., 2018). This suggests there exist some gen-
eral properties of concepts which enable both disentanglement and compositional generalization.

In this work, we seek to formulate such a general property for disentangling and composing con-
cepts. We begin by aiming to deduce, from first principles, properties which are fundamental to
concepts (§ 3). From this, we arrive at the guiding principle of interaction asymmetry (Principle 3.1)
stating: “Parts of the same concept have more complex interactions than parts of different concepts”.
As illustrated in Fig. 1 (left), we define concepts as distinct groups, or slots, of latent variables which
generate the observed data (§ 2). Interaction asymmetry is then formalized as a block-diagonality
condition across but not within slots ofDn+1f , the tensor of (n+1)th order partial derivatives of the
generator function (Asm. 3.5), where n determines the complexity of interactions, see Fig. 1 (right).

Theory. Using this formulation, we prove that interaction asymmetry dually enables both disentan-
glement (Thm. 4.3) and compositional generalization (Thm. 4.4). We also show that our formalism
provides a unifying framework for prior results of Brady et al. (2023) and Lachapelle et al. (2023), by
proving that the properties studied in these works for visual objects are special cases of our assump-
tions for n=0 and 1, respectively. We provide results for up to n=2, thereby extending these prior
works to more general function classes, and conjecture that our results generalize to arbitrary n≥0.

Method. Our theory suggests that to disentangle concepts, a model should (i) enforce invertibility,
without using more latent dimensions than necessary, and (ii) penalize interactions across slots dur-
ing decoding. To translate these insights into a practical method, we leverage a VAE loss (Kingma
and Welling, 2014) for (i), and observe that the Transformer architecture (Vaswani et al., 2017) of-
fers an approximate means to achieve (ii) since interactions are determined by the attention weights
of the model. To this end, we introduce an inexpensive interaction regularizer for a cross-attention
mechanism, which we incorporate, with the VAE loss, into a flexible Transformer-based model (§ 5).

Empirical Results. We test this model’s ability to disentangle concepts of visual objects on a Sprites
dataset (Watters et al., 2019a) and on CLEVR6 (Johnson et al., 2017). We find that the model re-
liably learns disentangled representations of objects, improving performance over an unregularized
Transformer (§ 6). Furthermore, we provide preliminary evidence that our regularized Transformer
can achieve comparable performance to models with more explicit object-centric priors such as Slot
Attention (Locatello et al., 2020b) and Spatial Broadcast Decoders (Watters et al., 2019b).

Notation. We write scalars in lowercase (z), vectors in lowercase bold (z), and matrices in capital
bold (M ). [K] stands for {1, 2, ...,K}. Di and D2

i,j stand for the first- and second-order partial
derivatives with respect to (w.r.t.) zi and (zi, zj), respectively. If B ⊆ [n] and z ∈ Rn, zB denotes
the subvector (zi)i∈B indexed by B. A function is Cn if it is n-times continuously differentiable.
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2 BACKGROUND

We begin with formalizing the core ideas of concepts, disentanglement, and compositional gen-
eralization, mostly following the setup of Lachapelle et al. (2023). To begin, we assume that the
observed data x ∈ X ⊂ Rdx results from applying a diffeomorphic generator f : Z → X to
latent vectors z ∈ Z := Rdz , sampled from some distribution pz . Concepts underlying x (objects,
attributes, events, etc.) are then modelled as K disjoint groups or slots of latents zBk

such that
z = (zB1 , ...,zBK

), where Bk ⊆ [dz]. We assume that pz is only supported on a subset Zsupp ⊆ Z
which gives rise to observed data Xsupp := f(Zsupp). This generative process can be summarized as:

x = f(z), z ∼ pz, supp(pz) = Zsupp . (2.1)

Next, consider a model f̂ : Z → Rdx trained to be invertible from Xsupp to Ẑsupp := f̂−1(Xsupp),
whose inverse f̂−1 maps to a representation ẑ ∈ Ẑsupp ⊆ Z . This model is said to learn a
disentangled representation of z ∈ Zsupp if each model slot ẑBj

captures exactly one concept zBk
.

Definition 2.1 (Disentanglement). Let f : Z → X be a diffeomorphism and Z̄ ⊆ Z . A model
f̂ disentangles z on Z̄ w.r.t. f if there exist a permutation π of [K] and slot-wise diffeomorphism
h = (h1, . . . ,hK) with hk : R|Bπ(k)| → R|Bk| and |Bπ(k)| = |Bk| such that for all z ∈ Z̄:

f̂
(
h1

(
zBπ(1)

)
, . . . ,hK

(
zBπ(K)

))
= f(z) . (2.2)

In other words, a representation is disentangled if the model inverts the generator up to permutation
and reparametrization of the slots. For compositional generalization, we would like this to hold not
only on Zsupp but also for arbitrary combinations of the slots therein. Namely, also on the set

ZCPE := Z1 ×Z2 × · · · × ZK , with Zk := {zBk
| z ∈ Zsupp} (2.3)

where Zk denote the marginal supports of pz and ZCPE the Cartesian-product extension (Lachapelle
et al., 2023) of Zsupp. In general, Zsupp is a subset of ZCPE. Thus, to generalize compositionally, a
model must also achieve disentanglement “out-of-domain” on novel compositions of slots in ZCPE.

Definition 2.2 (Compositional Generalization). Let f : Z → X be a diffeomorphism. A model f̂
that disentangles z on Zsupp w.r.t. f (Defn. 2.1) generalizes compositionally if it also disentangles z
on ZCPE w.r.t. f .

On the Necessity of Inductive Biases. It is well known that only a small subset of invertible
models achieve disentanglement on Zsupp (Hyvärinen and Pajunen, 1999; Locatello et al., 2019)
or generalize compositionally to ZCPE (Lachapelle et al., 2023). To provably achieve these goals
(without explicit supervision), we thus need to further restrict the space of permissible models, i.e.,
place additional assumptions on the generative process in Eq. (2.1). Such assumptions then translate
into inductive biases on a model. To this end, the core challenge is formulating assumptions on pz
or f which faithfully reflect properties of concepts, while ciently restricting the problem.

Assumptions on pz . To guarantee disentanglement, several assumptions on pz have been proposed,
such as conditional independence of latents given an auxiliary variable (Hyvärinen et al., 2019; Khe-
makhem et al., 2020); particular temporal (Hälvä and Hyvarinen, 2020; Hyvärinen and Morioka,
2016; 2017; Klindt et al., 2021), spatial (Hälvä et al., 2021; 2024), or other latent structures (Kivva
et al., 2022; Kori et al., 2024); multiple views (Ahuja et al., 2022; Brehmer et al., 2022; Gresele et al.,
2020; Locatello et al., 2020a; von Kügelgen et al., 2021; Yao et al., 2024; Zimmermann et al., 2021);
or interventional information (Buchholz et al., 2023; Lachapelle et al., 2022; 2024; Lippe et al.,
2022; 2023; Varici et al., 2024; von Kügelgen et al., 2023). While sufficient for disentanglement,
such assumptions do not guarantee compositional generalization. The latter requires that the behav-
ior of the generator on ZCPE can be determined solely from its behavior on Zsupp (see Defn. 2.2).
In the most extreme case, where the values of each slot zBk

are seen only once, Zsupp will be a
one-dimensional manifold embedded in Z , while ZCPE is always dz-dimensional. This highlights
that generalizing from Zsupp to ZCPE is only possible if the form of the generator f is restricted.

Assumptions on f . Restrictions on f which enable compositional generalization have been pro-
posed by Dong and Ma (2022); Lippl and Stachenfeld (2024); Wiedemer et al. (2024b). Yet, these
results rely on quite limited function classes and do not address disentanglement, assuming it to be
solved a priori. Conversely, several works explore restrictions on Df such as orthogonality (Buch-
holz et al., 2022; Gresele et al., 2021; Horan et al., 2021) or sparsity (Leemann et al., 2023; Moran
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et al., 2022; Zheng and Zhang, 2023) which address disentanglement but not compositional general-
ization. More recently, Brady et al. (2023) and Lachapelle et al. (2023) proposed assumptions on f
which enable both disentanglement and compositional generalization (Wiedemer et al., 2024a). Yet,
these assumptions are overly restrictive such that f can only model limited types of concepts, e.g.,
non-interacting objects, and not more general concepts. We discuss these two works further in § 4.3.

3 THE INTERACTION ASYMMETRY PRINCIPLE

In this section, we attempt to formulate assumptions that enable disentanglement and compositional
generalization, while capturing more general properties of concepts. To approach this, we take a step
back and try to understand what are the defining properties of concepts. Specifically, we consider
the question: Why are some structures in the world recognized as different concepts (e.g., apple vs.
dog) and others as part of the same concept? We propose an answer to this for concepts grounded in
sensory data, such as objects (e.g., “car”), events (e.g., “making coffee”), or attributes (e.g., “color”).

Sensory-grounded concepts correspond to reoccurring visual or temporal patterns that follow an
abstract template. They tend to be modular, such that independently changing one concept generally
leaves the structure of other concepts intact (Greff et al., 2015, § 4.1.1; Peters et al., 2017). For
example, a car can change position without affecting the structure of the street, buildings, or people
around it. Thus, different concepts appear, in some sense, to not interact.

On the other hand, parts of the same concept do not seem to possess this modularity. Namely,
arbitrarily changing one part of a concept without adjusting other parts is generally not possible
without destroying its inherent structure. For example, it is not possible to change the position of the
front half of a car, while maintaining something we would still consider a car, without also changing
the back half’s position. Thus, parts of the same concept seem to interact.

This may then lead us to answer our initial question with: Parts of the same concept interact, while
different concepts do not. However, this is an oversimplified view, as parts of different concepts can,
in fact, interact. For example, in Fig. 1 we see the purple cylinder reflects upon and thus interacts
with the golden cube. However, such interactions across concepts appear somehow simpler than
interactions within a concept: whereas the latter can alter the concept’s structure, the former gener-
ally will not. In other words, the complexity of interaction within and across concepts appears to be
asymmetric. We formulate this as the following principle (see Appx. G.1 for related principles).
Principle 3.1 (Interaction Asymmetry). Parts of the same concept have more complex interactions
than parts of different concepts.

To investigate the implications of Principle 3.1 for disentanglement and compositional generaliza-
tion, we must first give it a precise formalization. To this end, we need a mathematical definition
of the “complexity of interaction” between parts of concepts, i.e., groups of latents from the same
or different slots. This can be formalized either through assumptions on the latent distribution pz or
on the generator f . Since the latter are essential for compositional generalization, this is our focus.

Let us start by imagining what it would mean if two groups of latent components zA and zB interact
with no complexity, i.e., have no interaction within f . A natural way to formalize this is that zA and
zB affect distinct output components fl. Mathematically, this is captured as follows.
Definition 3.2 (At most 0th order/No interaction). Let f : Z → X be C1, and let A,B ⊆ [dz] be
non-empty. zA and zB have no interaction within f if for all z ∈ Z , and all i ∈ A, j ∈ B:

Dif(z)⊙Djf(z) = 0 . (3.1)

To define the next order of interaction complexity, we assume that zA and zB do interact, i.e., they
affect the same output fl such that Difl(z) and Djfl(z) are non-zero for some i ∈ A, j ∈ B. This
interaction, however, should have the lowest possible complexity. A natural way to capture this is to
say that zi can affect the same output fl as zj but cannot affect the way in which fl depends on zj .
Since the latter is captured by Djfl(z), this amounts to a question about the 2nd order derivative
D2

i,jfl. We thus arrive at the following definition for the next order of interaction complexity.

Definition 3.3 (At most 1st order interaction). Let f : Z → X be C2, and let A,B ⊆ [dz] be non-
empty. zA and zB have at most 1st order interaction within f if for all z ∈ Z , and all i ∈ A, j ∈ B:

D2
i,jf(z) = 0 . (3.2)
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Using the same line of reasoning, we can continue to define interactions at increasing orders of
complexity. For example, for at most 2nd order interaction, zi can affect the derivative Djfl,
such that D2

i,jfl(z) ̸= 0, but cannot affect the way in which Djfl depends on any other zk, i.e.,
D3

i,j,kfl(z) = 0. This leads to a general definition of interactions with at most nth order complexity.

Definition 3.4 (At most nth order interaction). Let n ≥ 1 be an integer. Let f : Z → X be Cn+1.
Let A,B ⊆ [dz] be non-empty. zA and zB have at most nth order interaction within f if for all
z ∈ Z , all i ∈ A, j ∈ B, and all multi-indices1 α ∈ Ndz

0 with |α| = n+ 1 and 1 ≤ αi, αj :

Dαf(z) = 0 . (3.3)

In other words, zA and zB have at most nth order interaction within f if all higher-than-nth order
cross partial derivatives w.r.t. at least one component of zA and of zB are zero everywhere. Other-
wise, if the statement in Defn. 3.4 does not hold for some z ∈ Z , i ∈ A, and j ∈ B, we say that zA
and zB have (n+1)th order interaction at z (and similarly for 1st order interaction if Defn. 3.2 does
not hold). With these definitions, we can now provide a precise formalization of Principle 3.1.
Assumption 3.5 (Interaction asymmetry (formal)). There exists n∈N0 such that (i) any two distinct
slots zBi

and zBj
have at most nth order interaction within f ; and (ii) for all z ∈ Z , all slots zBk

and all non-emptyA,B withBk = A∪B, zA and zB have (n+1)th order interaction within f at z.

We emphasize that Asm. 3.5 (ii) does not state that all subsets of latents within a slot must have
(n+1)th order interaction, but only that a slot cannot be split into two parts with at most nth order
interaction, see Fig. 1 (right). We also note that condition (ii) must hold uniformly over Z , which
resembles the notion of “uniform statistical dependence” among latents introduced by Hyvärinen
and Morioka (2017, Defn. 1). For further discussions of Asm. 3.5, see Appx. H.1.

4 THEORETICAL RESULTS

We now explore the theoretical implications of Asm. 3.5 for disentanglement on Zsupp and composi-
tional generalization to ZCPE. We provide our results for up to at most 2nd order interaction across
slots. All results—i.e., at most 0th (no interaction), at most 1st, and at most 2nd order interaction—use
a unified proof strategy. Thus, we conjecture this strategy can also be used to obtain results for n≥3.
This, however, would require taking (n + 1)≥ 4 derivatives of compositions of multivariate func-
tions, which becomes very tedious as n grows. General nth order results are thus left for future work.

4.1 DISENTANGLEMENT

We start by proving disentanglement on Zsupp for which we will need two additional assumptions.

Basis-Invariant Interactions. First, one issue we must address is that our formalization of interac-
tion asymmetry (Asm. 3.5) is not basis invariant. Specifically, it is possible that all splits of a slot
zBk

have (n+1)th order interactions while for MkzBk
, with Mk a slot-wise change of basis matrix,

they have at most nth order interactions. Since Mk need not affect interactions across slots, interac-
tion asymmetry may no longer hold in the new basis. This makes it ambiguous whether interaction
asymmetry is truly satisfied, as zBk

and MkzBk
contain the same information. To address this, we

assume interaction asymmetry holds for all slot-wise basis changes, or equivalent generators.
Definition 4.1 (Equivalent Generators). A function f̄ : Rdz → Rdx is said to be equivalent to a
generator f if for all k ∈ [K] there exists an invertible matrix Mk ∈ R|Bk|×|Bk| such that

∀z ∈ Rdz : f̄ (M1zB1 , . . . ,MKzBK
) = f(zB1 , . . . ,zBK

). (4.1)

Sufficient Independence. We require one additional assumption on f which we call sufficient in-
dependence. This assumption amounts to a linear independence condition on blocks of higher-order
derivatives of f . Its main purpose is to remove redundancy in the derivatives of f across slots, which
can be interpreted as further constraining the interaction across slots during generation. In the case

1A multi-index is an ordered tuple α = (α1, α2, ..., αd) of non-negative integers αi ∈ N0, with operations
|α| := α1 +α2 + ...+αd, zα := zα1

1 zα2
2 ... z

αd
d , and Dα := ∂α1

∂z
α1
1

∂α2

∂z
α2
2

... ∂αd

∂z
αd
d

, see Appx. B for details.
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of n= 0 (i.e., no interaction across slots), sufficient independence reduces to linear independence
between slot-wise Jacobians of f (Defn. A.8). This is satisfied automatically since f is a diffeomor-
phism. When n>0, we require an analogous linear independence condition on higher order deriva-
tives of f . Below, we present this for the case n=2, while for n=1, it is presented in Defn. A.9.
Definition 4.2 (Sufficient Independence (2nd Order)). A C3 function f : Rdz → Rdx with at most
2nd order interactions across slots is said to have sufficiently independent derivatives if ∀z ∈ Rdz :

rank

([[
Dif(z)

]
i∈Bk

[D2
i,i′f(z)]i∈Bk,i′∈[dz ] [D

3
i,i′,i′′f(z)](i,i′,i′′)∈B3

k

]
k∈[K]

)
=
∑

k∈[K]

[
rank

([
[Dif(z)]i∈Bk

[D2
i,i′f(z)]i∈Bk,i′∈[dz ]

])
+ rank

(
[D3

i,i′,i′′f(z)](i,i′,i′′)∈B3
k

)]
.

With Defns. 4.1 and 4.2, we can now state our theoretical results; see Appx. A for complete proofs.
Theorem 4.3 (Disentanglement on Zsupp). Let n ∈ {0, 1, 2}. Let f : Z → X be a Cn+1 dif-
feomorphism satisfying interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1)
and sufficient independence (Appx. A.2). Let Zsupp be regular closed (Defn. A.3), path-connected
(Defn. A.14) and aligned-connected (Defn. A.16). A model f̂ : Z → Rdx disentangles z on Zsupp

w.r.t. f (Defn. 2.1) if it is (i) a Cn+1 diffeomorphism between Ẑsupp and Xsupp with (ii) at most nth

order interactions across slots (Defn. 3.4) on Ẑsupp.

Intuition. Assume for a contradiction that h := f̂−1 ◦ f entangles a ground-truth slot zBk
, i.e.,

DBk
h(z) has multiple non-zero blocks. Because f and f̂ are invertible, h must encode all of zBk

in ẑ := h(z). Further, because f satisfies interaction asymmetry, zBk
cannot be split into two parts

with less than (n+1)th order interaction. Taken together, this implies that if h entangles zBk
, then

there exist parts zA and zB of zBk
, with (n+1)th order interaction, encoded in different model slots.

Since the model f̂ is constrained to have at most nth order interactions across slots, it cannot capture
this interaction. Thus, the only way that f̂ can satisfy (i) and (ii) without achieving disentanglement
is if reparametrizing z via h removed the interaction between zA and zB . This situation is prevented
by assuming sufficient independence and that Asm. 3.5 holds for all equivalent generators.

Conditions on Zsupp. The regular closed condition on Zsupp in Thm. 4.3 ensures that equality be-
tween two functions on Zsupp implies equality of their derivatives, while the path-connectedness con-
dition prevents the one-to-one correspondence between the slots of z and those of ẑ from changing
across different z (Lachapelle et al., 2023). The aligned-connectedness condition is novel and allows
one to take integrals to go from local to global disentanglement (see Appx. A.3 for more details).

4.2 COMPOSITIONAL GENERALIZATION

We now show how Asm. 3.5 also enables learning a model that generalizes composition-
ally (Defn. 2.2), i.e., that equality of f and f̂ ◦ h on Zsupp also implies their equality on ZCPE.
As discussed in § 2, such generalization is non-trivial and requires specific restrictions on a function
class. A key restriction imposed by interaction asymmetry is that interactions across slots are limited
to at most nth order. In Thm. 4.3, this prevents f̂ ◦ h from modelling interactions between parts of
the same ground-truth slot in different model slots. We now aim to show that limiting the interac-
tions across slots serves the dual role of making f and f̂ ◦ h “predictable”, such that their behavior
on ZCPE can be determined from Zsupp. To do this, we will require a characterization of the form
of functions with at most nth order interactions across slots, which we prove in Thm. C.2 to be:

f(z) =
∑K

k=1 f
k (zBk

) +
∑

α:|α|≤n cαz
α . (4.2)

where cα ∈ Rdx . In the first sum, slots are processed separately by functions fk, while in the
second, they can interact more explicitly via polynomial functions of components from different
slots, with degree determined by the order of interaction, n. With this, we can now state our result.
Theorem 4.4 (Compositional Generalization). Let n ∈ {0, 1, 2}. Let Zsupp be regular closed
(Defn. A.3). Let f : Z → X and f̂ : Z → Rdx be C3 diffeomorphisms with at most nth order
interactions across slots on Z . If f̂ disentangles z on Zsupp w.r.t. f (Defn. 2.1), then it generalizes
compositionally (Defn. 2.2).
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\begin{align*}
%\mathcal{Z}_\text{supp}
\frac{\partial f_l}{\partial z_1}(\textcolor{red}{z_1^*}, z_2)
\end{align*}

Figure 2: See intuition for Theorem 4.4.

Intuition. Consider the red dotted line in Fig. 2
(left) corresponding to {z ∈ R2 | z1 = z∗1}. To
generalize compositionally, the behavior of the
partial derivative ∂fl

∂z1
(z∗1 , z2) on this line must

be predictable from the behavior of f on Zsupp,
and similarly for f̂ ◦ h. Because f and, as we
show, f̂ ◦ h have at most nth order interactions
across slots on Rdz , the form of this derivative
is constrained to be a fixed-degree polynomial,
see Eq. (4.2) and Fig. 2 (right). Thus, its global behavior on the dotted line in Rdz can be determined
from its derivative locally in a region in Zsupp. Applying this reasoning to all such line segments in-
tersecting Zsupp, we can show that the behavior of f and f̂◦h on ZCPE can be determined from Zsupp.

4.3 UNIFYING AND EXTENDING PRIOR RESULTS

We now show that our theory also recovers the results of Brady et al. (2023) and Lachapelle et al.
(2023) as special cases for n = 0 and n = 1, and extends them to more flexible generative processes.

At most 0th Order Interaction. Brady et al. (2023) proposed two properties on f , which en-
able disentanglement and compositional generalization (Wiedemer et al., 2024b): compositionality
(Defn. E.1) and irreducibility (Defn. E.2). Compositionality states that different slots affect distinct
output components such thatDf(z) has a block-like structure. This is equivalent to f having at most
0th order interaction across slots (Defn. 3.2). Irreducibility is a rank condition on DBk

f(z) which
Brady et al. (2023) interpreted as parts of the same object sharing information. In Thm. E.3, we
show that irreducibility is equivalent to f having 1st order interaction within slots for all equivalent
generators. Thus, the assumptions in Brady et al. (2023) are equivalent to interaction asymmetry for
all equivalent generators when n = 0. Further, we recover their disentanglement result using a novel
proof strategy, unified with proofs for at most 1st / 2nd order interaction across slots (Thm. A.20).

At most 1st Order Interaction. Lachapelle et al. (2023) also proposed two assumptions on f
for disentanglement and compositional generalization: additivity (Defn. E.4) and sufficient non-
linearity (Defn. E.5). Additivity is equivalent to fl having a block-diagonal Hessian for all
l ∈ [dx] (Lachapelle et al., 2023). This is the same as f having at most 1st order interaction across
slots (Defn. 3.4). Sufficient nonlinearity is a linear independence condition on columns of 1st and 2nd

derivatives of f . In Thm. E.6, we show that sufficient nonlinearity implies that f satisfies sufficient
independence for n = 1 and has 2nd order interaction within slots for all equivalent generators. Fur-
ther, we conjecture that the reverse implication does not hold. Thus, the assumptions of Lachapelle
et al. (2023) imply, and are conjectured to be stronger than, our assumptions when n = 1. We also
recover their same disentanglement result using a unified proof strategy (Thm. A.22).

Allowing More Complex Interactions. Our theory not only unifies but also extends these prior
results to more general function classes. This is clear from considering the form of functions with at
most nth order interactions across slots in Eq. (4.2). For at most 0th (Brady et al., 2023) or 1st order
interactions (Lachapelle et al., 2023), the sum of polynomials on the RHS of (4.2) vanishes. Conse-
quently, f reduces to an additive function. Such generators can only model concepts with trivial in-
teractions such as non-occluding objects. In contrast, we are able to go beyond additive interactions
via the polynomial terms in (4.2). This formally corroborates the “generality” of interaction asym-
metry, in that it enables more flexible generative processes where concepts can explicitly interact.

5 METHOD: ATTENTION-REGULARIZED TRANSFORMER-VAE

We now explore how our theoretical results in § 4 can inform the design of a practical estimation
method. Our theory puts forth two key properties that a model should satisfy: (i) invertibility and (ii)
limited interactions across slots of at most nth order. To achieve disentanglement on Zsupp, (i) and (ii)
must hold only “in-domain” on Ẑsupp and Xsupp (Thm. 4.3), while for compositional generalization,
they must also hold out-of-domain, on all of Z and X (Thm. 4.4). We will focus on approaches
for achieving (i) and (ii) in-domain. Achieving them out-of-domain requires addressing separate
practical challenges, which are out of the scope of this work. We discuss this in detail in Appx. H.3.
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On Scalability. Approaches that enforce (i) and (ii) exactly will generally only be computationally
tractable in low-dimensional settings. Such computational issues are typical when translating a
disentanglement result into an empirical method, often resulting in methods which directly adhere
to theory but cannot scale beyond toy data (e.g., Brady et al., 2023; Gresele et al., 2021). Our core
motivation, however, is learning representations of concepts underlying high-dimensional sensory
data, such as images. Thus, to formulate a method which scales to such settings, we do not restrict
ourselves to approaches which exactly enforce (i) and (ii) and also explore approximate approaches.

(i) Invertibility. Our theory requires invertibility between Xsupp ⊆ Rdx and Ẑsupp ⊆ Z = Rdz . For
most settings of interest, the observed dimension dx exceeds the ground-truth latent dimension dz .
Thus, we generally cannot use models which are invertible by construction such as normalizing
flows (Papamakarios et al., 2021). An alternative is to use an autoencoder in which f̂−1 and f̂ are
parameterized separately by an encoder ĝ : Rdx → Rdẑ and a decoder f̂ : Rdẑ → Rdx , which are
trained to invert each other (on Ẑsupp and Xsupp) by minimizing a reconstruction loss Lrec := E∥x−
f̂(ĝ(x))∥2. Minimizing Lrec alone, however, does not suffice unless the inferred latent dimension dẑ
equals the ground-truth dz . Yet, in practice dz is unknown. Moreover, choosing dẑ > dz is important
for scalability (Sajjadi et al., 2022a). A viable alternative is thus to employ a soft constraint where
dẑ > dz , but the model is encouraged to encode x using minimal latent dimensions. To achieve
this, we leverage the well known VAE loss (Kingma and Welling, 2014), which couples Lrec with
a KL-divergence loss LKL between a factorized posterior q(ẑ|x) and prior distribution p(ẑ), i.e.,
LKL :=

∑
i∈[dẑ ]

DKL (q(ẑi|x)∥p(ẑi)). This loss encourages each ẑi to be insensitive to changes in x

such that unnecessary dimensions should contain no information about x (Rolinek et al., 2019).

(ii) At Most nth Order Interactions. One approach to enforce at most nth order interactions across
slots would be to parameterize the decoder f̂ to match the form of such functions (see Thm. C.2) for
some fixed n. However, this can result in an overly restrictive inductive bias and limit scalability.
Moreover, n is generally unknown. Thus, a more promising approach is to regularize interactions
to be minimal. Doing this naively though using gradient descent would require computing gradients
of high-order derivatives, which is intractable beyond toy data. This leads to the question: Is there a
scalable architecture which permits efficient regularization of the interactions across slots?

Transformers for Interaction Regularization. We make the observation that the Transformer
architecture (Vaswani et al., 2017) provides an efficient means to approximately regularize interac-
tions. In a Transformer, slots are only permitted to interact via an attention mechanism. We will
focus on a cross-attention mechanism, which maps a latent vector ẑ to output x̂l (e.g., a pixel) via:

K = WK [ẑB1
· · · ẑBK

], V = W V [ẑB1
· · · ẑBK

], Q = WQ[o1 · · · odx
], (5.1)

Al,k =
exp

(
Q⊤

:,lK:,k

)∑
i∈[K] exp

(
Q⊤

:,lK:,i

) , x̄l = Al,:V
⊤, x̂l = ψ(x̄l) . (5.2)

In Eq. (5.1), all slots are assumed to have equal size, and key K:,k and value V:,k vectors are com-
puted for each slot k∈ [K]. Query vectors are computed for output dimensions l ∈ [dx] (e.g., pixel
coordinates) and each l is assigned a fixed vector ol. In Eq. (5.2), queries and keys are used to com-
pute attention weights Al,k. These weights determine the slots pixel l “attends” to when generating
pixel token x̄l, which is mapped to a pixel x̂l by nonlinear function ψ; see Appx. F for further details.

Within cross-attention, interactions across slots occur if the query vector for a pixel l attends to
multiple slots, i.e., if Al,k is non-zero for more than one k. Conversely, if Al,k is non-zero for only
one k, then, intuitively, no interactions should occur. This intuition can be corroborated formally
by computing the Jacobian of cross-attention w.r.t. each slot (see Appx. F.1). Thus, an approximate
means to minimize interactions across slots is to regularize A towards having only one non-zero
entry for each row Al,:. To this end, we propose to minimize the sum of all pairwise products
Al,jAl,k, where j ̸= k (see Fig. 4). This quantity is non-negative and will only be zero when each
row of A has exactly one non-zero entry. This resembles the compositional contrast of Brady et al.
(2023), but computed on A, which can be efficiently optimized, as opposed to the Jacobian of f̂
which is intractable to optimize. We refer to this regularizer as Linteract, see Eq. (F.9).

Model. Combining these different objectives leads us to the following weighted three-part-loss:

Ldisent(f̂ , ĝ,x) = Lrec + αLinteract + βLKL, (5.3)
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Reconstruction Reconstruction

Spatial-Broadcast Decoder Transformer Decoder (Regularized)Spatial-Broadcast DecoderOriginal

Transformer
Decoder 

(Unregularized)

Transformer
Decoder 

(Regularized)

A B

Figure 3: (A) Sprites Normalized slot-wise Jacobians for an unregularized (α = 0, β = 0) and a regularized
(α > 0, β > 0) Transformer and a Spatial Broadcast Decoder (SBD). The unregularized model encodes objects
across multiple slots, while the regularized model matches the disentanglement of the SBD. (B) CLEVR6 Slot-
wise Jacobians for a regularized Transformer and a SBD on objects in CLEVR6 which interact via reflections.
As can be seen in reconstructions and Jacobians, the regularized Transformer models reflections, while mostly
removing unnecessary interactions, while the SBD fails to model reflections due to its restricted architecture.

We apply this loss to a flexible Transformer-based autoencoder, similar to the models of Jabri et al.
(2023); Jaegle et al. (2022); Sajjadi et al. (2022b). For the encoder ĝ, we first map data x to features
using the CNN of Locatello et al. (2020b). These features are processed by a Transformer, which has
both self- and cross-attention at every layer, yielding a representation ẑ. Our decoder f̂ then maps ẑ
to an output x̂ using a cross-attention Transformer regularized with Linteract, see Appx. J for details.

Relationship to Models In Object-Centric Learning. Existing models for learning disentangled
representations of concepts, particularly for disentangling objects without supervision, typically rely
on architectural priors rather than regularization (Greff et al., 2019; Locatello et al., 2020b; Seitzer
et al., 2023; Singh et al., 2022a). While such priors promote disentanglement, they are often too
restrictive. For example, Spatial Broadcast Decoders (Watters et al., 2019b) decode slots separately
and only allow for weak interaction through a softmax function, which prevents modelling real-
world data where objects exhibit more complex interactions (Singh et al., 2022a). While some works
have shown success in disentangling objects using more powerful Transformer decoders (Sajjadi
et al., 2022a; Singh et al., 2022a;b), they rely on encoders that use Slot Attention (Locatello et al.,
2020b) as an architectural component, which differs from current large-scale models, typically based
on Transformers (Anil et al., 2023). In contrast, we explore the more flexible approach of starting
with a very general Transformer-based model and regularizing it towards a more constrained model.

6 EXPERIMENTS

We now apply our attention-regularized Transformer-VAE (§ 5) for learning representations of con-
cepts. Since this model is designed to enforce the criteria outlined in Thm. 4.3 for disentanglement
on Zsupp, we focus on evaluating disentanglement, as opposed to compositional generalization. To
this end, we focus on disentangling objects in visual scenes, and leave an empirical study of a wider
range of concepts (e.g., attributes, object-parts, events) for future work (see Appx. J for details).

Data. We consider two multi-object datasets in our experiments. The first, which we refer to as
Sprites (Brady et al., 2023; Watters et al., 2019a; Wiedemer et al., 2024b), consist of images with 2–
4 objects set against a black background. The second is the dataset (Johnson et al., 2017), consisting
of images with 2–6 objects. In Sprites, objects do not have reflections and rarely occlude such
that slots have essentially have no interaction. In CLEVR6, however, objects can cast shadows and
reflect upon each other (see Fig. 1 for an example), introducing more complex interactions.

Metrics. A common metric for object disentanglement is the Adjusted-Rand Index (ARI; Hubert
and Arabie, 1985). The ARI measures the similarity between the set of pixels encoded by a model
slot, and the set of ground-truth pixels for a given object in a scene, yielding an optimal score if each
slot corresponds to exactly one object. To assign a pixel to a unique model slot, prior works typically
choose the slot with the largest attention score (from, e.g., Slot Attention) for that pixel (Seitzer
et al., 2023). However, using attention scores can make model comparisons challenging and is
also somewhat unprincipled (see Appx. J.2). We thus consider an alternative and compute the ARI
using the Jacobian of a decoder (J-ARI). Specifically, we assign a pixel l to the slot with the largest
L1 norm for the slot-wise Jacobian DBk

f̂l(ẑ) (see Fig. 3 for a visualization of these Jacobians).
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Table 1: Empirical Results. We show the mean ± std. dev. for J-ARI and JIS (in %) over 3 seeds for different
choices of encoders and decoders and weights of the loss terms in Eq. (5.3) on Sprites and CLEVR6.

Model Sprites CLEVR6

Encoder Decoder Loss J-ARI (↑) JIS (↑) J-ARI (↑) JIS (↑)

Slot Attention Spatial-Broadcast α = 0, β = 0 89.3± 1.5 91.4± 0.8 97.0± 0.2 95.3± 0.7
Slot Attention Transformer α = 0, β = 0 90.1± 1.4 73.6± 1.5 95.5± 1.0 63.1± 1.0
Transformer Transformer α = 0, β = 0 80.5± 4.1 57.0± 8.0 92.7± 3.3 54.8± 3.5
Transformer Transformer α = 0.05,β = 0 82.8± 3.6 73.8± 4.0 79.2± 12.8 51.6± 5.9
Transformer Transformer α = 0,β = 0.05 92.6± 2.0 92.8± 0.9 96.6± 0.3 80.3± 0.4
Transformer Transformer α = 0.05,β = 0.05 (Ours) 93.7± 0.6 95.0± 1.7 96.5± 0.4 83.8± 1.1

While J-ARI indicates which slots are most responsible for encoding each object, it does not indicate
if additional slots affect the same object, i.e., ∥DBk

f̂l(ẑ)∥1 ̸= 0 for more than one k. To measure
this, we also introduce the Jacobian Interaction Score (JIS). JIS is computed by taking the maximum
of ∥DBk

f̂l(ẑ)∥1 across slots after normalization, averaged over all pixels. If each pixel is affected by
only one slot, JIS is 1. For datasets where objects essentially do not interact like Sprites, JIS should
be close to 1, whereas for CLEVR6, it should be as high as possible while maintaining invertibility.

6.1 RESULTS

Ldisent Enables Object Disentanglement. In Tab. 1, we compare the J-ARI and JIS of our regu-
larized Transformer-based model (α > 0, β > 0) trained with Ldisent (Eq. (5.3)) to the same model
trained without regularization (α=0, β=0), i.e., with only Lrec. On Sprites, the regularized model
achieves notably higher scores for both J-ARI and JIS. This is corroborated by visualizing the slot-
wise Jacobians in Fig. 3A, where we see the regularized model cleanly disentangles objects, whereas
the unregularized model often encodes objects across multiple slots. Similarly, on CLEVR6, the reg-
ularized model achieves superior disentanglement, as indicated by the higher values for both metrics.

Comparison to Existing Object-Centric Autoencoders. In Tab. 1, we also compare our model
to existing models using encoders with Slot Attention and Spatial Broadcast Decoders (SBDs).
On Sprites, our model achieves higher J-ARI and JIS than these models, despite using a weaker
architectural prior. On CLEVR6, our model outperforms Slot Attention with a Transformer decoder
in terms of J-ARI and JIS. Models using a SBD, however, achieve a higher and nearly perfect JIS,
i.e., the learned slots essentially never affect the same pixel. In Fig 3B, we see this comes at the cost
of SBDs failing to model reflections between objects, while our model captures this interaction. This
highlights that regularizing a flexible architecture with Ldisent can enable a better balance between
restricting interactions and model expressivity.

Ablation Over Losses. Lastly, in Tab. 1, we ablate the impact of the regularizers in Ldisent.
Training without LKL (α>0, β=0) can in some cases give improvements in J-ARI and JIS over an
unregularized model (α=0, β=0). However, across datasets this loss yields worse disentanglement
than Ldisent (α> 0, β > 0). This highlights that penalizing latent capacity via LKL is important for
object disentanglement. Training without Linterac (α=0, β > 0) generally yields a drop across both
metrics compared to Ldisent, though on CLEVR6 this loss achieves a comparable J-ARI. We found
that training with LKL can, in some cases, implicitly minimize Linterac, explaining this result (Fig. 5).

7 CONCLUSION

In this work, we proposed interaction asymmetry as a general principle for learning disentangled
and composable representations. Formalizing this idea led to a constraint on the partial derivatives
of the generator function, which unifies assumptions from prior efforts and extends their results to
a more flexible class of generators that allow for non-trivial interactions. These theoretical insights
inspired the development of a flexible estimation method based on the Transformer architecture with
a novel cross-attention regularizer, which can be efficiently implemented at scale, and which shows
promising results on object-centric learning datasets. Future work should seek to further extend our
theoretical results, address the empirical challenges for achieving compositional generalization, and
test our method on more large-scale data involving not only objects but also other types of concepts.
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A DISENTANGLEMENT PROOFS

A.1 ADDITIONAL DEFINITIONS AND LEMMAS

Definition A.1 (Ck-diffeomorphism). Let A ⊆ Rn and B ⊆ Rm. A map f : A → B is said to be
a Ck-diffeomorphism if it is bijective, Ck and has a Ck inverse.
Remark A.2. The property of being differentiable is usually defined only for functions with an open
domain of Rn. Note that, in the definition above, both A and B might not be open sets in their
respective topologies. For an arbitrary domain A ⊆ Rn, we say that a function f is Ck if it can be
extended to a Ck function defined on an open set U containing A. More precisely, f : A → B is
Ck if there exists a function g : U → Rm such that 1) U is an open set containingA, 2) g is Ck, and
3) g(a) = f(a) for all a ∈ A. See p.199 of Munkres (1991) for details about such constructions.

Definition A.3 (Regular closed sets). A set Zsupp ⊆ Rdz is regular closed if Zsupp = Z◦
supp, i.e. if it

is equal to the closure of its interior (in the standard topology of Rn).
Lemma A.4 (Lachapelle et al. (2023)). LetA,B ⊂ Rn and suppose there exists an homeomorphism
f : A→ B. If A is regular closed in Rn, we have that B ⊆ B◦.

The way we defined Ck functions with arbitrary domain is such that a function can be differentiable
without having a uniquely defined derivative everywhere on its domain. This happens when the
derivative of two distinct extensions differ.2 The following Lemma states that the derivative of a Ck

function is uniquely defined on the closure of the interior of its domain.
Lemma A.5 (Lachapelle et al. (2023)). Let A ⊆ Rn and f : A → Rm be a Ck function. Then,
its k first derivatives are uniquely defined on A◦ in the sense that they do not depend on the specific
choice of Ck extension.

Notation For a subset S ⊆ [dz] and a matrix A ∈ Rm×n, AS will denote the sub-matrix consist-
ing of the columns in A indexed by S i.e. AS = [A.,i]i∈S

. Similarly, for a vector z, zS will denote
the sub-vector of z consisting of components indexed by S i.e. zS := (zi)i∈S .
Lemma A.6. Let A ∈ Rm×n and let B be a partition of [n]. If

rank(A) =
∑
S∈B

rank(AS) (A.1)

Then ∀z ∈ Rn s.t. Az = 0, ASzS = 0, for any S ∈ B.

Proof. Assume for a contradiction that there exist a z ∈ Rn, s.t. Az = 0, and there exist S1 ∈ B
s.t. AS1zS1 ̸= 0.

Now construct the matrix, denoted, A−S1
consisting of all columns in A except those indexed by

S1, i.e.
A−S1

:=
[
[A.,i]i∈S

]
S∈B\S1

(A.2)

By using (A.1) and the property that rank([B,C]) ≤ rank(B) + rank(C), we get

rank(A) =
∑

S∈B\S1

rank(AS) + rank(AS1
) (A.3)

≥ rank(A−S1) + rank(AS1) (A.4)
≥ rank(A) . (A.5)

Consequently, we have that:

rank(A) = rank(A−S1
) + rank(AS1

) (A.6)

This implies that the column spaces of both matrices denoted range(A−S1), range(AS1) respec-
tively, do not intersect, except at the zero vector.

2A simple example of such a situation is the trivial function f : {0} → {0} which is differentiable at 0 but
does not have a well defined derivative because g(x) = x and h(x) = −x are both differentiable extensions of
f but have different derivatives at x = 0.
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Now we know that at z
0 = Az (A.7)
= A−S1z−S1 +AS1zS1 (A.8)

Consequently,
A−S1

z−S1
= −AS1

zS1
(A.9)

and by our assumed contradiction we know that at z:
AS1

zS1
̸= 0 (A.10)

This implies that the column spaces of A−S1
,AS1

must intersect at a point other than the zero
vector, which is a contradiction.

Lemma A.7. Let A ∈ Rd×d be an invertible matrix and {B1, . . . , BK} be a partition of [d]. Assume
there are k1, k2, k ∈ [K] such that:

ABk,Bk1
̸= 0 ̸= ABk,Bk2

(A.11)

Then there exists a subset S ⊂ [d] with cardinality |Bk| that has the following properties:

1. The sub-block ABk,S is invertible.

2. S ̸⊆ Bk′ , for any k′ ∈ [K]

Proof. We first prove that there must exists an S satisfying point 1. Since A is invertible, each
subset of rows is linearly independent and thus rank(ABk,:) = |Bk|. This implies that there exist a
set S ⊂ [d] with cardinality |Bk| such that ∀i ∈ S,ABk,i are linearly independent, and thus form a
basis of R|Bk|.

If S ̸⊆ Bk′ for all k′ ∈ [K], we are done.

We consider the case where there exists a k′ such that S ⊆ Bk′ . We will show that we can construct
a different S∗ from S which satisfies both conditions.

We know by (A.11) that there exist a second block k∗ ̸= k′ such that for some j∗ ∈ Bk∗ , ABk,j∗ ̸=
0. Since {ABk,i}i∈S forms a basis of R|Bk|, the vector ABk,j∗ can be represented uniquely as

ABk,j∗ =
∑
i∈S

aiABk,i , (A.12)

where ai ∈ R for all i. Because ABk,j∗ ̸= 0, there exists j ∈ S such that aj ̸= 0. Because this
representation is unique, we know that ABk,j∗ is outside the span of {ABk,i}i∈S\{j}. This means
that, by taking S∗ := (S \ {j}) ∪ {j∗}, we have that {ABk,i}i∈S∗ is a basis for R|Bk| or, in other
words, ABk,S∗ is invertible. Also, S∗ is not included in a single block since S \ {j} ⊆ Bk′ and
j∗ ∈ Bk∗ with k′ ̸= k∗.

A.2 SUFFICIENT INDEPENDENCE ASSUMPTIONS

Definition A.8 (Sufficient Independence (0th Order)). Let f : Rdz → Rdx be a C1 function with 0th

order interactions between slots (Def. 3.2). The function f is said to have sufficiently independent
derivatives if ∀z ∈ Rdz :

rank
([

[Dif(z)]i∈Bk

]
k∈[K]

)
=
∑

k∈[K]

rank
(
[Dif(z)]i∈Bk

)
(A.13)

Definition A.9 (Sufficient Independence (1st Order)). Let f : Rdz → Rdx be a C2 function with
at most 1storder interactions between slots (Def. 3.3). The function f is said to have sufficiently
independent derivatives if ∀z ∈ Rdz :

rank

([[
Dif(z)

]
i∈Bk

[
D2

i,i′f(z)
]
(i,i′)∈B2

k

]
k∈[K]

)
=
∑

k∈[K]

[
rank

(
[Dif(z)]i∈Bk

)
+ rank

([
D2

i,i′f(z)
]
(i,i′)∈B2

k

)]
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Definition 4.2 (Sufficient Independence (2nd Order)). A C3 function f : Rdz → Rdx with at most
2nd order interactions across slots is said to have sufficiently independent derivatives if ∀z ∈ Rdz :

rank

([[
Dif(z)

]
i∈Bk

[D2
i,i′f(z)]i∈Bk,i′∈[dz ] [D

3
i,i′,i′′f(z)](i,i′,i′′)∈B3

k

]
k∈[K]

)
=
∑

k∈[K]

[
rank

([
[Dif(z)]i∈Bk

[D2
i,i′f(z)]i∈Bk,i′∈[dz ]

])
+ rank

(
[D3

i,i′,i′′f(z)](i,i′,i′′)∈B3
k

)]
.

A.3 FROM LOCAL TO GLOBAL DISENTANGLEMENT

This section takes care of technical subtleties when one has to go from local to global disentan-
glement. The disentanglement guarantee of this work is proven by first showing that Dh, i.e. the
Jacobian of h := f−1 ◦ f̂ , has a block-permutation structure everywhere, and from there showing
that h can be written as h(z) = (h1(zBπ(1)

),h2(zBπ(2)
), . . . ,hK(zBπ(K)

)) (see Defintion 2.1).
Lachapelle et al. (2023) refers to the first condition on Dh as local disentanglement and the sec-
ond condition on h as global disentanglement, the latter of which corresponds to the definition of
disentanglement employed in the present work. The authors also show that going from local to
global disentanglement requires special care when considering very general supports Zsupp, like we
do in this work, as opposed to the more common assumption that Zsupp := Rdz which makes this
step more direct (e.g., see Hyvärinen et al. (2019)). This section reuses definitions and lemmata
taken from Lachapelle et al. (2023) and introduces a novel sufficient condition on the support of
the latent factors, we named aligned-connectedness, to guarantee that the jump from local to global
disentanglement can be made.
Definition A.10 (Partition-respecting permutations). Let B := {B1, B2, . . . , BK} be a partition of
{1, ..., d}. A permutation π over {1, ..., d} respects B if, for all B ∈ B, π(B) ∈ B.
Definition A.11 (B-block permutation matrices). A matrix A ∈ Rd×d is a B-block permutation
matrix if it is invertible and can be written as A = CPπ where Pπ is the matrix representing the
B-respecting permutation π (Definition A.10), i.e. Pπei = eπ(i), and C ∈ Rd×d is such that for all
distinct blocks B,B′ ∈ B, CB,B′ = 0.
Proposition A.12. The inverse of a B-block permutation matrix is also a B-block permutation ma-
trix.

Proof. First note that C must be invertible, otherwise A is not. Also, C−1 must also be such that
(C−1)B,B′ = 0 for all distinct blocks B,B′ ∈ B. This is because, without loss of generality, we
can assume the blocks of B are contiguous which implies that C is a block diagonal matrix so that
C−1 is also block diagonal. Since π preserves B, we have that P⊤

π C−1Pπ is also block diagonal
since, for all distinct B,B′ ∈ B, (P⊤

π C−1Pπ)B,B′ = (C−1)π(B),π(B′) = 0, where we used the
fact that the blocks π(B) and π(B′) are in B, because π is B-preserving, and are distinct, because π
is a bijection. We can thus see that

A−1 = P⊤
π C−1

= P⊤
π C−1PπP

⊤
π

= C̃P⊤
π

= C̃Pπ−1 ,

where C̃ := P⊤
π C−1Pπ is block diagonal and π−1 is block-preserving.

Definition A.13 (Local disentanglement; Lachapelle et al. (2023)). A learned decoder f̂ : Rdz →
Rdx is said to be locally disentangled w.r.t. the ground-truth decoder f when f̂ ◦ h(z) = f(z)
for all z ∈ Zsupp where the mapping h is a diffeomorphism from Zsupp onto its image satisfying
the following property: for all z ∈ Zsupp, Dh(z) is a block-permutation matrix respecting B :=
{B1, . . . , BK}.

Note that, in the above definition, the permutation of the blocks might change from one z to another
(see Example 5 in Lachapelle et al. (2023)). To prevent this possibility, we will assume that Zsupp is
path-connected:
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Definition A.14 (Path-connected sets). A set Zsupp ⊆ Rdz is path-connected if for all pairs of
points z0, z1 ∈ Zsupp, there exists a continuous map ϕ : [0, 1] → Zsupp such that ϕ(0) = z0 and
ϕ(1) = z1. Such a map is called a path between z0 and z1.

The following Lemma from Lachapelle et al. (2023) can be used to show that when h is a diffeo-
morphism and Zsupp is path-connected, the block structure cannot change. This is due to the fact
that Dh(z) is invertible everywhere and a continuous function of z. We restate the Lemma without
proof.

Lemma A.15 (Lachapelle et al. (2023)). Let C be a path-connected3 topological space and let
M : C → Rd×d be a continuous function. Suppose that, for all c ∈ C, M(c) is an invertible
B-block permutation matrix (Definition A.11). Then, there exists a B-respecting permutation π such
that for all c ∈ C and all distinct B,B′ ∈ B, M(c)π(B′),B = 0.

It turns out that, in general, having that Dh has a constant block-permutation structure across its
support Zsupp is not enough to make the jump to global disentanglement. See Example 7 from
Lachapelle et al. (2023). We now propose a novel condition on the support Zsupp and will show it is
sufficient to guarantee global disentanglement in Lemma A.18.

Definition A.16 (Aligned-connected sets). A set A ⊆ Rd is said to be aligned-connected w.r.t. a
partition {B1, B2, . . . , BK} if, for all k ∈ [K] and all a′ ∈ A, the set {a ∈ A | aBk

= a′
Bk

} is
path-connected.

Remark A.17 (Relation to path-connectedness). There exist sets that are path-connected but not
aligned-connected and vice-versa. Example 7 from Lachapelle et al. (2023) presents a “U-shaped”
support that is path-connected but not aligned-connected. Moreover, the set A := A(1) ∪ A(2)

where A(1) := {a ∈ R2 | a1 ≥ 1, a2 ≥ 1} and A(2) := {a ∈ R2 | a1 ≤ −1, a2 ≤ −1} is
aligned-connected w.r.t. the partition B = {{1}, {2}} but not path-connected.

We now show how aligned-connectedness combined with path-connectedness is enough to guaran-
tee global disentanglement from local disentanglement.

Lemma A.18 (Local to global disentanglement). Suppose h is a diffeomorphism from Zsupp ⊆
Rdz to its image and suppose Dh(z) is a B-block permutation matrix for all z ∈ Zsupp (local
disentanglement). If Zsupp is path-connected (Defn. A.14) and aligned-connected set (Defn. A.16),
then h(z) = (h1(zBπ(1)

), . . . ,h1(zBπ(K)
)) for all z ∈ Zsupp where the hk are diffeomorphisms

(global disentanglement).

Proof. Since h is a diffeomorphism, Dh is continuous and Dh(z) is invertible for all z ∈ Zsupp.
Since we also have that Zsupp is path-connected, we can apply Lemma A.15 to get that there exists
a permutation π : [K] → [K] such that, for all z ∈ Zsupp and all distinct k, k′ ∈ [K], we have
Dh(z)Bk,Bπ(k′) = 0. In other words, DBπ(k′)hBk

(z) = 0. We must now show that hBk
(z)

depends solely on zBπ(k)
. Consider another point z′ ∈ Zsupp such that zBπ(k)

= z′
Bπ(k)

. We will
now show that hBk

(z) = hBk
(z′), i.e. changing zBc

π(k)
does not influence hBk

(z).

Because Zsupp is aligned-connected, there exists a continuous path ϕ : [0, 1] → Zsupp such that
ϕ(0) = z′, ϕ(1) = z and ϕBπ(k)

(t) = zBπ(k)
= z′

Bπ(k)
for all t ∈ [0, 1]. By the fundamental

3This lemma also holds if C is connected.
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theorem of calculus, we have that

hBk
(z)− hBk

(z′) =

∫ 1

0

(hBk
◦ ϕ)′(t)dt

=

∫ 1

0

DhBk
(ϕ(t))ϕ′(t)dt

=

∫ 1

0

DBπ(k)
hBk

(ϕ(t))ϕ′Bπ(k)
(t) +

∑
k′ ̸=k

DBπ(k′)hBk
(ϕ(t))ϕ′Bπ(k′)

(t)

 dt

=

∫ 1

0

DBπ(k)
hBk

(ϕ(t))0+
∑
k′ ̸=k

0ϕ′Bπ(k′)
(t)

 dt

= 0 ,

where we used the fact that ϕBπ(k)
(t) is a constant function of t and DBπ(k′)hBk

(z) = 0 for distinct
k, k′.

We conclude that, for all k, we can write hBk
(z) = hBk

(zBπ(k)
), which is the desired result.

Additionally, the functions hBk
(zBπ(k)

) are diffeomorphisms because their Jacobians must be in-
vertible otherwise the Jacobian of h (which is block diagonal) would not be invertible (which would
violate the fact that it is a diffeomorphism).

Contrasting with Lachapelle et al. (2023). Instead of assuming aligned-connectedness, Lachapelle
et al. (2023) assumed that the block-specific decoders, which would correspond to the fk(zBk

) in
(4.2), are injective which, when combined with path-connectedness, is also enough to go from local
to global disentanglement in the context of additive decoders (n = 1). Whether a similar strategy
could be adapted for more general decoders with at most nth order interactions is left as future work.

A.4 DISENTANGLEMENT (AT MOST 0TH ORDER/NO INTERACTION)

Lemma A.19. Let Zsupp ⊆ Z be a regular closed set (Defn. A.3). Let f : Z → X be C1 and
h : Ẑsupp → Zsupp be a diffeomorphism. Let f̂ := f ◦h. If f has no interaction (Definition 3.4 with
n = 0), then, for all j, j′ ∈ [dz] and z ∈ Ẑsupp, we have

Dj f̂(z)⊙Dj′ f̂(z) = W f (h(z))mh(z, (j, j′)) , (A.14)

where

W f (z) := [W f
k (z)]k∈[K]

W f
k (z) := [Di1f(z)⊙Di2f(z)](i1,i2)∈B2

k

mh(z, (j, j′)) := [mh
k (z, (j, j

′))]k∈[K]

mh
k (z, (j, j

′)) := [Dj′hi1(z)Djhi2(z)](i1,i2)∈B2
k
.

Proof. We have that

f̂(z) = f ◦ h(z), ∀z ∈ Ẑsupp .

Following the same line of argument as Lachapelle et al. (2023), we can use Lemma A.5 to say that
the function f̂(z) = f ◦ h(z) has well-defined derivatives on (Ẑsupp)◦. Since h−1 is a diffeomor-

phism from Zsupp (which is regular closed) to Ẑsupp, Lemma A.4 implies that Ẑsupp ⊆ (Ẑsupp)◦. This
means that the function f̂(z) = f ◦ h(z) has well-defined derivatives for all z ∈ Ẑsupp.

By taking the derivative w.r.t. zj on both sides of f̂(z) = f ◦ h(z), we get

Dj f̂(z) =
∑

k∈[K]

∑
i∈Bk

Dif(h(z))Djhi(z) (A.15)
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We thus have that

Dj f̂(z)Dj′ f̂(z) =

 ∑
k1∈[K]

∑
i1∈Bk1

Di1f(h(z))Djhi1(z)

⊙

 ∑
k2∈[K]

∑
i2∈Bk2

Di2f(h(z))Dj′hi2(ẑ)


=

∑
k1∈[K]

∑
i1∈Bk1

∑
k2∈[K]

∑
i2∈Bk2

Di1f(h(z))⊙Di2f(h(z))Djhi1(z)Dj′hi2(z)

=
∑

k1∈[K]

∑
i1∈Bk1

∑
i2∈Bk1

Di1f(h(z))⊙Di2f(h(z))Djhi1(z)Dj′hi2(z) ,

where the last equality used the fact that f has no interaction (Definition 3.2). We conclude by
noticing

Dj f̂(z)Dj′ f̂(z) =
∑

k1∈[K]

∑
(i1,i2)∈B2

k1

Di1f(h(z))Di2f(h(z))Djhi1(z)Dj′hi2(z)

= W f (h(z))mh(z, (j, j′)) .

Theorem A.20. Let f : Z → X be a C1 diffeomorphism satisfying interaction asymmetry
(Asm. 3.5) for all equivalent generators (Defn. 4.1) for n = 0. Let Zsupp ⊆ Z be regular
closed (Defn. A.3), path-connected (Defn. A.14) and aligned-connected (Defn. A.16). A model
f̂ : Z → Rdx disentangles z on Zsupp w.r.t. f (Defn. 2.1) if it is (i) a C1 diffeomorphism between
Ẑsupp and Xsupp with (ii) at most 0th order interactions across slots (Defn. 3.4) on Ẑsupp.

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (Definition A.13) and then we show (global) disentanglement via Lemma A.18.
We first show local disentanglement.

Remark: We will use the following notation below:

D1
i,jf(z) := Djf(z)⊙Dif(z) ∈ Rm (A.16)

We first define the function h : Ẑsupp → Zsupp relating the latent spaces of these functions on Ẑsupp:

h := f−1 ◦ f̂ (A.17)

The function f̂ can then be written in terms of f and h on Ẑsupp:

f̂ = f ◦ h (A.18)

Because f , f̂ are both C1 diffeomorphism between Zsupp,Xsupp and Ẑsupp,Xsupp, respectively, we
have that h is a C1 diffeomorphism.

By Lemma A.19, for all z ∈ Ẑsupp, j, j
′ ∈ [dz], we have:

Dj f̂(z)⊙Dj′ f̂(z) = W f (h(z))mh(z, (j, j′)) (A.19)

where wf and mh are defined in Lemma A.19.

Define the sets
D :=

⋃
k∈[K]

B2
k, Dc := {1, . . . , dz}2 \ D (A.20)

Because f̂ has no interaction (Definition 3.2), we have that, for all (j, j′) ∈ Dc

0 = W f (h(z))mh(z, (j, j′))

=
∑

k∈[K]

W f
k (h(z))mh

k (z, (j, j
′)) .
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Because f has no interaction, each row W f
k (h(z))n,· is non-zero for at most one k ∈ [K] (although

this k can change for different values of n and z). This implies that for all z ∈ Ẑsupp, (j, j
′) ∈ Dc,

k ∈ [K]:
0 = W f

k (h(z))mh
k (z, (j, j

′)) (A.21)
Case 1: |Bk| = 1 (One-Dimensional Slots)

When |Bk| = 1, for all k ∈ [dz], the matrix W f
k (h(z)) can be written as:

W f
k (h(z)) = [Dkf(z)⊙Dkf(z)] (A.22)

This matrix has a single column, which must be non-zero since f is a C1 diffeomorphism. Thus,
W f

k (h(z)) has full column rank and thus has a null space equal to 0. Using Eq. (A.21), we conclude
that for all (j, j′) ∈ Dc, k ∈ [dz]:

0 = mh
k (z, (j, j

′)) (A.23)
Applying the definition of mh

k (z, (j, j
′)), this implies that for all (j, j′) ∈ Dc, k ∈ [dz]:

0 = Dj′hk(z)Djhk(z) (A.24)

This means each row of the Jacobian matrixDh(z) cannot have more than one nonzero value. Since
the Jacobian is invertible, these nonzero values must all be different for different rows, otherwise
a whole column would be zero. Hence Dh(z) is a permutation-scaling matrix, i.e. we have local
disentanglement.

Case 2: |Bk| > 1 (Multi-Dimensional Slots)

Assume for a contradiction that f̂ is not locally disentangled on Zsupp w.r.t f . This implies that there
exist a z∗ ∈ Ẑsupp, k, k′, k′′ ∈ [K] for k′ ̸= k′′, such that:

DBk′hBk
(z∗) ̸= 0, DBk′′hBk

(z∗) ̸= 0 (A.25)

Because f , f̂ are C1 diffeomorphisms, we know that h is also a C1 diffeomorphism. Coupling this
with Eq. (A.25), Lemma A.7 tells us that there exist an S ⊂ [dz] with cardinality |Bk| such that:

∀B ∈ B, S ̸⊆ B, and ∀i ∈ S,DihBk
(z∗) are linearly independent. (A.26)

Now choose any B̄ ∈ B such that S1 := S ∩ B̄ ̸= ∅. Furthermore, define the set S2 := S \ S1.
Because S ̸⊆ B̄, we know that S2 is non-empty. Further, by construction S = S1 ∪ S2. In other
words, S1 and S2 are non-empty, form a partition of S, and do not contain any indices from the
same slot.

Now construct the matrices, denoted AS1
and AS2

as follows:

AS1
:= DS1

hBk
(z∗), AS2

:= DS2
hBk

(z∗) (A.27)

And the matrix denoted Ak as:
Ak := [AS1 ,AS2 ] (A.28)

Note that because, ∀i ∈ S, DihBk
(ẑ∗) are linearly independent (Eq. (A.26)), we know that Ak is

invertible.

Now, define the following block diagonal matrix A ∈ Rdz×dz as follows:

A :=


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK

 (A.29)

where ∀i ∈ [K] \ {k},Ai is the identity matrix, and thus invertible, while Ak is defined according
to Eq. (A.28).

Define Z̄ := A−1Z , the function h̄ : Z̄ → Z as h̄(z) := Az and the function f̄ : Z̄ → X as
f̄ := f ◦ h̄. By construction we have

∀z ∈ Z, f̄
(
A−1

1 zB1 , . . . ,A
−1
K zBK

)
= f(zB1 , . . . ,zBK

) . (A.30)
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Because all A−1
i are invertible, then f̄ is equivalent to f in the sense of Def. (4.1).

We can now apply Lemma A.19 to f̄ = f ◦ h̄ to obtain, for all j, j′ ∈ [dz]:

Dj f̄(z)⊙Dj′ f̄(z) = W f (h̄(z))mh̄(z, (j, j′)) . (A.31)

Choose z̄ ∈ Z̄ such that h̄(z̄) = h(z∗), which is possible because h(z∗) ∈ Z and h̄ is a bijection
from Z̄ to Z). We can then write

Dj f̄(z̄)⊙Dj′ f̄(z̄) = W f (h(z∗))mh̄(z̄, (j, j′)) . (A.32)

Let J, J ′ ⊆ Bk be a partition of Bk such that J is the set of columns of A corresponding to AS1

and J ′ be the set of columns of A corresponding to AS2
. More formally, we have

ABk,J = AS1
and ABk,J′ = AS2

Since AS1
= DS1

hBk
(z∗) and AS2

= DS2
hBk

(z∗), we have that

ABk,J = DS1
hBk

(z∗) and ABk,J′ = DS2
hBk

(z∗)

Since Dh̄(z̄) = A, we have

DJ h̄Bk
(z̄) = DS1hBk

(z∗) and DJ′h̄Bk
(z̄) = DS2hBk

(z∗) .

Choose some (j, j′) ∈ J × J ′. We know there must exist (s, s′) ∈ S1 × S2 such that

Djh̄Bk
(z̄) = DshBk

(z∗) and Dj′h̄Bk
(z̄) = Ds′hBk

(z∗) .

which implies

mh̄
k (z̄, (j, j

′)) = mh
k (z

∗, (s, s′)) . (A.33)

Moreover, since the Jacobian of h̄ is block diagonal, we have that mh̄
k′(z, (j, j′)) = 0 for all k′ ̸= k

(recall that j, j′ ∈ Bk). This means we can rewrite (A.32) as

Dj f̄(z̄)⊙Dj′ f̄(z̄) = W f
k (h(z∗))mh̄

k (z̄, (j, j
′)) . (A.34)

Plugging (A.33) into the above equation yields

Dj f̄(z̄)⊙Dj′ f̄(z̄) = W f
k (h(z∗))mh

k (z
∗, (s, s′)) . (A.35)

Since (s, s′) ∈ S1 × S2 ⊆ Dc, we can apply (A.21) to get

Dj f̄(z̄)⊙Dj′ f̄(z̄) = W f
k (h(z∗))mh

k (z
∗, (s, s′)) = 0 . (A.36)

In other words, we found a partition J, J ′ of the block Bk such that Dj f̄(z̄) ⊙ Dj′ f̄(z̄) = 0 for
all (j, j′) ∈ J × J ′. This means that the blocks J and J ′ have no interaction in f̄ at z̄. This is a
contradiction with Assm. 3.5. Hence, we have local disentanglement.

Local to global disentanglement. We showed that Dh(z) is a block-permutation matrix for
all z ∈ Ẑsupp, i.e. local disentanglement. Consider the inverse h, v := h−1. The Jaco-
bian of v is given by Dv(z) = Dh−1(z) = Dh(v(z))−1, by the inverse function theorem.
By Proposition A.12, this means Dv(z) is also a block permutation matrix for all z ∈ Zsupp.
Since Zsupp is aligned-connected (Definition A.16), Lemma A.18 guarantees that we can write
v(z) = (v1(zBπ(1)

), . . . ,vK(zBπ(K)
)) for all z ∈ Zsupp where the vk are diffeomorphisms. This

implies that h(z) = (v−1
1 (zBπ−1(1)

), . . . ,v−1
K (zBπ−1(K)

)) for all z ∈ Ẑsupp, which concludes the
proof.

A.5 DISENTANGLEMENT (AT MOST 1ST ORDER INTERACTION)

Lemma A.21. Let Zsupp ⊆ Z be a regular closed set (Defn. A.3). Let f : Z → X be C1 and
h : Ẑsupp → Zsupp be a diffeomorphism. Let f̂ := f ◦ h. If f has at most 1st order interaction
(Definition 3.4 with n = 1), then, for all j, j′ ∈ [dz] and z ∈ Ẑsupp, we have

D2
j,j′ f̂(z) = W f (h(z))mh(z, (j, j′)) , (A.37)
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where

W f (z) := [W f
k (z))]k∈[K]

W f
k (z) :=

[
[Di1f(z)]i1∈Bk

, [D2
i1,i2f(z)](i1,i2)∈B2

k

]
mh(z, (j, j′)) := [mh

k (z, (j, j
′))]k∈[K]

mh
k (z, (j, j

′)) :=
[
[D2

j,j′hi1(z)]i1∈Bk
, [Dj′hi2(z)Djhi1(z)](i1,i2)∈B2

k

]
.

Proof. The exact same argument as the one presented in Lemma A.19 (based on Lachapelle et al.
(2023)) guarantees that, f̂ and f ◦ h have equal derivatives on Ẑsupp. We leverage this fact next.

By taking the derivative w.r.t. zj on both sides of f̂(z) = f ◦ h(z), we get

Dj f̂(z) =
∑

k∈[K]

∑
i∈Bk

Dif(h(z))Djhi(z) (A.38)

Now take another derivative w.r.t. zj′ for some j′ ∈ [dz] to get

D2
j,j′ f̂(z) =

∑
k1∈[K]

∑
i1∈Bk1

Di1f(h(z))D
2
j,j′hi1(z) +

∑
k2∈[K]

∑
i2∈Bk2

D2
i1,i2f(h(z))Dj′hi2(z)Djhi1(z)


Because we have at most first order interactions (Def. 3.4 with n = 1), the second sum over [K]
drops, and we are left with:

D2
j,j′ f̂(z) =

∑
k1∈[K]

∑
i1∈Bk1

Di1f(h(z))D
2
j,j′hi1(z) +

∑
i2∈Bk1

D2
i1,i2f(h(z))Dj′hi2(z)Djhi1(z)


=

∑
k1∈[K]

 ∑
i1∈Bk1

Di1f(h(z))D
2
j,j′hi1(z) +

∑
(i1,i2)∈B2

k1

D2
i1,i2f(h(z))Dj′hi2(z)Djhi1(z)


= W f (h(z))mh(z, (j, j′)) ,

which concludes the proof.

Theorem A.22. Let f : Z → X be a C2 diffeomorphism satisfying interaction asymme-
try (Asm. 3.5) for all equivalent generators (Defn. 4.1) for n = 1 and sufficient independence
(Defn. A.9). Let Zsupp ⊆ Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-
connected (Defn. A.16). A model f̂ : Z → Rdx disentangles z on Zsupp w.r.t. f (Defn. 2.1) if it is
(i) a C2 diffeomorphism between Ẑsupp and Xsupp with (ii) at most 1st order interactions across slots
(Defn. 3.4) on Ẑsupp.

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (Definition A.13) and then we show (global) disentanglement via Lemma A.18.
We first show local disentanglement.

We first define the function h : Ẑsupp → Zsupp relating the latent spaces of these functions on Ẑsupp:

h := f−1 ◦ f̂ (A.39)

The function f̂ can then be written in terms of f and h on Ẑsupp:

f̂ = f ◦ h (A.40)

Because f , f̂ are both C2 diffeomorphism between Zsupp,Xsupp and Ẑsupp,Xsupp, respectively, we
have that h is a C2 diffeomorphism.
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Since f has at most 1st order interactions, we can apply Lemma A.21 to obtain, for all z ∈
Ẑsupp, j, j

′ ∈ [dz],

D2
j,j′ f̂(z) = W f (h(z))mh(z, (j, j′)) .

Since f̂ has at most 1st order interaction, we have that, for all (j, j′) ∈ Dc

0 = W f (h(z))mh(z, (j, j′)) . (A.41)

By defining

W f ,rest
k (z) := [Di1f(z)]i1∈Bk

W f ,high
k (z) := [D2

i1,i2f(z)](i1,i2)∈B2
k

mh,rest
k (z, (j, j′)) := [D2

j,j′hi1(z)]i1∈Bk

mh,high
k (z, (j, j′)) := [Dj′hi2(z)Djhi1(z)](i1,i2)∈B2

k

we can restate the sufficiently independent derivative assumption (Def. A.9) as, for all z ∈ Z

rank
(
W f (z)

)
=
∑

k∈[K]

[
rank

(
W f ,rest

k (z)
)
+ rank

(
W f ,high

k (z)
)]

This condition allows us to apply Lemma A.6 to go from (A.41) to, for all (j, j′) ∈ Dc, k ∈ [K]:

0 = W f ,high
k (h(z))mh,high

k (z, (j, j′)) (A.42)

Case 1: |Bk| = 1 (One-Dimensional Slots) By Assumption 3.5.ii, (with A = B = {i}) D2
i,if(z) ̸=

0. Note that W f ,high
k (h(z)) = D2

k,kf(z). Hence, (A.42) implies that mh,high
k (z, (j, j′)) = 0 (which

is a scalar). This means mh,high
k (z, (j, j′)) = Dj′hk(z)Djhk(z) = 0. Since this is true for all k and

all distinct j, j′, this means each row has at most one nonzero entry. SinceDh(z) is invertible, these
nonzero entries must appear on different columns, otherwise a column will be filled with zeros. This
meansDh(z) is a permutation-scaling matrix, i.e. we have local disentanglement (Definition A.13).

Case 2: |Bk| > 1 (Multi-Dimensional Slots)

Assume for a contradiction that f̂ is not locally disentangled on Zsupp w.r.t. f . This implies that
there exist a z∗ ∈ Ẑsupp, k, k′, k′′ ∈ [K] with k′ ̸= k′′ such that:

DBk′hBk
(z∗) ̸= 0, DBk′′hBk

(z∗) ̸= 0 (A.43)

Because f , f̂ are C1 diffeomorphisms, we know that h is also a C1 diffeomorphism. Coupling this
with Eq. (A.43), Lemma A.7 tells us that there exist an S ⊂ [dz] with cardinality |Bk| such that:

∀B ∈ B, S ̸⊆ B, and ∀i ∈ S,DihBk
(z∗) are linearly independent. (A.44)

Now choose any B̄ ∈ B such that S1 := {S ∩ B̄} ≠ ∅. Furthermore, define the set S2 := S \ S1.
Because S ̸⊆ B̄, we know that S2 is non-empty. Further, by construction S = S1 ∪ S2. In other
words, S1 and S2 are non-empty, form a partition of S, and do not contain any indices from the
same slot.

Now construct the matrices, denoted AS1
and AS2

as follows:
AS1 := DS1hBk

(z∗), AS2 := DS2hBk
(z∗) (A.45)

And the matrix denoted Ak as:
Ak := [AS1

,AS2
] (A.46)

Note that because, ∀i ∈ S, DihBk
(ẑ∗) are linearly independent (Eq. A.44), we know that Ak is

invertible.

Now, define the following block diagonal matrix A ∈ Rdz×dz as follows:

A :=


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK

 (A.47)
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where ∀i ∈ [K] \ {k},Ai is the identity matrix, and thus invertible, while Ak is defined according
to Eq. (A.46).

Define Z̄ := A−1Z , the function h̄ : Z̄ → Z as h̄(z) := Az and the function f̄ : Z̄ → X as
f̄ := f ◦ h̄. By construction we have

∀z ∈ Z, f̄
(
A−1

1 zB1 , . . . ,A
−1
K zBK

)
= f(zB1 , . . . ,zBK

) . (A.48)

Because all A−1
i are invertible, then f̄ is equivalent to f in the sense of Def. (4.1).

We can now apply Lemma A.21 to f̄ = f ◦ h̄ to obtain, for all j, j′ ∈ [dz]:

D2
j,j′ f̄(z) = W f (h̄(z))mh̄(z, (j, j′)) . (A.49)

Choose z̄ ∈ Z̄ such that h̄(z̄) = h(z∗), which is possible because h(z∗) ∈ Z and h̄ is a bijection
from Z̄ to Z . We can then write

D2
j,j′ f̄(z̄) = W f (h(z∗))mh̄(z̄, (j, j′)) . (A.50)

Let J, J ′ ⊆ Bk be a partition of Bk such that J is the set of columns of A corresponding to AS1

and J ′ be the set of columns of A corresponding to AS2 . More formally, we have

ABk,J = AS1 and ABk,J′ = AS2 .

Since AS1 = DS1hBk
(z∗) and AS2 = DS2hBk

(z∗), we have that

ABk,J = DS1hBk
(z∗) and ABk,J′ = DS2hBk

(z∗)

Since Dh̄(z̄) = A, we have

DJ h̄Bk
(z̄) = DS1

hBk
(z∗) and DJ′h̄Bk

(z̄) = DS2
hBk

(z∗) .

For all (j, j′) ∈ J × J ′, there must exist (s, s′) ∈ S1 × S2 such that

Djh̄Bk
(z̄) = DshBk

(z∗) and Dj′h̄Bk
(z̄) = Ds′hBk

(z∗) .

This implies that, for all (j, j′) ∈ J × J ′, there exists (s, s′) ∈ S1 × S2 such that

mh̄,high
k (z̄, (j, j′)) = mh,high

k (z∗, (s, s′)) . (A.51)

Moreover, since h̄ is a block-wise function we have that, for all (j, j′) ∈ J × J ′ ⊆ Bk and k′ ∈
[K] \ {k}, mh̄

k′(z̄, (j, j′)) = 0. We can thus write:

D2
j,j′ f̄(z̄) = W f

k (h(z∗))mh̄
k (z̄, (j, j

′)) . (A.52)

Since h̄ is linear, we have that mh̄,rest
k (z̄, (j, j′)) = 0, and thus

D2
j,j′ f̄(z̄) = W f ,high

k (h(z∗))mh̄,high
k (z̄, (j, j′)) . (A.53)

Plug the (A.51) into the above to obtain that, for all (j, j′) ∈ J × J ′,

D2
j,j′ f̄(z̄) = W f ,high

k (h(z∗))mh,high
k (z∗, (s, s′)) = 0 , (A.54)

where the very last “= 0” is due to (A.42) (recall (s, s′) ∈ S1 × S2 ⊆ Dc).

In other words, we found a partition J, J ′ of the block Bk and a value z̄ such that D2
j,j′ f̄(z̄) = 0

for all (j, j′) ∈ J × J ′. This means that the blocks J and J ′ have no second order interaction in f̄
at z̄. This is a contradiction with Assm. 3.5. Hence, we have local disentanglement.

From local to global disentanglement. The same argument as in the proof of Theorem A.20
applies.
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A.6 DISENTANGLEMENT (AT MOST 2ND ORDER INTERACTION)

Lemma A.23. Let Zsupp ⊆ Z be a regular closed set (Defn. A.3). Let f : Z → X be C1 and
h : Ẑsupp → Zsupp be a diffeomorphism. Let f̂ := f ◦ h. If f has at most 2nd order interaction
(Definition 3.4 with n = 2), then, for all j, j′ ∈ [dz] and z ∈ Ẑsupp, we have

D3
j,j′,j′′ f̂(z) = W f (h(z))mh(z, (j, j′, j′′)) , (A.55)

where

W f (z) := [W f
k (z))]k∈[K]

W f
k (z) :=

[
[Di1f(z)]i1∈Bk

,

[D2
i1,i2f(z)]i1∈Bk,i2∈[dz ],

[D3
i1,i2,i3f(z)](i1,i2,i3)∈B3

k

]
mh(z, (j, j′, j′′)) := [mh

k (z, (j, j
′, j′′))]k∈[K]

mh
k (z, (j, j

′, j′′)) :=
[
[D3

j,j′,j′′hi1(z)]i1∈Bk
,

[Djhi1(z)D
2
j′,j′′hi2(z) +Dj′hi2(z)D

2
j,j′′hi1(z) +Dj′′hi2(z)D

2
j,j′hi1(z)]i1∈Bk,i2∈[dz ]

[Dj′′hi3(z)Dj′hi2(z)Djhi1(z)](i1,i2,i3)∈B3
k

]
.

Proof. As argued in Lemma A.21, differentiating f̂(z) = f ◦ h(z) w.r.t. zj and zj′ on both sides
yields

D2
j,j′ f̂(z) =

∑
k1∈[K]

∑
i1∈Bk1

Di1f(h(z))D
2
j,j′hi1(z) +

∑
k2∈[K]

∑
i2∈Bk2

D2
i1,i2f(h(z))Dj′hi2(z)Djhi1(z)


Now take another derivative with respect to zj′′ to compute D3

j,j′,j′′ f̂(z). For the first term in the
sum, we have:

∑
k1∈[K]

∑
i1∈Bk1

 ∑
k2∈[K]

∑
i2∈Bk2

D2
i1,i2fn(h(z))Dj′′hi2(z)D

2
j,j′hi1(z) +Di1fn(h(z))D

3
j,j′,j′′hi1(z)


And for the second term in the sum (the nested sum), we have:

∑
k1∈[K]

∑
i1∈Bk1

∑
k2∈[K]

∑
i2∈Bk2

[ ∑
k3∈[K]

∑
i3∈Bk3

D3
i1,i2,i3fn(h(z))Dj′′hi3(z)Dj′hi2(z)Djhi1(z) +

D2
i1,i2fn(h(z))

[
D2

j′,j′′hi2(z)Djhi1(z) +Dj′hi2(z)D
2
j,j′′hi1(z)

]]

Because we have at most second order interactions (Def. 3.4 with n = 2), this term can be rewritten
as:

∑
k1∈[K]

∑
i1∈Bk1

[ ∑
i2∈Bk1

∑
i3∈Bk1

D3
i1,i2,i3fn(h(z))Dj′′hi3(z)Dj′hi2(z)Djhi1(z) +

∑
k2∈[K]

∑
i2∈Bk2

D2
i1,i2fn(h(z))

[
D2

j′,j′′hi2(z)Djhi1(z) +Dj′hi2(z)D
2
j,j′′hi1(z)

]]
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Combining the first and second terms, we get:

D3
j,j′,j′′ f̂(z) =

∑
k1∈[K]

∑
i1∈Bk1

[
Di1f(h(z))D

3
j,j′,j′′hi1(z) +

∑
k2∈[K]

∑
i2∈Bk2

D2
i1,i2f(h(z))

(
Djhi1(z)D

2
j′,j′′hi2(z) +Dj′hi2(z)D

2
j,j′′hi1(z) +Dj′′hi2(z)D

2
j,j′hi1(z)

)
+

∑
i2∈Bk1

∑
i3∈Bk1

D3
i1,i2,i3f(h(z))Dj′′hi3(z)Dj′hi2(z)Djhi1(z)

]

=
∑

k1∈[K]

[ ∑
i1∈Bk1

Di1f(h(z))D
3
j,j′,j′′hi1(z) +

∑
i1∈Bk1

∑
i2∈[dz ]

D2
i1,i2f(h(z))

(
Djhi1(z)D

2
j′,j′′hi2(z) +Dj′hi2(z)D

2
j,j′′hi1(z) +Dj′′hi2(z)D

2
j,j′hi1(z)

)
+

∑
(i1,i2,i3)∈B3

k1

D3
i1,i2,i3f(h(z))Dj′′hi3(z)Dj′hi2(z)Djhi1(z)

]

= W f (h(z))mh(z, (j, j′, j′′)) .

Theorem A.24. Let f : Z → X be a C3 diffeomorphism satisfying interaction asymme-
try (Asm. 3.5) for all equivalent generators (Defn. 4.1) for n = 2 and sufficient independence
(Defn. 4.2). Let Zsupp ⊆ Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-
connected (Defn. A.16). A model f̂ : Z → Rdx disentangles z on Zsupp w.r.t. f (Defn. 2.1) if it is
(i) a C3 diffeomorphism between Ẑsupp and Xsupp with (ii) at most 2nd order interactions across slots
(Defn. 3.4) on Ẑsupp.

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (Definition A.13) and then we show (global) disentanglement via Lemma A.18.
We first show local disentanglement.

We first define the function h : Ẑsupp → Zsupp relating the latent spaces of these functions on Ẑsupp:

h := f−1 ◦ f̂ (A.56)

The function f̂ can then be written in terms of f and h on Ẑsupp:

f̂ = f ◦ h (A.57)

Because f , f̂ are both C2 diffeomorphism between Zsupp,Xsupp and Ẑsupp,Xsupp, respectively, we
have that h is a C2 diffeomorphism.

Since f̂ has at most 2nd order interaction, we have that, for all z ∈ Ẑsupp, (j, j
′, j′′) ∈ Dc × [dz],

0 = W f (h(z))mh(z, (j, j′, j′′)) . (A.58)
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By defining

W f ,rest
k (z) :=

[
[Di1f(z)]i1∈Bk

,

[D2
i1,i2f(z)]i1∈Bk,i2∈[dz ]

]
W f ,high

k (z) := [D3
i1,i2,i3f(z)](i1,i2,i3)∈B3

k

mh,rest
k (z, (j, j′, j′′)) :=

[
[D3

j,j′,j′′hi1(z)]i1∈Bk
,

[Djhi1(z)D
2
j′,j′′hi2(z) +Dj′hi2(z)D

2
j,j′′hi1(z) +Dj′′hi2(z)D

2
j,j′hi1(z)]i1∈Bk,i2∈[dz ]

]
mh,high

k (z, (j, j′, j′′)) := [Dj′′hi3(z)Dj′hi2(z)Djhi1(z)](i1,i2,i3)∈B3
k
,

we can restate the sufficiently independent derivative assumption (Def. 4.2) as, for all z ∈ Z

rank
(
W f (z)

)
=
∑

k∈[K]

[
rank

(
W f ,rest

k (z)
)
+ rank

(
W f ,high

k (z)
)]

This condition allows us to apply Lemma A.6 to go from (A.58) to, for all (j, j′, j′′) ∈ Dc × [dz],
k ∈ [K]:

0 = W f ,high
k (h(z))mh,high

k (z, (j, j′, j′′)) (A.59)

Case 1: |Bk| = 1 (One-Dimensional Slots) By Assumption 3.5.ii (with A = B = {i}),
we have that D3

i,i,if(z) ̸= 0. Note that W f ,high
k (h(z)) = D3

k,k,kf(z). Hence, (A.42) im-
plies that mh,high

k (z, (j, j′, j′′)) = 0 (which is a scalar). This means mh,high
k (z, (j, j′, j′′)) =

Dj′′hk(z)Dj′hk(z)Djhk(z) = 0 for all (j, j′, j′′) ∈ Dc × [dz]. In particular, we have

Dj′hk(z)
2Djhk(z) = 0 ,

for all (j, j′) ∈ Dc. Since this is true for all k and all distinct j, j′, this means each row ofDh(z) has
at most one nonzero entry. SinceDh(z) is invertible, these nonzero entries must appear on different
columns, otherwise a column would be filled with zeros. This meansDh(z) is a permutation-scaling
matrix, i.e. we have local disentanglement (Definition A.13).

Case 2: |Bk| > 1 (Multi-Dimensional Slots)

Assume for a contradiction that f̂ does not disentangled z on Zsupp w.r.t. f . This implies that there
exist a z∗ ∈ Ẑsupp, k, k′, k′′ ∈ [K] with k′ ̸= k′′ such that:

DBk′hBk
(z∗) ̸= 0, DBk′′hBk

(z∗) ̸= 0 (A.60)

Because f , f̂ are C3 diffeomorphisms, we know that h is also a C3 diffeomorphism. Coupling this
with Eq. (A.60), Lemma A.7 tells us that there exist an S ⊂ [dz] with cardinality |Bk| such that:

∀B ∈ B, S ̸⊆ B, and ∀i ∈ S,DihBk
(z∗) are linearly independent. (A.61)

Now choose any B̄ ∈ B such that S1 := {S ∩ B̄} ≠ ∅. Furthermore, define the set S2 := S \ S1.
Because S ̸⊆ B̄, we know that S2 is non-empty. Further, by construction S = S1 ∪ S2. In other
words, S1 and S2 are non-empty, form a partition of S, and do not contain any indices from the
same slot.

Now construct the matrices, denoted AS1
and AS2

as follows:

AS1
:= DS1

hBk
(z∗), AS2

:= DS2
hBk

(z∗) (A.62)

And the matrix denoted Ak as:
Ak := [AS1 ,AS2 ] (A.63)

Note that because, ∀i ∈ S, DihBk
(ẑ∗) are linearly independent (Eq. (A.61)), we know that Ak is

invertible.
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Now, define the following block diagonal matrix A ∈ Rdz×dz as follows:

A :=


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK

 (A.64)

where ∀i ∈ [K] \ {k},Ai is the identity matrix, and thus invertible, while Ak is defined according
to Eq. (A.63).

Define Z̄ := A−1Z , the function h̄ : Z̄ → Z as h̄(z) := Az and the function f̄ : Z̄ → X as
f̄ := f ◦ h̄. By construction we have

∀z ∈ Z, f̄
(
A−1

1 zB1
, . . . ,A−1

K zBK

)
= f(zB1

, . . . ,zBK
) . (A.65)

Because all A−1
i are invertible, then f̄ is equivalent to f in the sense of Def. (4.1).

We can now apply Lemma A.23 to f̄ = f ◦ h̄ to obtain, for all j, j′, j′′ ∈ [dz]:

D3
j,j′,j′′ f̄(z) = W f (h̄(z))mh̄(z, (j, j′, j′′)) . (A.66)

Choose z̄ ∈ Z̄ such that h̄(z̄) = h(z∗), which is possible because h(z∗) ∈ Z and h̄ is a bijection
from Z̄ to Z . We can then write

D3
j,j′,j′′ f̄(z̄) = W f (h(z∗))mh̄(z̄, (j, j′, j′′)) . (A.67)

Let J, J ′ ⊆ Bk be a partition of Bk such that J is the set of columns of A corresponding to AS1

and J ′ be the set of columns of A corresponding to AS2
. More formally, we have

ABk,J = AS1
and ABk,J′ = AS2

Since AS1 = DS1hBk
(z∗) and AS2 = DS2hBk

(z∗), we have that
ABk,J = DS1hBk

(z∗) and ABk,J′ = DS2hBk
(z∗)

Since Dh̄(z̄) = A, we have
DJ h̄Bk

(z̄) = DS1
hBk

(z∗) and DJ′h̄Bk
(z̄) = DS2

hBk
(z∗) .

For all (j, j′, j′′) ∈ J × J ′ ×Bk there must exist (s, s′, s′′) ∈ S1 × S2 × S such that
Djh̄Bk

(z̄) = DshBk
(z∗), Dj′h̄Bk

(z̄) = Ds′hBk
(z∗), and Dj′′h̄Bk

(z̄) = Ds′′hBk
(z∗) .

This implies that for all (j, j′, j′′) ∈ J × J ′ × Bk there must exist (s, s′, s′′) ∈ S1 × S2 × S such
that

mh̄,high
k (z̄, (j, j′, j′′)) = mh,high

k (z∗, (s, s′, s′′)) . (A.68)

Moreover, since h̄ is a block-wise function, we have that, for all (j, j′, j′′) ∈ J × J ′ × Bk ⊆ B3
k

and all k′ ∈ [K] \ {k}, we have mh̄
k′(z̄, (j, j′, j′′)) = 0, which allows us to rewrite (A.67) as

D3
j,j′,j′′ f̄(z̄) = W f

k (h(z∗))mh̄
k (z̄, (j, j

′, j′′)) . (A.69)

Since h̄ is linear, we have that mh̄,rest
k (z̄, (j, j′, j′′)) = 0, and thus

D3
j,j′,j′′ f̄(z̄) = W f ,high

k (h(z∗))mh̄,high
k (z̄, (j, j′, j′′)) . (A.70)

Plug (A.68) into the above to obtain that for all (j, j′, j′′) ∈ J × J ′ × Bk, there exists (s, s′, s′′) ∈
S1 × S2 × S such that

D3
j,j′,j′′ f̄(z̄) = W f ,high(h(z∗))mh,high

k (z∗, (s, s′, s′′)) = 0 , (A.71)
where the very last “= 0” is due to (A.59) (recall (s, s′, s′′) ∈ S1 × S2 × S ⊆ Dc × [dz]).

In other words, we found a partition J, J ′ of the block Bk and a value z̄ such that D3
j,j′,j′′ f̄(z̄) = 0

for all (j, j′, j′′) ∈ J × J ′ × Bk. One can show that f̄ as no 3rd order interaction across blocks
because it is equivalent to f , which also has no 3rd order interactions across blocks. We thus have
that D3

j,j′,j′′ f̄(z̄) = 0 for all (j, j′, j′′) ∈ J × J ′ × [dz]. This means that the blocks J and J ′ have
no third order interaction in f̄ at z̄. This is a contradiction with Assm. 3.5.

From local to global disentanglement. The same argument as in the proof of Theorem A.20
applies.
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B MULTI-INDEX NOTATION

Multi-index notation is a convenient shorthand to denote higher order derivatives. A multi-index of
dimension d is an ordered tuple α = (α1, . . . , αd) ∈ Nd. We introduce the shorthands

|α| =
d∑

i=1

αi, α! =

d∏
i=1

αi! (B.1)

and we write α ≥ β if αi ≥ βi for all i and α±β denotes the element wise sum (difference) of the
entries. We write

Dα =
∂α1

∂zα1
1

. . .
∂αd

∂zαd

d

(B.2)

and

zα =

d∏
i=1

zαi
i . (B.3)

We will need the important property that

Dαzβ =

{
β!

(β−α)!z
β−α if β ≥ α

0 otherwise.
(B.4)

Consider now a partition of dz into slots B1, . . . , Bk. We define the set of interaction multi-indices
of order n for n ≥ 2 by

In = {α ∈ Ndz : |α| = n, ∃i1, i2 s. t. i1 ∈ Bk1
, i2 ∈ Bk2

with k1 ̸= k2 and αi1 , αi2 > 0}, (B.5)
i.e., the set of all multi-indices such that the non-zero components are contained in at least two
blocks. Clearly In depends on the block partition which we do not reflect in the notation. We also
consider

I≤n =
⋃

2≤m≤n

Im. (B.6)

Clearly, if α ∈ I|α| and β is any multi-index, then α+ β ∈ I|α|+|β|.

C CHARACTERIZATION OF FUNCTIONS WITH AT MOST nTH ORDER
INTERACTIONS

In this section we characterize functions with interaction of at most nth order by proving Theo-
rem C.2. Our characterization relies on the notion of aligned-connectedness introduced in Defini-
tion A.16 and the following topological notion.
Definition C.1. A topological space X is contractible if there is a continuous function F : X ×
[0, 1] → X such that F (x, 0) = x and F (x, 1) = x0 for a point x0 ∈ X . We call a subset of Rd

contractible if it is contractible as a topological space with respect to the induced subspace topology.

Roughly, contractibility means that we can transform a topological space continuously into a point,
which is possible if the space has no holes. Note that, e.g., all one dimensional connected sets and
all convex sets are contractible. Sets that are not contractible are, e.g., spheres and disconnected
sets. Note that the characterization in the following theorem generalizes Proposition 7 in Lachapelle
et al. (2023) by allowing higher order interactions and showing the result for more general domains.
We denote, similar to (2.3), for Ω ⊂ Rdx by Ωi = {zBi : z ∈ Ω} the projections of Ω on the blocks.

Theorem C.2 (Characterization of functions with at most nth order interactions across slots.). Let
Ω be an open connected and aligned-connected set such that Ωk is contractible. Let f(z) =
f(zB1

, zB2
, ...,zBK

) be a Cn+1 function on Ω for an integer n ∈ Z≥1. Then any distinct slots
zBi

and zBj
have at most nth order interaction within f (Defn. 3.4) if and only if, for some con-

stants
{
cα ∈ Rdx

}
α∈I≤n

and some Cn+1 functions fk : Ωk → Rdx such that for all z ∈ Z

f(z) =

K∑
k=1

fk (zBk
) +

∑
α∈I≤n

cαz
α . (C.1)
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Remark C.3. To avoid unnecessary complications we focus on the case where the ground truth f is
defined on Z = Rdz . Then Ω = Z clearly satisfies the assumptions and actually the proof is slightly
simpler. The more general result here would allows us to handle also Z ⊊ Rdz in Appendix D with
minor changes.

The proof can be essentially decomposed in two steps: We show how to reduce from interaction of
at most order n to interaction of at most order n − 1 and then we establish the induction base for
n = 2.
Lemma C.4. Suppose f : Ω → Rdx is a Cn+1 function and Ω open and connected. Assume that
f has interaction of at most order n between any two different slots for some n ≥ 2. Let z0 ∈ Ω be
any point. Then the function

f(z)−
∑
α∈In

Dαf(z0)

α!
zα (C.2)

has interaction of order at most n− 1.

Proof. First we observe that f having interaction at most n implies that Dαf is constant in Ω for
α ∈ In. Indeed, since α ∈ In we conclude α+ei ∈ In+1 where ei denotes the tuple with i-th entry
1 and all other entries 0. Then, by definition of having interaction at most in n in Definition 3.4, we
conclude that

∂iD
αf(z) = Dα+eif(z) = 0. (C.3)

This implies that the total derivative of Dαf vanishes on Ω, which implies that Dαf is constant
because Ω is connected. Consider now any β ∈ In. Then we find using (B.4)

Dβ

(
f(z)−

∑
α∈In

Dαf(z0)

α!
zα

)
= Dβf(z)− Dβf(z0)

β!
β! = 0 (C.4)

where we used that Dβf is constant and Dβzα = 0 for α ̸= β if |α| = |β|. This ends the
proof.

We now establish the functional form for interaction of at most order 1. This is essentially a sim-
ilar statement as in Proposition 7 in Lachapelle et al. (2023) except that we consider more general
domains so that their proof does not apply.
Lemma C.5. Assume Ω is an open connected and aligned-connected set such that Ωk is con-
tractible. If f is a function such that different slots have interaction at most of order 1 then there are
functions fk such that

f(z) =

K∑
k=1

fk(zBk
). (C.5)

Proof. Fix a 1 ≤ k ≤ K. With slight abuse of notation we write z = (zBk
, zBc

k
). Fix now some

value zBk
. We claim that for all zBc

k
, z′

Bc
k

such that (zBk
, zBc

k
), (zBk

, z′
Bc

k
) ∈ Ω

DzBk
f((zBk

, zBc
k
)) = DzBk

f((zBk
, z′

Bc
k
)). (C.6)

By assumption we indeed know that

DzBc
k
DzBk

f((zBk
, zBc

k
)) = 0. (C.7)

Moreover, by aligned-connectedness we know that the set ΩzBk
= {zBc

k
: (zBk

, zBc
k
) ∈ Ω} is

connected so we conclude that the function

ΩzBc
k
→ R|Bk|×dx , zBc

k
→ DzBk

f((zBk
, zBc

k
)) (C.8)

is indeed constant. This implies that there is a function gk depending on zBk
such that

gk(zBk
) = DzBk

f((zBk
, zBc

k
)) (C.9)
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for all z = (zBk
, zBc

k
) ∈ Ω. Locally gk is the gradient of a function, but by assumption Ωk is

contractible and therefore, by the Poincaré-Lemma, there is a function fk such that Dfk = gk.
Then we find

DzBk
f((zBk

, zBc
k
)) = g(zBk

) = DzBk
fk(zBk

) = DzBk

(
K∑

k′=1

fk′
(zBk′ )

)
. (C.10)

Thus the difference f −
∑K

k=1 f
k has vanishing derivative on Ω and since Ω is connected we

conclude that it is constant. This implies (C.5) after shifting one fk by this constant.

Based on these two lemmas the proof of Theorem C.2 is straightforward.

Proof of Theorem C.2. In the first step we show that if the at most n-th order interaction condition
holds then f can be written as in (C.1), i.e., ’⇒’. Applying inductively Lemma C.4 we conclude
that there are constants cα ∈ Rdx such that

f(z)−
n∑

m=2

∑
α∈Im

cαz
α (C.11)

has interaction of order at most 1. Thus, we can apply Lemma C.5 which implies that a represen-
tation as in (C.1) exists on Ω. For the reverse direction ’⇐’ we observe that clearly the functional
form implies for β ∈ In+1 the relation

Dβf = 0. (C.12)

Let us show through examples that the topological conditions on the set Ω are neccessary. The
following examples shows that the condition that Ωk is contractible cannot be dropped.
Example C.6. For every z ∈ R2 \ {0} we denote by θ(z) ∈ [0, 2π) the argument (i.e., the angle
to the positive x-axis in radian) and by r(z) = |z| the radius of z. We consider Ω ⊂ R4 and
B1 = {1, 2}, B2 = {3, 4} given by

Ω = {z : r(zB1
), r(zB2

) ∈ (1, 2), (θ(zB1
)− θ(zB2

) mod 2π) ∈ (0, π)} (C.13)

and the function

f : Ω → R, f(z) = θ(zB1)− θ(zB2) mod 2π. (C.14)

Then Ω is aligned-connected because the sets in questions are annular sectors and in particular path
connected. Moreover, f is smooth because θ(zB1

)− θ(zB2
) mod 2π ∈ (0, π) so it does not jump

and DzB1
DzB2

f = 0 because it is locally additive. However it is not globally additive as in (C.1).

The necessity of the aligned conncetedness condition can be shown by an example that is similar to
Example 7 in Lachapelle et al. (2023).
Example C.7. Consider Ω = ([−1, 0]×[−2, 2])∪([0, 1]×[1, 2])∪([0, 1]×[−2,−1]) and f : Ω → R
given by

f(z) =

{
z31 if z1, z2 > 0

0 otherwise.
(C.15)

Then f is C2, f has interaction of order at most 1 but f cannot be written as in (C.1). Note that Ω
is not aligned-connected because {z2 : (1/2, z2) ∈ Ω} = [−2,−1] ∪ [1, 2] is not connected.

D COMPOSITIONAL GENERALIZATION PROOFS

In this appendix we prove extrapolation result Theorem 4.4. Based on the functional form derived
in Theorem C.2 we relate two differenent disentangled representations.
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Lemma D.1. Let f : Z → Rdx be a C3 diffeomorphism of the form:

f(z) =

K∑
k=1

fk (zBk
) +

∑
α∈I2

cαz
α (D.1)

for some f i in C3. Let f̂ : Z → Rdx be a diffeomorphism of the same functional form. Let
h : Zsupp → Z be such that f = f̂ ◦ h on Zsupp. If h is a slot-wise function, i.e. for all k ∈
[K],hk(z) = hk(zBk

) and Zsupp is regularly closed then for all z ∈ Zsupp

K∑
k=1

fk(zBk
) =

K∑
k=1

f̂
π(k)

(hk(zBk
)) + L(z) (D.2)

for some affine function L : Rdz → Rdx .
Remark D.2. We note that it is not possible to remove the affine function L from the state-
ment. Indeed if all slots have dimension 1 and h1(z1) = z1 + 1, h2(z2) = z2 + 1 then
h1(z1)h2(z2) − z1z2 = z1 + z2 + 1 is an additive function. Moreover, we cannot in general
prove that h itself is slotwise affine because the coefficients c can be zero. In this case h can be any
slot-wise diffeomorphism.

Proof. First we remark that the polynomial part of the functional form in (D.1) contains all terms
zizj where i, j are in different slots, thus it can be equivalently written as

∑
α∈I2

cαz
α =

K∑
k=1

K∑
k′=k+1

(
zBk

⊗ zBk′

)
Akk′ (D.3)

for some constant matrices {Akk′ ∈ R(|Bk|·|Bk′ |)×N}k<k′∈[K], where ⊗ denotes the Kronecker
product (e.g., [z1, z2]⊗ [z3, z4] = [z1z3, z1z4, z2z3, z2z4]).

We assume that the permutation π is the identity. We know that f , f̂ are diffeomorphisms between
the same spaces and can thus be related by the function h via:

f = f̂ ◦ h (D.4)

Inserting the functional forms for f , f̂ and leveraging that h is a slot-wise function and π is the
identity, we have for all z ∈ Z

K∑
k=1

fk (zBk
) +

K∑
k=1

K∑
k′=k+1

(
zBk

⊗ zBk′

)
Akk′

=

K∑
k=1

f̂k (hBk
(zBk

)) +

K∑
k=1

K∑
k′=k+1

(
hk(zBk

)⊗ hk′
(zBk′ )

)
Âkk′ .

(D.5)

To prove the claim we now consider the expression

L(z) =

K∑
k=1

fk (zBk
)−

K∑
k=1

f̂k (hBk
(zBk

))

=

K∑
i=k

K∑
k′=k+1

(
hk(zBk

)⊗ hk′
(zBk′ )

)
Âkk′ −

K∑
k=1

K∑
k′=k+1

(
zBk

⊗ zBk′

)
Akk′

(D.6)

and prove that L(z) is an affine function. To show this it is sufficient to prove that the second
derivative D2L vanishes because Zsupp is path-connected. Thus we consider all partial derivatives.
Consider first the case where i ∈ Bk and i′ ∈ Bk′ for k < k′. Then we find that

DiDi′L(z) = DiDi′

(
K∑

k=1

fk (zBk
)−

K∑
k=1

f̂k (hBk
(zBk

))

)
= 0. (D.7)
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It remains to consider derivatives of the form DiDi′ where i, i′ ∈ Bk for some slot i. Then we
clearly have

DiDi′

K∑
k=1

K∑
k′=k+1

(
zBk

⊗ zBk′

)
Akk′ = 0 (D.8)

because this is a linear expression in zBk
. Next, we want to show that

DiDi′

(
hk(zBk

)⊗ hk′
(zBk′ )

)
Âkk′ = 0 (D.9)

for all k < k. To prove this we show the more general statement (that will be used in the proof of
Theorem 4.4 below) that for any k ̸= k′ and any vector v ∈ RBk′ the functions

zBk
→ (hk(zBk

)⊗ v)Âkk′ (D.10)
are affine on Zk or equivalently that

DiDi′
(
hk(zBk

)⊗ v)
)
Âkk′ = 0 (D.11)

for every v ∈ RBk′ . To prove this we consider any j ∈ Bk′ and apply the derivative DiDi′Dj to
(D.5) to get

0 =
(
DiDi′h

k(zBk
)⊗Djh

k′
(zBk′ )

)
Âkk′ (D.12)

for every z ∈ Z̊supp. Now we use that by assumption h is a diffeomorphism. Using the block
structure of h we find that also hk are diffeomorphisms. In particular, this implies that for any
z ∈ Z̊supp the vectors (Djh

k′
(zBk′ ))j∈Bk′ are linearly independent vectors in R|Bk′ | and they thus

generate R|Bk′ |. Therefore we can find coefficients αj (depending on zBk′ ) such that∑
j∈Bk′

αjDjh
k′
(zBk′ ) = v (D.13)

Then we get using (D.12)

DiDi′
(
hk(zBk

)⊗ v)
)
Âkk′ = DiDi′

hk(zBk
)⊗

 ∑
j∈Bk′

αjDjh
k′
(zBk′ )

 Âkk′

=
∑

j∈Bk′

αj

(
DiDi′h

k(zBk
)⊗Djh

k′
(zBk′ )

)
Âkk′ = 0.

(D.14)

So (D.10) holds and thus also (D.9) (we actually only get this for points zk ∈ Zk such that there is
z ∈ Z̊supp with zk = zBk

but by continuity and since Zsupp is regularly closed this actually holds
on Zk). The same reasoning shows that this is also true if i, i′ ∈ Bk′ (instead of i, i′ ∈ Bk). We
then find that for i, i′ ∈ Bk

DiDi′

K∑
k=1

K∑
k′=k+1

(
hk(zBk

)⊗ hk′
(zBk′ )

)
Âkk′ =

=

K∑
k=1

K∑
k′=k+1

DiDi′

(
hk(zBk

)⊗ hk′
(zBk′ )

)
Âkk′ = 0.

(D.15)

The last display together with (D.8) and (D.7) imply that D2L = 0 and thus L is affine. When π is
not the identity the proof is similar.

We also need the following simple lemma which states that we have unique Cartesian-product ex-
tension of functions with interaction of order at most n between different slots.
Lemma D.3. Let f : Z → Rdx be aC3 diffeomorphism with interaction at most n between different
slots such that Zsupp is regularly closed and for z ∈ Zsupp

f(z) =

K∑
k=1

fk (zBk
) +

∑
2≤m≤n

∑
α∈Im

cαz
α (D.16)

for some f i in C3. Then this relation holds on ZCPE.
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Proof. We know by Theorem C.2 that a representation as in (D.16) holds on Z = Rdz and thus can
be restricted to ZCPE, however it might not be the same representation but involve functions f̃k and
constants c̃α. Taking the difference and setting f̄k = fk − f̃k and c̄α = cα − c̃α we find that on
Zsupp

0 =

K∑
k=1

f̄k (zBk
) +

∑
2≤m≤n

∑
α∈Im

c̄αz
α. (D.17)

But by applyingDα for α ∈ Im form = n down tom = 2 we find c̄α = 0 for all α ∈ I≤n and thus
the polynomial term vanishes. Next, we apply D and find that f̄k is constant on Zk (because Zsupp
is regularly closed). This implies that (D.17) holds in ZCPE and thus (D.16) holds on ZCPE.

Using the previous lemmas we can prove Theorem 4.4.
Theorem 4.4 (Compositional Generalization). Let n ∈ {0, 1, 2}. Let Zsupp be regular closed
(Defn. A.3). Let f : Z → X and f̂ : Z → Rdx be C3 diffeomorphisms with at most nth order
interactions across slots on Z . If f̂ disentangles z on Zsupp w.r.t. f (Defn. 2.1), then it generalizes
compositionally (Defn. 2.2).

Proof of Theorem 4.4. Note that Corollary 3 in Lachapelle et al. (2023) already handles the case
n = 0, 1 but the proof below is more general, and also covers the case of n = 0, 1, since functions
with at most 0th and 1st order interactions are special cases of functions with at most 2nd order
interactions assuming f is a C3 diffeomorphism.

We can apply Theorem C.2 to f which implies that f can be written on Z = Rdz as in (C.1) and as
explained in Lemma D.1 an equivalent representation is

f(z) =

K∑
k=1

fk (zBk
) +

K∑
k=1

K∑
k′=k+1

(
zBk

⊗ zBk′

)
Akk′ . (D.18)

and we have similarly

f̂(z) =

K∑
k=1

f̂k (zBk
) +

K∑
k=1

K∑
k′=k+1

(
zBk

⊗ zBk′

)
Âkk′ . (D.19)

By assumption we have f = f̂ ◦ h on Zsupp where h(z) :=
(
h1

(
zBπ(1)

)
, . . . ,hK

(
zBπ(K)

))
and the functions hk : R|Bπ(k)| → R|Bk| are diffeomorphisms. Our goal is to show that this
relation actually holds on the Cartesian-product extensions ZCPE. Let U be the set of points
such that f(z) = f̂ ◦ h(z) for z ∈ U . We claim that if z = (zB1

, . . . ,zBK
) ∈ Ů then

z′ = (zB1
, . . . ,z′

Bl
, . . . ,zBK

) ∈ U for any z′
Bl

∈ Zl. Let us define the map ez : Zl → Z
given by ez(z′

Bl
) = z′. We know by Lemma D.1 that the function

z →
K∑

k=1

fk(zBk
)−

K∑
k=1

f̂
π(k)

(hk(z)Bk
)) = L(z) (D.20)

is affine on Zsupp. Applying Lemma D.3 the same holds on ZCPE. Thus we conclude that

z′
Bl

→
K∑

k=1

fk(ez(z′
Bl
)Bk

)−
K∑

k=1

f̂
π(k)

(hk(e
z(z′

Bl
)Bk

)) = L(ez(z′
Bi
)) (D.21)

is affine on Zl. Moreover,

z′
Bl

→
K∑

k=1

K∑
k′=k+1

(
ez(z′

Bl
)Bk

⊗ ez(z′
Bl
)Bk′

)
Akk′ (D.22)

is clearly affine on Zl and by (D.10) the same holds for

z′
Bl

→
K∑

k=1

K∑
k′=k+1

(
hk(ez(z′

Bl
)Bk

)⊗ hk′
(ez(z′

Bl
)Bk′ )

)
Akk′ . (D.23)
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The last three displays together imply that

z′
Bl

→ f(ez(z′
Bl
))− f̂ ◦ h(ez(z′

Bl
)) (D.24)

is affine on Zl and since it is zero in a neighbourhood of z′
Bl

= zBl
(because z ∈ Ů) it is equal to

zero on Zl. Since this is true for any slot Bl we can now conclude that U = Z . Indeed, pick any
open rectangle Z ′

1 × Z ′
2 × . . . × Z ′

K ⊂ Zsupp ⊂ U . We then infer that Z̊1 × Z ′
2 × . . . × Z ′

K ⊂ U
and by inducting over the slots and applying continuity at the boundary we obtain the claim.

E UNIFYING ASSUMPTIONS FROM PRIOR WORK

E.1 AT MOST 0TH ORDER INTERACTION ACROSS SLOTS

To prove that the assumptions in Brady et al. (2023) are a special case of our assumptions for n = 0,
we first restate their assumptions formally. To this end, we first define the following set:

∀S ⊆ [dz] IS(z) := { l ∈ [dx] : DSf l(z) ̸= 0 } . (E.1)

The assumption of compositionality in Brady et al. (2023) can now be stated:
Definition E.1 (Compositionality). A differentiable function f : Z → X , is said to be composi-
tional if:

∀z ∈ Z, k, j ̸= k ∈ [K] : Ik(z) ∩ Ij(z) = ∅. (E.2)

We now state the second assumption in Brady et al. (2023), deemed irreducibility.
Definition E.2 (Irreducibility). A differentiable function f : Z → X , is said to be irreducible if for
all z ∈ Z and k ∈ [K] and any partition Ik(z) = S1 ∪ S2 (i.e., S1 ∩ S2 = ∅ and S1, S2 ̸= ∅), we
have:

rank
(
DfS1

(z)
)
+ rank

(
DfS2

(z)
)
> rank

(
DfIk(z)

)
. (E.3)

We now prove that compositionality and irreducibility are equivalent to f having satisfying interac-
tion asymmetry (3.5) for all equivalent generators (4.1) for n = 0.
Theorem E.3. A C1 diffeomorphism f : Z → X satisfies compositionality (Def. E.1) and irre-
ducibility (Def. E.2) if and only if f has at most 0th order interaction across slots (Defn. 3.2) and
satisfies interaction asymmetry (Assm. 3.5) for all equivalent generators (4.1).

Proof. We start by proving the forward direction, i.e., that compositionality and irreducibility
imply that f has at most 0th order interaction across slots and satisfies interaction asymmetry for all
equivalent generators.

The definitions of compositionality and at most 0th order interaction across slots are pre-
cisely equivalent, thus we only need to show that compositionality and irreducibility imply that
f satisfies interaction asymmetry for all equivalent generators. To show this we will prove the
following contraposition: that if f has at most 0th order interaction across slots and does not satisfy
interaction asymmetry for all equivalent generators, then f is not irreducible.

Since f has at most 0th order interaction across slots and does not satisfy interaction asymmetry for
all equivalent generators, this implies that there exists a matrix A ∈ R|Bk×Bk| and a partition ofBk,
into A,B (A ∪B = Bk, A ∩B = ∅) such that within the function f̄ defined as:

∀z ∈ Z, f̄ (A1zB1
, . . . ,AKzBK

) = f(zB1
, . . . ,zBK

). (E.4)

where Ai such that i ̸= k is the identity matrix, the latents z̄A, z̄B have no interaction.
This implies that under f̄ , IA(z̄) does not intersect with IB(z̄). Further, because f̄ is in-
vertible, we know that Df̄Bk

(z̄) is full column rank. Coupling these two properties, we
conclude that rank(Df̄Bk

(z̄)) = rank(Df̄A(z̄)) + rank(Df̄B(z̄)). Furthermore, the Jaco-
bians Df̄(z̄) and Df(z) will be related by an invertible linear map by construction. Thus,
Df̄S(z̄) and DfS(z) have equal rank for any subset S ⊆ [dz]. Therefore, we conclude that
rank(DfBk

(z)) = rank(DfA(z)) + rank(DfB(z)). Because A and B form a partition of Bk we
conclude that f is not irreducible.
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We now prove the reverse direction if f has at most 0th order interaction across slots and
satisfies interaction asymmetry for all equivalent generators then f satisfies compositionality
and irreducibility. As noted before, the definitions of compositionality and at most 0th order
interaction across slots are precisely equivalent. Thus, we only need to show that if f has at most
0th order interaction across slots and satisfies interaction asymmetry then this implies f satisfies
irreducibility. To show this, will prove the following contraposition: that if f does not satisfy
irreducibility, then it does not satisfy interaction asymmetry for all equivalent generators with
n = 0.

Since f is not irreducible, we know that there exist a z, a slot k ∈ [K], and a partition of Bk

into A,B such that rank(DfBk
(z)) = rank(DfA(z)) + rank(DfB(z)). Because DfBk

(z) is full
column rank this implies that rank(DfA(z)) = |A| and rank(DfB(z)) = |B|. Now take two
matrices MS1 ∈ Rdx×|A| and MS2 ∈ Rdx×|B| such that the column space of MS1 is the same
as DfA(z) and the columns space of MS2 is the same as DfB(z). Now construct the following
matrix M ∈ Rdx×|Bk| as follows:

M := [MS1
,MS2

] (E.5)
Note that by construction this matrix has a block structure such that rows for MS1

are never non-
zero for the same rows as MS2

. Because M and DfBk
(z) are both full column rank, then there

exist a matrix Ak ∈ R|Bk|×|Bk| such that:

M := DfBk
(z)Ak (E.6)

Now define the function f̄ as follows:

∀z ∈ Z, f̄
(
A−1

1 zB1
, . . . ,A−1

K zBK

)
= f(zB1

, . . . ,zBK
) . (E.7)

such that A−1
i is defined as above when i = k, and otherwise it is the identity matrix.

Writing the derivative ofDf̄Bk
(z̄) in terms of f we getDfBk

(z)Ak = M . Because M has a block
structure we conclude that there exist a partition of Bk such that these latents have no interaction
within f̄ at z̄. Because f̄ is equivalent to f we conclude that the function does not satisfy interaction
asymmetry for n = 0.

E.2 AT MOST 1ST ORDER INTERACTION ACROSS SLOTS

We now prove that the assumptions in Lachapelle et al. (2023) are a special case of our assumptions
for n = 1. To this end, we first restate their assumptions. The first assumption in Lachapelle et al.
(2023) is that the generator f is additive:
Definition E.4 (Additive decoder). A C2 diffeomorphism f : Z → X is said to be additive if:

f(z) =
∑

k∈[K]

fk(z), where fk : R|Bk| → Rdx for any k ∈ [K] and z ∈ Z. (E.8)

Definition E.5 (Sufficient Nonlinearity). Let f : Z → X be a C2 diffeomorphism. For all k ∈ [K],
let B2

k≤ := B2
k ∩ {(i1, i2)|i2 ≤ i1}. f is said to satisfy sufficiently nonlinearity if ∀z ∈ Z the

following matrix has full column-rank:

W (z) :=

[
[Dif(z)]i∈Bk

[
D2

i,i′f(z)
]
(i,i′)∈B2

k≤

]
k∈[K]

(E.9)

We now state our result.
Theorem E.6. Let f : Z → X be a C2 diffeomorphism. If f satisfies additivity (Def. E.4) and
sufficient nonlinearity (Def. E.5) then f has at most 1st order interactions across slots (Defn. 3.3),
satisfies sufficient independence (Defn. A.9), and satisfies interaction asymmetry (Asm. 3.5) for all
equivalent generators (Defn. 4.1) for n = 1.

Proof. We note that f having at most first order interactions across slots is equivalent to having a
block-diagonal Hessian for every observed component. Such functions were proven to be equivalent
to additive functions in Lachapelle et al. (2023). Furthermore, sufficient independence is clearly
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implied by sufficient nonlinearity as if all columns of the matrix W (z) are linearly independent,
then blocks [Dif(z)]i∈Bk

[
D2

i,i′f(z)
]
(i,i′)∈B2

k≤
will have non-intersecting columns spaces for all

k ∈ [K] and will thus satisfy sufficient independence (Def. A.9. Consequently, the only thing we
need to show is that sufficient nonlinearity (Def. E.5) implies interaction asymmetry (Assm. 3.5)
for all equivalent generators (4.1).

Assume for a contradiction that sufficient nonlinearity (Def. E.5) did not imply interaction
asymmetry (Assm. 3.5) for all equivalent generators (4.1) with n = 1. This would imply that there
exists an equivalent generator to f denoted f̄ defined in terms of a slot-wise linear function h:

f̄ = f ◦ h (E.10)

such that f̄ has at most first order interaction within some slot Bk. In other words, leveraging
Lemma A.21, there exist a (j, j′) ∈ B2

k and a z ∈ Z s.t.

0 = D2
j,j′ f̄(z) = W f (h(z))mh(z, (j, j′)) , (E.11)

Because W f (h(z)) is assumed to be full rank by sufficient nonlinearity (Def. E.5), then in order for
this equation to hold mh(z, (j, j′)) must be zero. Note, however, that by construction h is defined
slot-wise such that zj , z′j map to the same slot hBk

. By construction, if two zj , z′j affect the same
slot hBk

then mh(z, (j, j′)), cannot be zero. Thus, we obtain a contradiction.

F TRANSFORMERS FOR INTERACTION REGULARIZATION

Each layer of a Transformer (Vaswani et al., 2017) consist of two main components: an MLP sub-
layer and an attention mechanism. Notably, in the MLP sub-layer, MLPs are applied separately to
each slot or pixel query and their outputs are then concatenated. Further, additional layer normaliza-
tion operations (Ba, 2016) are typically used in Transformers but are also separately applied to each
slot or pixel query. Thus, the only opportunity for interaction between slots in a Transformer oc-
curs through the attention mechanism. Our focus in this work is on the cross-attention mechanism,
opposed to the alternative self-attention. As noted in § 5, cross-attention takes the form:

K = WK [ẑBk
]k∈[K], V = W V [ẑBk

]k∈[K], Q = WQ[od]d∈[dx], (F.1)

Ad,k =
exp

(
Q⊤

:,dK:,k

)
∑

l∈[K] exp
(
Q⊤

:,dK:,l

) , x̄d = Ad,:V
⊤, x̂d = ψ(x̄d) . (F.2)

where K:,k,V:,k ∈ Rdq , WK ,W V ∈ Rdq×|Bk| for query dimension dq . Further, od ∈ Rdo , Q:,l ∈
Rdq , WQ ∈ Rdq×do , where do is the dimension of a pixel coordinate vector, and ψ : Rdq → R.

Additional Details. In Eq. (F.2), we do not include the scaling factor d−
1
2

q for Ad,k, that is typically
used as it does not affect our arguments below. We do, however, include it in our experiments.
Further, when x is an RGB image, x̂d will not be a scalar but will instead be a vector in R3 since each
pixel has 3 color channels. Additionally, in our experiments, multi-head attention is used. In this
case, slot keys and values and pixel queries are partitioned into h sub-vectors. Eqs. (F.1) and (F.2)
are then applied separately to each resulting sub-latent, and the resulting outputs are concatenated.
When using multiple layers of cross-attention, as we do in our experiments, ψ is only applied at
the last layer and vectors ol for a subsequent layer are defined as the vectors x̄d from the prior
layer. Eqs. (F.1) and (F.2) is then repeated. We discuss how these additional caveats are dealt with
empirically when implementing Linteract below in Appx. F.2, however, they do not affect our formal
argument regarding regularizing interactions in Appx. F.1.

F.1 JACOBIAN OF CROSS-ATTENTION MECHANISM

Our goal is to show that if Ad,k in equation is 0, then partial derivative of Eqs. (F.1) and (F.2) w.r.t
slot ẑBk

, i.e, ∂x̂d

∂ẑBk
will also be zero. This would then imply that if Ad,: is non-zero for at most one
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slot k for every d ∈ [dx], and every ẑ ∈ Ẑsupp, then slots do not interact in the sense of Defn. 3.2,
since all such derivative products ∂x̂d

∂ẑBk

∂x̂d

∂ẑBl
for l ̸= k are zero. To this end, we are interested in

computing the derivative:

∂x̂d
∂(ẑBm

)r
= ∂iψ(x̄)

∂(x̄d)i
∂(ẑBm

)r
(F.3)

where we here and from now on use the convention that we sum over every index that appears only
on one side. To evaluate this we decompose the terms

(x̄d)i = Ad,kVi,k = Ad,kW
V
i,j(ẑBk

)j . (F.4)

We set Md,: = o⊤
d (W

Q)⊤WK so that

Q⊤
:,dK:,k = Md,i(ẑBk

)i. (F.5)

This implies that

∂

∂(ẑBm
)i

exp(Q⊤
:,dK:,k) = Md,iδkm exp(Q⊤

:,dK:,k) (F.6)

where δ is the Kronecker-Delta (and here no summation over k or d is done). This implies using the
product rule and the chain rule that

∂Ad,k

∂(ẑBm
)i

= Md,iδk,mAd,k −Md,iAd,kAd,m. (F.7)

Plugging this together we get

∂x̂d
∂(ẑBm)r

= ∂iψ(x̄)
∂(x̄d)i
∂(ẑBm)r

= Ad,mW V
i,r∂iψ(x̄) + ∂iψ(x̄)W

V
i,j(ẑBk

)j
∂Ad,k

∂(ẑBm)r

= Ad,mW V
i,r∂iψ(x̄) + ∂iψ(x̄)W

V
i,j(ẑBk

)j(Md,rδk,mAd,k −Md,rAd,kAd,m)

= Ad,m∂iψ(x̄)(W
V
i,r +W V

i,j(ẑBm
)jMd,r)− ∂iψ(x̄)W

V
i,j(ẑBk

)jMd,rAd,kAd,m

(F.8)

From this, we can see that if Ad,m = 0, then the partial derivative ∂x̂d

∂ẑBm
, will indeed be zero as

Ad,m scales both terms in the last line of Eq. (F.8).

F.2 INTERACTION REGULARIZER

Based on Appx. F.1, we propose to regularize the interaction in a Transformer by minimizing the
sum of all pairwise products Al,jAl,k, where j ̸= k. More specifically, we minimize the following
loss:

Linteract := E
∑
l∈[dx]

∑
j∈[K]

K∑
k=j+1

Al,j(ẑ)Al,k(ẑ) (F.9)

where Al,k(ẑ) is used to indicate the input dependence of attention weights on latents ẑ. Linteract is
a non-negative quantity which will be zero if and only if a matrix has at most one non-zero for each
row (Brady et al., 2023).

Figure 4: PyTorch code to compute Linteract.

Code to compute Linteract for a batch of atten-
tion matrices can be seen in Fig. 4. We note
that when using multiple attention heads, we
first sum the attention matrices over all heads to
ensure consistent pixel assignments across dif-
ferent heads. When using multiple layers, we
also sum the attention matrices over each layer,
for the same reason. Linteract is then computed
on the resulting attention matrix.
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Regularizing Higher Order Interactions. We note that while we motivate Linteract as a regularizer
for 1st order interactions, we do not explicitly address regularizing for higher order interactions,
i.e., for n ≥ 2. We conjecture there is a relationship between regularizing Linteract and higher order
interactions but that it is less direct than the 1st order case. We leave it to future work to explore
these connections further, as well as alternative, computationally efficient regularizers which can
more directly penalize higher order interactions.

Computational Efficiency. We note that regularizing with Linteract adds minimal additional com-
putational overhead since attention weights are already computed at each forward pass through the
model, and, moreover can be easily optimized using gradient descent. This is in contrast to Brady
et al. (2023) which required computing the Jacobian of the decoder f̂ at each forward pass and then
optimizing it using gradient descent. This results in second-order optimization which is computa-
tionally intractable for high-dimensional data such as images (Brady et al., 2023).

G EXTENDED RELATED WORK

G.1 THEORY

Relationship Between Principle 3.1 and Other Principles. The principle of interaction asymme-
try, “parts of the same concept have more complex interactions, than parts of different concepts”
(3.1), is intuitively similar to several prior principles explored for learning concepts. For exam-
ple, the prior works of Baldwin et al. (2008); Reynolds et al. (2007); Schmidhuber (1990); Zacks
et al. (2011) on disentangling events/sub-task (e.g., “making coffee”, “driving to work”), Greff et al.
(2015); Hyvarinen and Perkio (2006) on disentangling objects in an image, and Schmidhuber (1992)
are all essentially based on the principle that parts of same concept are more mutually predictable
than parts of different concepts. Similarly, Hochreiter and Schmidhuber (1999); Jiang et al. (2022)
implicitly use the idea that parts of same concept are more compressible than different concepts.
Research on networks, use the idea that nodes from the same “community” interact more strongly
than nodes from different communities (Fortunato and Hric, 2016), which also resembles ideas from
clustering that points from the same cluster have higher mutual information than from different clus-
ters (Kraskov et al., 2005). This network-based framework was applied by Schapiro et al. (2013) as
a model for grouping temporal events. Lastly, Greff et al. (2020) propose that objects do not interact
much with their surroundings but internally have a strong structure. While these different ideas are
intuitively similar to interaction asymmetry, they take on different formalizations. Moreover, these
principles are generally used as high-level heuristics for designing a learning algorithm, and their
theoretical implications for disentanglement and compositional generalization are not explored.

Connection with Information Bottleneck Principle. Another notable principle for learning repre-
sentations is the Information Bottleneck principle (Alemi et al., 2016; Tishby et al., 2000) which has
also been applied in the context of learning disentangled representations (Meo et al., 2024). In the
context of disentanglement, this principle suggest learning a representation which tries to balance
a trade-off between minimizing the mutual information between a latent vector z and an observa-
tion x, and ensuring that z contains sufficient information to predict, i.e., reconstruct x. From a
theoretical standpoint, the Information Bottleneck principle differs from the principle of interaction
asymmetry as defined in Asm. 3.5. Specifically, Asm. 3.5 is an assumption on the generator f and
does not place assumptions on the latent distribution pz . Consequently, our theory describes a setting
in which disentanglement can be achieved without explicitly enforcing any additional properties on
pz . We note, however, that despite this key difference, our theory does yield insights which resemble
the Information Bottleneck principle. Specifically, as noted in § 5, our theory suggest that if a model
uses an inferred latent dimension dẑ greater than the ground-truth dimension dz , then it should aim
to encode x using the minimal necessary latent dimension, i.e., the mutual information between x
and unnecessary latent dimensions should be minimized, while ensuring that x can be reconstructed
from z.

On the Relationship Between Disentanglement and Compositional Generalization. A key
premise motivating our theoretical study of compositional generalization is that, from a theoreti-
cal perspective, disentanglement does not directly imply compositional generalization. Specifically,
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this would require that equality between f and f̂ on Zsupp (disentanglement Defn. 2.1) implies that
these functions were also equal on all of Z (compositional generalization Defn. 2.2). As noted
by Lachapelle et al. (2023); Wiedemer et al. (2024a), this will not be true for arbitrary functions and
necessitates restrictions on the form of f , f̂ on all of Z . While several works have provided empiri-
cal corroboration of this theoretical statement for concepts of objects (Wiedemer et al., 2024a) and
object attributes (Montero et al., 2021; 2022b; Schott et al., 2022), prior works in disentanglement
have suggested that disentanglement can in some cases enable compositional generalization (Es-
maeili et al., 2018; Higgins et al., 2017; Mahon et al., 2023). We hypothesize that the compositional
generalization abilities observed in the latter works are a consequence of only leaving a small num-
ber of novel combinations out of the training set, such that compositional generalization becomes
much easier compared to the more restricted training domains explored in (Montero et al., 2021;
Wiedemer et al., 2024a). With this being said, it is possible that through hidden inductive biases in
a model, disentanglement can directly lead to compositional generalization, which would not be at
odds with our theoretical observation.

Polynomial Decoders. As noted in § 4.2, Asm. 3.5 implies that the cross-partial derivatives of the
generator f consisting of components from different slots will be finite-degree polynomials. This
partially resembles the polynomial constraints on f in Ahuja et al. (2023) for disentanglement. Im-
portantly, however, Ahuja et al. (2023) assume that all cross-partial derivatives of f are polynomial
such that the entire function f is a finite-degree polynomial. In contrast, Asm. 3.5 constrains the
form of cross-partial derivatives across slots to be polynomial, but does not constrain the form of
cross-partial derivatives within the same slot. In other words, Asm. 3.5 only constrains the interac-
tions across slots, while Ahuja et al. (2023) constrains all possible interactions. This is an important
distinction since the former gives rise to much more flexible generators than the latter (see Eq. (4.2)).

G.2 METHOD AND EXPERIMENTS

VAE Losses in Object-Centric Models. Prior work in Wang et al. (2023) also apply a VAE loss
to an unsupervised object-centric learning setting. However, while we minimize LKL directly on in-
ferred slots in ẑ given by our Transformer encoder, Wang et al. (2023) minimize LKL on an interme-
diate representation which is then further processed to yield ẑ. Furthermore, the focus of Wang et al.
(2023) is on scene generation an not penalizing the capacity of ẑ. Additionally, Kori et al. (2024)
explore a loss for object-centric learning resembling a VAE loss, though their aim is to enforce a
certain probabilistic structure on ẑ implied by their theoretical disentanglement result, opposed to
penalize latent capacity.

Inductive Bias Through Explicit Supervision. Recently, many works have shown remarkable em-
pirical success in disentangling (Kirillov et al., 2023; Ravi et al., 2024) and composing (Brooks
et al., 2023; Ramesh et al., 2021; 2022; Ruiz et al., 2023; Saharia et al., 2022) visual concepts in
images on web-scale data. These works achieve this through explicit supervision via segmentation
masks or natural language descriptions of each concept, opposed to constraints on the generative pro-
cess in Eq. (2.1). Notably, however, many species in human’s evolutionary lineage disentangle and
compose concepts in sensory data without using explicit supervision like natural language (Behrens
et al., 2018; LeCun, 2022; Summerfield, 2022; Tolman, 1948). This suggest the existence of a
self-supervised coding mechanism for disentanglement and compositional generalization that is still
lacking in current machine learning models. The present work aims to make theoretical and empiri-
cal progress towards such a mechanism.

Relation Between a Transformer Regularized with Linteract and Prior Works. Goyal et al. (2021)
proposed RIMs which is a Transformer-style architecture aimed at enforcing a “modular” structure.
Contrary to our work, Goyal et al. (2021) do not regularize for modularity, but posit that it may
emerge from “competition” induced by an attention mechanism. Similarly, Lamb et al. (2021) pro-
pose an alternative Transformer architecture aimed at enforcing modularity, which also tries to en-
force competition using a mechanism similar to Goyal et al. (2021). More recently, Vani et al. (2024)
propose a novel Transformer component which is aimed at yielding disentanglement by processing a
Transformer embedding into different slots using separate attention heads for each slot. While these
works are similar to ours in that they aim to learn disentangled representations of concepts using a
Transformer-style architecture, they are based on architectural changes to a Transformer, whereas

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

we use a standard cross-attention Transformer decoder and regularize it explicitly towards having a
“modular” structure using Linteract.

H EXTENDED DISCUSSION

H.1 THEORETICAL ASSUMPTIONS

Non-Homogeneous Interactions. One potential limitation of our formulation of interaction asym-
metry (Asm. 3.5) is that the order of interaction, n, across slots, must be the same for all latent vectors
z ∈ Z and for any two slots zBi

, zBj
. This assumption will potentially be violated in practice. For

example, for concepts of visual objects, it is likely that within each image, only a few objects, i.e.,
slots, interact at a time (e.g., see Fig. 1), such that different slots will have different orders of inter-
action within z. We conjecture that our theory can be extended to handle such non-homogeneous
interactions, however, we leave this for future work. Furthermore, we note that despite this potential
mismatch between theory and practice, our method still achieved robust object-disentanglement on
data in which the order of interaction appears to be non-homogeneous, e.g., CLEVR6.

Requirements on the Observed Dimension. We note that an implication of sufficient indepen-
dence for n > 0 (where n is the order of interaction across slots) is that the observed dimension dx
must be greater than the latent dimension dz . Moreover, the required dx will scale as a function of
the number of latent slots K, the slot dimensions |Bk|, and the order of interaction across slots (n).
For example, for functions with at most 1st order interactions across slots, ensuring that the rank con-
dition in sufficient independence (Defn. A.9) is met requires that dx ≥

∑
k∈[K]

|Bk|(|Bk|+1)
2 + dz .

Furthermore, for functions with at most 2nd order interactions, satisfying this condition (Defn. 4.2)
requires dx ≥

∑
k∈[K]

|Bk|(|Bk|+1)(|Bk|+2)
6 + dz(dz+1)

2 + dz . We note that we are interested in mod-
elling high-dimensional sensory data, such as images, in which the observed dimension dx will be
much greater than the latent dimension dz . Thus, for practical cases of interest, we expect these
requirements on dx to be met.

Concepts Potentially not Captured by Interaction Asymmetry. For certain concepts, it is not
obvious if interaction asymmetry will always hold. For example, consider object attributes such as
the x-y-position of an object, which can be modelled by one-dimensional slots. For such concepts,
the interaction within a slot, i.e., the interaction of each latent component w.r.t. itself, should, intu-
itively, be a simple function. It is thus not obvious if the interaction within each slot will necessarily
be more complex than interactions across slots, such that f may not satisfy interaction asymme-
try (Asm. 3.5). Additionally, it is not immediately clear how interaction asymmetry can be applied
to more abstract concepts which are not directly grounded in sensory data such as the concept of
“democracy” or the concept of a “function” in mathematics.

Restrictiveness of Aligned-Connected Assumption. Our theoretical results in § 4 leverage the as-
sumption that the latent space Zsupp is aligned-connected Defn. A.16. To assess whether the aligned-
connectedness assumption is realistic, we believe it is helpful to look at concrete mathematical ex-
amples of supports that satisfy it. For example, the whole space Rdz satisfies it. More generally,
any convex set is aligned-connected. This include the hypercube [0, 1]dz , any closed ball, and much
more. Some aligned-connected sets are not convex. For example, the ”L-shaped” set [0, 2]2 \ [1, 2]2
is aligned-connected but not convex. This last example is useful to model concrete settings where
some combinations of latent factors are not observed at training time. This corresponds to the run-
ning example of Lachapelle et al. (2023) consisting of two balls moving up and down where the
configurations where both balls appear in the top half of the image are never observed.

H.2 METHOD AND EXPERIMENTS

Self-Attention in Transformer Decoders. Our Transformer decoder in § 5 resembles the models
from Jaegle et al. (2022); Sajjadi et al. (2022a;b) which only rely on a cross-attention mechanism.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

However, other works in object-centric learning leverage Transformer decoders which also include
a self-attention mechanism between queries at each layer (Seitzer et al., 2023; Singh et al., 2022a).
When reconstructing individual pixels, e.g., on Sprites and CLEVR6 in § 6, applying self-attention
between queries will not scale to high-dimensional images since it requires computing n× n at-
tention weights, where n is the number of pixels. However, when reconstructing image patches, as
was done in our experiments on CLEVRTex, using self-attention is scalable since we have a sig-
nificantly smaller number of queries, e.g., 16× 16 on CLEVRTex. While we found that we could
achieve strong disentanglement using only a cross-attention mechanism on CLEVRTex, it is pos-
sible that using self-attention could be advantageous when reconstructing image patches in even
more complex settings. For such models, however, it is not immediately obvious how to regularize
the decoder to match our theory since adding self-attention between pixels will introduce additional
interactions between slots. We leave it for future work to investigate if our current training objective
will still yield robust object-disentanglement for such a model and, furthermore, if such a model can
be regularized to be in line with our theory.

Trade-offs with Slot Attention. On Sprites and CLEVR6 (§ 6) as well as CLEVRTex , we found
that our regularized Transformer autoencoder achieved superior disentanglement, based on our met-
rics, to an unregularized variant with a Slot Attention encoder. Despite this, we emphasize that our
goal is not to propose our method as superior to Slot Attention-based methods. Instead, we highlight
that both methods offer different trade-offs. For example, training with our proposed loss (Eq. (5.3))
enables using a general Transformer encoder, thus potentially allowing our model to be applied
more generally at scale compared to encoders with more explicit object-centric priors such as Slot
Attention. This, however, comes at the cost of training with regularizers which require hyperparam-
eter selection. While our experiments did not require extensive hyperparameter tuning, it is possible
that certain datasets will exhibit increased sensitivity to these hyperparameters. Additionally, our
interaction regularizer is based on decoders which only use a cross-attention mechanism. While
this architecture yielded strong disentanglement in our experiments, Slot Attention encoders have
been shown to enable disentanglement using more expressive decoders which also use self-atten-
tion (Seitzer et al., 2023; Singh et al., 2022a).

Latent Prediction-Based Disentanglement Metrics One potential issue with our Jacobian-based
disentanglement metrics is that they may fail to measure whether multiple slots actually encode the
same object. Specifically, if two slots affect the same object in pixel space, this could be due to
both slots encoding the object in latent space, or it could be due to slot interactions modelled by the
decoder. Definitively resolving this potential ambiguity would require measuring the information
encoded in each slot directly in latent space. Along this line, prior works have considered latent
prediction metrics in which the R2 score is computed from the predictions of a model fit between
each inferred slot and the best matching ground-truth slot (Dittadi et al., 2022; Jiang et al., 2023;
Locatello et al., 2020b). While these metrics indicate if an inferred slot contains all information for
a given object, they are insufficient for resolving the possible ambiguity of our current metrics. This
is because these metrics do not indicate if an inferred slot contains information about more than one
object. This issue with latent prediction metrics was pointed out by Brady et al. (2023) who aimed
to address it by measuring the R2 score from an additional predictor fit to the second-best matching
ground-truth slot. We found this metric to yield inconsistent results on CLEVR6, which we hypothe-
size was due to issues when determining the second-best matching ground-truth slot. This lead us to
focus on decoder-based metrics which are more straightforward to compute. We leave it for future
work to formulate a latent prediction metric which overcomes the aforementioned issues of prior
works.

On Hyperparameter Selection. One potential limitation of using our regularized loss (Eq. (5.3))
in terms of scalability is that hyperparameter selection is required. In our experiments on Sprites
and CLEVR6 (§ 6), extensive hyperparameter tuning was not required. Furthermore, we found the
values of α = 0.05, β = 0.05 to work robustly across both datasets, though the reconstruction loss
was weighted by a factor of 5 on Sprites and 1 on CLEVR6. This indicates some level of robust-
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ness of these hyperparameters across datasets which contain varying complexity of interaction. On
CLEVRTex (Appx. I), we found that these exact hyperparameter values did not transfer directly
and a small amount of tuning was required to arrive at our values (.1 for all terms in the loss). We
hypothesize that this is because, in our current implementation of our loss, the magnitude of the
reconstruction loss scales with the dimension of the data. To this end, because the data dimension
increased significantly on CLEVRTex (256 encoded image patches, each with 768 dimensions), the
contribution of the reconstruction term to the loss needed to be slightly diminished. With all this
being said, it is possible that more complex dataset could require more extensive hyperparameter
tuning, however, we leave this for future work to investigate.

Applying our Method to Other Types of Concepts. One important direction for future work
is to apply our method to data consisting of different types of concepts such as object-attributes
or temporal events. For object-attributes, our same empirical framework can be applied, but with
the additional caveat that the Transformer is permutation invariant, while object-attributes do not
posses the same permutation invariance as objects. To this end, methods such as adding a positional
encoding to each slot, must be used to address this. Additionally, as noted by Gopalakrishnan
et al. (2023); Kipf et al. (2019), the problem of disentangling temporal events in image sequences
can also be modelled naturally using a slot-based framework. In this case, the “tokens” that a slot
encoder, e.g., a Transformer or Slot Attention, operates on are not pixels processed by a CNN, as in
our current model. Instead, they would correspond to individual images in the sequence which are
each mapped into representation “tokens”. These tokens can then be mapped into slots by, e.g., a
Transformer, and then decoded back to output space, where the queries for the Transformer decoder
also would not correspond to individual pixels but instead to images in the temporal sequence.

Limitations of Ldisent. One potential issue with Lrec is that for real-world data, reconstructing
every pixel in an image exactly, may not be necessary and could lead to overly prioritizing tasks
irrelevant information in ẑ such as the background (Seitzer et al., 2023). It would thus be interesting
to see if our theory and method could be extended to a self-supervised setting, as in Seitzer et al.
(2023), in which exact invertibility is not strictly necessary. Regarding LKL, we first note that in
addition to a model having inferred latent dimensionality dẑ equal to ground-truth dimension dz ,
our theory also requires that the inferred slot dimensions equals the ground-truth slot dimensions.
While LKL explicitly regularizes for the former, it does not directly regularize for the latter. More
specifically, LKL could, in principle, penalize latent capacity by putting information from all, e.g.,
objects, in one slot (assuming the slot size is large enough), opposed to distributing this information
over components from different slots. Despite this, we found that this failure mode did not occur in
our experiments. Another potential issue with LKL is that it aims to enforce statistically independent
latents which could lead to sub-optimal solutions if the ground-truth latents exhibit strong statistical
dependencies. Lastly, regarding Linteract, a shortcoming of this regularizer is that, while it directly
regularizes 1st order interactions (Appx. F.1), its connection to regularizing higher order interactions
is not as direct. Future work should thus aim to investigate this point further both theoretically and
empirically.

H.3 ENFORCING THEORETICAL CRITERIA OUT-OF-DOMAIN.

As noted in § 5, enforcing (i) invertibility and (ii) at most nth order interactions across slots on f̂ ,
out-of-domain, i.e., globally on all of Z , poses distinct practical challenges. We now discuss this in
detail. To this end, we first discuss enforcing (ii) globally on Z .

Restricting Interactions Globally. The easiest way to enforce that f̂ has at most nth order interac-
tions across slots on Z is to directly parameterize f̂ to match the form of such functions for some
n (Eq. (4.2)). This is, for example, how at most 1st order interactions were enforced in Lachapelle
et al. (2023), i.e., by defining f̂ to be an additive function (Defn. E.4) on all of Z . We found for
higher order interactions, parameterizing f̂ directly to match the form of Eq. (4.2) leads to training
difficulties on toy data. Moreover, even if we could easily train such a model, this explicit form
would pose an overly restrictive inductive bias when scaling to more realistic data. This motivated
us to consider how to regularize for (ii) opposed to enforce it explicitly. The issue with this approach
is that we only regularize the derivatives of f̂ in-domain on Ẑsupp. Yet, enforcing structure on the
derivatives of f̂ on Ẑsupp does not imply that same structure will be enforced on all of Z . As noted
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in § 4.2, however, by knowing the behavior of the derivatives of f̂ on Ẑsupp, we can infer their be-
havior everywhere on Z . Thus, in principle, it should be possible to propagate the correct derivative
structure learned by f̂ locally on Ẑsupp, to all of Z . Practically, however, it is not obvious how this
can be done in an effective manner. Thus, properly addressing this challenge would require further
methodological and empirical contributions, which are not within the scope of the present work.

Enforcing Invertibility Globally. Additionally, even if f̂ satisfies (ii) globally, we still must enforce
(i) invertibility, globally. As noted in § 5, it is not feasible to define f̂ such that it is an invertible
function from Z to X by construction. This necessitated parameterizing the inverse of f̂ with an
encoder ĝ which was trained to invert the decoder f̂ via a reconstruction loss. Assuming that a
decoder f̂ satisfies (ii) globally, and is invertible on Ẑsupp, it is possible to show that f̂ will be
invertible on all of Z and thus generalize compositionally. The issue, however, is that our encoder ĝ
is only trained to invert f̂ on Ẑsupp but not on unseen data from the rest of of Z . Consequently, even
if f̂ generalizes compositionally, an encoder ĝ will not invert f̂ out-of-domain, and can thus yield
an arbitrary representations ẑ on such data. This “encoder-decoder inconsistency” was pointed out
by Wiedemer et al. (2024a), which studied compositional generalization for decoders with at most
0th and 1st order interactions. They proposed a loss which addresses this problem by first generating
out-of-domain samples using f̂ , and then training the encoder ĝ to invert f̂ on this “imagined” data.
The implementation of this loss in Wiedemer et al. (2024a), deemed compositional consistency,
was shown to be ineffective for images consisting of more than 2 objects, however (Wiedemer
et al., 2024a). Consequently, scaling this loss, or exploring alternative losses for encoder-decoder
consistency, remain open research question that require a deeper investigation to properly address.

For these reasons, the empirical aspects of this work focus on enforcing (i) and (ii) in-domain to
achieve disentanglement on Zsupp (Thm. 4.3). As highlighted above, however, our theory elucidates
the core problems that need to be solved empirically to also achieve compositional generalization,
thus giving a clear direction for future work.

I EXPERIMENTS ON CLEVRTEX

In this section, we conduct additional experiments on the CLEVRTex dataset (Karazija et al., 2021).
This dataset constitutes a significant step up in complexity from CLEVR6 and has been shown to be
highly challenging for existing object-centric models (Biza et al., 2023; Karazija et al., 2021). We
outline our experimental setup and results below.

I.1 EXPERIMENTAL SETUP

Data. Each image in CLEVRTex consist of between 3 and 10 objects with rich textures, set against
complex backgrounds (see Fig. 7 for example images). The dataset consists of 50,000 images. We
use 40,000 images for training and 5,000 for validation and testing, respectively.

Models. We train 3 models on this data. The first model is our regularized Transformer autoencoder
from § 5, for which we weight each term in the loss in Eq. (5.3) by a hyperparameter value of .1.
The second model is an unregularized Transformer autoencoder, and the third model is an unreg-
ularized autoencoder which uses a Slot Attention encoder opposed to a Transformer. We train all
models using the same setup as in § 6, however, instead of reconstructing the original images, we
reconstruct a representation of each image given by a Vision Transformer (ViT) (Dosovitskiy et al.,
2021), which is pretrained using the DINO method (Caron et al., 2021). This approach, deemed
DINOSAUR (Seitzer et al., 2023), was shown to help object-centric models scale to datasets with
increased visual complexity. We thus replace the CNN backbone used in our experiments on Sprites
and CLEVR6 with a pretrained ViT which operates on 8× 8 patches of the original images. These
patches are mapped to features which are then processed by either a Transformer or Slot Attention
encoder. For all models, we use 11 slots with a slot dimension of 64.

Training and Evaluation Details We train all models across 3 random seeds using batches of 32.
In all cases, we use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 5× 10−4
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Table 2: Empirical Results. We show the mean ± std. dev. for J-ARI and JIS (in %) over 3 seeds for different
choices of encoders and weights of the loss terms in Eq. (5.3) on CLEVRTex.

Encoder Decoder Loss J-ARI (↑) JIS (↑)

Transformer Transformer α = 0, β = 0 81.4± 3.7 50.9± 2.8
Slot Attention Transformer α = 0, β = 0 94.2± 0.2 54.4± 0.3
Transformer Transformer α = 0.1, β = 0.1 (Ours) 95.9± 0.06 65.4± 0.6

which we warm-up for the first 10,000 training iterations and then decay by a factor of 10 throughout
training. We also warm-up the value of α for the first 25,000 training iterations. We report the J-ARI
and JIS for each model after training for 300,000 iterations. To compute these scores, we bilinearly
interpolate our normalized Jacobian maps to match the shape of the original image, since we are
reconstructing image patches.

I.2 RESULTS

We report our results in Tab. 2. As we can see, similar to on Sprites and CLEVR6, our regular-
ized Transformer achieves strong object-disentanglement, outperforming both unregularized base-
line methods. We also visually corroborate these results by plotting normalized slot-wise Jacobians
for each model which can be seen in Fig. 7.

J EXPERIMENTAL DETAILS

J.1 DATA, MODEL, AND TRAINING DETAILS

Data. The Sprites dataset used in § 6 was generated using the Spriteworld renderer (Watters et al.,
2019a) and consist of 100,000 images of size 64 × 64 × 3 each with between 2 and 4 objects. The
CLEVR6 dataset (Johnson et al., 2017; Locatello et al., 2020b) consist of 53,483 images of size
128× 128× 3 each with between 2 and 6 objects. For Sprites, we use 5,000 images for validation,
5,000 for testing, and the rest for training, while for CLEVR6, we use 2,000 images for validation
and 2,000 for testing.

Encoders. All models use encoders which first process images using the same CNN of Locatello
et al. (2020b). When using a Transformer encoder, these CNN features are fed to a 5 layer Trans-
former which uses both self- and cross-attention with 4 attention heads. When using a Slot Attention
encoder, we use 3 Slot Attention iterations, and use the improved implicit differentiation proposed
in Chang et al. (2022). Both the Transformer and Slot Attention encoders use learned query vectors
opposed to randomly sample queries, which was shown by Biza et al. (2023) to yield improved
performance for Slot Attention. On Sprites, all models use 5 slots, each with 32 dimensions, while
on CLEVR6, all models use 7 slots, each with 64 dimensions. When using a VAE loss, this slot
dimension doubles since we must model the mean and variance of each latent dimension.

Decoders. When using a Spatial Broadcast decoder (Watters et al., 2019b), we use the same archi-
tecture as (Locatello et al., 2020b) across all experiments, using a channel dimension of 32 for both
datasets. When using a Transformer decoder, we first upscale slots to 516 dimensions by processing
them separately using a 2 layer MLP, with a hidden dimension of 2064. We then apply a 2 layer
cross-attention Transformer to these features which uses 12 attention heads. To obtain the vectors
ol in Eq. (5.1), we apply a 2D positional encoding to each pixel coordinate. This vector is then
mapped by a 2 layer MLP with a hidden dimension of 360 to yield ol, which has dimension 180.
The function ψ in Eq. (5.2) is implemented by a 3 layer MLP with a hidden dimension of 180, which
outputs a 3 dimensional pixel x̂l for each pixel l. We additionally note that this architecture does
not rely on auto-regressive masking as in Singh et al. (2022a).

Training Details. We train all models on Spriteworld across 3 random seeds using batches of 64 for
500,000 iterations. For CLEVR6, we use batches of 32 and train for 400,000 iterations. In all cases,
we use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 5×10−4 which we warm-

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

up for the first 30,000 training iterations and then decay by a factor of 10 throughout training. When
training with βLKL and αLinteract, we use hyperparameter weights of 0.05, which we found to work
well across both datasets. We found much larger values could lead to more training instability and,
in some cases, insufficient optimization of Lrec, while smaller values often did not lead to sufficient
optimization of the regularizers. We warm-up the value of α for the first 30,000 training iterations.
Additionally, when training with α or β, we drop the value of the learning rate after 30,000 training
iterations to 1 × 10−4, which improved training stability. Lastly, on Sprites, we weight Lrec by a
factor of 5, when training with α or β.

J.2 METRICS AND EVALUATION

Computing ARI with Attention Scores. To compute the Adjusted Rand Index (ARI), each pixel
must first be assigned to a unique model slot. To this end, prior works typically choose the slot
with the largest attention score from either Slot Attention or the alpha mask of a Spatial Broadcast
decoder (Locatello et al., 2020b; Seitzer et al., 2023). This approach can be problematic since
the attention scores used are model-dependent, making a direct comparison of ARI across models
challenging. Further, the relationship between attention scores and the pixels encoded in a model
slot is somewhat indirect. As noted in § 6, we consider an alternative and compute the ARI using the
Jacobian of a decoder (J-ARI). Specifically, we assign a pixel l to the slot with the largest L1 norm
for the slot-wise Jacobian DBk

f̂l(ẑ). This can be done for any autoencoder and provides a more
principled metric for object disentanglement since a decoder’s Jacobian directly describes the pixels
each slot encodes (assuming f̂ , ĝ invert each other).

Evaluation. We select models for testing which had the highest average values for J-ARI and JIS
(each of which take values from 0 to 1) on the validation set. These models were then evaluated on
the test set yielding the scores reported in Tab. 1.

J.3 ADDITIONAL FIGURES

In this subsection, we include 3 additional experimental figures. In Fig. 5, we compare the value
of Linteract throughout training for a model with a Transformer encoder and decoder, trained using
a our regularized loss Eq. (5.3), the VAE loss and a standard autoencoder loss on both Sprites and
CLEVR6. We plot values over 3 random seeds; the shaded regions in the plots indicate one standard
deviation from the mean. We find on Sprites (A) and CLEVR6 (B) that the VAE loss achieves much
lower Linteract than the unregularized model. This provides a possible explanation for the solid object
disentanglement often achieved by the VAE loss in Tab. 1. We also observe, however, that using
α > 0 leads to much lower values for Linteract compared to the implicit regularization from the VAE
loss.

In Fig. 6, we compare slot-wise Jacobians for our model versus baseline models across both Sprites
(A) and CLEVR6 (B). To create these plots, we normalize the partial derivatives across slots such
that they only take values between 0 and 1. The colors associated with partial derivative values can
be interpreted using the color bar at the bottom of (A). We only compute partial derivatives on the
foreground pixels and set the derivatives of background pixels w.r.t each slot to 0. We see that when
regularizing interactions via our model, slots rarely affect the same pixels (i.e., interact) unneces-
sarily, while for unregularized models, multiple slots often affect the same pixels even when no
interactions should occur, e.g., for images in Sprites (A).

In Fig. 7, we compare slot-wise Jacobians on CLEVRTex as was done in Fig. 6 and also observe
here that the regularized Transformer achieves cleaner object decompositions compared to baseline
models.

In Fig. 8, we compare decoder attention maps w.r.t. each slot for our model versus baseline models
from § 6,which also use a Transformer decoder. These maps, which indicate the slots each pixel
attends to, are plotted for both Sprites (A) and CLEVR6 (B). We compute these values by taking
the mean attention weight over decoder layers. Similar to Fig. 6, we see that, in our model, pixels
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rarely unnecessarily attend to multiple slots. On the other hand, for unregularized models, pixels
often attend to multiple slots in cases where no interactions between slots should occur.
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Figure 5: Analysis of Linteract when using a VAE loss. We plot Linteract for the first 400,000 training
iterations for a Transformer autoencoder trained without regularization (α=0, β=0), with a VAE
loss which does not explicitly optimize Linteract (α = 0, β = 0.05), and with the loss in Eq. (5.3)
which regularizes both losses (α=0.05, β=0.05).
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Figure 6: Normalized Slot-wise Jacobians. We plot the Jacobians w.r.t. each slot (columns) for
5 random test images (rows) from (A) Sprites and (B) CLEVR6 for our regularized Transformer
model and the baseline models used in our experiments in § 6.
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Figure 7: Normalized Slot-wise Jacobians (CLEVRTex). We plot the Jacobians w.r.t. each slot
(columns) for 5 random test images (rows) from CLEVRTex for our regularized Transformer model
and the baseline models used in our experiments in Appx. I.
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Figure 8: Slot-wise Transformer Decoder Attention Maps. We plot decoder attention maps w.r.t.
each slot (columns) for 5 random test images (rows) from (A) Sprites and (B) CLEVR6 for our reg-
ularized Transformer decoder and the baseline models in § 6 which also use a Transformer decoder.
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