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Abstract

Data augmentation is a widely used strategy to improve model robustness and1

generalization by enriching training datasets with synthetic examples. While large2

language models (LLMs) have demonstrated strong generative capabilities for3

this purpose, their applications in high-stakes domains like healthcare presents4

unique challenges due to the risk of generating clinically incorrect or misleading5

information. In this work, we propose a novel query-based model collaboration6

framework that integrates expert-level domain knowledge to guide the augmen-7

tation process to preserve critical medical information. Experiments on clinical8

prediction tasks demonstrate that our lightweight collaboration-based approach9

consistently outperforms existing LLM augmentation methods while improving10

safety through reduced factual errors. This framework addresses the gap between11

LLM augmentation potential and the safety requirements of specialized domains.12

1 Introduction13

Data augmentation is a promising approach for enhancing model robustness by expanding training14

datasets with synthetic examples. The augmented data is expected to preserve essential semantics15

while introducing task-irrelevant variations, enabling the model to focus on core task-relevant features,16

thus improving robustness and generalization across diverse contexts (Cheng et al., 2019; Chen et al.,17

2021). However, in expert-driven applications such as healthcare and law, the use of data augmentation18

presents unique challenges. These applications demand a high standard of consistency and safety,19

whereas hallucinated information in augmented data, such as fabricated patient symptoms or false20

vital signs, can confuse models and propagate errors that potentially impact critical decisions (Kim21

et al., 2025). Therefore, data augmentation must be carefully controlled and validated to maintain22

data integrity and prevent the introduction of misleading or harmful information.23

Researchers have increasingly adopted LLMs for generating synthetic text data due to their concept-24

understanding and instruction-following capabilities (Dai et al., 2025; Feder et al., 2023; Li et al.,25

2024b; Si et al., 2025). The preference for LLM usage is also from inherent challenges of data26

augmentation in natural language processing tasks, where traditional static augmentation techniques,27

e.g., synonym substitution, are not broadly effective (Okimura et al., 2022). Despite their usefulness,28

LLM factual errors remain a persistent issue: Generated text may alter critical information in the29

original text or produce false content (Shen et al., 2023; Yu et al., 2023). While these risks are30

well-documented, existing methods for ensuring the safety and reliability of LLM-augmented data in31

high-stakes applications remain inadequate, lacking domain-specific safeguards.32

In this paper, we examine the distinctive requirements for LLM-based data augmentation in high-33

stakes domains, with a focus on preserving critical information and ensuring factual correctness.34

Our study centers on clinical note processing for medical applications, where LLMs have been35

used to generate counterfactual notes to improve clinical prediction model training (Feder et al.,36
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2023). However, general-purpose LLMs often lack the domain expertise necessary to produce37

safe, high-quality synthetic data. To address this challenge, we propose a novel data augmentation38

framework that achieves both safety and efficiency through model collaboration (Li et al., 2024a): we39

inject expert-level knowledge via a lightweight "weak expert" model (BERT-based) that supervises40

the LLM’s generation process. This approach provides domain-specific safeguards for improved41

augmentation quality while maintaining computational efficiency. We empirically show that our42

proposed augmentation method using dual model-collaboration produces safer and factually consistent43

augmented data, outperforming existing baselines across multiple benchmarks and tasks. Lastly, we44

show that our collaborative method (built from pre-trained models with no additional training) can45

be distilled into a single model via preference learning (Rafailov et al., 2024), offering a trainable46

alternative that broadens the applicability of our method across different deployment settings. We47

state our contribution as follows:48

• We propose a novel model collaboration framework for safe clinical text augmentation, where LLM49

generation is guided by a lightweight domain expert model to preserve critical medical information.50

• We demonstrate our method’s effectiveness across multiple dimensions: quantitatively improving51

safety through reduced medical term deletion and fewer irrelevant term introductions, while52

outperforming existing LLM-based augmentation methods across multiple clinical tasks.53

• We extend beyond inference-time collaboration by demonstrating that our framework supports54

preference-based reinforcement learning to elicit generalist models to function as expert models.55

2 Related work56

Level of Expert Knowledge available

Human Expert Supervision

Ideal Case

Human expert guides entire
augmentation (improbable)

CATO (Feder et al. 2023)

No Supervision
Model augments without
understanding domain

Our Method

Expert Model Supervision
Expert model guides augmentation

with domain knowledge

Figure 1: LLM-based Augmentation methods fail when data requires expert domain knowledge.
Previous methods like CATO (Feder et al., 2022) perform data augmentation without supervision,
resulting in errors such as keyword removal and factual mistakes due to lacking expertise. While
human experts (e.g., caregivers) would be ideal supervisors, their limited availability and high cost
make this impractical. We propose model collaboration as an intermediate solution: an expert model
trained on domain data substitutes human experts, guiding augmentations by extracting domain
knowledge from clinical text and injecting them into inference queries.

Clinical Language Models Clinical language models have emerged as an important foundation57

for advancing natural language processing (NLP) applications in healthcare. Researchers have58

adapted transformer-based language models to process biomedical and clinical texts, including59

ClinicalBert (Huang et al., 2019), BioBert (Lee et al., 2020), GatorTron (Yang et al., 2022), and60

NYUTron (Jiang et al., 2023), by domain-specific pre-training on large-scale electronic health61

records (EHRs) and medical literature. These models can be fine-tuned with minimal architectural62

modification for downstream tasks and have demonstrated improved performance on a wide range63

of clinical tasks, e.g., hospital readmission prediction and medical named entity recognition. The64

models address conventional methods’ reliance on structured EHR and the complexity in feature65

and algorithm development (Kelly et al., 2019), by interpreting useful clinical information from66

unstructured clinical notes for a variety of prediction tasks. Despite these advances, the robustness of67

clinical language models remains a challenge; models often struggle to generalize across different68

institutions, patient populations, and documentation styles (Moradi & Samwald, 2022; Rahman69

et al., 2024), which are critical to consider when developing models to inform real-world healthcare70
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As we reviewed Doe's case, we discovered a 
58-year-old male with hypertension, 
presenting with a 3-day history of high fever, 
persistent cough, and shortness of breath. 
His chest X-ray revealed bilateral infiltrates, 
prompting his admission for treatment.
He tolerated oral feedings and participated 
in physical therapy, demonstrating a strong 
desire to return to his normal activities.
Upon discharge, John was prescribed the 
following medications:
Levofloxacin 750mg daily for 10 days to 
ensure complete eradication of the 
pneumonia-causing organism.

 

Mr. Doe is a 58-year-old male with a past 
medical history of hypertension who 
presented to the emergency department with 
a 3-day history of fever, cough, and 
shortness of breath. Chest X-ray showed 
bilateral infiltrates, and he was admitted for 
treatment of community-acquired 
pneumonia.
Hospital Course: He was able to tolerate a 
regular diet and was mobilized with physical 
therapy.
Discharge Medications:
1. Levofloxacin 750mg daily for 10 days
2. Acetaminophen 650mg every 6 hours as 
needed for fever or pain
3. Albuterol inhaler 2 puffs every 4 hours 
as needed for shortness of breath

Mr. Doe, a 58-year-old male, presented to 
the emergency department with a 3-day 
history of fever, cough, and shortness of 
breath. Mr. Doe has been experiencing 
fever, cough, and shortness of breath for 3 
days. He has a past medical history of 
hypertension and is currently taking (Not 
Provided). His symptoms worsened over 
the past 2 days, prompting him to seek 
medical attention.
Diagnostic Results: Chest X-ray: Bilateral 
infiltrates
Treatment and Management:
Levofloxacin 750mg daily for 10 days. 
Supplemental oxygen: Provided as 
needed. Physical therapy: Provided as 
tolerated

 

Original note Naive LLM-based augmentation CATO
Mr. Smith is a 58-year-old male with a past 
medical history of hypertension, presented 
to the emergency department with a 3-day 
history of fever, cough, and shortness of 
breath. Radiographic findings on chest 
X-ray revealed bilateral pulmonary infiltrates, 
prompting admission for 
community-acquired pneumonia (CAP) 
treatment.
Hospital course: He was able to tolerate a 
regular diet and underwent mobilization 
with physical therapy.
Discharge Medications:
1. Levofloxacin (750mg daily) for 10 days 
2. Acetaminophen (650mg every 6 hours) as 
needed for pyrexia or pain.
3. Albuterol inhaler (2 puffs every 4 hours) 
as needed for dyspnea.

 

Ours

Figure 2: Synthetic clinical notes generated by different LLM-based augmentation methods are
shown: a simple rephrasing prompt (Naive LLM-based augmentation), prompting to rewrite the note
by only changing the physician’s writing style (CATO), and our model-to-model query method (Ours).
Notes generated by the Naive and CATO methods omit critical medical information (highlighted in
blue) and introduce hallucinated and irrelevant content (highlighted in red). In contrast, our method
preserves all medical information while only rephrasing non-critical elements (e.g., patient names,
synonyms of medical terms; green), achieving safe clinical note augmentation. Note: The original
note shown here is synthetic and not a real note from our used dataset.

decisions. In response, we propose a data-centric approach to improve generalization and address71

distribution shifts for robust application of clinical language models in the real-world.72

Data Augmentation Data Augmentation is an effective technique to improve model robustness,73

where the key is to create diverse augmented versions of the original data while maintaining its74

semantic integrity (Geiping et al., 2022; Feng et al., 2021), whose difficulty varies by modality (e.g.,75

image, text). For instance, image data benefits from its intrinsic spatial correlations and inherent76

redundancy, making it less vulnerable to feature distortions introduced during augmentation (Per-77

vin et al., 2021; Cho et al., 2025). On the other hand, text data augmentation faces challenges in78

maintaining semantic integrity during augmentation (Chai et al., 2025; Dai et al., 2025), owing to79

its syntactic attributes (Chen et al., 2023) (e.g., grammar, context) which should not be perturbed,80

especially in safety-critical domains (e.g., healthcare (Nazi & Peng, 2024)). To address such short-81

comings, recent works focus on semantic-aware data augmentation that does not change the key82

components of the text, namely through simple semantic-preserving transformations (Van et al., 2021;83

Chen et al., 2023) (e.g., synonym replacement, random swapping), or model-based augmentation84

techniques that utilize large language models (LLMs) to produce fine-grained augmentations (Chai85

et al., 2025; Li et al., 2024b; Yoo et al., 2021; Zhou et al., 2021). Notably, Feder et al. (2023)86

presents a semantic-preserving augmentation method that incorporates LLMs to augment non-causal87

features (e.g., writing styles). However, the studies do not address common limitations of LLMs (e.g.,88

hallucinations (Yao et al., 2024) and spurious correlations (Zhou et al., 2023)), which remains an89

issue in guaranteeing semantic-aware, safe augmentation. In this paper, we specifically study cases90

where the LLMs fail to differentiate between critical and non-critical information, tampering with the91

semantics of the original sample and endangering the safety of the model trained with distorted data.92

3 Problem Formulation93

Figure 3: Clinical language
model predictions (y) are in-
fluenced by both meaningful
domain variables (V) and spu-
rious features (U) extracted
from note data (X).

Causally Driven Data Augmentation. In many safety-critical94

applications (e.g., clinical or legal domains), we often have ad-95

ditional domain knowledge or causal assumptions that elucidate96

which variables (tokens, phrases) truly affect the label y (Feder97

et al., 2023; Staliūnaitė et al., 2021). We can depict these dependen-98

cies with a causal graph G (as shown in Figure 3), either explicitly99

specified by experts or derived via observational data. Formally,100

we posit that the label y depends on a set of domain variables V101

(e.g., symptoms, diagnoses for clinical data) and that altering any102

of these crucial variables could distort the semantics. Conversely,103

stylistic or non-critical variables U (e.g., function words, phrasing)104

do not affect y, although they may still correlate with it (e.g., due105

to shared confounders). As a result, models may rely on U as shortcut features which can lead to106
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LLM

Clinical
Notes
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Augmented
Notes

X

(a) Previous Methods

Expert Generalist

Clinical
Notes

Expert
Knowledge

Preserve Following Medical Keywords..

Augmented
Notes

(b) Ours

Figure 4: Comparison of augmentation strategies. (a) Previous methods do not provide supervision
over the augmentation process, assuming the LLM has expert-level knowledge. (b) Our augmentation
method leverages query-based model collaborations to provide domain knowledge of the weak expert
model to guide the strong generalist model within an LLM-based augmentation module.

unreliable predictions. Data augmentation approaches have been aiming to generate counterfactual107

examples by altering U to decorrelate it from y, thereby encouraging the model to make predictions108

unaffected by non-critical information.109

Pitfalls of LLM-based Augmentation Methods However, an under-explored challenge in using110

LLM-based methods to generate counterfactual examples (Feder et al., 2023; Zhou et al., 2024)111

lies in the inability of general-purpose LLM to precisely distinguish between observed variables112

V and unobserved variables U in the data. Therefore, there is a growing disconnect between the113

theoretical frameworks for robust learning and the practical implementation of augmentation. Unlike114

image augmentation which commonly uses determined algorithms, text augmentation using LLMs115

introduces variability and hallucination to generated text which may undermine the robustness116

assumptions of models trained with the augmented data. For example, LLMs often lack the domain-117

specific understanding on medical language to reliably preserve critical clinical information while118

only modifying/augmenting non-medical parts in clinical notes (failure examples in Figure 2).119

This limitation causes LLM-based augmentation methods to lose intended causal control and may120

introduce semantic distortions (Ding et al., 2024; Sriramanan et al., 2024; Song et al., 2024). While121

issues of error and hallucination in LLMs have been discussed (Tonmoy et al., 2024), little work122

has addressed their impact on the safety of data augmentation. We fill this gap by introducing123

explicit guidance for LLM inference during augmentation through a collaborative framework, thereby124

reducing hallucinations in causally-informed data augmentation.125

4 Model-to-Model Query for Fine-grained Data Augmentation126

In this section, we present our model-to-model query framework for LLM-based textual data aug-127

mentation. We begin by introducing the notation and two core components (weak expert and strong128

generalist). We then describe how their outputs are integrated into a unified augmentation pipeline,129

and conclude by discussing why this design enables safer and more domain-targeted augmentations130

compared to existing approaches.131

4.1 Notation and Setup132

Let D = {(xi, yi)}Ni=1 be a dataset of N labeled text samples, where each input xi is a raw text (e.g.,133

a sentence or document) and yi is its annotation or label. Our goal is to construct an augmented134

dataset D̃ = {(x̃i, yi)}Ni=1, where each x̃i preserves the semantic of xi, particularly its critical domain135

tokens, et modifies its non-critical tokens, e.g., surface style or phrasing. The distinction between136

critical and non-critical tokens is informed by a prior causal graph grounded in domain literature137

for the specific clinical task (Figure 3). X denotes the original clinical notes which includes both138

predictive factors relevant to the task V and spurious factors U that typically do not generalize. In our139

setup, we only specify V since only these tokens are preserved during LLM-based augmentation. We140

define V as medical-clinical terms, e.g. disease disorder and sign symptom, which are predictive to141

clinical prediction tasks indicated by literature (Davis et al., 2022; Gao et al., 2023)142

By referencing causally driven augmentation model G, we incorporate two components: a weak143

expert W which identifies critical variables in the input X and flags them as unalterable tokens, and a144

strong generalist G with strong generative capability to write counterfactual clinical notes:145
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1. Weak Expert W (·): A lightweight domain-specific model (e.g., a BERT-based clinical language146

model) that identifies safety-critical tokens (i.e., medical keywords) which must remain unchanged147

during augmentation.148

2. Strong Generalist G(·): A general purpose foundation model with strong rewriting and generative149

capabilities but without explicit training in the target domain.150

We treat the weak expert as a domain-sensitive decision-maker that constrains critical content, and151

the strong generalist as a general-purpose rewriter guided by these constraints.152

4.2 Formalizing the Framework153

To generate an augmented text x̃i from a input text xi, our pipeline consists of three steps:154

A. Critical Features Extraction by Weak Expert. The weak expert W identifies the key tokens155

or features in xi that are essential for preserving semantic fidelity:156

Ki = W (xi). (1)

The set Ki typically include terminology or clinical expressions that must not be altered in order to157

maintain the original meaning.158

B. Prompt Construction. We create a
prompt using the template shown on the right:
prompt

(
xi,Ki

)
that passes the original text

and explicit constraints provided by the weak
expert W to the strong generalist G. Formally,
the prompt specifies the set Ki, highlighting
the domain-critical terms whose meanings must
remain unchanged.

Original text: xi

Preserve the following tokens:
{K1

i ,K2
i , · · · }

Rewrite instructions:
Rewrite xi in a new style or phrasing
without altering any token in Ki.

159

C. Safer Text Rewriting by Strong Generalist. The strong generalist G generates the rewritten160

text x̃i by conditioning on the constructed prompt:161

x̃i = G
(
prompt

(
xi,Ki

))
. (2)

We pair x̃i with the original label yi to form the augmented dataset D̃ = {(x̃i, yi)}Ni=1. Because162

G receives explicit guidance on domain-critical tokens, t avoids distorting key information while163

freely rephrasing non-critical content. In this way, a small, specialized model W contributes domain164

knowledge and safety constraints, while the strong generalist G executes the generative rewriting. In165

Section A.1, we report the details of our method implementation (e.g., the user prompts)166

5 Experiments167

5.1 Datasets and Benchmarks168

We use the MIMIC-III dataset (Johnson et al., 2016), a widely used public resource of de-identified169

clinical notes. This dataset provides a diverse collection of clinical documentation including discharge170

summaries, nursing notes, and physician reports, making it an ideal testbed for evaluating augmen-171

tation techniques for clinical text. We consider three clinical prediction tasks: (1) 30-day all-cause172

readmission prediction, estimating the likelihood of patient returning to hospital within 30 days173

following discharge. This task is both clinically and operationally significant (Caruana et al., 2015;174

Kansagara et al., 2011), reflecting how well language models capture meaningful representations from175

clinical notes (Huang et al., 2019). (2) In-hospital mortality prediction, predicting all-cause death176

during hospitalization, useful for disease management (Ke et al., 2022). (3) Hospital length-of-stay177

prediction, predicting the number of days a patient will remain in hospital during a single admission178

event, a major indicator for the consumption of hospital resources (Stone et al., 2022).179

Besides training downstream prediction models using augmented data, we also evaluate in zero-shot180

inference settings. Specifically, (1) patient phenotyping, using phenotype annotations from Gehrmann181

et al. (2018), and (2) ICD clinical coding, where we follow prior work (Mullenbach et al., 2018;182

Zhang et al., 2025) to construct datasets (MIMIC-III-Full and MIMIC-III-Top-50).183
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5.2 Implementation184

We use the biomedical-ner-all model (Raza et al., 2022) as the Weak Expert W (·). The model is185

built on DistilBERT architecture and trained to recognize 107 biomedical entities in clinical texts.186

For the Strong Generalist G(·), we experiment with different instruction-tuned models (e.g., Qwen-187

3-0.6B (Yang et al., 2025) and LlaMA-3.2-3B-Instruct (Grattafiori et al., 2024)), which excel at188

rephrasing, summarizing, or restructuring text in a human-like way. Unless explicitly stated, Qwen-3-189

0.6B model is used as default G(·). To address long input lengths in MIMIC-III notes, we implement190

Cache-Augmented Generation (CAG) (Chan et al., 2025) to expand the context window of the191

generalist models, allowing the model to maintain coherence and preserve critical clinical information192

throughout the augmentation process. To assess the effectiveness of different augmentation strategies,193

we conduct downstream clinical prediction tasks using the augmented datasets. Specifically, we194

fine-tune a Qwen-3 model with LoRA adapters (Hu et al., 2021) and a BERT model (Jiang et al., 2023)195

with full fine-tuning. Lastly, the hyperparameters were selected using a grid search. In Section A.2,196

we provide a detailed analysis of the hyperparameters (see Table 6, Table 7, and Table 8).197

5.3 Evaluation Metrics and Baselines198

In our experiments, we evaluate the proposed method along two dimensions: (1) the quality of the199

synthetic data generated by augmentation, and (2) the utility of the augmented data for downstream200

clinical tasks, assessed through model training and zero-shot/few-shot inference. The corresponding201

evaluation metrics are as follows.202

Quality of the Synthetic Data203

• Preservation Rate (PR) (i.e., how many medical entities are preserved during augmentation. Higher204

is better), where Eorig is the set of medical entities in the original data, Eaug is the set of medical205

entities in the synthetic data (Liu et al., 2024).206

• Hallucination Rate (HR) (i.e., how many irrelevant medical entities not existing in the original data207

are generated. Lower is better.) (Liu et al., 2024)208

PR =
|Eaug ∩ Eorig|

|Eorig|
, HR =

|Eaug \ Eorig|
|Eorig|

. (3)

Utility of Synthetic Data for Downstream Clinical Tasks209

• Clinical outcome prediction: Accuracy on 30-day all-cause readmission and in-hospital mortality210

prediction, when models are trained on synthetic data generated by different augmentation methods.211

• Length-of-stay prediction: Root Mean Squared Error (RMSE) for hospital length-of-stay prediction212

under the same setting.213

• Patient phenotyping: Zero-shot and few-shot prediction using synthetic clinical notes.214

• ICD coding: Zero/one/few-shot prediction of ICD codes, formulated as an information retrieval215

task following the practice of Boyle et al. (2023).216

Baselines The most relevant comparison baselines are LLM-based textual data augmentation217

methods. We compare our approach with (1) a naive augmentation strategy, which prompts the LLM218

to rephrase the original note without introducing substantive variation (denoted as “Naive”), and (2) a219

causally driven augmentation method (“CATO”) that prompts the LLM to modify only writing style220

of notes (Feder et al., 2023).221

5.4 Experimental Results222

In this section, we evaluate our model collaboration framework through comprehensive experiments.223

First, we validate that our method preserves domain-critical information during augmentation, demon-224

strating improved safety over unsupervised LLM approaches. Second, we show performance gains225

on downstream tasks, both when training with our augmented data and in zero/few-shot inference226

settings. Third, we analyze how different weak expert designs impact augmentation quality. Finally,227

we move beyond inference-time collaboration and show our framework is trainable, by distilling the228

expert guidance into a single model via preference learning. Together, these experiments demonstrate229

that expert-guided augmentation achieves both safety and effectiveness in clinical applications.230
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Safety Validation: Preserving Critical Medical Information. We provide a detailed investiga-231

tion into the quality of synthetic data generated by our augmentation method, focusing on how it232

preserves the critical medical information while preventing groundless information from being added.233

Specifically, we compare the PR (preservation rate) and HR (hallucination rate) of synthetic notes.234

As observed in Table 1, LLM-based augmentation methods in general tend to remove or add critical235

keywords (i.e., named entities) during augmentation. Figure 2 shows an example of this problem.236

The naive LLM-based augmentation method removes up to 51% of task-critical keywords (medical237

keywords), while adding up to 75% groundless keywords that do not appear in the original text.238

Table 1: Quality of synthetic notes generated
by different augmentation methods, mea-
sured by entity preservation rate (PR) and
hallucination rate (HR) across 300 samples.

Method LLama-3.2-1B LLama-3.2-3B

PR ↑ HR ↓ PR ↑ HR ↓
Naive 0.48 0.75 0.51 0.59
CATO 0.47 0.77 0.62 0.72
Ours 0.66 0.43 0.79 0.33

In contrast, our proposed augmentation method is239

most effective in preserving relevant medical key-240

words while preventing the introduction of fabricated241

keywords (Table 1). To assess robustness, we test242

with LLMs of different sizes: Llama-3 model 1B243

and 3B (Grattafiori et al., 2024), thereby disentan-244

gling the effect of the LLM’s inherent semantic un-245

derstanding and generative capacity. As expected,246

the larger, and thus stronger LLM that performs aug-247

mentation achieves preservation rates (PR) and lower248

hallucination rates (HR). But across both settings,249

our method consistently outperforms the baselines,250

providing more accurate and safe data augmentation.251

252

Table 2: Downstream task performance (Acc./RMSE) of Qwen-3 and BERT model trained with
augmented data using different methods. Bold indicates the augmentation method that provides the
largest performance gain. We report the mean and standard error results across 5 runs.

Model Aug. Method Readmission (Acc.) Mortality (Acc.) Length-of-stay (RMSE)

Zero-Shot 0.511±0.06 0.901±0.03 73.277±8.19

None 0.526±0.04 0.911±0.04 17.835±5.29

Qwen-3 Naive 0.520±0.04 0.907±0.04 16.357±5.75

CATO 0.552±0.04 0.910±0.03 18.677±3.20

Ours 0.599±0.03 0.917±0.02 15.563±3.26

None 0.721±0.03 0.897±0.04 15.403±0.12

BERT Naive 0.736±0.01 0.916±0.01 13.572±0.04

CATO 0.730±0.01 0.923±0.003 13.504±0.02

Ours 0.757±0.01 0.929±0.03 13.110±0.06

Performance Gains: Downstream Tasks and Zero/Few-Shot Learning. Table 2 reports how253

different augmentation methods affect predictive performance across downstream clinical tasks. Our254

expert-guided augmentation (Ours) achieves the best mean performance across all three tasks. With255

Qwen-3, our method improves readmission accuracy to 0.599 (+0.047 over the strongest baseline,256

CATO), mortality accuracy to 0.917 (+0.006–0.007 over baselines), and reduces length-of-stay RMSE257

to 15.563. The improvements are consistent across model architectures: when switching from the258

decoder-only Qwen-3 to the encoder-only BERT, our approach continues to outperform baselines.259

In contrast, Naive augmentation shows mixed benefits: it degrades performance on readmission260

and mortality prediction compared to no augmentation, while slightly improving length-of-stay261

RMSE. CATO similarly improves readmission accuracy but harms performance on mortality and262

length-of-stay prediction. These patterns suggest that unguided or heuristically guided augmentation263

can inject label-preserving but distribution (meaningful domain variables (V) in Figure 3)-shifting264

noise that degrades generalization of the model. Incorporating expert knowledge yields clinically265

faithful augmentations that provide consistent and robust gains.266

Beyond training downstream models with augmented data, we evaluate whether augmentations267

preserve information critical for inference in low-resource settings. Specifically, we assess zero268

and few-shot performance on phenotype classification and ICD coding. For phenotype classi-269

fication, we compare F1 scores on the original samples (“None”) and on augmented data (Fig-270

ure 5). Naively augmented samples (i.e., unconstrained LLM paraphrasing) and CATO con-271

sistently reduce task scores, indicating that the critical information (e.g., medical keywords)272

is distorted in the augmented notes, making them less predictive for the phenotyping task.273
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Figure 5: Zero/One/Few-shot F1 scores on Patient Phenotyping task using different inference models.

Table 3: Recall (Rec.), Precision (Pred.) and F1 score on
ICD Code Prediction. The task is framed as a retrieval
task for zero-shot inference (Boyle et al. (2023)). We
use GPT-4o as inference model.

Aug.
Method

Micro Macro

Rec. ↑ Prec. ↑ F1 ↑ Rec. Prec. F1

None 0.221 0.159 0.185 0.178 0.197 0.187
Naive 0.146 0.138 0.149 0.133 0.146 0.139
CATO 0.153 0.141 0.147 0.166 0.173 0.169
Ours 0.224 0.168 0.192 0.189 0.203 0.196

In contrast, our expert-guided augmen-274

tation reliably improves F1 across all275

zero/one/few-shot settings and inference276

models. For ICD coding (Table 3), we277

reframe the task into retrieval-based pre-278

diction, where the prediction is correct if279

the model can retrieve a grounding ratio-280

nale for the ICD label from the text (Boyle281

et al., 2023). The observed pattern is sim-282

ilar: naive and CATO augmentations dis-283

play lower scores than the original clini-284

cal notes (None in Table 3). But the aug-285

mented samples produced by our method preserve performance: on par with or exceeding the original286

data. When our method performance exceeds the original data without using augmentation, this aligns287

with prior findings that LLM-rephrased texts can enhance predictive/learning signals by improving288

linguistic clarity (Deng et al., 2024; Pieler et al., 2024).289

Table 4: Effects of using different weak-
expert models. Weak expert’s profi-
ciency in extracting expert knowledge
affects the quality of data augmentation.

Method PR ↑ HR ↓
Naive 0.51 0.59
CATO 0.62 0.77
Ours (medical-expert) 0.79 0.33
Ours (general-expert) 0.53 0.50

Component Analysis: Effect of Weak Expert Design.290

We next examine how the weak expert model affects291

augmentation quality. In Table 4, we report the PR and292

HR score of synthetic samples generated with two types293

of expert models (1) medical-expert: a biomedical lan-294

guage model trained on domain data (Raza et al., 2022)295

and (2) general-expert: a general language model trained296

for named entity extraction. As expected, the medical-297

expert provides stronger guidance, leading to significantly298

higher preservation and fewer hallucinations. Another299

impressive observation is that even when the weak expert300

is a general language model without medical knowledge,301

our expert-collaboration framework still improves per-302

formance. This is likely because medical terms form a subset of named entities captured by the303

general-expert. This finding aligns with recent works related to weak supervision, where even304

imperfect learning signals are known to guide and benefit model training (Burns et al., 2023; Cho305

et al., 2025), highlighting the robustness and potential of our query-based collaboration framework.306

Framework Extension: Distilling Expert Guidance through RL. Our central claim is that307

expert signals are the key driver of effective augmentation. So far, we have injected this signal at308

inference time through model collaboration (weak expert W + strong generalist G). To test whether309

this guidance can also be realized by a single model, we explore preference-based reinforcement310

learning (RL) as an alternative mechanism. Specifically, we train the generalist with direct preference311

optimization (DPO) (Rafailov et al., 2024), where the preference signal is defined to favor expert-312

guided over naive augmentations. The resulting model, denoted W ∗, behaves as a Strong Expert313

that internalizes our augmentation method. Table 5 compares this RL-trained Strong Expert with our314

dual-model collaboration.315

We observe that preference learning (Ours (Strong Expert) in Table 5) improves over zero-shot316

baselines. However, the model collaboration (Ours) remains the most reliable overall across tasks317
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Table 5: Comparison of model-collaborative augmentation (Ours) against a single Strong Expert
augmentation trained using reinforcement learning, on downstream task performance.

Model Aug. Method Readmission (Acc.) Mortality (Acc.) Period (RMSE)

Zero-Shot 0.511±0.06 0.901±0.03 73.277±8.19

Qwen-3 Ours 0.599±0.03 0.917±0.02 15.563±3.26

Ours (Strong Expert) 0.582±0.04 0.911±0.03 15.482±4.17

Zero-Shot 0.518±0.05 0.904±0.02 80.839±7.31

Llama-3.2-3B Ours 0.583±0.04 0.904±0.02 14.920±4.41

Ours (Strong Expert) 0.560±0.06 0.901±0.01 17.276±4.68

and backbones. The gap between the single Strong Expert and the collaboration method is smaller318

for Qwen-3 than for Llama-3.2-3B. We hypothesize this is due to domain priors: Qwen models can319

already capture key medical terms from pretraining, so DPO-based preference learning better mimics320

weak-expert + strong generalist behavior. In contrast, Llama shows weaker keyword extraction, and321

RL-only training narrows but does not close the gap with the dual-model approach. When effective,322

preference learning compresses the dual-model policy into a single model that behaves like an expert323

augmenter. This shows that RL can elicit latent domain knowledge from a generalist and push its324

behavior toward expert-like augmentation (aligned with observations in Chu et al. (2025)). However,325

since the gains are inconsistent across backbones, we view a fully model-agnostic Strong Expert as326

an open question, and recommend the dual-model pipeline when base models lack medical priors.327

6 Discussion: When does Model Collaboration Help?328

We discuss when and why model collaboration with weak experts improves augmentation data quality.329

Weak experts W are most helpful when augmentation must preserve specific domain terminologies330

while allowing flexibility in how the rest of the text is written. By identifying these critical tokens331

upfront, the generalist G can vary style and phrasing without changing the medical meaning, achieving332

higher Preservation and lower Hallucination Rates (Table 1).333

The benefits are particularly strong in these scenarios. First, in low-resource settings with rare334

conditions or drug–dose pairs appear uncommon in pretraining data, even a lightweight detector335

trained on medical text prevents deletion or ambiguous paraphrasing. Across weak-expert variants,336

medical specialization yields the best rresults, though general NER provides gains by identifying entity337

boundaries (Table 4). Second, under distribution shift across hospitals or time periods, weak experts338

preserve causal features while allowing style adaptation, improving downstream performance for339

prediction readmission, mortality and length of stay (Table 2). Third, in safety-critical applications,340

token-level guidance reduces hallucinations from paraphrase-based augmentation, as shown by341

stronger zero/one/few-shot phenotyping and improved ICD retrieval (Figure 5, Table 3).342

Importantly, effectiveness depends on calibration. When weak experts under-detect, medical facts343

change; when they over-detect, augmentation variation is limited. In practice, the most reliable344

gains occur when the weak expert achieves high recall on safety-critical entities while preserving345

flexibility elsewhere. Under this balance, we see consistent improvements in augmented data quality346

and downstream tasks across backbones (Tables 1 and 2).347

7 Concluding Remarks348

In this paper, we introduce a query-based model collaboration framework that injects expert clinical349

knowledge into LLM data augmentation. By explicitly preserving domain-critical semantics while350

perturbing only task-irrelevant details, our approach produces safer, higher-quality synthetic notes.351

Experiments across diverse clinical tasks demonstrate consistent gains over standard LLM augmenta-352

tion with markedly reduced hallucination and omission. These results show that coupling LLMs with353

lightweight expert guidance bridges the gap between LLM generative power and the strict accuracy354

requirements of high-stakes domains.355
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A Appendix556

A.1 Method Details557

System role:
You are a medical AI assistant with expertise in clinical documentation. Your task is to
rewrite clinical notes while maintaining complete medical accuracy.

Important instructions:
• You must preserve all medical entities exactly as they appear.
• Do not list or enumerate the entities — incorporate them naturally into the

rewritten text.
• You may change sentence structure, word choice, and writing style.
• Do not change any medical terminology, dosages, measurements, or clinical

findings.
• Ensure the rewritten note contains the same medical information as the original.

558

Original clinical note:
{note}

Medical entities to preserve (verbatim):
{extracted_keywords}

Rewrite instructions:
Rewrite the original clinical note while naturally incorporating all listed medical entities.
Do not list the entities separately. Maintain complete medical accuracy and do not
alter any medical terminology, dosages, measurements, or clinical findings. Ensure the
rewritten note conveys the same medical information as the original.

559

In this section, we provide the implementation details of our method. Our augmentation method560

instantiates the model collaboration framework defined in Section 4. A domain-focused weak expert561

W first extracts safety-critical clinical entities from the input note xi, producing a constraint set562

Ki = W (xi). These entities (diagnoses, symptoms, medications, measurements) are treated as563

unalterable (i.e., should be preserved) during rewriting. We then construct a constraint-aware prompt564

that includes the original note and an explicit instruction to preserve every token in Ki verbatim. A565

strong generalist G receives this prompt and generates x̃i, which is paired with the original label yi566

to form the augmented set D̃. Concretely, we use a clinical NER model as W ; for G we evaluate567

lightweight instruction tuned LLMs (e.g., Qwen (Yang et al., 2025) and Llama (Grattafiori et al.,568

2024) variants), selecting a smaller model as the default in most experiments. To accommodate long569

notes, we allow cached context so that G maintains coherence across lengthy inputs. We fine-tune570

the generalist with LoRA (Hu et al., 2021) adapters (and use full fine-tuning for the BERT sized571

weak expert) and select hyperparameters via a small grid (see detailed sweeps in Section A.2). The572

quality of produced notes is evaluated using Preservation Rate (PR) and Hallucination Rate (HR) (see573

Table 1), and downstream utility is measured on readmission, mortality, and admission stay period.574

This implementation follows the three step formalization (entity extraction, prompt construction,575

constrained rewriting) introduced in Section 4.576

A.2 Hyperparameters577

In this section, we report our experimental analysis on the hyperparameters used in our experiments,578

namely the hyperparameters used in the training steps. Please note that our augmentation method does579

not necessarily require hyperparameter tuning by design. We analyze the effect of hyperparameters on580

the trained model’s performance. Specifically, we study three hyperparameters: (1) SFT (Supervised581

Fine-Tuning) learning rate, (2) LoRA rank, and (3) SFT training epochs.582
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Table 6: Effect of SFT learning rate on the MIMIC-III readmission task performance.
SFT LR Acc. F1
1e− 06 0.510 0.485
1e− 05 0.555 0.451
2e− 05 0.595 0.518
4e− 05 0.599 0.541
1e− 04 0.582 0.535

Learning Rate (SFT). We begin with the learning rate (lr) of the supervised fine-tuning on Qwen-583

3. The results are reported in Table 6. Performance improves as the learning rate increases up to584

4×10−5, which yields the best accuracy (0.599) and F1 (0.541). Pushing the rate to 1×10−4 slightly585

degrades accuracy and F1, suggesting mild over-stepping. Overall, 4× 10−5 is a robust operating586

point for fine-tuning on the readmission data.587

Table 7: Effect of LoRA rank (r) on the MIMIC-III readmission task performance.
r Acc. F1
4 0.545 0.372
8 0.582 0.409
16 0.599 0.541
32 0.593 0.539

LoRA Rank (r). Next, we study the effect of the LoRA (Hu et al., 2021) rank in Table 7. We588

observe that performance peaks at r = 16 for both accuracy and F1. Increasing to r = 32 yields589

no further gains (slight decline), while r = 8 underfits substantially—suggesting a mid-range rank590

provides sufficient capacity without unnecessary parameters.591

Table 8: Effect of SFT training epochs on the MIMIC-III readmission task performance.
Epochs Acc. F1
1 0.599 0.541
2 0.564 0.528
3 0.615 0.554
4 0.593 0.542
5 0.567 0.538

Training Epochs (SFT). Lastly, we analyze the effect of the SFT training epochs in Table 8.592

Performance peaks at 3 epochs (Acc. 0.615, F1 0.554) and declines thereafter, suggesting mild593

overfitting or optimization drift beyond this point. Very short training (1–2 epochs) underperforms594

the 3-epoch setting. In practice, target 3 epochs with validation-based early stopping and/or a595

learning-rate decay near epoch 2–3 to stabilize gains.596

A.3 Experimental Setting (continued)597

In this section, we continue elaborating on the experimental setting that we have used in our paper.598

Tasks and Benchmarks. We evaluate three supervised predictions derived from MIMIC-III clinical599

notes: thirty–day readmission, mortality, and length of stay. The first two are reported as accuracy,600

while the third is reported as root mean squared error. To study semantic safety and transfer, we also601

run patient phenotyping and ICD coding under zero, one, and few-shot conditions using a retrieval602

framing. Our augmentation maps the original dataset D = {(xi, yi)}Ni=1 to D̃ = {(x̃i, yi)}Ni=1.603

Downstream models are trained on both D̃ and D and evaluated on held–out real notes.604
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Strong Generalist and Weak Expert. A weak expert W identifies domain–critical tokens by605

producing Ki = W (xi). These tokens must be preserved during rewriting. A strong generalist G606

then rewrites xi into x̃i while keeping every token in Ki verbatim. We vary both components to607

measure their influence. For the weak expert, we compare a medical entity extractor with a general608

named–entity recognizer. For the strong generalist, we use instruction–tuned language models with609

different capacities (e.g., LLama and Qwen) and of different sizes. The effect of the generalist is610

summarized in Table 1, and the effect of the weak expert is summarized in Table 4.611

Model Prompts. Each prompt presents the original note together with an explicit list of tokens612

that must be preserved exactly, and concise guidance that encourages changes in style and structure613

without changes in meaning. Preserved tokens must be integrated naturally in the output rather than614

listed. For long notes, we use a cached–context strategy so that the generalist maintains coherence615

across sections and does not drop clinical details that occur far apart in the document.616

Augmentation Metrics. For each candidate x̃i we compute Preservation Rate and Hallucination617

Rate,618

PR =
|E(x̃i) ∩ E(xi)|

|E(xi)|
, HR =

|E(x̃i) \ E(xi)|
|E(xi)|

,

where E(·) denotes the set of entities extracted by the same tool used to create Ki. We accept a619

candidate only when PR meets or exceeds τPR and HR is at or below τHR. Trends for PR and HR620

across strong generalists appear in Table 1, and trends across weak experts appear in Table 4.621

Training details – add details on SFT and DPO. Unless stated otherwise, the strong generalist622

is fine–tuned with LoRA adapters, and the weak expert is trained with full updates. We sweep the623

supervised learning rate, the LoRA rank, and the number of training epochs, and we report the624

sensitivity analysis in Section A.2 with detailed tables in Tables 6 to 8. For supervised tasks we keep625

the original label yi paired with each augmented note x̃i. For retrieval–style evaluations we also verify626

that label–defining entities remain present in the augmented note, and we discard the sample if this627

check fails. In addition, we train a single–model Strong Expert with Direct Preference Optimization.628

Preference pairs are formed by contrasting expert–guided outputs with naive paraphrases for the629

same input, so that the policy is optimized to prefer constraint–respecting rewrites. We use a frozen630

reference model to stabilize updates and set the DPO temperature and strength following common631

practice. The resulting Strong Expert is compared to the two–model pipeline in Table 5.632

Baselines and Evaluation. We compare our method to two text–based augmentation baselines:633

a naive paraphrase and a style–oriented method (CATO). We assess augmentation quality using634

Preservation Rate and Hallucination Rate, and we assess utility by training downstream models on635

synthetic notes and then reporting accuracy and root mean squared error, as shown in Table 2. We636

further measure whether predictive content is preserved or improved through zero/ one/ few-shot637

phenotyping and ICD retrieval task performances, as reported in Figure 5 and Table 3.638

Ablation Study. We vary the capacity of the strong generalist and the specialization of the weak639

expert. Larger generalists tend to increase the Preservation Rate and reduce the Hallucination Rate,640

and medical specialization of the weak expert provides the strongest safety profile. These patterns641

are visible in Tables 1 and 4. We also study the DPO–trained Strong Expert and compare it with the642

two–model pipeline in Table 5.643

Reproducibility. We fix random seeds, record all prompts and acceptance decisions, and release644

the hyperparameter grids and scripts used to create Tables 1 to 5 and Figure 5. These artifacts allow645

both the safety metrics and the downstream results to be regenerated from the same inputs without646

hidden steps.647

A.4 Future Work648

In this section, we state the strengths and weaknesses of our method and discuss future work.649

The driving motivation behind our method is that augmenting data without proper domain knowledge650

can lead to severe knowledge distortions, which pose significant issues in safety-critical domains651
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(e.g., healthcare), as shown in Figure 2. Our model-collaboration framework allows the LLM-based652

augmentation process to be guided by an auxiliary expert model capable of extracting task-critical653

information (i.e., keywords), which is cost-effective compared to (1) human experts and (2) retraining654

the LLM (i.e., generalist). We empirically find that our approach allows the preservation of expert655

knowledge during augmentation (see Table 1), which can help produce augmented samples that may656

improve generalization (see Figure 5 and Table 3).657

While our method shows effectiveness in providing expert-level data augmentation, several im-658

provements could be made. First, our current query-based collaboration operates on the input level,659

and hence may not be optimal in terms of providing supervision. A possible way is to design our660

collaboration to occur on an intermediate level during inference (Sun et al., 2024; Wang et al., 2024)661

or during reasoning. Another improvement would be to expand our method to other expert domains662

(e.g., law, finance), which is not difficult owing to the simple design of our framework. We believe663

this is a promising direction for improvement and set it as the next step of our research.664
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