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Abstract

Data augmentation is a widely used strategy to improve model robustness and
generalization by enriching training datasets with synthetic examples. While large
language models (LLMs) have demonstrated strong generative capabilities for
this purpose, their applications in high-stakes domains like healthcare presents
unique challenges due to the risk of generating clinically incorrect or misleading
information. In this work, we propose a novel query-based model collaboration
framework that integrates expert-level domain knowledge to guide the augmen-
tation process to preserve critical medical information. Experiments on clinical
prediction tasks demonstrate that our lightweight collaboration-based approach
consistently outperforms existing LLM augmentation methods while improving
safety through reduced factual errors. This framework addresses the gap between
LLM augmentation potential and the safety requirements of specialized domains.

1 Introduction

Data augmentation is a promising approach for enhancing model robustness by expanding training
datasets with synthetic examples. The augmented data is expected to preserve essential semantics
while introducing task-irrelevant variations, enabling the model to focus on core task-relevant features,
thus improving robustness and generalization across diverse contexts (Cheng et al.|[2019; [Chen et al.|
2021). However, in expert-driven applications such as healthcare and law, the use of data augmentation
presents unique challenges. These applications demand a high standard of consistency and safety,
whereas hallucinated information in augmented data, such as fabricated patient symptoms or false
vital signs, can confuse models and propagate errors that potentially impact critical decisions (Kim
et al., [2025)). Therefore, data augmentation must be carefully controlled and validated to maintain
data integrity and prevent the introduction of misleading or harmful information.

Researchers have increasingly adopted LLMs for generating synthetic text data due to their concept-
understanding and instruction-following capabilities (Dai et al., 2025} [Feder et al.| 2023} [Li et al.,
2024b; [Si et al.| [2025). The preference for LLM usage is also from inherent challenges of data
augmentation in natural language processing tasks, where traditional static augmentation techniques,
e.g., synonym substitution, are not broadly effective (Okimura et al.,|[2022)). Despite their usefulness,
LLM factual errors remain a persistent issue: Generated text may alter critical information in the
original text or produce false content (Shen et al.| [2023; [Yu et al., [2023). While these risks are
well-documented, existing methods for ensuring the safety and reliability of LLM-augmented data in
high-stakes applications remain inadequate, lacking domain-specific safeguards.

In this paper, we examine the distinctive requirements for LLM-based data augmentation in high-
stakes domains, with a focus on preserving critical information and ensuring factual correctness.
Our study centers on clinical note processing for medical applications, where LLMs have been
used to generate counterfactual notes to improve clinical prediction model training (Feder et al.|
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2023). However, general-purpose LLMs often lack the domain expertise necessary to produce
safe, high-quality synthetic data. To address this challenge, we propose a novel data augmentation
framework that achieves both safety and efficiency through model collaboration (L1 et al.||2024a)): we
inject expert-level knowledge via a lightweight "weak expert" model (BERT-based) that supervises
the LLM’s generation process. This approach provides domain-specific safeguards for improved
augmentation quality while maintaining computational efficiency. We empirically show that our
proposed augmentation method using dual model-collaboration produces safer and factually consistent
augmented data, outperforming existing baselines across multiple benchmarks and tasks. Lastly, we
show that our collaborative method (built from pre-trained models with no additional training) can
be distilled into a single model via preference learning (Rafailov et al., [2024)), offering a trainable
alternative that broadens the applicability of our method across different deployment settings. We
state our contribution as follows:

* We propose a novel model collaboration framework for safe clinical text augmentation, where LLM
generation is guided by a lightweight domain expert model to preserve critical medical information.

* We demonstrate our method’s effectiveness across multiple dimensions: quantitatively improving
safety through reduced medical term deletion and fewer irrelevant term introductions, while
outperforming existing LLM-based augmentation methods across multiple clinical tasks.

* We extend beyond inference-time collaboration by demonstrating that our framework supports
preference-based reinforcement learning to elicit generalist models to function as expert models.

2 Related work

No Supervision Expert Model Supervision Human Expert Supervision
Model augments without Expert model guides augmentation Human expert guides entire
understanding domain with domain knowledge augmentation (improbable)
CATO (Feder et al. 2023) Our Method Ideal Case

Level of Expert Knowledge available

Figure 1: LLM-based Augmentation methods fail when data requires expert domain knowledge.
Previous methods like CATO (Feder et al.| 2022) perform data augmentation without supervision,
resulting in errors such as keyword removal and factual mistakes due to lacking expertise. While
human experts (e.g., caregivers) would be ideal supervisors, their limited availability and high cost
make this impractical. We propose model collaboration as an intermediate solution: an expert model
trained on domain data substitutes human experts, guiding augmentations by extracting domain
knowledge from clinical text and injecting them into inference queries.

Clinical Language Models Clinical language models have emerged as an important foundation
for advancing natural language processing (NLP) applications in healthcare. Researchers have
adapted transformer-based language models to process biomedical and clinical texts, including
ClinicalBert (Huang et al., 2019), BioBert (Lee et al., |2020), GatorTron (Yang et al., 2022), and
NYUTron (Jiang et al. 2023), by domain-specific pre-training on large-scale electronic health
records (EHRs) and medical literature. These models can be fine-tuned with minimal architectural
modification for downstream tasks and have demonstrated improved performance on a wide range
of clinical tasks, e.g., hospital readmission prediction and medical named entity recognition. The
models address conventional methods’ reliance on structured EHR and the complexity in feature
and algorithm development (Kelly et al.| [2019)), by interpreting useful clinical information from
unstructured clinical notes for a variety of prediction tasks. Despite these advances, the robustness of
clinical language models remains a challenge; models often struggle to generalize across different
institutions, patient populations, and documentation styles (Moradi & Samwald, [2022; Rahman
et al.| 2024)), which are critical to consider when developing models to inform real-world healthcare
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Original note

Naive LLM-based augmentation

CATO

Ours

Mr. Doe is a 58-year-old male with a past

medical history of hypertension who

presented to the emergency department with

a 3-day history of fever, cough, and

shortness of breath. Chest X-ray showed

bilateral infiltrates, and he was admitted for
of ¥ qui

pneumonia.

Hospital Course: He was able to tolerate a

regular diet and was mobilized with physical

therapy.

Discharge Medications:

1. Levofloxacin 750mg daily for 10 days

2. Acetaminophen 650mg every 6 hours as

needed for fever or pain

Mr. Doe, a 58-year-old male, presented to
the emergency department with a 3-day
history of fever, cough, and shortness of
breath. Mr. Doe has been experiencing
fever, cough, and shortness of breath for 3
days. He has a past medical history of
hypertension and is currently taking (Not
Provided). His symptoms worsened over
the past 2 days, prompting him to seek
medical attention.

Diagnostic Results: Chest X-ray: Bilateral
infiltrates

Treatment and Management:

Levofloxacin 750mg daily for 10 days.
Supplemental oxygen: Provided as

As we reviewed Doe's case, we discovered a
58-year-old male with hypertension,
presenting with a 3-day history of high fever,
persistent cough, and shortness of breath.
His chest X-ray revealed bilateral infiltrates,

Mr. Smith is a 58-year-old male with a past
medical history of hypertension, presented
to the emergency department with a 3-day
history of fever, cough, and shortness of
breath. Radiographic findings on chest
X-ray revealed bilateral pulmonary infiltrates,

prompting his ission for g

He tolerated oral feedings and participated
in physical therapy, demonstrating a strong
desire to return to his normal activities.
Upon discharge, John was prescribed the
following medications:

Levofloxacin 750mg daily for 10 days to

ensure complete eradication of the 7

pneumonia-causing organism.

prompting ) for
community-acquired pneumonia (CAP)
treatment.

Hospital course: He was able to tolerate a
regular diet and underwent mobilization
with physical therapy.

Discharge Medications:

1. Levofloxacin (750mg daily) for 10 days

2. Acetaminophen (650mg every 6 hours) as
needed for pyrexia or pain.

MRS T e e g
Figure 2: Synthetic clinical notes generated by different LLM-based augmentation methods are
shown: a simple rephrasing prompt (Naive LLM-based augmentation), prompting to rewrite the note
by only changing the physician’s writing style (CATO), and our model-to-model query method (Ours).
Notes generated by the Naive and CATO methods omit critical medical information (highlighted in
blue) and introduce hallucinated and irrelevant content (highlighted in red). In contrast, our method
preserves all medical information while only rephrasing non-critical elements (e.g., patient names,
synonyms of medical terms; ), achieving safe clinical note augmentation. Note: The original
note shown here is synthetic and not a real note from our used dataset.

decisions. In response, we propose a data-centric approach to improve generalization and address
distribution shifts for robust application of clinical language models in the real-world.

Data Augmentation Data Augmentation is an effective technique to improve model robustness,
where the key is to create diverse augmented versions of the original data while maintaining its
semantic integrity (Geiping et al., [2022} [Feng et al.l 2021)), whose difficulty varies by modality (e.g.,
image, text). For instance, image data benefits from its intrinsic spatial correlations and inherent
redundancy, making it less vulnerable to feature distortions introduced during augmentation (Per-
vin et al.| 2021} |Cho et al., 2025)). On the other hand, text data augmentation faces challenges in
maintaining semantic integrity during augmentation (Chai et al.,|2025; Dai et al., [2025)), owing to
its syntactic attributes (Chen et al., [2023)) (e.g., grammar, context) which should not be perturbed,
especially in safety-critical domains (e.g., healthcare (Nazi & Peng|,2024)). To address such short-
comings, recent works focus on semantic-aware data augmentation that does not change the key
components of the text, namely through simple semantic-preserving transformations (Van et al.|[2021}
Chen et al.|, [2023)) (e.g., synonym replacement, random swapping), or model-based augmentation
techniques that utilize large language models (LLMs) to produce fine-grained augmentations (Chai
et al.| 2025} L1 et al., 2024b; (Yoo et al., [2021; [Zhou et al., [2021). Notably, |[Feder et al.| (2023)
presents a semantic-preserving augmentation method that incorporates LLMs to augment non-causal
features (e.g., writing styles). However, the studies do not address common limitations of LLMs (e.g.,
hallucinations (Yao et al.,[2024) and spurious correlations (Zhou et al.l [2023)), which remains an
issue in guaranteeing semantic-aware, safe augmentation. In this paper, we specifically study cases
where the LLMs fail to differentiate between critical and non-critical information, tampering with the
semantics of the original sample and endangering the safety of the model trained with distorted data.

3 Problem Formulation

Causally Driven Data Augmentation. In many safety-critical
applications (e.g., clinical or legal domains), we often have ad-
ditional domain knowledge or causal assumptions that elucidate
which variables (tokens, phrases) truly affect the label y (Feder
et al.| [2023; |Stalitnaité et al.,[2021). We can depict these dependen-
cies with a causal graph G (as shown in Figure [3), either explicitly
specified by experts or derived via observational data. Formally,
we posit that the label y depends on a set of domain variables V
(e.g., symptoms, diagnoses for clinical data) and that altering any
of these crucial variables could distort the semantics. Conversely, ]
stylistic or non-critical variables ¢/ (e.g., function words, phrasing) ~ ious features (i) extracted
do not affect y, although they may still correlate with it (e.g., due ~ ffom note data (X).

to shared confounders). As a result, models may rely on I/ as shortcut features which can lead to

Figure 3: Clinical language
model predictions (y) are in-
fluenced by both meaningful
domain variables (V) and spu-
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do augmentation (no supervision) Preserve Following Medical Keywords..

______ X--- _/~  Expert
\ . Knowledge
| Y > LLM Expert Generalist
Clinical Augmented Clinical Augmented
Notes Notes Notes Notes
(a) Previous Methods (b) Ours

Figure 4: Comparison of augmentation strategies. (a) Previous methods do not provide supervision
over the augmentation process, assuming the LLM has expert-level knowledge. (b) Our augmentation
method leverages query-based model collaborations to provide domain knowledge of the weak expert
model to guide the strong generalist model within an LLM-based augmentation module.

unreliable predictions. Data augmentation approaches have been aiming to generate counterfactual
examples by altering U to decorrelate it from y, thereby encouraging the model to make predictions
unaffected by non-critical information.

Pitfalls of LLM-based Augmentation Methods However, an under-explored challenge in using
LLM-based methods to generate counterfactual examples (Feder et al., 2023 [Zhou et al., [2024)
lies in the inability of general-purpose LLM to precisely distinguish between observed variables
V and unobserved variables { in the data. Therefore, there is a growing disconnect between the
theoretical frameworks for robust learning and the practical implementation of augmentation. Unlike
image augmentation which commonly uses determined algorithms, text augmentation using LLMs
introduces variability and hallucination to generated text which may undermine the robustness
assumptions of models trained with the augmented data. For example, LLMs often lack the domain-
specific understanding on medical language to reliably preserve critical clinical information while
only modifying/augmenting non-medical parts in clinical notes (failure examples in Figure [2)).
This limitation causes LLM-based augmentation methods to lose intended causal control and may
introduce semantic distortions (Ding et al., 2024; Sriramanan et al.| [2024; |Song et al.,|2024)). While
issues of error and hallucination in LLMs have been discussed (Tonmoy et al.l [2024)), little work
has addressed their impact on the safety of data augmentation. We fill this gap by introducing
explicit guidance for LLM inference during augmentation through a collaborative framework, thereby
reducing hallucinations in causally-informed data augmentation.

4 Model-to-Model Query for Fine-grained Data Augmentation

In this section, we present our model-to-model query framework for LLM-based textual data aug-
mentation. We begin by introducing the notation and two core components (weak expert and strong
generalist). We then describe how their outputs are integrated into a unified augmentation pipeline,
and conclude by discussing why this design enables safer and more domain-targeted augmentations
compared to existing approaches.

4.1 Notation and Setup

Let D = {(z;,v:)}}Y, be a dataset of N labeled text samples, where each input z; is a raw text (e.g.,
a sentence or document) and y; is its annotation or label. Our goal is to construct an augmented
dataset D = {(&;, y;)} Y., where each 7; preserves the semantic of z;, particularly its critical domain
tokens, et modifies its non-critical tokens, e.g., surface style or phrasing. The distinction between
critical and non-critical tokens is informed by a prior causal graph grounded in domain literature
for the specific clinical task (Figure[3). X denotes the original clinical notes which includes both
predictive factors relevant to the task 1 and spurious factors ¢/ that typically do not generalize. In our
setup, we only specify V since only these tokens are preserved during LLM-based augmentation. We
define V as medical-clinical terms, e.g. disease disorder and sign symptom, which are predictive to
clinical prediction tasks indicated by literature (Davis et al., [2022; |Gao et al., [2023)

By referencing causally driven augmentation model G, we incorporate two components: a weak
expert W which identifies critical variables in the input X and flags them as unalterable tokens, and a
strong generalist G with strong generative capability to write counterfactual clinical notes:
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1. Weak Expert W (-): A lightweight domain-specific model (e.g., a BERT-based clinical language
model) that identifies safety-critical tokens (i.e., medical keywords) which must remain unchanged
during augmentation.

2. Strong Generalist G(-): A general purpose foundation model with strong rewriting and generative
capabilities but without explicit training in the target domain.

We treat the weak expert as a domain-sensitive decision-maker that constrains critical content, and
the strong generalist as a general-purpose rewriter guided by these constraints.

4.2 Formalizing the Framework

To generate an augmented text x; from a input text x;, our pipeline consists of three steps:
A. Critical Features Extraction by Weak Expert. The weak expert W identifies the key tokens
or features in z; that are essential for preserving semantic fidelity:

Ki = W(x;). 1)

The set KC; typically include terminology or clinical expressions that must not be altered in order to
maintain the original meaning.

B. Prompt Construction. We create a ( Original text: . )
prompt using the template shown on the right: riginal text: i

prompt(z;,K;) that passes the original text Preserve the following tokens:

and explicit constraints provided by the weak {KLK2,---}

expert W to the strong generalist G. Formally,
the prompt specifies the set IC;, highlighting
the domain-critical terms whose meanings must
remain unchanged. .

Rewrite instructions:
Rewrite x; in a new style or phrasing
without altering any token in /C;.

C. Safer Text Rewriting by Strong Generalist. The strong generalist G generates the rewritten
text x; by conditioning on the constructed prompt:

;=G (prompt (l‘i, Kl)) . 2)

We pair ; with the original label y; to form the augmented dataset D = {(&;,v;)}Y ;. Because
G receives explicit guidance on domain-critical tokens, t avoids distorting key information while
freely rephrasing non-critical content. In this way, a small, specialized model W contributes domain
knowledge and safety constraints, while the strong generalist G executes the generative rewriting. In
Section[A.T] we report the details of our method implementation (e.g., the user prompts)

S Experiments

5.1 Datasets and Benchmarks

We use the MIMIC-III dataset (Johnson et al.,[2016)), a widely used public resource of de-identified
clinical notes. This dataset provides a diverse collection of clinical documentation including discharge
summaries, nursing notes, and physician reports, making it an ideal testbed for evaluating augmen-
tation techniques for clinical text. We consider three clinical prediction tasks: (1) 30-day all-cause
readmission prediction, estimating the likelihood of patient returning to hospital within 30 days
following discharge. This task is both clinically and operationally significant (Caruana et al., 2015}
Kansagara et al.,[2011)), reflecting how well language models capture meaningful representations from
clinical notes (Huang et al.| 2019). (2) In-hospital mortality prediction, predicting all-cause death
during hospitalization, useful for disease management (Ke et al.,[2022). (3) Hospital length-of-stay
prediction, predicting the number of days a patient will remain in hospital during a single admission
event, a major indicator for the consumption of hospital resources (Stone et al.|[2022)).

Besides training downstream prediction models using augmented data, we also evaluate in zero-shot
inference settings. Specifically, (1) patient phenotyping, using phenotype annotations from|Gehrmann
et al.| (2018), and (2) ICD clinical coding, where we follow prior work (Mullenbach et al., 2018}
Zhang et al.,|2025) to construct datasets (MIMIC-III-Full and MIMIC-III-Top-50).
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5.2 Implementation

We use the biomedical-ner-all model (Raza et al., [2022)) as the Weak Expert W (-). The model is
built on DistilBERT architecture and trained to recognize 107 biomedical entities in clinical texts.
For the Strong Generalist G(+), we experiment with different instruction-tuned models (e.g., Qwen-
3-0.6B (Yang et al., |2025)) and LlaMA-3.2-3B-Instruct (Grattafiori et al., [2024)), which excel at
rephrasing, summarizing, or restructuring text in a human-like way. Unless explicitly stated, Qwen-3-
0.6B model is used as default G(+). To address long input lengths in MIMIC-III notes, we implement
Cache-Augmented Generation (CAG) (Chan et al.| 2025) to expand the context window of the
generalist models, allowing the model to maintain coherence and preserve critical clinical information
throughout the augmentation process. To assess the effectiveness of different augmentation strategies,
we conduct downstream clinical prediction tasks using the augmented datasets. Specifically, we
fine-tune a Qwen-3 model with LoRA adapters (Hu et al.|[2021) and a BERT model (Jiang et al.,[2023)
with full fine-tuning. Lastly, the hyperparameters were selected using a grid search. In Section|A.2]
we provide a detailed analysis of the hyperparameters (see Table 6} Table[7] and Table|8).

5.3 [Evaluation Metrics and Baselines

In our experiments, we evaluate the proposed method along two dimensions: (1) the quality of the
synthetic data generated by augmentation, and (2) the utility of the augmented data for downstream
clinical tasks, assessed through model training and zero-shot/few-shot inference. The corresponding
evaluation metrics are as follows.

Quality of the Synthetic Data

* Preservation Rate (PR) (i.e., how many medical entities are preserved during augmentation. Higher
is better), where &y, is the set of medical entities in the original data, &, is the set of medical
entities in the synthetic data (Liu et al., [2024)).

* Hallucination Rate (HR) (i.e., how many irrelevant medical entities not existing in the original data
are generated. Lower is better.) (Liu et al.}|2024)

|€aug N 50rig|

e\ Eovi]
| gori g |

PR =
|50rig ‘

, HR= (3

Utility of Synthetic Data for Downstream Clinical Tasks

* Clinical outcome prediction: Accuracy on 30-day all-cause readmission and in-hospital mortality
prediction, when models are trained on synthetic data generated by different augmentation methods.

* Length-of-stay prediction: Root Mean Squared Error (RMSE) for hospital length-of-stay prediction
under the same setting.

* Patient phenotyping: Zero-shot and few-shot prediction using synthetic clinical notes.

* ICD coding: Zero/one/few-shot prediction of ICD codes, formulated as an information retrieval
task following the practice of Boyle et al.|(2023).

Baselines The most relevant comparison baselines are LLM-based textual data augmentation
methods. We compare our approach with (1) a naive augmentation strategy, which prompts the LLM
to rephrase the original note without introducing substantive variation (denoted as “Naive”), and (2) a
causally driven augmentation method (“CATO”) that prompts the LLM to modify only writing style
of notes (Feder et al.| 2023).

5.4 Experimental Results

In this section, we evaluate our model collaboration framework through comprehensive experiments.
First, we validate that our method preserves domain-critical information during augmentation, demon-
strating improved safety over unsupervised LLM approaches. Second, we show performance gains
on downstream tasks, both when training with our augmented data and in zero/few-shot inference
settings. Third, we analyze how different weak expert designs impact augmentation quality. Finally,
we move beyond inference-time collaboration and show our framework is trainable, by distilling the
expert guidance into a single model via preference learning. Together, these experiments demonstrate
that expert-guided augmentation achieves both safety and effectiveness in clinical applications.
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Safety Validation: Preserving Critical Medical Information. We provide a detailed investiga-
tion into the quality of synthetic data generated by our augmentation method, focusing on how it
preserves the critical medical information while preventing groundless information from being added.
Specifically, we compare the PR (preservation rate) and HR (hallucination rate) of synthetic notes.
As observed in Table [T} LLM-based augmentation methods in general tend to remove or add critical
keywords (i.e., named entities) during augmentation. Figure 2] shows an example of this problem.
The naive LLM-based augmentation method removes up to 51% of task-critical keywords (medical
keywords), while adding up to 75% groundless keywords that do not appear in the original text.
In contrast, our proposed augmentation method is

most effective in preserving relevant medical key- Table 1: Quality of synthetic notes generated
words while preventing the introduction of fabricated ~ by different augmentation methods, mea-
keywords (Table[T). To assess robustness, we test ~sured by entity preservation rate (PR) and
with LLMs of different sizes: Llama-3 model 1B hallucination rate (HR) across 300 samples.
and 3B (Grattafiori et al., 2024)), thereby disentan-
gling the effect of the LLM’s inherent semantic un- Method LL@ma-3.2-1B  LLama-3.2-3B
derstanding and generative capacity. As expected, PRt HRJ] PRT HRJ
the larger, and. thus stronger LLM that performs aug- Naive 048 075 051 059

mentation achieves preservation rates (PR) and lower CATO 047 077 062 072

hallucination rates (HR). But across both settings, Ours 066 043 079 033

our method consistently outperforms the baselines,
providing more accurate and safe data augmentation.

Table 2: Downstream task performance (Acc./RMSE) of Qwen-3 and BERT model trained with
augmented data using different methods. Bold indicates the augmentation method that provides the
largest performance gain. We report the mean and standard error results across 5 runs.

Model Aug. Method Readmission (Acc.) Mortality (Acc.) Length-of-stay (RMSE)

Zero-Shot 0.5114+0.06 0.90140.03 73277 +8.19
None 0.52640.04 0.91140.04 17.83545.29
Qwen-3  Naive 0.52040.04 0.907 +-0.04 16.357+5.75
CATO 0.552+0.04 0.910+0.03 18.677+3.20
Ours 0.599.0.03 0.917 +0.02 15.56343.06
None 0.721;{:0403 0.897;{:0404 15.403:{:0,12
BERT Naive 0.736+0.01 0.91640.01 13.57240.04
CATO 0.730-+0.01 0.92319.003 13.50410.02
Ours 0.757 +0.01 0.929_ .03 13.11040.06

Performance Gains: Downstream Tasks and Zero/Few-Shot Learning. Table 2| reports how
different augmentation methods affect predictive performance across downstream clinical tasks. Our
expert-guided augmentation (Ours) achieves the best mean performance across all three tasks. With
Qwen-3, our method improves readmission accuracy to 0.599 (+0.047 over the strongest baseline,
CATO), mortality accuracy to 0.917 (+0.006-0.007 over baselines), and reduces length-of-stay RMSE
to 15.563. The improvements are consistent across model architectures: when switching from the
decoder-only Qwen-3 to the encoder-only BERT, our approach continues to outperform baselines.

In contrast, Naive augmentation shows mixed benefits: it degrades performance on readmission
and mortality prediction compared to no augmentation, while slightly improving length-of-stay
RMSE. CATO similarly improves readmission accuracy but harms performance on mortality and
length-of-stay prediction. These patterns suggest that unguided or heuristically guided augmentation
can inject label-preserving but distribution (meaningful domain variables ()) in Figure [3)-shifting
noise that degrades generalization of the model. Incorporating expert knowledge yields clinically
faithful augmentations that provide consistent and robust gains.

Beyond training downstream models with augmented data, we evaluate whether augmentations
preserve information critical for inference in low-resource settings. Specifically, we assess zero
and few-shot performance on phenotype classification and ICD coding. For phenotype classi-
fication, we compare F1 scores on the original samples (“None”) and on augmented data (Fig-
ure [5). Naively augmented samples (i.e., unconstrained LLM paraphrasing) and CATO con-
sistently reduce task scores, indicating that the critical information (e.g., medical keywords)
is distorted in the augmented notes, making them less predictive for the phenotyping task.

7
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Figure 5: Zero/One/Few-shot F1 scores on Patient Phenotypmg task using different inference models.

In contrast, our expert-guided augmen-
tation reliably improves F1 across all
zero/one/few-shot settings and inference

Table 3: Recall (Rec.), Precision (Pred.) and F1 score on
ICD Code Prediction. The task is framed as a retrieval

task for zero-shot inference (Boyle et al.|(2023)). We

models. For ICD coding (Table ), we  use GPT-4o as inference model.

reframe the task into retrieval-based pre-

diction, where the prediction is correct if Aug. Micro Macro

the model can retrieve a grounding ratio- Method 1+ Prec.t FI1 Rec. Prec. FI

jale for the ICD label from the text None 0221 0159 0.185 0.178 0.197 0.187

2023). The observed pattern is sim-  Naive 0146  0.138 0.149 0.133 0146 0.139

ilar: naive and CATO augmentations dis- CATO  0.153  0.141 0.147 0.166 0.173 0.169
Ours 0224 0.168 0.192 0.189 0.203 0.196

play lower scores than the original clini-
cal notes (None in Table[3)). But the aug-
mented samples produced by our method preserve performance: on par with or exceeding the original
data. When our method performance exceeds the original data without using augmentation, this aligns
with prior findings that LLM-rephrased texts can enhance predictive/learning signals by improving

linguistic clarity (Deng et al} 2024} [Pieler et al., [2024).

Component Analysis: Effect of Weak Expert Design.
We next examine how the weak expert model affects
augmentation quality. In Table[d] we report the PR and
HR score of synthetic samples generated with two types
of expert models (1) medical-expert: a biomedical lan-

guage model trained on domain data (Raza et al., [2022)

Table 4: Effects of using different weak-
expert models. Weak expert’s profi-
ciency in extracting expert knowledge
affects the quality of data augmentation.

and (2) general-expert: a general language model trained Method PRT HRJ
for named entity extraction. As expected, the medical- Naive 0.51 059
expert provides stronger guidance, leading to significantly CATO 062 077
higher preservation and fewer hallucinations. Another Ours (medical-expert)  0.79  0.33

Ours (general-expert)  0.53  0.50

impressive observation is that even when the weak expert
is a general language model without medical knowledge,
our expert-collaboration framework still improves per-
formance. This is likely because medical terms form a subset of named entities captured by the
general-expert. This finding aligns with recent works related to weak supervision, where even
imperfect learning signals are known to guide and benefit model training (Burns et al., 2023} |Cho|
2025)), highlighting the robustness and potential of our query-based collaboration framework.

Framework Extension: Distilling Expert Guidance through RL. Our central claim is that
expert signals are the key driver of effective augmentation. So far, we have injected this signal at
inference time through model collaboration (weak expert W + strong generalist G). To test whether
this guidance can also be realized by a single model, we explore preference-based reinforcement
learning (RL) as an alternative mechanism. Specifically, we train the generalist with direct preference
optimization (DPO) (Rafailov et al}[2024), where the preference signal is defined to favor expert-
guided over naive augmentations. The resulting model, denoted W*, behaves as a Strong Expert
that internalizes our augmentation method. Table [5]compares this RL-trained Strong Expert with our
dual-model collaboration.

We observe that preference learning (Ours (Strong Expert) in Table [5) improves over zero-shot
baselines. However, the model collaboration (Ours) remains the most reliable overall across tasks
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Table 5: Comparison of model-collaborative augmentation (Ours) against a single Strong Expert
augmentation trained using reinforcement learning, on downstream task performance.

Model Aug. Method Readmission (Acc.) Mortality (Acc.) Period (RMSE)
Zero-Shot 0.511+0.06 0.901+0.03 73.277+8.19

Qwen—3 Ours 0.599i0A03 0-917i0A02 15:563i3426
Ours (Strong Expert) 0.58240.04 091140.03 15.4824 417
Zero-Shot 0.51840.05 0.904 1 .02 80.83947.31

Llama-3.2-3B  Ours 0.583.10.04 0.90410 02 14.92044 41
Ours (Strong Expert) 0.560+0.06 0.901+0.01 17.2764.4 68

and backbones. The gap between the single Strong Expert and the collaboration method is smaller
for Qwen-3 than for Llama-3.2-3B. We hypothesize this is due to domain priors: Qwen models can
already capture key medical terms from pretraining, so DPO-based preference learning better mimics
weak-expert + strong generalist behavior. In contrast, Llama shows weaker keyword extraction, and
RL-only training narrows but does not close the gap with the dual-model approach. When effective,
preference learning compresses the dual-model policy into a single model that behaves like an expert
augmenter. This shows that RL can elicit latent domain knowledge from a generalist and push its
behavior toward expert-like augmentation (aligned with observations in |Chu et al.| (2025))). However,
since the gains are inconsistent across backbones, we view a fully model-agnostic Strong Expert as
an open question, and recommend the dual-model pipeline when base models lack medical priors.

6 Discussion: When does Model Collaboration Help?

We discuss when and why model collaboration with weak experts improves augmentation data quality.
Weak experts W are most helpful when augmentation must preserve specific domain terminologies
while allowing flexibility in how the rest of the text is written. By identifying these critical tokens
upfront, the generalist G can vary style and phrasing without changing the medical meaning, achieving
higher Preservation and lower Hallucination Rates (Table [I).

The benefits are particularly strong in these scenarios. First, in low-resource settings with rare
conditions or drug—dose pairs appear uncommon in pretraining data, even a lightweight detector
trained on medical text prevents deletion or ambiguous paraphrasing. Across weak-expert variants,
medical specialization yields the best rresults, though general NER provides gains by identifying entity
boundaries (Table[d)). Second, under distribution shift across hospitals or time periods, weak experts
preserve causal features while allowing style adaptation, improving downstream performance for
prediction readmission, mortality and length of stay (Table[2). Third, in safety-critical applications,
token-level guidance reduces hallucinations from paraphrase-based augmentation, as shown by
stronger zero/one/few-shot phenotyping and improved ICD retrieval (Figure 5] Table[3).

Importantly, effectiveness depends on calibration. When weak experts under-detect, medical facts
change; when they over-detect, augmentation variation is limited. In practice, the most reliable
gains occur when the weak expert achieves high recall on safety-critical entities while preserving
flexibility elsewhere. Under this balance, we see consistent improvements in augmented data quality
and downstream tasks across backbones (Tables[T]and [2).

7 Concluding Remarks

In this paper, we introduce a query-based model collaboration framework that injects expert clinical
knowledge into LLM data augmentation. By explicitly preserving domain-critical semantics while
perturbing only task-irrelevant details, our approach produces safer, higher-quality synthetic notes.
Experiments across diverse clinical tasks demonstrate consistent gains over standard LLM augmenta-
tion with markedly reduced hallucination and omission. These results show that coupling LLMs with
lightweight expert guidance bridges the gap between LLM generative power and the strict accuracy
requirements of high-stakes domains.
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A Appendix

A.1 Method Details

System role:
You are a medical Al assistant with expertise in clinical documentation. Your task is to
rewrite clinical notes while maintaining complete medical accuracy.

Important instructions:
* You must preserve all medical entities exactly as they appear.

* Do not list or enumerate the entities — incorporate them naturally into the
rewritten text.

* You may change sentence structure, word choice, and writing style.

* Do not change any medical terminology, dosages, measurements, or clinical
findings.

* Ensure the rewritten note contains the same medical information as the original.

Original clinical note:
{note}

Medical entities to preserve (verbatim):
{extracted_keywords}

Rewrite instructions:

Rewrite the original clinical note while naturally incorporating all listed medical entities.
Do not list the entities separately. Maintain complete medical accuracy and do not
alter any medical terminology, dosages, measurements, or clinical findings. Ensure the
rewritten note conveys the same medical information as the original.

In this section, we provide the implementation details of our method. Our augmentation method
instantiates the model collaboration framework defined in Sectionf] A domain-focused weak expert
W first extracts safety-critical clinical entities from the input note z;, producing a constraint set
K; = W(a;). These entities (diagnoses, symptoms, medications, measurements) are treated as
unalterable (i.e., should be preserved) during rewriting. We then construct a constraint-aware prompt
that includes the original note and an explicit instruction to preserve every token in /C; verbatim. A
strong generalist GG receives this prompt and generates ;, which is paired with the original label y;
to form the augmented set D. Concretely, we use a clinical NER model as W; for G we evaluate
lightweight instruction tuned LLMs (e.g., Qwen (Yang et al.| [2025) and Llama (Grattafiori et al.|
2024) variants), selecting a smaller model as the default in most experiments. To accommodate long
notes, we allow cached context so that G maintains coherence across lengthy inputs. We fine-tune
the generalist with LoRA (Hu et al., 2021) adapters (and use full fine-tuning for the BERT sized
weak expert) and select hyperparameters via a small grid (see detailed sweeps in Section[A.Z). The
quality of produced notes is evaluated using Preservation Rate (PR) and Hallucination Rate (HR) (see
Table[T)), and downstream utility is measured on readmission, mortality, and admission stay period.
This implementation follows the three step formalization (entity extraction, prompt construction,
constrained rewriting) introduced in Section [4]

A.2 Hyperparameters

In this section, we report our experimental analysis on the hyperparameters used in our experiments,
namely the hyperparameters used in the training steps. Please note that our augmentation method does
not necessarily require hyperparameter tuning by design. We analyze the effect of hyperparameters on
the trained model’s performance. Specifically, we study three hyperparameters: (1) SFT (Supervised
Fine-Tuning) learning rate, (2) LoRA rank, and (3) SFT training epochs.
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Table 6: Effect of SFT learning rate on the MIMIC-III readmission task performance.
SFTLR Acc. F1

le—06 0.510 0.485
le—05 0.555 0.451
2¢—-05 0595 0518
4e—05 0.599 0.541
le—04 0.582 0.535

Learning Rate (SFT). We begin with the learning rate (Ir) of the supervised fine-tuning on Qwen-
3. The results are reported in Table[6] Performance improves as the learning rate increases up to
4 x 10~°, which yields the best accuracy (0.599) and F1 (0.541). Pushing the rate to 1 x 10~ slightly
degrades accuracy and F1, suggesting mild over-stepping. Overall, 4 x 10~° is a robust operating
point for fine-tuning on the readmission data.

Table 7: Effect of LoRA rank (r) on the MIMIC-III readmission task performance.
r Acc. F1

4 0545 0372
8 0582 0.409
16 0.599 0.541
32 0593 0.539

LoRA Rank (r). Next, we study the effect of the LoRA (Hu et al.l 2021) rank in Table [/} We
observe that performance peaks at 7 = 16 for both accuracy and F1. Increasing to r = 32 yields
no further gains (slight decline), while » = 8 underfits substantially—suggesting a mid-range rank
provides sufficient capacity without unnecessary parameters.

Table 8: Effect of SFT training epochs on the MIMIC-III readmission task performance.
Epochs Acc. F1

1 0.599 0.541
2 0.564 0.528
3 0.615 0.554
4 0.593 0.542
5 0.567 0.538

Training Epochs (SFT). Lastly, we analyze the effect of the SFT training epochs in Table
Performance peaks at 3 epochs (Acc. 0.615, F1 0.554) and declines thereafter, suggesting mild
overfitting or optimization drift beyond this point. Very short training (1-2 epochs) underperforms
the 3-epoch setting. In practice, target 3 epochs with validation-based early stopping and/or a
learning-rate decay near epoch 2—3 to stabilize gains.

A.3 Experimental Setting (continued)

In this section, we continue elaborating on the experimental setting that we have used in our paper.

Tasks and Benchmarks. We evaluate three supervised predictions derived from MIMIC-III clinical
notes: thirty—day readmission, mortality, and length of stay. The first two are reported as accuracy,
while the third is reported as root mean squared error. To study semantic safety and transfer, we also
run patient phenotyping and ICD coding under zero, one, and few-shot conditions using a retrieval

framing. Our augmentation maps the original dataset D = {(x;, )}, to D = {(&,%:)}Y,
Downstream models are trained on both D and D and evaluated on held—out real notes.
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Strong Generalist and Weak Expert. A weak expert W identifies domain—critical tokens by
producing KC; = W (z;). These tokens must be preserved during rewriting. A strong generalist G
then rewrites x; into Z; while keeping every token in /C; verbatim. We vary both components to
measure their influence. For the weak expert, we compare a medical entity extractor with a general
named-—entity recognizer. For the strong generalist, we use instruction—tuned language models with
different capacities (e.g., LLama and Qwen) and of different sizes. The effect of the generalist is
summarized in Table[I] and the effect of the weak expert is summarized in Table [}

Model Prompts. Each prompt presents the original note together with an explicit list of tokens
that must be preserved exactly, and concise guidance that encourages changes in style and structure
without changes in meaning. Preserved tokens must be integrated naturally in the output rather than
listed. For long notes, we use a cached—context strategy so that the generalist maintains coherence
across sections and does not drop clinical details that occur far apart in the document.

Augmentation Metrics. For each candidate z; we compute Preservation Rate and Hallucination
Rate,
BG)NE@)| B\ Bl

|E(@i)| |E(z;)]

where E(-) denotes the set of entities extracted by the same tool used to create ;. We accept a
candidate only when PR meets or exceeds 7pg and HR is at or below myr. Trends for PR and HR
across strong generalists appear in Table[T] and trends across weak experts appear in Table 4]

PR =

Training details — add details on SFT and DPO. Unless stated otherwise, the strong generalist
is fine—tuned with LoRA adapters, and the weak expert is trained with full updates. We sweep the
supervised learning rate, the LoRA rank, and the number of training epochs, and we report the
sensitivity analysis in Section with detailed tables in Tables[6|to[8] For supervised tasks we keep
the original label y; paired with each augmented note ;. For retrieval-style evaluations we also verify
that label-defining entities remain present in the augmented note, and we discard the sample if this
check fails. In addition, we train a single-model Strong Expert with Direct Preference Optimization.
Preference pairs are formed by contrasting expert—guided outputs with naive paraphrases for the
same input, so that the policy is optimized to prefer constraint-respecting rewrites. We use a frozen
reference model to stabilize updates and set the DPO temperature and strength following common
practice. The resulting Strong Expert is compared to the two—model pipeline in Table[5]

Baselines and Evaluation. We compare our method to two text—based augmentation baselines:
a naive paraphrase and a style—oriented method (CATO). We assess augmentation quality using
Preservation Rate and Hallucination Rate, and we assess utility by training downstream models on
synthetic notes and then reporting accuracy and root mean squared error, as shown in Table[2] We
further measure whether predictive content is preserved or improved through zero/ one/ few-shot
phenotyping and ICD retrieval task performances, as reported in Figure [5|and Table[3]

Ablation Study. We vary the capacity of the strong generalist and the specialization of the weak
expert. Larger generalists tend to increase the Preservation Rate and reduce the Hallucination Rate,
and medical specialization of the weak expert provides the strongest safety profile. These patterns
are visible in Tables[T]and[d] We also study the DPO—trained Strong Expert and compare it with the
two—model pipeline in Table 3}

Reproducibility. We fix random seeds, record all prompts and acceptance decisions, and release
the hyperparameter grids and scripts used to create Tables[I|to[5]and Figure[5] These artifacts allow
both the safety metrics and the downstream results to be regenerated from the same inputs without
hidden steps.

A.4 Future Work

In this section, we state the strengths and weaknesses of our method and discuss future work.

The driving motivation behind our method is that augmenting data without proper domain knowledge
can lead to severe knowledge distortions, which pose significant issues in safety-critical domains
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(e.g., healthcare), as shown in Figure E} Our model-collaboration framework allows the LLM-based
augmentation process to be guided by an auxiliary expert model capable of extracting task-critical
information (i.e., keywords), which is cost-effective compared to (1) human experts and (2) retraining
the LLM (i.e., generalist). We empirically find that our approach allows the preservation of expert
knowledge during augmentation (see Table[I)), which can help produce augmented samples that may
improve generalization (see Figure [5|and Table[3).

While our method shows effectiveness in providing expert-level data augmentation, several im-
provements could be made. First, our current query-based collaboration operates on the input level,
and hence may not be optimal in terms of providing supervision. A possible way is to design our
collaboration to occur on an intermediate level during inference (Sun et al.|[2024; |Wang et al.| [2024)
or during reasoning. Another improvement would be to expand our method to other expert domains
(e.g., law, finance), which is not difficult owing to the simple design of our framework. We believe
this is a promising direction for improvement and set it as the next step of our research.
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