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Abstract

The availability of large-scale neuronal population datasets necessitates new meth-
ods to model population dynamics and extract interpretable, scientifically trans-
latable insights. While deep learning offers potential solutions, existing models
often overlook the biological mechanisms underlying population activity and
thus exhibit suboptimal performance with neural data and provide little to no
interpretable information about neurons and their interactions. In response, we
introduce SYNAPSNET, a novel deep-learning framework that effectively models
population dynamics and the interactions between neurons. Within this biologically
realistic framework, each neuron, characterized by a latent embedding, sends and
receives currents through directed connections. A shared decoder uses the input
current, previous neuronal activity, neuron embedding, and behavioral data to pre-
dict the population activity in the next time step. Our experiments demonstrate that
SYNAPSNET consistently outperforms existing models in forecasting population
activity. Additionally, our experiments on synthetic data showed that SYNAPSNET
accurately recovers ground-truth connections between neurons.

1 Introduction

Recent advancements in brain recording techniques have enabled simultaneous in-vivo recordings
from hundreds of neurons. This availability of neuronal population activity has motivated numerous
studies on population dynamics, which can address neuroscientific questions such as explaining brain
function and behavior [1, 2], as well as brain decoding applications like brain-computer interfaces
(BCIs) [3, 4]. It is worth noting that by "population activity," we specifically refer to the activity of a
population of neurons recorded at single-cell resolution, represented as a vector of individual neuron
activities. Various approaches for studying neural dynamics have been proposed in the literature,
including neural manifolds [5] and latent variable models (LVMs) [6, 7], which aim to capture
low-dimensional patterns in neural activity by reproducing this activity. However, the current models
often face significant limitations, particularly in neuroscience applications. Firstly, they typically
offer minimal interpretability, providing little insight into the brain’s underlying mechanisms. In
contrast, explainable deep learning models have demonstrated the potential to combine computational
power with interpretability, enabling the analysis of large datasets while providing insights into
the model’s computation, which can even lead to scientific discovery [8, 9]. Secondly, many deep
learning approaches neglect the underlying biological mechanisms [10], limiting their performance by
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applying generic architectures adapted from other domains to neural data. These limitations highlight
the need for more biologically informed and interpretable models of neuronal population dynamics.

In this work, we introduce SYNAPSNET, a biologically inspired deep learning framework designed
to model neuronal populations while uncovering functional connectivity. It integrates past neural
activity, input currents from connected neurons, intrinsic neuron properties, and behavioral states
to predict neural dynamics. Building on previous work [11], which models individual neuron
dynamics, SYNAPSNET goes further by also learning functional connectivity to capture directed
interactions between neurons. We validate SYNAPSNET through experiments on both synthetic and
real datasets of mouse cortical activity recorded via the most common population recording methods,
calcium imaging and Neuropixels [12]. Our experiments demonstrate that SYNAPSNET outperforms
conventional time-series models in predicting neural activity showcasing its high capability of
capturing population dynamics. Also, SYNAPSNET provides insights into the underlying interactions
between neurons by accurately inferring functional connectivity.

2 SYNAPSNET

2.1 Overview

The aim of SYNAPSNET is to develop an interpretable model of neuronal populations capable of
predicting future dynamics based on the current and past states of the brain and behavior. To this
end, our model employs a biologically inspired framework in which a dynamical model predicts
the future activity of each neuron by taking: 1 its past activity, 2 the input currents coming
from the connected neurons, 3 the intrinsic properties of the target neuron, and 4 the animal’s
behavioral variables (e.g., running speed). We use these components as previous research confirms
their role in neuronal responses. The Hodgkin-Huxley equations [13], a foundational work in
computational neuroscience, describe a neuron’s membrane potential dynamics as a function of its
current voltage, input currents from presynaptic neurons, and a set of neuron-specific physiological
properties. Additionally, behavior has been shown to significantly impact neural responses, with the
first principal components of single-trial population activity corresponding to behavioral variables
such as running speed and pupil size in various brain regions, including the visual cortex [14].
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Figure 1: SYNAPSNET overview. (a) How input current is inferred based on functional connectivity
and population activity (b) An example input frame to the dynamical model which includes past
activity over the context window, past input current, past behavioral data, and the unique embedding
of the target neuron. (c) The three sets of parameters in SYNAPSNET.
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Although the Hodgkin-Huxley point-neuron model can accurately predict neuron dynamics, it
requires detailed information on the activity of all presynaptic neurons, their synaptic strengths, and
an exhaustive physiological description of the neurons. This level of detail is nearly impossible to
obtain with current population recording techniques, which typically capture only a limited subset of
neurons and provide minimal to no information on the population’s physiological and anatomical
properties. In this context, functional connectivity has been used as an alternative to anatomical
connectivity for modeling interactions between neurons [15]. These functional interactions, which
can be inferred from population activity, have been shown to predict neural responses even when only
a small number of neurons are recorded [16]. Therefore, we estimate each neuron’s input current
based on the activity of other neurons and the population’s functional connectivity. To address the
lack of detailed physiological features of neurons, we use NeuPRINT [11] to learn time-invariant
embeddings for each neuron based solely on population activity. The innovative approach proposed
in NeuPRINT removes the dependency on neuron-specific characteristics from the dynamical model,
placing it in the input so that the dynamical model becomes independent of intrinsic properties and
can be shared across all neurons.

2.2 Implementation

We represent population datasets as a set of recording sessions S, where each session Sj ∈ S
includes a set of recorded neurons Nj , population activity over time Xj ∈ R|Nj |×T , and available

behavioral data over time Bj ∈ RNB×T . Let M = |
|S|⋃
j=1

Nj | be the total number of unique neurons

across all recording sessions, acknowledging that some neurons may appear in multiple sessions.
We define three sets of learnable parameters in SYNAPSNET (Figure 1c): 1 neuron embeddings
E ∈ RM×D, where D is the dimensionality of the embedding vectors, 2 functional connectivity
matrices {Aj}|S|j=1, where Aj ∈ R|Nj |×|Nj |, and 3 a dynamical model f(.) shared among all
neurons across all sessions. For simplicity, we drop the session number subscript j in the following
descriptions and provide expressions for a single session.

Inferred input current calculation. Using population activity and functional connectivity, we

calculate the input current to neuron i at time t as I(i)t =
|N |∑
k=1

A(i,k)X
(k)
t (Figure 1a).

Dynamical model. We express the neuronal dynamics as

X̂
(i)
t+1 = f(X

(i)
t−W+1:t, I

(i)
t−W+1:t, Bt−W+1:t, E

(i))

where W is the context window that determines the history considered by the dynamical model
(Figure 1b). The dynamical model f can be any sequential model designed for processing time-series
data. The results presented in this paper are obtained using a GRU [17] (for results with other
sequential models, see the supplementary materials).

Training. We formulate an optimization problem using the loss L, calculated based on the ground
truth and predicted activity, to learn the three sets of parameters in SYNAPSNET:

min
f,{Aj},E

 EX

[
L(X̂(i)

t+1, X
(i)
t+1)

]
+ λ

∑
j

||Aj ||2


where L(.) is mean squared error (MSE), λ is the regularization weight for preventing overfitting
through {Aj}j and || . ||2 denotes L2 norm. For more details about the training procedure and the
hyperparameters used, please refer to the supplementary materials.

3 Experiments

3.1 Population Activity Forecasting

Datasets and Preprocessing. We evaluated SYNAPSNET’s performance in forecasting neuronal
population activity using two distinct public datasets: [18] and [19]. The dataset from [18] consists
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Table 1: Performance on neural data forecasting. Mean correlation and loss (%) ± standard error of
the mean†.

Data Modality Model Natural Scenes Drifting Gratings Spontaneous

Corr(%) ↑ Loss ↓ Corr(%) ↑ Loss ↓ Corr(%) ↑ Loss ↓

Ca Imaging

RNN 24.09±0.88 0.920±0.040 19.95±0.81 1.017±0.050 13.15±0.75 0.924±0.017

GRU 24.21±0.87 0.915±0.040 20.08±0.89 1.009±0.049 13.31±0.85 0.920±0.017

LSTM 24.60±0.87 0.911±0.040 20.47±0.85 1.006±0.049 13.97±0.90 0.917±0.017

LFADS 25.70±0.73 1.056±0.040 22.96±0.62 1.138±0.049 12.33±0.79 0.941±0.017

GWNET 33.04±0.87 0.829±0.040 29.89±0.85 0.910±0.049 28.20±0.90 0.874±0.017

NEUPRINT 33.82±0.85 0.884±0.039 31.17±1.00 0.973±0.052 28.82±1.25 0.867±0.015

SYNAPSNET 37.43±1.05 0.846±0.037 36.14±1.05 0.927±0.48 30.60±1.29 0.855±0.016

NEUPRINT (multi-session) 34.16±0.91 0.865±0.038 31.64±1.38 1.045±0.014 29.25±1.43 0.903±0.014

SYNAPSNET (multi-session) 37.94±1.15 0.825±0.035 36.79±1.62 0.992±0.015 31.60±1.58 0.886±0.015

NeuroPixels

RNN 18.50±0.30 0.963±0.012 20.20±0.35 0.992±0.032 16.67±0.44 0.960±0.015

GRU 18.11±0.32 0.963±0.012 20.33±0.37 0.989±0.032 16.68±0.47 0.989±0.015

LSTM 18.02±0.33 0.963±0.012 20.39±0.39 0.987±0.031 16.74±0.47 0.987±0.015

LFADS 18.26±0.73 0.987±0.040 20.65±0.62 0.953±0.049 17.38±0.79 0.927±0.017

GWNET 21.10±0.87 0.945±0.040 22.54±0.85 0.935±0.049 20.21±0.90 0.941±0.017

NEUPRINT 21.68±0.21 0.942±0.011 22.93±0.25 0.967±0.029 20.79±0.48 0.967±0.014

SYNAPSNET 24..38±0.28 0.926±0.011 25.55±0.31 0.953±0.029 22.51±0.53 0.953±0.014

NEUPRINT (multi-session) 22.10±0.19 0.951±0.012 23.49±0.31 0.941±0.011 21.31±0.42 0.919±0.014

SYNAPSNET (multi-session) 25.48±0.23 0.932±0.012 26.80±0.031 0.921±0.011 23.83±0.44 0.905±0.014

† The bold values correspond to the best performance metric separately for multi-/single-session training and each data modality.
Blue cells indicate significant difference with the next best-performing model (p-value ≤ 0.05 achieved by paired-t-tests).

of two-photon calcium imaging data recorded from the mouse primary visual cortex (V1). Mice
were exposed to three types of visual stimuli: natural scenes, drifting gratings, and blank screens
(spontaneous activity). This dataset includes calcium traces from four mice, recorded across 17
sessions of approximately 20 minutes each. Each session captured between 178 and 868 neurons,
totaling 9728 neurons. Neurons were recorded at a 4.3 Hz sampling rate on 7 imaging planes
at different cortical depths, resulting in volumetric recordings. The dataset also provides neuron
positions, cell types, and behavioral data such as running speed and pupil size. We normalized each
neuron’s calcium trace and behavioral variables. The dataset from [19] includes electrophysiology
spiking data from mouse cortical neurons, recorded using six Neuropixels probes [12]. This dataset
primarily covers V1 and higher visual areas, as well as deep subcortical areas like the LGN and
hippocampus CA1. It features two session types: "brain observatory" sessions for natural scenes and
drifting gratings, and "functional connectivity" sessions for spontaneous activity (blank screen). We
included sessions where neuron locations were available, resulting in 46 sessions (46 animals) and
31,408 recorded neurons. The dataset also provides running speed data. We binned the spikes with a
33.3 ms bin width and normalized each neuron’s response and behavioral data.

Benchmark Models. We compare SYNAPSNET with the following existing models: standard
sequential models (RNN [20], GRU [17], LSTM [21]); NeuPRINT [11], a self-supervised method
of learning neuronal representations based on population dynamics; LFADS[6], an RNN based
variational auto-encoder designed specifically for neuronal population dynamics; GWNet [22], a
graph neural network designed to model both spatial interactions and temporal patterns in data.

Results. We assessed SYNAPSNET and the benchmark models on two different data modalities across
three tasks. We measured test MSE loss and Pearson’s correlation between true and predicted popula-
tion activity, averaging over all times for each neuron and across all neurons in each recording session.
The means and standard errors were calculated across sessions (Ca imaging: n = 17; Neuropixels
natural scenes and drifting gratings: n = 22; Neuropixels spontaneous: n = 24). Performance mea-
sures are summarized in Table 1. SYNAPSNET consistently surpassed all benchmark models across
both data modalities and all three tasks, demonstrating its superior capability in modeling neuronal
population dynamics. Both NeuPRINT and SYNAPSNET demonstrated improved performance when
trained on multiple sessions, indicating their scalability. SYNAPSNET achieved approximately 15%
higher correlation scores compared to the general models and 5% higher compared to NeuPRINT on
calcium imaging data, translating to around 80% and 15% relative improvements, respectively. For
the Neuropixels modality, these values were about 8% and 3%, corresponding to approximately 30%
and 15% relative improvements.
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3.2 Evaluation of Learned Functional Connectivity on Synthetic Data

Simulation. To further validate SYNAPSNET’s ability to recover functional interactions, we sim-
ulated the activity of a neuron population with known ground-truth connectivity (Figure 2a). We
simulated 600 interconnected neurons with connection weights randomly initialized to create a
sparse connectivity matrix A1. We generated four random variables, two representing behavioral
data (B) and two representing task variables (V ). Each neuron’s firing rate was calculated as:

R
(i)
t = σ

(
R̄(i) + w1

∑
k

A(i,k)X
(k)
t−1 + w2Bt−1 + w3Vt−1 − w4X

(i)
t−1 + nt

)
where σ(.) is the non-

linearity (tanh here), R̄ is the neuron’s mean firing rate, nt is noise. Parameters w1 to w4 control
the effect of input current, behavior, task, and self-inhibition respectively, and are randomly ini-
tialized for each neuron. Then, the activity of each neuron is determined by a Poisson process:
X

(i)
t ∼ Poisson(R

(i)
t ). To mimic practical recording conditions, a subset of 200 neurons is ran-

domly chosen as "recorded" neurons. This approach reflects the real-world scenario where only
a fraction of the neurons in a population can be recorded, leaving the activity of many neurons
inaccessible. Consequently, input currents to recorded neurons often originate from both recorded and
unrecorded neurons, better approximating the incomplete knowledge of neuronal activity typically
encountered in experimental settings. Note that the model has access to the behavioral data but not
the task variables. Similar to real data, population activity and behavioral variables are normalized.

Benchmark Methods for Functional Connectivity. We compared SYNAPSNET with two benchmark
methods for inferring functional connectivity: pair-wise correlation and CURBD [23]. Pair-wise
correlation is a popular statistical method for calculating functional connectivity in neuroscience
across various recording modalities. We used variants of this method with delays (D = 0, 1, 2) to
capture causal interactions and achieve directed FCs. CURBD is an RNN-based model designed to
infer inter-region currents by learning functional connectivity in a network of interconnected neurons
capable of reproducing real data.

Performance on Recovering Ground-Truth Functional Connectivity. Figure 2b shows the ground-
truth FC alongside the inferred FC by each method in a single simulation run, while Figure 2c
compares the mean accuracy over 50 runs. SYNAPSNET reconstructed a sparse and asymmetric
FC with over 80% accuracy. CURBD, despite being trained to nearly perfectly reproduce the data
(explained variance = 0.93), failed to estimate the ground-truth FC. This likely results from CURBD’s
RNN overfitting to the data without generalizing the learned FC to a held-out test set. Pair-wise
correlation with D = 1 partially recovered the true FC, achieving a mean accuracy of 30%. Notably,
SYNAPSNET successfully inferred the ground-truth functional connectivity from synthetic data while
its performance in predicting population activity was not perfect, with a correlation score of 36% and
a test loss of 0.83, matching its performance on real data. This suggests that SYNAPSNET’s strength
in inferring FC is not constrained by the challenges of predicting highly stochastic spiking activity.

Simulated: 𝑁 = 600
Recorded: 𝑁! = 200 

Behavioural Data:

Task Variables:

a b c

Figure 2: Synthetic data experiment. (a) Simulation process. (b) Functional connectivity matrices
inferred using SYNAPSNET and other baselines compared with the ground-truth in a single simulation
run. (c) Functional connectivity reconstruction accuracies achieved by each method over 50 runs of
simulation with random initializations.

1For better visual comparison, the locations of non-zero elements in the connectivity matrix were based on
an image from the Mandelbrot set fractal to include visual patterns in the ground-truth adjacency matrix.
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4 Limitations

SYNAPSNET is specifically designed to model neuronal populations, which may limit its applicability
to other types of neural data. Additional research is necessary to assess its generalizability to modali-
ties where each channel does not correspond to an individual neuron, such as electrocorticography
(ECoG). Also, since SYNAPSNET encodes the activity of each neuron separately, architectural modi-
fications are required for tasks other than population activity forecasting, such as neural decoding.
While our experiments demonstrated promising results in analyzing the functional connectivity and
input currents inferred by SYNAPSNET on both real and synthetic data, fully validating the learned
connections remains challenging due to the lack of ground-truth anatomical connections in population
activity datasets. Therefore, the anatomical translation of SYNAPSNET’s functional connectivity
requires future validation.

5 Conclusions

We introduced SYNAPSNET, a biologically inspired deep learning framework that advances neuronal
population modeling by combining high predictive performance with interpretability. Our approach
addresses the limitations of existing deep learning methods, which often fail to account for the
biological mechanisms underlying neuronal activity and offer limited interpretability. We showed that
SYNAPSNET consistently surpassed conventional time-series models, neural data-specific models, and
graph neural networks in capturing population dynamics. Additionally, experiments on synthetic data
revealed SYNAPSNET’s ability to accurately identify underlying connectivity, offering biologically
meaningful insights into neuron interactions and inferring the currents flowing between them.
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A Methods Details

A.1 Training Details and Hyperparameters

For each session of data, we split the population activity into three continuous partitions: approx-
imately 80% for training, 10% for validation, and 10% for testing. The validation set was used
to select the epoch with the best performance and to tune hyperparameters, while the test set was
reserved for the final evaluation of the models and reporting performance metrics.

For SynapsNet, we used context window size W = 5, neuron embedding size of 32, and a single-
layer GRU with hidden layer size of 40 as the dynamical model. During training, the training set is
divided into identical (but overlapping) partitions of size W + 1, where the first W time points are
the input and the last time point is the target. For batch sampling, we first select a random session
from which all batch samples are chosen. This approach ensures that all samples in a batch have
identical dimensionality, simplifying implementation, as different sessions contain different numbers
of neurons.

For all datasets, we use a batch size of 32 and an initial learning rate of 10−3. The models are trained
for 100 epochs, with the learning rate halved every 10 epochs. Additionally, dropout layers with a rate
of 0.1 are employed in all neural networks. SYNAPSNET is implemented using PyTorch in Python,
and evaluations are run on a Linux machine with a GPU and 16GB of RAM. Training SYNAPSNET
on each session of data (single-session training) takes approximately half an hour, depending on the
number of recorded neurons and the session length.

For the sake of fair comparison, we use the same training, validation, and testing data for all
benchmark models and ablated versions of SYNAPSNET.

A.2 Models Used for Comparison

The RNN, GRU, and LSTM models each consist of 2 layers with a hidden layer size of 100. The
LFADS model we used has the dimensionality of the generator, encoder, and controller all set to
256, and the dimensionality of the factor and inferred inputs to the generator set to 128. The GWNet
model is defined with 32 residual channels, 32 dilation channels, 128 skip channels, and 256 end
channels, with a single layer, 4 blocks, and a kernel size of 2.

B Additional Results

B.1 Evaluation of SYNAPSNET’s forecasting performance at the population level

We also assessed the performance of SYNAPSNET at the population level. Figure 3 compares the first
three principal components (PCs) of the true and predicted population activity. Across all sessions,
SYNAPSNET’s predictions achieved mean correlation scores of approximately 85%, 75%, and 65%
for the first three PCs, respectively. These correlations were significantly higher than those achieved
by NeuPRINT.

B.2 Evaluating input currents inferred by SYNAPSNET

Figure 4a presents the functional connectivity (FC) matrices inferred by SYNAPSNET alongside
the pair-wise correlations between neurons in two example sessions—one from calcium imaging
and the other from the Neuropixels dataset. SYNAPSNET’s inferred FC matrices appear sparser,
more asymmetric, and more structured compared to the correlation matrices. Figure 4b offers a 3D
visualization of neurons and the learned connections, revealing clear patterns of connection types and
strengths based on neuron locations, even though neuron positions were not provided to the model
during training.

We analyzed the input currents inferred by SYNAPSNET, which are latent variables used to predict
future neural activity. As described in §2.2, we calculated input currents based on population activity
and functional connectivity within a recording session using the equation I = AX (Figure 5a). We
then measured the cross-correlation (correlation as a function of relative delay) between the input
current to each neuron and its activity. We employed three different methods to infer functional
connectivity: SYNAPSNET, pair-wise correlation, and shuffled SYNAPSNET’s FC. As illustrated
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Figure 3: Performance on neural data forecasting. (a) The first three principal components (PCs) of
the true and predicted population activity sampled from an example session. (b) Correlation between
the first three PCs of the true and predicted activity for the all-time points in the test set of an example
session. (c) Comparison between prediction correlations achieved by SynapsNet and NeurPRINT
across the test portion of all sessions. **** indicates p-value ≤ .0001 achieved by paired-t-test.
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Figure 4: Illustration of the learned functional connectivity. (a) The connectivity matrix learned by
SYNAPSNET compared with that of achieved by pair-wise Pearson’s correlation. The top and bottom
matrices correspond to a sample session from Ca imaging and Neuropixels modalities respectively.
(b) 3D visualization of the learned functional connectivity by SYNAPSNET on a sample Ca imaging
session. Dots represent neurons and lines show the type and strength of the connections. Coordinates
are in µm.

in Figure 5b, the cross-correlation curve peaks at a positive delay, indicating that the input current
is most correlated with future activity, demonstrating a predictive relationship. In contrast, the FC
derived from pair-wise correlation peaks at a delay of zero. Notably, in the forecasting task, predicting
activity at time t relies solely on information up to time t− 1, making current and future time points
inaccessible. Interestingly, the input currents derived by SYNAPSNET show a higher correlation with
population activity at positive delays compared to the pair-wise correlation method, which are the
only time points available in forecasting.
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Figure 5: Input currents achieved by functional connectivity. (a) An example calculation of the input
current to each neuron based on the population activity and the learned functional connectivity. (b)
Average cross-correlations between each neuron’s input currents and their activity. The input currents
are calculated based on connectivity matrices achieved by three different methods: SYNAPSNET,
pair-wise correlation, and shuffling the SYNAPSNET’s connectivity matrix. The dots and color-shaded
areas represent the mean and standard deviation of the correlations. The x-axis shows delays in
time steps and the gray-shaded area marks the unavailable time points during the neuron activity
forecasting task.

B.3 Ablation Study

We conducted ablation experiments on SYNAPSNET by removing each of its main components.
The results, presented in Table 2, indicate that removing functional connectivity leads to the most
significant increase in test loss across both data modalities. Furthermore, the model without functional
connectivity exhibits the lowest correlation score on the Neuropixels dataset and nearly matches the
lowest correlation score on the calcium imaging data. These results suggest the significant role of
functional connectivity in capturing the population dynamics.

Table 2: Ablation experiments on neural data forecasting. Mean correlation and loss (%) ± standard
error of the mean†.

Data Modality Model Natural Scenes

Corr(%) ↑ Loss ↓

Ca Imaging

SYNAPSNET 37.94±1.15 0.825±0.035

Without Neuronal Embeddings 35.96±1.04 0.836±0.035

Without Previous Activity 33.27±1.22 0.851±0.036

Without Functional Connectivity 33.94.09±0.867 0.920±0.038

NeuroPixels

SYNAPSNET 25.48±0.23 0.932±0.012

Without Neuronal Embeddings 24.68±0.23 0.933±0.009

Without Previous Activity 24.59±0.24 0.933±0.010

Without Functional Connectivity 21.85±0.22 0.949±0.009

† The bold values correspond to the largest drop in the performance metric separately for
multi-/single-session training and each data modality.

B.4 Sensitivity Analysis

Effect of Context Window Length on Forecasting Performance. We evaluated the effect of
different context window lengths (W ) on the forecasting performance of both SYNAPSNET and
NeuPRINT (the second-best-performing model). The results for Ca imaging and Neuropixels datasets
are presented separately in Figure 6. The context window length determines how far back in the past
the model can access neural activity and behavioral data to predict the population’s activity at the next
time point. The results indicate that at least two past time steps are required to accurately forecast
neural activity, as evidenced by the substantial performance difference between W = 1 and W = 2.
This aligns with the observations made by the authors of NeuPRINT, who identified W = 2 as the
optimal choice [11]. Performance plateaus after W = 5, with the negligible difference observed
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among context window sizes of 5, 10, and 20. Therefore, all results reported in the main paper are
based on W = 5 to maintain model simplicity without significantly sacrificing performance.
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Figure 6: Sensitivity Analysis of Context Window Length (W ). Test correlation scores for different
context window lengths are plotted separately for the Ca imaging dataset (a) and the Neuropixels
dataset (b).

Effect of Using Different Sequential Models on Forecasting Performance. We explored four
different architectures for the SYNAPSNET’s dynamical model—RNN, GRU, LSTM, and Trans-
former—to assess their impact on the model’s performance. The results for each architecture are
detailed in Table 3 (we only used natural scenes task for simplicity). Among these, the GRU archi-
tecture achieved the highest correlation score across both data modalities, leading us to base all the
results presented in this paper on the GRU dynamical model.

Table 3: Sensitivity Analysis of the dynamical model’s architecture. Test correlation scores for
different neuronal embedding sizes are reported separately for the Ca imaging dataset and the
Neuropixels dataset.

Data Modality Dynamical Model Natural Scenes

Corr(%) ↑ Loss ↓

Ca Imaging

RNN 36.99±1.05 0.787±0.033

GRU 37.43±1.05 0.846±0.037

LSTM 37.23±1.09 0.786±0.033

Transformer (one-layer) 29.83±1.86 0.802±0.036

Transformer (two-layer) 27.35±2.48 0.826±0.039

Neuropixels

RNN 24.04±0.26 0.927±0.012

GRU 24.38±0.28 0.926±0.011

LSTM 23.91±0.29 0.927±0.012

Transformer (one-layer) 20.67±1.32 0.917±0.023

Transformer (two-layer) 22.00±1.18 0.876±0.012

† The bold values correspond to the largest drop in the performance metric separately for
multi-/single-session training and each data modality.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction are supported by the experiments
presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are provided in the discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not have theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are available in the main paper and supplementary
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We used publicly available datasets. We also share the codes used to produce
these results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Main text and supplementary materials describe the experiments in details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Measure of variability and statistical significance are reported in the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Provided in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work does not violate the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work proposes a new model of neuronal populations and we do not see
any social impacts associated with it.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work proposes a new model of neuronal populations and we do not see
any case of abuse associated with it.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Papers and methods we used are cited in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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