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ABSTRACT

We consider the problem of quantifying the amount of influence one agent can
exert on another in the setting of multi-agent reinforcement learning (MARL). As
a step towards a unified approach to express agents’ interdependencies, we intro-
duce the total and state influence measurement functions. Both of these are valid
for all common MARL systems, such as the discounted reward setting. Addi-
tionally, we propose novel quantities, called the total impact measurement (TIM)
and state impact measurement (SIM), that characterize one agent’s influence on
another by the maximum impact it can have on the other agents’ expected returns
and represent instances of impact measurement functions in the average reward
setting. Furthermore, we provide approximation algorithms for TIM and SIM
with simultaneously learning approximations of agents’ expected returns, error
bounds, stability analyses under changes of the policies, and convergence guaran-
tees. The approximation algorithm relies only on observing other agents’ actions
and is, other than that, fully decentralized. Through empirical studies, we validate
our approach’s effectiveness in identifying intricate influence structures in com-
plex interactions. Our work appears to be the first study of determining influence
structures in the multi-agent average reward setting with convergence guarantees.

1 INTRODUCTION

The knowledge of mutual influence among a general system consisting of several entities, sub-
sequently called agents, is beneficial to learn good strategies. The present work is regarding the
influence among agents in the area of multi-agent reinforcement learning (MARL). Here, a shared
environment is affected by the joint action of multiple agents. For each state of the environment,
each agent chooses an action from its action space. The resulting joint action determines the transi-
tion to the following state. Each agent receives a reward for each transition, which is allowed to be
different for every agent. Here, we consider the problem of giving a unified representation and an
interpretable and measurable quantification of influence among agents.

Existing work addresses specific use cases and objectives of influence structures in MARL systems,
such as reducing the number of agents that need to collaborate (Guestrin et al., 2002a), guiding
exploration to states with high influence (Wang et al., 2020), or determining which agents need to
communicate (Jaques et al., 2018). They focus on analyzing their method’s effect on the system’s
objective without explicitly addressing the influence measurement’s common theoretical aspects.
Furthermore, the mentioned methods to measure influence among agents are exclusively focusing
on the discounted reward setting (Sutton & Barto, 2018). As such, there is a lack of research related
to influence in the average reward setting (Puterman, 1994), which is typically used for ongoing
applications, e.g., load management in energy networks (Callaway & Hiskens, 2011), formation
control of vehicles (Fax & Murray, 2004), or repeated auctions (Hoen et al., 2005).

The existing approaches mentioned above seek to resolve specific problems, such as a reduction of
the joint action space by using a proxy of agents’ influence on one another. While our method can be
used for these applications as well, the main goal of our work is to address the fundamental question
of how to reliably detect the inherent influence structure of an environment given a specific policy.

The main contributions of our work are the following. We introduce a unified approach to express
a multi-agent system’s inherent influence structure, regardless of the reward setting and overall ob-
jective. We then build upon this foundation by introducing the total impact measurement and state
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impact measurement. These measurements quantify the overall and state-dependent influence struc-
ture, respectively, in the multi-agent average reward setting. In addition, we provide decentralized
algorithms with stability analysis and convergence guarantees along with complementary empiri-
cal evaluations. To the best of our knowledge, our work is the first study of determining influence
structures in the multi-agent average reward setting with provable convergence guarantees.

2 RELATED WORK

One popular representation of agents’ dependencies is a coordination graph (Guestrin et al., 2002a),
which is used to determine which agents’ actions are relevant for the individual state-action func-
tions. Several works try to detect the influence that the agents can exert on one another, e.g., (Kok
et al., 2005). In contrast to our method, they require storing all estimations of the state-action val-
ues for the whole time horizon. Furthermore, they do not provide any theoretical analysis of their
approximation method’s quality. Another approach estimates the maximum expected utility one
agent can potentially receive when coordinating with subgroups (Zhang & Lesser, 2013). Unlike
our method, they rely on an approximation of the state transition probabilities of the underlying
Markov decision process and only provide empirical evaluations for their method.

Wang et al. (2020) introduce the Value of Interaction to guide exploration to relevant states. Their
formulation is similar to our proposed formulation of dependencies among agents. However, they
rely on empirical estimation of the state transition probabilities, which is not the case for our work.
Furthermore, their formulation is restricted to a specific state, whereas TIM, as proposed in this
work, is formulated for the overall influence of one agent on another. More recently, researchers use
the variance in state-action functions to construct context-aware coordination graphs (Wang et al.,
2021). Contrary to our work, they do not provide any error bounds of their approximation quality
and their formulation is again restricted to specific states only.

Instead of examining the influence between agents via their ability to alter the expected long-term
return, Jaques et al. (2018) define causal influence by the changes of one agent’s actions in the policy
of another. However, their approach either demands that the probability of another agent’s action,
given a counterfactual action, is known or estimated. Our approach does not rely on this information,
as we only require observing the other agents’ actions.

3 BACKGROUND

This section introduces the multi-agent Markov decision process (MDP) in the infinite horizon av-
erage reward setting. It is the natural extension of the single-agent case introduced by Puterman
(1994), and is also known as Markov game (Littman, 1994). In the second part, we present some
results from stochastic approximation (Borkar, 2008), which we need to prove our main results.

3.1 MULTI-AGENT MDP

We consider a system of N agents operating in a shared environment with discrete time steps t ∈ N.
The set of agents is denoted by N . The environment can be described by a multi-agent MDP, which
we specify in the following definition.

Definition 3.1. A multi-agent MDP is defined by a tuple (S, {Ai}i∈N , P, {ri}i∈N ), where N =
{1, . . . , N} denotes the set of agents, S is a finite state space which is shared by all agents, A =∏

i∈N Ai is the joint action space, where Ai denotes the set of actions of agent i. Additionally, P :

S ×A×S → [0, 1] is the MDP’s state transition probability. There exist functions Ri : S ×A → R
with Ri(s, a) = E[rit+1|st = s, at = a], which are denoted as the individual reward functions.
Furthermore, the states and the joint actions are observable by every agent.

For every time step, each agent chooses its action according to its policy πi, which is a probability
distribution over Ai. The joint policy is given by π(s, a) =

∏
i∈N πi(s, ai) for every s ∈ S and

a ∈ A. For a subset of agents Bj = {bj1, . . . , b
j
k} ⊂ N we denote aBj = (ab

j
1 , . . . , ab

j
k), and

−Bj = N \ Bj . We are concerned with the average reward setting. The individual expected
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time-average reward of agent i ∈ N is given by

J i(π) := lim
T→∞

1

T

T−1∑
t=0

E
[
rit+1

]
. (1)

To quantify the effects of a specific state and joint action, we define the relative individual state-
action function for agent i ∈ N , state s ∈ S, and joint action a ∈ A as

Qi
π(s, a) :=

∑
t≥0

E
[
rit+1 − J i(π)|s0 = s, a0 = a

]
. (2)

Consider states s, s′ ∈ S . The probability of transitioning from state s to s′ given a joint policy
π is given by Pπ(s

′|s) =
∑

a∈A π(s, a) · P (s′|s, a). This induces a Markov chain over the states
{st}t≥0 with transition matrix Pπ ∈ R|S|×|S|. We make the following assumption on this Markov
chain and the joint policy.

Assumption 3.2. The policies satisfy πi(s, a
i) > 0 for every i ∈ N , s ∈ S and ai ∈ Ai. Moreover,

for every joint policy π the induced Markov chain over the states {st}t≥0 is ergodic, i.e., it is
irreducible and aperiodic.

By Theorem 4.1 on page 119 in the book of Seneta (2006), there exists a unique stationary distribu-
tion for any ergodic Markov chain. We denote the stationary distribution of the Markov chain over
the states by dπ . Given some states s, s′ ∈ S and joint actions a, a′ ∈ A, the probability to transition
from (s, a) to (s′, a′) can be expressed by PA

π (s′, a′|s, a) = P (s′|s, a) · π(s′, a′). This induces a
Markov chain over the states and actions {(st, at)}t≥0 with transition matrix PA

π ∈ R|S|·|A|×|S|·|A|.
Note that this Markov chain is ergodic (Zhang et al., 2018) and its stationary distribution is given by
dAπ (s, a) = dπ(s) · π(s, a), for every s ∈ S and a ∈ A. The existence of a stationary distribution
simplifies the study of the MDP immensely (Puterman, 1994). One property that we use throughout
this paper is a simplified representation of averages of functions that depend on an ergodic Markov
chain (Zhang et al., 2018). For example, one can represent the individual long-term return defined
in Equation 1 by

Jj(π) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) ·Rj(s, a). (3)

3.2 STOCHASTIC ITERATION APPROXIMATION

Our main results use the following statements of the field of stochastic approximation iteration and
motivate our algorithms’ design. We state here a special case of Corollary 8 and Theorem 9 on pages
74-75 of Borkar (2008). These special cases have been formulated by Zhang et al. (2018). Consider
an n-dimensional stochastic approximation iteration

xt+1 = xt + γt [h (xt, Yt) +Mt+1 + βt+1] , t ≥ 0 (4)

where γt > 0 and {Yt}t≥0 is a Markov chain on a finite set A.

Assumption 3.3. We make the following assumptions:

(a) h : Rn ×A → Rn is Lipschitz in its first argument;

(b) {Yt}t≥0 is an irreducible Markov chain with stationary distribution π;

(c) The stepsize sequence {γt}t≥0 satisfies
∑

t≥0 γt = ∞ and
∑

t≥0 γ
2
t < ∞;

(d) {Mt}t≥0 is a martingale difference sequence, satisfying for some K > 0 and t ≥ 0

E
(
∥Mt+1∥2 | xτ ,Mτ , Yτ ; τ ≤ t

)
≤ K ·

(
1 + ∥xt∥2

)
; (5)

(e) The sequence {βt}t≥0 is a bounded random sequence with βt → 0 almost surely as t → ∞.
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If Assumption 3.3 holds, then the asymptotic behavior of the iteration in Equation 4 is related to the
behavior of the solution to the ordinary differential equation (ODE)

ẋ = h̄(x) =
∑
i∈A

π(i)h(x, i). (6)

Suppose the ODE in Equation 6 has a unique globally asymptotically stable equilibrium x∗, then we
have the following theorems connecting this solution to the original algorithm 4.

Theorem 3.4. Under Assumption 3.3, if supt≥0 ∥xt∥ < ∞ a.s., we have xt → x∗

Theorem 3.5. Under Assumption 3.3, suppose that limc→∞
h̄(cx)

c = h∞(x) exists uniformly on
compact sets for some h∞ ∈ C (Rn). If the ODE ẏ = h∞(y) has the origin as the unique globally
asymptotically stable equilibrium, then supt≥0 ||xt|| < ∞ almost surely.

4 INFLUENCE REPRESENTATIONS

The present work aims to specify and detect influence structures among agents in a multi-agent
system. For this purpose, we first specify dependent and independent agents, following the definition
of Guestrin et al. (2002b). Afterward, we introduce a novel representation framework of agents’
influence structures, which is valid for all common reward settings and MDP formulations.

4.1 DEPENDENCIES AND INDEPENDENCIES IN MULTI-AGENT SYSTEMS

Given a state s ∈ S, one agent’s actions are relevant for another, if these directly influence the
reward of the other agent, or affect the state for the other agent and, therefore, influence the reward
indirectly. Both effects are captured in the individual state-action functions. Let Bj ⊂ N be a subset
of agents and j ∈ N , then agent j is exclusively dependent on the agents in Bj in state s ∈ S if

Qj
π(s, a

Bj

, a−Bj

) = Qj
π(s, a

Bj

) for all a ∈ A. (7)

If this holds for all s ∈ S, then agent j acts completely independent in the MDP from agents in B−j .

4.2 INFLUENCE MEASUREMENT FUNCTIONS

A binary representation of the dependency group Bj is given by so-called coordination graphs
(Guestrin et al., 2002b). However, strict independence as defined above often does not hold, which
leads to large Bj’s or even Bj = N . Several approaches demonstrated that one can approxi-
mate the individual state-action functions quite well by assuming some agents to be independent
of each other (Sunehag et al., 2018; Böhmer et al., 2019; Zhang & Lesser, 2013). That means
Qj

π(s, a) ≈ Qj
π(s, a

B̂j

) for B̂j ⊊ Bj . That indicates that not every agent in Bj has equal influence
on agent j’s individual state-action function. Therefore, one needs a representation that allows a
more fine-grained distinction of influence to express these differences.

There is no single quantity to express influence in a multi-agent system, as it depends on the spe-
cific use case. However, the study of different kinds of influence structures offers great value as a
descriptive inherent property of multi-agent systems. Therefore, we propose a general framework
to express influence structures in the form of abstract functions that are only bound by the indepen-
dence criterion from Equation 7. We introduce an expression of state-dependent and global influence
structures with the so-called state and total influence measurement functions.

Definition 4.1 (State and total influence measurement functions). Let Ω be an arbitrary set, N a
set of N agents with joint policy π =

∏
j∈N πj , and individual state-action functions Q1

π, . . . , Q
N
π .

Furthermore, let ΨS ,Ψ : S × Ω → [0,∞)N×N be matrix-valued functions. For any s ∈ S and
ω ∈ Ω an entry ΨS

i,j(s, ω) > 0 if and only if there exist actions a−i ∈ A−i, ai, âi ∈ Ai such that
Qj

π(s, a
−i, ai) ̸= Qj

π(s, a
−i, âi), then ΨS is called a state influence measurement function of the

system of agents N . Similarly, if for any ω ∈ Ω an entry Ψi,j(ω) > 0 if and only if there exist a
state s ∈ S and actions a−i ∈ A−i, ai, âi ∈ Ai such that Qj

π(s, a
−i, ai) ̸= Qj

π(s, a
−i, âi). Then,

the function Ψ is called a total influence measurement function of the system of agents N .
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Note that the definitions of state and total influence measurement functions are valid for any setting
with a well-defined individual state-action function. Therefore, it holds for the average reward
setting, which we focus on in our later analyses, but also for the discounted reward setting (Sutton &
Barto, 2018). Furthermore, it holds for setups with infinite state and action spaces. The set Ω offers
a parametrization of an influence measurement, for example, in the form of a prior that holds expert
knowledge about the environment.

The value of an influence measurement function’s knowledge is contingent on its semantic meaning.
Nonetheless, there are specific interpretations that are valid for any influence measurement function.
For a total influence measurement function, one can assume that for every agent j there exists at
least one agent i ∈ N such that the individual state-action function Qj

π is dependent on the actions
of agent i. Otherwise, no action in any state in the system could influence the reward of agent j in
any way. Note that i = j is allowed here. That means that the matrix Ψ(ω) has a positive entry in
any row and column. Therefore, one can always get either a row- or column-stochastic matrix Ψ(ω)
from Ψ(ω) by respectively normalizing the rows or columns.

For a column stochastic Ψ(ω), one can interpret the column j as a probability distribution of the
influence the agents in N can have on agent j’s state-action function. In this case, one can deduce
a ranking depending on Ψ, which means one can, e.g., determine which agents should be in the
coordination group Bj . The entries in row i in a row-stochastic matrix Ψ(ω) can, on the other hand,
be interpreted as a probability distribution of agent i’s influence on the system of agents according
to Ψ. This can be used, for example, in a cooperative setting, where the objective is to maximize the
long-term return of the whole system. An entry Ψi,j(ω) describes the influence agent i has on agent
j according to Ψ. If this entry is large compared to the other ones in the row, then agent i should
pay attention to its effects on agent j’s expected reward when taking its actions.

The same deductions are valid for a state influence measurement function ΨS , although the assump-
tion of a positive entry in every row and column does not necessarily hold.

5 INFLUENCE MEASUREMENT FUNCTIONS IN THE AVERAGE REWARD
SETTING

We propose novel quantities to measure influence among agents, as the maximum impact an agent
can have on the individual state-action function of another. We show that the proposed quantities are
instances of a state and total influence measurement function respectively, and give approximation
algorithms with convergence guarantees. We refer to Appendix A for the proofs.

5.1 THE TOTAL IMPACT MEASUREMENT

The core of the proposed measurements consists of the impact sample, which quantifies the maxi-
mum impact one agent can have on the return of another given a specific state and joint action.
Definition 5.1 (Impact sample). Let π =

∏
i∈N πi be a joint policy of a set of agents N , which are

acting in a multi-agent MDP, and denote with Qj
π the individual state-action function for agent j.

For a state s ∈ S and joint action a ∈ A, we define the impact sample of agent i on agent j as
U i→j
π (s, a) := max

ai∈Ai
Qj

π(s, a
−i, ai)− min

ai∈Ai
Qj

π(s, a
−i, ai). (8)

The impact sample for agent j on agent i given a specific s ∈ S and a joint action a ∈ A indicates
how much agent j can influence the expected long-term return of agent i. Averaging this over all
possible states and joint actions yields the total impact measurement.
Definition 5.2 (Total impact measurement). Let π =

∏
i∈N πi be a joint policy of the agents and

{(st, at)}t≥0 the induced Markov chain over the states and actions in a multi-agent MDP. The total
impact measurement (TIM) of agent i on agent j, for i, j ∈ N , is then defined as

TIi→j(π) := lim
T→∞

1

T

T−1∑
t=0

E
[
U i→j
π (st, at)

]
. (9)

Note that under Assumption 3.2, there exists a stationary distribution over the states and actions
dAπ = dπ · π, where dπ is the stationary distribution over the states. Then one can represent TIM by
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TIi→j(π) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · U i→j
π (s, a). (10)

As the stationary distribution dAπ is strictly positive and the impact samples U i→j
π are greater or

equal to zero, we see that TIi→j(π) = 0 if and only if U i→j
π (s, a) = 0 for all s ∈ S, a ∈ A. When

we observe Equation 8, we see that TIi→j(π) = 0 if and only if Qj(s, a−i, ai) = Qj(s, a−i, âi)
for all s ∈ S, a−i ∈ A−i and ai, âi ∈ Ai. Therefore, the constant matrix-valued function TIπ :
Ω → [0,∞)N×N , with entries given by (TIπ)i,j (ω) = TIi→j(π), is a total influence measurement
function by Definition 4.1.

That means, if we can estimate TIM reliably, we obtain an unbiased total influence measurement
function. Its semantic meaning is determined by the impact sample, i.e., it represents the maximum
impact of an agent on the expected long-term return of another. In general, one does not know the in-
dividual state-action functions, but only some approximations of them. We denote an approximation
of an individual state-action function by Q

j

π and a resulting formulation of an approximated TIM
using Equation 10 by TI

i→j
π . The following theorem gives an error bound between the approximated

TIM and the true TIM, depending on the individual state-action functions’ approximation error.
Theorem 5.3. The error of the approximated TIM to the true one of agent i on agent j satisfies∣∣∣TIi→j(π)− TI

i→j
(π)
∣∣∣ ≤ 2 ·

∥∥∥Qj
π −Q

j

π

∥∥∥
∞
. (11)

This bound shows that if we can determine TI
i→j

(π), we get a good approximation of TIM pro-
vided that the approximation error of Q

j

π is small. For an approximation function, we consider
parametrized function classes. Denote with Qj

π : S × A × Rkj → R the individual state-action
function of agent j, parametrized by ηj ∈ Rkj for kj ∈ N. We denote the parametrized impact
samples and TIM by U i→j

π (s, a, ηj) and TIi→j(π, ηj) respectively.

Our proposed approximation algorithm of TIM works together with a simultaneously learning state-
action function approximation algorithm, which provides an iteration sequence {ηjt }t≥0. For our
later results, we state two mild assumptions on the iteration algorithm creating {ηjt }t≥0 and the
parametrized individual state-action functions.
Assumption 5.4. The parametrized state-action function Qj(s, a, η) is continuous in η ∈ Rkj , for
every j ∈ N , s ∈ S, and a ∈ A.

Assumption 5.5. Let j ∈ N . We assume that the iteration sequence {ηjt }t≥0 is almost surely

bounded, i.e., there exists a K > 0 such that supt≥0

∥∥∥ηjt∥∥∥ < K < ∞ almost surely. Additionally,

there exists an ηj,∗ ∈ Rkj such that ηjt → ηj,∗ almost surely.

The above assumption essentially demands that the iteration algorithm, to approximate the individ-
ual state-action function, converges at some point. The considered iteration algorithm of TIM with
parametrized individual state-action functions is given by

νi→j
t+1 = (1− αt)ν

i→j
t + αt · U i→j

π (st, at, η
j
t ), (12)

where {αt}t≥0 is a stepsize sequence satisfying part (c) of Assumption 3.3. With this, we can now
state our main result.
Theorem 5.6. Under Assumptions 3.2, 5.4, and 5.5, the iteration defined in Equation 12 has the
following convergence property

νi→j
t+1 → TIi→j(π, ηj,∗π ) almost surely. (13)

5.2 THE STATE IMPACT MEASUREMENT

TIM averages the maximum impact one agent can have on the individual state-action function of
another over all possible transitions. However, given a specific state, some agents might have a
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significant impact on the individual state-action functions of others, even though their average influ-
ence is small. Therefore, one would like to quantify state-dependent influence structures among the
agents. Therefore, we introduce the state impact measurement, which constitutes a state influence
measurement function by Definition 4.1.
Definition 5.7 (State impact measurement). Let π be a joint policy of the N agents over the joint
action space A. Take the state s ∈ S and denote the Markov chain over the actions in state s by
{asts}ts≥0. The state impact measurement (SIM) of agent i on agent j, for i, j ∈ N is defined as

SIi→j(s, π) := lim
T s→∞

1

T s

T s−1∑
ts=0

E
[
U i→j
π (s, asts)

]
. (14)

Note that SIM only considers the Markov chain over the actions {asts}ts≥0 given a specific state s ∈
S. Hence, one ignores the MDP’s state transition probabilities and only considers the distribution
over the joint actions for a state s. As we only consider the actions for a given state s, π(s, ·) is the
stationary distribution of the Markov chain {asts}ts≥0. Therefore, one can represent SIM by

SIi→j(s, π) =
∑
a∈A

π(s, a) · U i→j
π (s, a). (15)

Under Assumption 3.2, one can record the instances of {at}t≥0 for each state s in a tabular fashion,
which allows sampling from {asts}ts≥0. With this insight, one can observe that the theoretical results
from Subsection 5.1 carry over with only slight variations in the proofs. Therefore, we only state
the following results without proof and refer to the supplementary material for more details.

First, we give an error bound similar to the statement from Theorem 5.3. We denote the approxi-
mated SIM by SI

i→j
using the approximated individual state-action function Q

j

π .
Theorem 5.8. Let s be in S. The error of the approximated SIM in s to the true one of agent i on
agent j satisfies ∣∣∣SIi→j(s, π)− SI

i→j
(s, π)

∣∣∣ ≤ 2 ·
∥∥∥Qj

π(s, ·)−Q
j

π(s, ·)
∥∥∥
∞
. (16)

We denote the parametrized SIM by SIi→j(·, π, ηj) for i, j ∈ N and ηj ∈ Rkj . The tabular approx-
imation algorithm is

νi→j
ts+1(s) = (1− αts)ν

i→j
ts (s) + αts · U i→j

π (s, asts , η
j
t ), (17)

where {αts}ts≥0 denotes a stepsize sequence satisfying part (c) of Assumption 3.3.
Theorem 5.9. Under Assumptions 3.2, 5.4, and 5.5, the iteration defined in Equation 17 has the
following convergence property for every s ∈ S

νi→j
ts+1(s) → SIi→j(s, π, ηj,∗π ) almost surely. (18)

5.3 CONTINUITY IN POLICY CHANGES

The preceding analyses treated the joint policy π as fixed. In the following, we relax this restriction
and show that TIM and SIM are continuous in changes of the joint policy π, which is crucial for
practical applications as one can expect the approximation algorithm’s behavior to be highly unstable
otherwise.

We consider parameterized functions to track changes in the policies. Let θj ∈ Rmj for mj ∈ N and
πj
θj be the policy of agent j. Denote with θ = [(θ1)T , . . . , (θN )T ]T ∈ Rm :=

∏
j∈N Rmj the joint

policy parameters, and denote the parametrized joint policy by πθ =
∏

j∈N πj
θj . Note that when

we require Assumption 3.2 to hold, that it is assumed that the parametrized policies have a positive
probability for every state and action. Furthermore, we assume the following:
Assumption 5.10. The function πj

θj (s, a
j) is continuously differentiable in θj ∈ Rmj .

To prove the continuity of TIM and SIM in θ, one needs to establish the continuity of the stationary
distribution dθ, the joint policy πθ, and the impact samples U i→j

θ .
Theorem 5.11. Let Θ ⊂ Rm be a compact set, and let πθ be the joint policy. Under Assumptions
3.2 and 5.10, TIi→j(πθ) and SIi→j(s, πθ) are continuous in θ ∈ Θ for every i, j ∈ N and s ∈ S.
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(a) TIM error with static πθ and
varying dependency structures

(b) SIM error with static πθ and
varying dependency structures

(c) TIM and SIM approximation
error with learning πθt

Figure 1: Performance of TIM and SIM’s approximation algorithms in the random environment,
conducted over 50 seeds. The bold line represents the median, while the shaded areas denote the
95%-quantiles.

6 EMPIRICAL RESULTS

The stochastic approximation techniques applied to ensure the convergence of our proposed algo-
rithms do not guarantee specific convergence behaviors in practice (Borkar, 2008). Thus, to better
understand these behaviors, we evaluate our concepts in two contrasting environments. The first en-
vironment is a small, randomly generated one. The second environment is a multi-agent extension
of the coin game (Lerer & Peysakhovich, 2017).

For both environments, we use iteration algorithms from Equations 12 and 17 to estimate TIM and
SIM, initializing them for all i, j ∈ N to 1

|N | . Their approximations are represented by TI(πθ, ηt)

and SI(s, πθ, ηt). All experiments employ Boltzmann policies (Sutton & Barto, 2018), meeting the
Assumptions 3.2 and 5.10. Further details and supplementary results are available in the appendix.

6.1 RANDOM ENVIRONMENT

We generate a random multi-agent MDP with five agents, five states, and binary action spaces (see
Section C.1 for details). We aim to understand how TIM and SIM approximation algorithms re-
spond to different agent influence structures. Therefore, when we conduct experiments where some
agents are independent of others, we set the rows of the transition probability matrix all equal to
the first row, i.e., P (s′|·, ·) = P (s0|·, ·) for all s′ ∈ S. This prevents the agents to influence one
another over long-term effects on the transitions to other states. Furthermore, to achieve that agent
j is independent of the immediate effects on the reward of agent i’s actions, we set the entries for
a state s ∈ S , and actions a−i = (a1, . . . , ai−1, ai+1, . . . aN ) ∈ A−i in the reward matrix to
Rj(s, a−i, ai) = Rj(s, a−i, âi) for all ai, âi ∈ Ai.

Experiments in the random environment took two forms. First, we consider a static policy πθ for
different dependency structures among the agents. We assume that each agent can at least influ-
ence its individual state-action function. To determine the overall dependency structures among the
agents, we randomly sample a number of additional dependencies Ladd. The second experiment
has no enforced influence structure but changing policy parameters θt. As the policies’ learning
algorithm, we use Algorithm 1 of Zhang et al. (2018), which is a multi-agent actor-critic algorithm
for a fully cooperative setup. For approximating individual state-action functions Qj

θ(·, ·, ηj), we
use the tabular SARSA algorithm in the average-reward setting (Sutton & Barto, 2018). Note that
this algorithm satisfies Assumptions 5.4 and 5.5. We compare the approximations with analytically
determined TIM and SIM matrices, which are denoted by TIana(πθ) and SIana(s, πθ).

The results with a stationary policy can be seen in Figures 1a and 1b. They show the approximation
errors of TI(πθ, ηt) to TIana(πθ) and SI(s, πθ, ηt) to SIana(s, πθ) for different values of Ladd. In all
scenarios, the error is monotonically decreasing in t. One observes that the initial approximation
error increases with an increasing number of dependencies among the agents. However, the final
approximation error has the reversed order. This results from the fact that impact samples need to
be zero to detect that two agents are independent. However, a non-zero approximation error in the
individual state-action functions leads to an overestimation of the TIM and SIM approximations.
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(a) TI1→i
(πθt , ηt) (b) TI2→i

(πθt , ηt) (c) TI3→i
(πθt , ηt)

Figure 2: Mean TIM approximations in coin game over 10 seeds. The shaded area shows the
standard deviation.

For the dynamic policy, results are in Figure 1c. It shows consistent, albeit slower, reduction in
approximation errors compared to the static policy. Nonetheless, this experiment demonstrates the
validity of using the approximation algorithms in the context of changing policies.

6.2 COIN GAME

Three agents navigate a 10 × 10 grid, with the actions being to move in one of four directions or
to remain static. Unique coins, designated for each agent, randomly spawn on the grid, with up to
four coins per agent at any given time. Collecting a coin grants an agent a reward of 1. However,
if an agent collects another’s coin, penalties ensue. Deviating from the original game to emphasize
asymmetries in agent-dependencies, we employ a one-sided penalty system. In our setting, if agent
1 collects coins of agents 2 or 3, they incur a penalty of −2. Additionally, agent 3 suffers a −2
penalty if agent 2 collects its coins. Notably, agent 1 remains unpenalized throughout, while agent
2 only faces penalties from agent 1’s actions.

For the experiment, agents independently learn using the PPO algorithm (Schulman et al., 2017).
We utilize the deep SARSA algorithm (Zhao et al., 2016) to approximate Qj

θ(·, ·, ηj), which satisfies
Assumption 5.4 but not necessarily Assumption 5.5. As the state space is intractable, we train an
additional neural network to approximate SIM instead of using a tabular method.

The PPO policies learned to greedily gather coins, irrespective of coin type. The TIM approxima-
tions of agent 1’s influence on other agents are depicted in Figure 2a. As anticipated, the estimated
impact is high across all agents, especially considering agent 1’s capacity to impose penalties on
agents 2 and 3. Conversely, Figure 2b highlights agent 2’s significant impact on itself and agent
3, but minimal effect on Agent 1, mirroring the unique penalty structure. Figure 2c underscores
that TIM for Agent 3 is predominantly elevated only for itself. Note that the absence of direct
penalties does not render the agents independent. Agent 3, for instance, possesses the capability to
either block agent 1 or seize its coins. Consequently, TIM estimations give us insights—without any
knowledge of the environment—into which agent can significantly influence others.

7 FINAL REMARKS

The present work investigates influence structures in MARL systems. We introduce influence mea-
surement functions as a unified descriptive framework for influence structures in all common setups.
Within this framework, we propose total and state influence measures tailored to the average reward
setting. Thorough theoretical analyses of their stability and the convergence and error bounds of
the corresponding approximation algorithms are given. Experiments in the randomly generated en-
vironment demonstrate convergence of the approximation error, even with evolving policies. The
coin game further demonstrates the applicability of the concepts to complex, dynamic settings and
provides insight into influence in black-box environments.

Future work offers promising directions. A key area involves expanding the application of TIM
and SIM beyond their current descriptive roles, using them to enhance learning processes within
MARL. Another avenue is to investigate the potential of influence measurement functions in other
environments, such as those with discounted reward or infinite state and action spaces.

9
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide detailed additional information in the ap-
pendix. We present five novel theoretical claims, each substantiated with thorough proofs found
in Appendix A. For clarity, each subsection in this appendix directly references its corresponding
theorem from the main text.

Detailed descriptions of the utilized environments, our algorithmic setup and code base are available
in Appendix C. For a clear understanding of our experimental setup, we outline our hyperparameter
selection strategy and specific choices in Appendix D.
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A PROOFS FOR TIM AND SIM STATEMENTS

A.1 PROOF OF THEOREM 5.3 (TIM ERROR BOUND)

Proof. Let i, j ∈ N , then we see∣∣∣TIi→j(π)− TI
i→j

(π)
∣∣∣ ≤∑

s∈S
dπ(s)

∑
a∈A

π(s, a) ·
(∣∣∣∣max

ai∈Ai
Qj

π(s, a
−i, ai)− max

ai∈Ai
Q

j

π(s, a
−i, ai)

∣∣∣∣
+

∣∣∣∣ min
ai∈Ai

Qi
π(s, a

−i, ai)− min
ai∈Ai

Q
j

π(s, a
−i, ai)

∣∣∣∣)
≤
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)
(
2 ·
∥∥∥Qj

π −Q
j

π

∥∥∥
∞

)
= 2 ·

∥∥∥Qj
π −Q

j

π

∥∥∥
∞
,

which gives us the statement.

A.2 PROOF OF THEOREM 5.6 (CONVERGENCE OF TIM APPROXIMATION)

Proof. We define

h(νi→j
t , (st, at)) := U i→j

π (st, at, η
j,∗
π )− νi→j

t ,

Mt+1 := 0,

βt+1 := U i→j
π (st, at, η

j
t )− U i→j

π (st, at, η
j,∗
π ),

where we can see that the iteration algorithm

νi→j
t+1 = νi→j

t + αt ·
(
h(νi→j

t , (st, at)) +Mt+1 + βt+1

)
(19)

is equal to the iteration algorithm defined in Equation 12. To show the convergence of this iteration
algorithm, we consider in the first step a slightly different algorithm. For this, observe that by
Assumption 5.5, the sequence {ηjt }t≥0 is almost surely bounded. That means there exists K > 0

such that P (supt≥0

∥∥∥ηjt∥∥∥ < K) = 1. Define the error term β̃t := I{supt≥0 ∥ηj
t∥<K} · βt, where IA

denotes the indicator function on a set A. Define the following iteration algorithm with the restricted
error sequence β̃t

ν̃i→j
t+1 := ν̃i→j

t + αν,t ·
(
h(ν̃i→j

t , (st, at)) + β̃t+1

)
. (20)

First, we check that parts (a) to (e) from Assumption 3.3 hold. The function h : Rkj × S ×A → R
is Lipschitz continuous in its first argument, as it is even linear in its first argument, i.e.

|h(ν, (s, a))− h(ν′, (s, a))| = |ν − ν′| for any s ∈ S, a ∈ A,

and part (a) holds. By Assumption 3.2, the Markov chain {(st, at)}t≥0 is ergodic, which means that
it satisfies part (b). Furthermore, the stepsizes {αt}t≥0 satisfy part (c). As the sequence {Mt}t≥0

is the zero sequence, it is trivially a martingale difference sequence with a conditionally bounded
norm, and satisfies part (d). Finally, for part (e), it remains to show that {β̃t}t≥0 is a bounded
random sequence that converges to zero almost surely. For this, note that ηjt is uniformly bounded
on the set {supt≥0

∥∥∥ηjt∥∥∥ < K}. By Assumption 5.4, we get that the parametrized impact samples
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U i→j
π (s, a, ηj) are continuous in ηj . In particular, as it is a continuous function on the compact set

{ηj ∈ Rkj :
∥∥ηj∥∥ < K}, we get that it is bounded. Therefore, together with the convergence of

ηjt → ηj,∗π , we get that {β̃t}t≥0 is a bounded random sequence that converges to zero. Therefore,
Assumption 3.3 is satisfied for the iteration algorithm from Equation 20. Next, consider the ODE
given by

ν̇i→j =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · h
(
νi→j , (s, a)

)
= −νi→j +

∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · U i→j
π (s, a, ηj,∗)

and define the right-hand side as f(νi→j). We can see that νi→j =∑
s∈S dπ(s)

∑
a∈A π(s, a)U i→j

π (s, a, ηj,∗) is an equilibrium solution to the ODE above, and as f is
Lipschitz continuous, we get by the theorem of Picard-Lindelöf, see page 89 in the book of Adkins
& Davidson (2012), that this solution is unique. Define the function fc(ν

i→j) = c−1 · f(cνi→j).
Then limc→∞ fc(ν

i→j) = −νi→j =: f∞(νi→j) exists and the ODE ν̇i→j = f∞(νi→j) has
the origin as unique asymptotically stable equilibrium. Therefore, we get by Theorem 3.5 that
supt≥0 ||ν

i→j
t || < ∞ almost surely. Then, we can use Theorem 3.4 to conclude that

ν̃i→j
t → TIi→j(π, ηj,∗π ) a.s. (21)

To extend this result to the original iteration sequence, observe that
{
supt≥0

∥∥∥ηjt∥∥∥ ≥ K
}

is a null-
set.

A.3 PROOF OF THEOREM 5.8 (SIM ERROR BOUND)

Proof. Let i, j ∈ N , then we see∣∣∣SIi→j(s, π)− SI
i→j

(s, π)
∣∣∣ = ∣∣∣∣∣∑

a∈A
π(s, a)

(
U i→j
π (s, a)− U

i→j

π (s, a)
)∣∣∣∣∣

≤
∑
a∈A

π(s, a)

(∣∣∣∣max
ai∈Ai

Qj
π(s, a

−i, ai)− max
ai∈Ai

Q
j

π(s, a
−i, ai)

∣∣∣∣
+

∣∣∣∣ min
ai∈Ai

Qi
π(s, a

−i, ai)− min
ai∈Ai

Q
j

π(s, a
−i, ai)

∣∣∣∣)
≤
∑
a∈A

π(s, a)
(
2 ·
∥∥∥Qj

π(s, ·)−Q
j

π(s, ·)
∥∥∥
∞

)
= 2 ·

∥∥∥Qj
π(s, ·)−Q

j

π(s, ·)
∥∥∥
∞
,

which gives us the statement.

A.4 PROOF OF THEOREM 5.9 (CONVERGENCE OF SIM APPROXIMATION)

Proof. Let s ∈ S. Note that for any subsequence {ηtk}k≥0 of {ηt}t≥0 it still holds that ηtk → ηj,∗π
almost surely. Therefore, we denote the subsequences originally indexed by ts for state s also by t
instead, as it does not change the proof’s statement. We define

h(νi→j
t (s), ast ) := U i→j

π (s, ast , η
j,∗
π )− νi→j

t (s),

Mt+1 := 0,

βt+1 := U i→j
π (s, ast , η

j
t )− U i→j

π (s, ast , η
j,∗
π ),

where we can see that the iteration algorithm

νi→j
t+1 (s) = νi→j

t (s) + αt ·
(
h(νi→j

t (s), ast ) +Mt+1 + βt+1

)
(22)

is equal to the iteration algorithm defined in Equation 17. Before showing the convergence of
this iteration algorithm, we consider a different one. For this, observe that by Assumption 5.5,
the sequence {ηjt }t≥0 is almost surely bounded. That means there exists K > 0 such that
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P (supt≥0

∥∥∥ηjt∥∥∥ < K) = 1. Define the error term β̃t := I{supt≥0 ∥ηj
t∥<K} · βt, where IA de-

notes the indicator function on a set A. Define the following iteration algorithm with the restricted
error sequence β̃t

ν̃i→j
t+1 (s) := ν̃i→j

t (s) + αt ·
(
h(ν̃i→j

t (s), ast ) + β̃t+1

)
. (23)

To get the convergence of the iteration defined in Equation 23, we first check that part (a) to (e) from
Assumption 3.3 hold. The function h : Rkj ×A → R is Lipschitz continuous in its first argument,
as it is even linear in its first argument, i.e.,

|h(ν, a)− h(ν′, a)| = |ν − ν′| for any a ∈ A,

and part (a) holds. By Assumption 3.2, the Markov chain {ast}t≥0 is irreducible and aperiodic.
Therefore, the Markov chain satisfies part (b). Furthermore, the stepsizes {αt}t≥0 satisfy part (c).
As the sequence {Mt}t≥0 is the zero sequence, it is trivially a martingale difference sequence with
a conditionally bounded norm, and satisfies part (d). Finally, for part (e), it remains to show that
{β̃t}t≥0 is a bounded random sequence that converges to zero almost surely. For this, note that

{ηjt }t≥0 is uniformly bounded on the set {supt≥0

∥∥∥ηjt∥∥∥ < K}. By Assumption 5.4, we get that the
functions

max
ai∈Ai

Qj
π(s, a

−i, ai, ηj) and min
ai∈Ai

Qj
π(s, a

−i, ai, ηj) (24)

are continuous functions in ηj . Therefore, the function U i→j
π (s, ast , ·) is, as a sum of continuous

functions, also continuous in ηj . In particular, as it is a continuous function on the compact set
{ηj ∈ Rkj :

∥∥ηj∥∥ < K}, we get that it is bounded. Therefore, together with the convergence of
ηjt → ηj,∗π , we get that {β̃t}t≥0 is a bounded random sequence that converges to zero. Therefore,
Assumption 3.3 is satisfied for the iteration algorithm from Equation 23.

Next, consider the ODE given by

ν̇i→j(s) =
∑
a∈A

π(s, a) · h
(
νi→j(s), a

)
= −νi→j(s) +

∑
a∈A

π(s, a) · U i→j
π (s, a, ηj,∗) (25)

and define the right-hand side as f(νi→j(s)). We can see that νi→j(s) =∑
a∈A π(s, a)U i→j

π (s, a, ηj,∗) is an equilibrium solution to the ODE above, and as f is Lipschitz
continuous, we get by the theorem of Picard-Lindelöf, see page 89 in the book of Adkins & David-
son (2012), that this solution is unique. Define the function fc(ν

i→j(s)) = c−1 ·f(cνi→j(s)). Then
limc→∞ fc(ν

i→j(s)) = −νi→j(s) =: f∞(νi→j(s)) exists and the ODE ν̇i→j(s) = f∞(νi→j(s))
has the origin as unique asymptotically stable equilibrium. Therefore, we get by Theorem 3.5 that
supt≥0 ||ν

i→j
t (s)|| < ∞ almost surely. Then, we can use Theorem 3.4 to conclude that

ν̃i→j
t (s) → SIi→j(s, π, ηj,∗π ) almost surely. (26)

We extend this result to the original iteration sequence {νi→j
t (s)}t≥0. As the sequence {ηjt }t≥0 is

almost surely bounded, we see that

P

(
{ω ∈ Ω : sup

t≥0

∥∥∥ηjt (ω)∥∥∥ < K}
)

= 1 ⇔ P

({
ω ∈ Ω : sup

t≥0

∥∥∥ηjt (ω)∥∥∥ ≥ K

})
= 0, (27)

which means that
{
supt≥0

∥∥∥ηjt∥∥∥ ≥ K
}
=
{
supt≥0

∥∥∥ηjt∥∥∥ < K
}∁

is a null-set. Therefore, we get

νi→j
t+1 (s) → SIi→j

(
s, π, ηj,∗

)
a.s. ⇔ P

({
ω ∈ Ω : lim

t→∞
νi→j
t (s)(ω) = SIi→j

(
s, π, ηj,∗

)
(ω)
})

= P

({
ω ∈ Ω \

{
sup
t≥0

∥∥∥ηjt∥∥∥ < K

}∁

: lim
t→∞

νi→j
t (s)(ω) = SIi→j

(
s, π, ηj,∗

)
(ω)

})
= P

({
ω ∈ Ω : lim

t→∞

(
νi→j
t (s) · I{supt≥0 ∥ηj

t∥<K}

)
(ω) =

(
SIi→j

(
s, π, ηj,∗

)
· I{supt≥0 ∥ηj

t∥<K}

)
(ω)
})

= P
({

ω ∈ Ω : lim
t→∞

ν̃i→j
t (s)(ω) = SIi→j

(
s, π, ηj,∗

)
(ω)
})

= 1,

which gives us the statement.
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A.5 PROOF FOR THEOREM 5.11 (CONTINUITY IN POLICY CHANGES)

To prove the continuity of SIM and TIM in the policy, we show the continuity of their individual
terms. So, recall that, under Assumption 3.2, we can represent SIM and TIM of agent i on agent j
by

SIi→j(s, πθ) =
∑
a∈A

πθ(s, a) · U i→j
θ (s, a), (28)

TIi→j(πθ) =
∑
s∈S

dθ(s)
∑
a∈A

πθ(s, a) · U i→j
θ (s, a). (29)

First, we show the continuity of the stationary distribution dθ in θ ∈ Rm. To do this, we need
some results from linear algebra, which we state without proof. The first is the well-known Perron-
Frobenius theorem, which was originally introduced in this form by Frobenius (1912). Before stat-
ing the theorem, we introduce the notion of primitive matrices and a result connecting these to
irreducible and aperiodic matrices. The following definition and two theorems are taken from the
book of Seneta (2006).

Definition A.1. A square non-negative matrix A is said to be primitive if there exists a positive
integer k such that Ak > 0.

The following theorem connects primitive to irreducible and aperiodic matrices. Note that transition
matrices of irreducible and aperiodic Markov chains are irreducible and aperiodic.

Theorem A.2. A matrix A is irreducible and aperiodic if and only if it is primitive.

With this, we now state the Perron-Frobenius theorem for primitive matrices.

Theorem A.3. Suppose A is an n×n non-negative primitive matrix. Then there exists an eigenvalue
r such that:

(a) r is a real value and strictly larger than 0

(b) with r can be associated strictly positive left and right eigenvectors

(c) r > |λ| for any eigenvalue λ ̸= r

(d) the eigenvectors associated with r are unique to constant multiples

(e) r is a simple root of the characteristic polynomial of A

One calls r the Perron-Frobenius eigenvalue and its corresponding positive eigenvectors, the Perron-
Frobenius eigenvectors.

The next theorem is an adapted version of a result of theorem 8 on page 130 in the book by Lax
(2007), about the continuity of eigenvectors for simple eigenvalues.

Theorem A.4. Let A(t) be a square matrix whose elements are continuously differentiable in t ∈
Rm. Suppose that a0 is an eigenvalue of A(0) of multiplicity one, in the sense that a0 is a simple
root of the characteristic polynomial of A(0). Then there exists a δ > 0 such that for ∥t∥ ≤ δ, there
exists an eigenvalue a(t) of A(t) that depends continuously differentiable on t, with a(0) = a0.
Furthermore, we can choose an eigenvector h(t) of A(t) pertaining to the eigenvalue a(t) to depend
continuously differentiable on t.

The original version of the theorem is for the case m = 1. However, the extension to multiple
dimensions is straightforward, as one only needs to assume A(t) to be continuously differentiable in
t ∈ Rm, instead of only differentiable and the proof carries over without changes. With the previous
results, we now give our proof for the continuity of stationary distributions.

Lemma A.5. Let A : Rm → Rn×n be a continuously differentiable function. Additionally, the
matrix A(t) is a transition matrix of an irreducible and aperiodic Markov chain for every t ∈ Rm.
Then the function t 7→ d(t) is continuously differentiable for all t ∈ Rm, where d(t) ∈ Rn is the
stationary distribution of A(t).
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Proof. As the matrix A(t) is the transition matrix of an irreducible and aperiodic Markov chain, the
associated stationary distribution d(t) exists and is unique by theorem 4.1 on page 119 in the book
of Seneta (2006). Therefore, the function f : t 7→ d(t) is well-defined. It remains to show that f is
continuously differentiable for all t ∈ Rm.

For this, we want to use Theorem A.4 for the matrix A(t)T , as the stationary distribution d(t) is
a right eigenvector of A(t)T to the eigenvalue one. We observe that A(t) is a square non-negative
irreducible and aperiodic matrix and by Theorem A.2 also primitive, i.e., there exists an r ∈ N
such that A(t)r > 0. Therefore, Theorem A.3 holds for A(t). As A(t) is row-stochastic, its largest
eigenvalue is one and is by part (c) of Theorem A.3 also the Perron-Frobenius eigenvalue. We show
next that the same holds for A(t)T . For this, we observe that

A(t)r > 0 ⇔ (A(t)r)
T
> 0 ⇔

(
A(t)T

)r
> 0.

That means, A(t)T is primitive, i.e., the Perron-Frobenius theorem holds for A(t)T as well. Fur-
thermore, for λ ∈ R it holds that

det
(
A(t)T − λI

)
= det

(
(A(t)− λI)

T
)
= det (A(t)− λI) ,

which means that A(t)T has the same eigenvalues as A(t). This again means by part (c) of Theorem
A.3 that the value one is also the Perron-Frobenius eigenvalue of A(t)T . Using part (e) of Theorem
A.3, we get that one is a simple root of the characteristic polynomial of A(t)T .

Let u ∈ Rm be arbitrary. From our deductions about A(t)T so far, we can now use Theorem
A.4. Therefore, there exists a δ > 0 such that, on the set Λ := {t ∈ Rm : ∥t− u∥}, there exist
continuously differentiable functions a : Λ → R, h : Λ → Rn. Whereas a(t) is an eigenvalue of
A(t)T with a(u) = 1 and h(t) is an eigenvector of A(t)T pertaining to the eigenvalue a(t).

The Perron-Frobenius Theorem holds for all t ∈ Λ and therefore, by part (c) of Theorem A.3, we
see for all eigenvalues λ of A(t)T with λ ̸= 1, that |λ| < 1. However, the function a is continuously
differentiable, which means that a ≡ 1. In turn, this means by part (b) that h(t) is a strictly positive
eigenvector for all t ∈ Λ. Now, define the scaling function

k(t) :=

(
n∑

i=1

h(t)i

)−1

⇔ 1 = k(t) ·

(
n∑

i=1

h(t)i

)
.

That means that k(t) · h(t) is an eigenvector of A(t)T to the eigenvalue one for all t ∈ Λ. In
particular, that means that k(t) · h(t) is a stationary distribution of A(t) and, therefore, f(t) =
k(t) ·h(t) for all t ∈ Λ. As h(t) is strictly positive and continuously differentiable, k is continuously
differentiable as well. That means that f is continuously differentiable for all t ∈ Λ, which means
in particular that it is continuously differentiable in u. As u ∈ Rm has been arbitrary, we get that f
is continuously differentiable for all t ∈ Rm. This concludes the proof.

Before we can prove the main result of this subsection, we need another lemma about the conver-
gence of the expected distribution after several steps from an initial distribution of a Markov chain
to its stationary distribution. The proof of this Lemma is inspired by the proof of the Convergence
Theorem 4.9 on page 52 in the book of Levin et al. (2017).
Lemma A.6. Let A : Rm → Rn×n be a matrix-valued continuously differentiable function and
Λ ⊂ Rm a compact set. Furthermore, for every t ∈ Rm, matrix A(t) is a transition matrix of an
irreducible and aperiodic Markov chain with stationary distribution d(t). Finally, if there exists a
ti,j ∈ Rm such that the entry A(ti,j)i,j > 0, then A(t)i,j > 0 for all t ∈ Rm. In this case, there
exist constants C ≥ 1 and α ∈ (0, 1) such that

∥x0A(t)τ − d(t)∥2 ≤ n · Cατ , (30)

for all t ∈ Λ and j ∈ {1, . . . , n} where x0 is a non-negative vector, which entries sum up to one,
that represents some initial distribution over the states of the Markov chain.

Proof. Since A(t) is the transition matrix of an irreducible and aperiodic Markov chain it is primitive
by Theorem A.2, i.e., there exists a minimal rt ∈ N such that A(t)rt has only positive entries. If
an entry of A(t) is positive, it is positive for all t ∈ Rm. Together with the fact that A(t) has no
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negative entries for all t ∈ Rm, we get that rt = ru =: r for all t, u ∈ Rm.
The entries of A(t) are continuous on a compact set Λ, therefore there exists a minimal positive
entry of A(t)r for all t ∈ Λ, which we denote by

amin := min{(A(t)r)i,j |i, j ∈ {1, . . . n}, t ∈ Λ}.

By Lemma A.5, the entries of d(t) are continuous for t ∈ Λ. Therefore, there exists a maximum
entry of d(t) for all t ∈ Λ, i.e.,

dmax := max{d(t)i|i ∈ {1, . . . , n}, t ∈ Λ}.
Please note that d(t) is a probability distribution that has only positive entries. Therefore, let t ∈ Λ
be arbitrary and take δ ∈ (0, 1) such that amin ≥ δ · dmax. Define λ := 1 − δ and let D(t) be a
matrix with n rows, where all rows are equal to d(t). Then the equation

A(t)r = (1− λ)D(t) + λH(t), (31)

defines a row-stochastic matrix H(t). Note that, as every row of D(t) is identical, MD(t) = D(t)
for every row-stochastic matrix M ∈ Rn×n. That means in particular that H(t)D(t) = D(t) and
A(t)D(t) = D(t). The rows of D(t) are the stationary distribution of A(t), which means that
D(t)A(t) = D(t). Next, we show by induction that

A(t)rk =
(
1− λk

)
D(t) + λkH(t)k, for k ≥ 1. (32)

The starting condition for k = 1 holds by Equation 31. Assuming that it holds for k = l, we see

A(t)r(l+1) = A(t)rl ·A(t)r

=
[(
1− λl

)
D(t) + λlH(t)l

]
·A(t)r

=
(
1− λl

)
D(t) ·A(t)r + λlH(t)l ·A(t)r

=
(
1− λl

)
D(t) + λlH(t)l · [(1− λ)D(t) + λH(t)]

=
(
1− λl

)
D(t) + λl (1− λ)H(t)l ·D(t) + λl+1H(t)l+1

=
(
1− λl

)
D(t) +

(
λl − λl+1

)
D(t) + λl+1H(t)l+1

=
(
1− λl+1

)
D(t) + λl+1H(t)l+1,

which shows that the claim in Equation 32 holds for all k ≥ 1. Rearranging this equation yields

A(t)rk −D(t) = λk
(
H(t)k −D(t)

)
. (33)

For j ∈ N, we multiply each side of Equation 33 by A(t)j and get

A(t)rk+j −D(t) = λk
(
H(t)kA(t)j −D(t)

)
. (34)

Let x0 ∈ Rn be a non-negative row-vector, which entries sum up to one. Multiplying Equation (34)
by x0 from the left and taking the ∥·∥2-norm of both sides yields∥∥x0A(t)rk+j − d(t)

∥∥
2
= λk

∥∥x0H(t)kA(t)j − d(t)
∥∥
2
.

Note that H(t) and A(t) are row-stochastic matrices and that the product of row-stochastic matrices
is again row-stochastic. Therefore, the rows of H(t)kA(t)j sum up to one, as does a convex com-
bination over the sum of the rows. Therefore, the distance to the stationary distribution d(t) can be
bounded by n. This gives us ∥∥x0A(t)rk+j − d(t)

∥∥
2
≤ n · λk. (35)

Now, define C := 1
λ and α := λ1/r. For τ > r, there exist k ∈ N and j ∈ {1, . . . , r} such that

τ = rk + j. This gives us with Equation 35

∥x0A(t)τ − d(t)∥2 ≤ n · λ
τ−j
r = n ·

(
1

λ

) j
r

· λ τ
r ≤ n · C · ατ , (36)

where we used that C ≥ 1 and j ≤ r in the last step. For τ < r, we note that λ
τ
r −1 ≥ 1 and as A(t)

is row-stochastic we get

∥x0A(t)τ − d(t)∥2 ≤ n ≤ n · λ τ
r −1 = n · C · ατ . (37)

As t ∈ Λ has been arbitrary and the constants C and α are independent of t, Equations 36 and 37
conclude the statement.
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With this result, we can establish the continuity of SIM and TIM in changes in the policy.
Theorem A.7. Let Θ ⊂ Rm be a compact set, and let πθ be the joint policy. Under Assumptions
3.2 and 5.10, the total impact measurement TIi→j(πθ) and state impact measurement SIi→j(s, πθ)
are continuous in θ ∈ Θ for every i, j ∈ N and s ∈ S.

Proof. Under Assumption 3.2, one can represent SIM and TIM using Equations 28 and 29. From
this, we see that the continuity in θ ∈ Θ follows if we can show continuity of the individual terms.
According to Assumption 5.10, the term πθ(s, a) is continuous in θ for every s ∈ S and a ∈ A.
Additionally, this means that the function θ 7→ Pθ is continuously differentiable as well, and denotes
the transition matrix of the irreducible and aperiodic Markov chain over the states {st}t≥0 for every
θ ∈ Rm. By using Lemma A.5, we get that the stationary distribution dθ is continuous in θ ∈ Θ.
Therefore, it remains to show that U i→j

θ (s, a) is continuous in θ. The impact sample for state s and
action a is given by

U i→j
θ (s, a) = max

ai∈Ai
Qj

θ(s, a
−i, ai)− min

ai∈Ai
Qj

θ(s, a
−i, ai).

Assume Qj
θ(s, a) is continuous in θ ∈ Θ, then we get that U i→j

θ (s, a) is continuous in θ ∈ Θ for
every i, j ∈ N , s ∈ S, and a ∈ A as maximum or minimum of finitely many continuous terms. To
complete the proof, it remains to show the continuity of Qj

θ(s, a) in θ ∈ Θ.

Denote the transition matrix of the Markov chain {st, at}t≥0 induced by the policy πθ by PA
θ .

The stationary distribution of {st, at}t≥0 is given by dAθ = {dθ(s) · πθ(s, a)}s∈S,a∈A ∈ R|S×A|.
Furthermore, for a state-action pair (s, a) set v0 as starting distribution, where the entry corre-
sponding to (s, a) equals one and zero else and denote the expected rewards vector of agent j by
Rj = {Rj(s, a)}s∈S,a∈A. Then the state-action function can be written as

Qj
θ(s, a) =

∑
t≥0

(
v0
(
PA
θ

)t − dAθ

)T
Rj := f(θ).

Additionally define a sequence of functions {ft}t≥0 as

ft(θ) :=

t∑
τ=0

(
v0
(
PA
θ

)τ − dAθ

)T
Rj .

Observe that θ 7→ PA
θ is a continuously differentiable matrix-valued function by Assumption 5.10.

Furthermore, it is a transition matrix of an irreducible and aperiodic Markov chain over the states
and actions {st, at}t≥0. Finally, as the transition probabilities of the underlying MDP P (s′|s, a)
are constant, and the probabilities of the policy satisfy π(s, a) > 0 for all s, s′ ∈ S, a ∈ A, entries
of PA

θ are positive for all θ ∈ Rm if they are positive for one θ ∈ Rm. That means we can apply

Lemma A.6 and get that there exist constants C ≥ 1 and α ∈ (0, 1) such that
∥∥∥v0 (PA

θ

)t − dAθ

∥∥∥
2
<

|S × A| · Cαt for every t ≥ 0. Then we see that with

sup
θ∈Θ

|f(θ)− ft(θ)| = sup
θ∈Θ

∣∣∣∣∣∣
∑

τ≥t+1

(
v0
(
PA
θ

)τ − dAθ

)T
Rj

∣∣∣∣∣∣
≤ sup

θ∈Θ

∑
τ≥t+1

∣∣∣⟨v0 (PA
θ

)τ − dAθ , R
j⟩
∣∣∣

≤ sup
θ∈Θ

∑
τ≥t+1

∥∥∥v0 (PA
θ

)τ − dAθ

∥∥∥
2
·
∥∥Rj

∥∥
2

≤
∥∥Rj

∥∥
2
· |S × A| · C ·

∑
τ≥t+1

ατ ,

we can bound the difference of f and ft uniformly for all θ ∈ Θ. As |α| < 1 we get that
lim
t→∞

sup
θ∈Θ

|f(θ)− ft(θ)| = 0.

Therefore, the sequence {ft}t≥0 converges uniformly on Θ to f . As the function ft is a finite sum
of continuous functions, it is continuous in θ ∈ Θ for every t ≥ 0. By the uniform limit theorem
(Forster, 2013), we get that f is continuous as well, which concludes the proof.
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(a) SIM impact matrix SI(sbeside opponent coin, πθ, ηt). (b) SIM impact matrix SI(sbeside own coin, πθ, ηt)

Figure 3: Average SIM estimation over 10 seeds for specific grid positions. Once agents spawn
beside their opponent’s coin and once beside their own coin.

B SIM RESULTS IN COIN GAME

In this section, we provide additional findings related to the SIM estimation within the context of
the coin game. Specifically, we assess the descriptive capabilities of SIM by closely examining
particular states.

Considering the coin game’s unique reward structure, we have spotlighted two distinct grid posi-
tions for our evaluation. Note that while it is possible, the likelihood of these board positions arising
during training is low, which shows also the generalization capabilities of the SIM estimation. Nev-
ertheless, we found that training the SIM estimations suffer from a higher variance than the TIM
estimations. Which is why we restrict ourselves rather to a relative comparison between the two
states instead of directly interpreting the absolute values.

The first scenario, illustrated in Figure 3a, situates the agents directly adjacent to an opponent’s coin.
To detail further, agent 1 is positioned next to agent 2’s coin, agent 2 is adjacent to agent 3’s coin,
and agent 3 finds itself beside agent 1’s coin. If, in their subsequent move, all agents opt to collect
these coins, each will earn a reward of 1. Beyond this, agent 1 would impose a penalty on agent 2,
while agent 2 would similarly penalize agent 3. Agent 3 cannot inflict penalties on any of the others.

In our second scenario, presented in Figure 3b, all agents are spawned directly beside their respective
coins. In this configuration, there are no penalties in the immediate next time-step. Thus, even
though penalization could arise in later iterations, the expected impact on agents that are susceptible
to penalties should be considerably diminished when compared to the first scenario.

We compare the estimated state impact measurements in the considered scenarios, which are illus-
trated on the right side of Figures 3a and 3b, next. When assessing agent 1, we observe that its
estimated impact on agent 2 is markedly high when poised to collect the latter’s coin. However,
this impact drops significantly when agent 1 is about to retrieve its own coin. Agent 2 showcases
a different pattern. In the penalty-rich first scenario, its estimated impact is high for both itself and
agent 3. However, when there’s no looming penalty—as when agent 2 targets its own coin—the
projected impact on agent 3 drops significantly.

Drawing from these observations, it becomes evident that the state impact measurements align with
intuitive expectations based on the coin game’s unique reward structure. The SIM’s responsiveness
to agent positioning, in relation to coin ownership and the subsequent potential for penalties, show-
cases its efficacy and descriptive power. In essence, this analysis demonstrates the robustness of SIM
and its applicability as a tool for understanding agent interdependencies and influence in complex
multi-agent environments.

C DETAILED EXPERIMENT SETUP

We give a detailed overview of the setup and methodology of the empirical experiments. We repeat
the already mentioned parts for the convenience of the reader.
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C.1 RANDOM ENVIRONMENT

The specifics of the generation process are taken from the work of Zhang et al. (2018). Consider
a set of |N | = 5 agents and |S| = 5 states. Each agent can choose from a binary action space
Aj = {0, 1}. We uniformly sample the values of the transition probabilities P (s′|s, a) from the
interval [0, 1] and store them in a |S| × |S| · |A| matrix. To ensure irreducibility and aperiodicity
of the resulting Markov chain over the states, we add the constant 5e−5 to all entries and normalize
the rows of the matrix, so that they sum up to one. We sample the reward matrix’s entries uniformly
from [0, 2] and store them in a |N | × |S| · |A| matrix. That means for every agent j, state s ∈ S,
and action a ∈ A a reward matrix entry Rj(s, a) is sampled uniformly from [0, 2]. Furthermore,
we create embeddings for the state and action pairs ϕ(s, aj) ∈ Rmj , with mj = 20 for all j ∈ N ,
by sampling every entry uniformly from [0, 1]. Accordingly, we sample the entries of the policy
parameters θj ∈ Rmj uniformly from [− 1√

mj
, 1√

mj
]. To determine the probability distribution of

the policies πj
θj , we use the Boltzmann policies (Sutton & Barto, 2018), i.e.,

πj
θj (s, a

j) =
exp

(
ϕ(s, aj)T θj

)∑
bj∈Aj exp (ϕ(s, bj)T θj)

.

At time step t, where the system is in state st, the actions at = (a1t , . . . a
N
t ) are sampled according

to ajt ∼ πj
θj (st|·). The instantaneous reward of agent j is then given by Rj(st, at). The following

state st+1 is sampled from P (·|st, at), and the initial state s0 is sampled uniformly from S. Note
that this setup satisfies Assumption 3.2 and the policies satisfy Assumption 5.10.

If we conduct experiments with some enforced influence structure among the agents, we adjust the
environment in the following way. We set the rows of the transition probability matrix all equal
to the first row, i.e., P (s′|·, ·) = P (s0|·, ·) for all s′ ∈ S. Additionally, we set the entries for
a state s ∈ S , and actions a−i = (a1, . . . , ai−1, ai+1, . . . aN ) ∈ A−i in the reward matrix to
Rj(s, a−i, ai) = Rj(s, a−i, âi) for all ai, âi ∈ Ai.

For all experiments, we assume that each agent can at least influence its individual state-action
function. To determine the overall dependency structures among the agents, we randomly sample a
number of additional dependencies Ladd from the remaining ones. For example, for the dependency
structure with Ladd = 1, each agent can have an influence on its state-action function and there exists
exactly one pair of agents i, j ∈ N with i ̸= j such that i can influence the individual state-action
function of j. Enforcing no influence structure corresponds to the case of Ladd = N2 −N = 20.

We determine different quantities analytically in the following way. The stationary distribution over
the states and actions dAθ is the left eigenvector to the eigenvalue one of the transition matrix PA

θ . It
can be easily determined by solving the linear system

(
PA
θ

)T − I|S×A| = 0 and extracting a strictly
positive vector of length one. The individual long-term return of agent j is given by Jj(πθ) = dAθ R

j .
Under Assumption 3.2, we can express the individual state-action functions as

Qj
θ(s, a) =

∑
t≥0

(
x0

(
PA
θ

)t − dAθ

)T
Rj ,

where x0 ∈ R1×|S|·|A| is the starting distribution with x0(s, a) = 1 and zero else. By using∥∥∥x0

(
PA
θ

)t − dAθ

∥∥∥ < 1e−8 as stopping criterion, we can approximate the individual state-action
functions analytically. We denote the individual state-action function approximations that use this
method with Qj,ana

θ for j ∈ N . Finally, we can use the analytically approximated individual state-
action functions Qj,ana

θ to approximate SIM and TIM analytically. For this, we use the formulas
from Equations 28 and 29. The corresponding SIM and TIM matrices, with entries calculated by
this method, are denoted by TIana(πθ) and SIana(s, πθ) respectively.

For a learning approximation of individual state-action functions Qj
θ(·, ·, ηj), we use the tabular

SARSA algorithm for the average-reward setting, see Section 10.3 in the book of Sutton & Barto
(2018). The learning rates α and β are set to α = β = 0.036. The entries of the state-action table
are initially set to one. The TIM and SIM approximation matrices using the learning state-action
function for the iteration algorithm are denoted by TI(πθ, ηt) and SI(s, πθ, ηt).
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For both approximation algorithms, we initialize the approximation of SIM and TIM for all i, j ∈ N
to 1

|N | = 1/5 and set the learning rates to αTIM
t = 0.471

t0.726 and αSIM
t = 0.74

t0.539 .

C.2 COIN GAME

The coin game is structured within a 10 × 10 grid where three agents initially start at random
positions, ensuring no overlaps. For every state s, agents have five potential actions: moving left,
right, up, down, or staying put. Movements are constrained by the grid’s boundaries—if an agent
attempts to exit the grid, it remains stationary. When two agents simultaneously aim for the same
spot, one’s move is prioritized at random, leaving the other unmoved.

Each agent is associated with a distinct coin type. Coins spawn at random time intervals on random
positions, avoiding any overlap with existing coins. If a coin materializes on an agent-occupied
spot, the agent must stay there for an additional round to claim it. However, an agent collects a coin
when it moves on a field that is already occupied by a coin. The spawn rate is chosen so that, in
expectation, a coin of each type appears every four to five steps, with a cap of four coins of the same
type coexisting on the grid. The average collecting rate of the agents with a trained (greedy) policy,
is slightly below the expected spawning rate, so that there usually are coins present on the field.

The reward dynamics of the coin game are structured in the following manner. Upon collecting
any coin, an agent is awarded a reward of 1, irrespective of the coin’s type. However, if an agent
collects a coin not designated for it, the owner of that coin might incur a penalty. The penalty
system is deliberately one-sided. Agent 3 is penalized by −2 each time an opposing agent collects
one of its coins. Agent 2 specifically incurs a penalty when Agent 1 collects one of its coins.
This means Agent 1 can consistently impose penalties by collecting opposing coins, while Agent 3
never penalizes opponents through its actions. It’s noteworthy that, while the standard coin game is
constructed as a social dilemma, our adaptation deviates from this by ensuring agents 1 and 2 faces
no adverse consequences from acting greedily.

The representation ϕ(s) ∈ R6×10×10 of a state s is encoded in a one-hot tensor with dimensions
6 × 10 × 10, where six channels detail the game’s state. Specifically, each agent occupies two
channels: one marking its location and another indicating the placements of its designated coins.
All agents can observe the full state s.

We examine this environment with evolving acting policies. Each agent j operates under an inde-
pendent policy πj

θj
t

. The parameters θjt are refined using the Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017). Despite our focus on a continuing task, we implement the con-
ventional PPO approach, targeting the maximization of the discounted cumulative reward. This
choice underscores the versatility and independence of TIM and SIM from acting policies, given
that they are formulated for the average reward setting.

For estimating the on-policy state-action functions, denoted as Qj
θt

: R6×10×10 × A → R, each
agent employs a deep SARSA network (Zhao et al., 2016). We have tailored the network’s update
rule to provide estimates for the state-action values consistent with the average reward setting, as
defined by Equation 2.

We initialize the approximation of TIM for all i, j ∈ N to 1
|N | = 1/3. Rather than adjusting the

TIM estimates at every incremental time step, we accumulate a batch of transitions and then update
the estimate, using the mean impact samples derived from this batch. We found that this approach
is more stable. Importantly, this modification does not conflict with the theoretical guarantees asso-
ciated with the original update rule as denoted in Equation 12.

Due to the large state space, the tabular SIM estimation approach delineated in Section 5.2 becomes
infeasible. To circumvent this limitation, for every agent i, we introduce an additional neural net-
work featuring three output heads—one for each agent—to estimate SIi→j(ϕ(s), πθt). We proceed
by training this network using a supervised method. Specifically, we gather a batch of transitions,
identify the associated impact samples, and then condition the network to align with these impact
samples. To ensure a more stable and consistent training process, transitions are stored in a replay
buffer, from which batches are subsequently drawn.
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For implementing the PPO algorithm, we leverage the standard version offered by StableBaselines3
(SB3) (Raffin et al., 2021). The deep SARSA algorithm can be conceptualized as an on-policy
version of the widely recognized DQN algorithm (Mnih et al., 2013). Accordingly, we modify
the DQN implementation of SB3 to the deep SARSA algorithm for the average-reward setting. It is
worth noting that the SB3 library is traditionally designed for single-agent scenarios. In our case, we
have modified it to ensure concurrent learning across all our algorithms. In terms of computational
strategy, we chose to run the environment simulations entirely on a GPU. This approach allows us
to run 10, 000 environments in parallel. Consequently, a single timestep, denoted as t, produces a
batch of 10, 000 transitions for us. All of our experiments specific to the coin game were conducted
using a consumer-grade Nvidia Geforce RTX 2080Ti GPU.

D HYPERPARAMETERS FOR EXPERIMENTS

In this section, we give a detailed overview of the used hyperparameters and how they were chosen
for the empirical experiments.

D.1 RANDOM ENVIRONMENT

A summary of the used hyperparameters are given in Table 1.

Table 1: Overview hyperparameters in random environment determined by random search.

Declaration Symbol Algorithm Value

State-action learning rate α SARSA algorithm 0.036
Long-term return step size β SARSA algorithm 0.036
Initial Learning rate (TIM) αTIM

0 TIM approximation 0.471
Learning rate decay (TIM) dTIM

decay TIM approximation 0.726

Initial Learning rate (SIM) αSIM
0 SIM approximation 0.740

Learning rate decay (SIM) dSIM
decay SIM approximation 0.539

Critic initial learning rate β0,ω Algorithm 1 of Zhang et al. 0.128
Critic learning rate decay dω,decay Algorithm 1 of Zhang et al. 0.039
Actor initial learning rate β0,θ Algorithm 1 of Zhang et al. 0.924
Actor learning rate decay dθ,decay Algorithm 1 of Zhang et al. 0.088
Size of state individual action embedding m Algorithm 1 of Zhang et al. 20
Size of state joint action embedding K Algorithm 1 of Zhang et al. 80

The experiments to evaluate the approximation algorithms for SIM and TIM have several tuneable
hyperparameters. First, we determined the learnings rates α and β for the SARSA approximation
algorithm (Sutton & Barto, 2018), the initial learning rates αSIM

0 and αTIM
0 , and the decay rates

dSIM
decay and dTIM

decay of the TIM approximation algorithms. The learning rates for the SIM and TIM
approximation algorithms in timestep t were then given by

αSIM
t =

αSIM
0

td
SIM
decay

and αTIM
t =

αTIM
0

td
TIM
decay

.

Next, we set the number of agents N = 5, the number of states |S| = 5, the size of the action spaces∣∣Aj
∣∣ = 2 for all j ∈ N , the number of approximation steps to T = 10.000, initialized the tables of

the individual state-action function approximations with one, initialized the approximation of SIM
and TIM by 1/|N | = 1/5, and set α = β. With this in place, we performed a random search with
1.000 different seeds and sampled α, α0, and ddecay uniformly from [0, 1] for every seed. The re-
mainder of the environment and the policy parameters were randomly chosen without enforcing any
influence structure. The details of this can be found in Section C. We then measured the error of the
approximation algorithms using the SARSA algorithm to the analytically determined SIM and TIM
for a given policy, i.e., we measured ∥SIana(·, πθ)− SI(·, πθ, ηt)∥1 and ∥TIana(πθ)− TI(πθ, ηt)∥1
after T steps. We chose the set of parameters that resulted in the minimal approximation errors over
the random search. This gave us α = β = 0.036, αSIM

0 = 0.740, αTIM
0 = 0.471, dSIM

decay = 0.539, and
dTIM

decay = 0.726.
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The hyperparameters for the actor-critic algorithm of Zhang et al. (2018) were determined similarly.
For this we set the number of agents to N = 10, the number of states to |S| = 10, the size of the
action-spaces

∣∣Aj
∣∣ = 2 for all j ∈ N , the number of simulation steps to T = 20.000, and do not

enforce any influence structure. We perform a random search for 1.000 different seeds. For each
simulation, we sample the initial learning rate for the critic βω,0 and actor βθ,0 uniformly from [0, 1].
The corresponding decay rate for the critic dω,decay is uniformly sampled from [0, 1], and the decay
rate for the actor dθ,decay is sampled from [dω,decay, 1]. This results in learnings rates at time step t
given by

βt,ω =
β0,ω

tdω,decay
and βt,θ =

β0,θ

tdθ,decay
.

Furthermore, we sample the size m = mj for every j ∈ N of the embeddings of the
states and individual actions uniformly from the set {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, and
the size of the embeddings of the state and joint actions denoted by K uniformly from
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The remainder of the environment and parameters, e.g.,
for the policies or global state-action function approximations, were chosen randomly. For each run,
we measure the globally averaged long-term return, which is given for time step t by

Jt =
1

t

t−1∑
k=0

1

N

∑
j∈N

rjk+1, (38)

where rjk+1 denotes the instantaneous reward of agent j in time step k. We chose the final parameters
from the simulation with the highest final globally averaged long-term return, i.e., the parameter
set with the highest value of J20.000 of the simulations. These parameters were βω,0 = 0.128,
βθ,0 = 0.924, dω,decay = 0.039, dθ,decay = 0.088, m = 20, and K = 80.

The performance of the actor-critic learning algorithm, i.e., the value Jt, is sensitive to the parameter
choice. The learned policies do not perform better than random for most of the randomly sampled
parameters.

D.2 COIN GAME

Given the coin game’s complexity and the intricacies of the algorithms we employ, a random search
approach—like the one used in the random environment—is infeasible. Instead, we opt for hand-
tuning the hyperparameters, building upon the default settings provided by SB3. Modifications from
these default values are detailed in Table 2.

All neural networks utilized in our study employ a consistent architecture for feature extraction.
Specifically, the feature extractor consists of three convolutional layers, each with a kernel size of
three and a stride of one, which is subsequently followed by a ReLU activation function. For the
networks dedicated to the PPO and deep SARSA algorithms, the remaining architecture builds upon
SB3’s default networks, which operate on the embedded output from the feature extractor. On the
other hand, the SIM network uses a simple feed forward design, comprised of three fully connected
layers. Each of these layers has a hidden size of 64 and is followed by ReLU activations.
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Table 2: Overview hyperparameters in coin game determined by hand tuning.

Declaration SB3 variable name or symbol Algorithm Value

State-action learning rate learning rate Deep SARSA 0.0001
Replay buffer size buffer size Deep SARSA 500, 000
Transitions before training starts learning starts Deep SARSA 100, 000
Target network update interval target update interval Deep SARSA 500, 000
Training batch size batch size Deep SARSA 8096
Number of steps t before update n rollout steps Deep SARSA 8
Long-term return step size - Deep SARSA 0.01
Initial Learning rate (TIM) αTIM

0 TIM approximation 1.0
Learning rate decay (TIM) dTIM

decay TIM approximation 0.50
Learning rate (SIM) - SIM approximation 0.0001
Discount rate γ PPO 0.98
Learning rate learning rate PPO 0.001
Number of steps t before update n rollout steps PPO 25
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