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Abstract

Sequence-to-sequence (seq2seq) models are001
known to be effective for named-entity recog-002
nition (NER). Here we focus on explainability003
of seq2seq NER models. Contrary to most ef-004
forts that focus on explaining why a certain005
named entity has been recognized, we con-006
centrate on negative cases i.e., sequence-level007
true negative or false negative, in which no008
named entity (NoNE) is recognized. Detect-009
ing sequence-level false negatives is critical in010
certain use cases such as location extraction in011
social media texts for disaster events, to not012
miss any location mentions. We introduce an013
approach to feature-relevance explainability for014
seq2seq models that leverages, a special class-015
of-input (COIN) token to capture whether or016
not a named entity was present in the input017
sequence. We run experiments on a location ex-018
traction task using a modified translation model019
(TANL) and generate NoNE explanation for the020
sequence-level negatives. We carry out a sys-021
tematic use case-based validation procedure for022
our NoNE explanation approach. The exper-023
iments demonstrate that our NoNE approach024
is able to deliver important information about025
shortcomings of the seq2seq model and to un-026
cover gaps in the formulation and application027
of the protocol used to annotate the data.028

1 Introduction029

In this paper, we investigate the explainability030

of sequence-to-sequence (seq2seq) named entity031

recognition (NER) models. Most papers discussing032

explainable methods for NER focus on explain-033

ing the positives, presence of the named entities,034

but not much attention is given to the negatives035

(Lin et al., 2020; Güngör et al., 2020; Agarwal036

et al., 2021). In contrast, we introduce an approach037

that generates explanations for sequences in which038

no named entity (NoNE) is found. We call the039

sequences in which no named entity is found as040

"sequence-level negatives". We run experiments041

on NER for location entities in crisis-related tweets042

collected during various different disaster events 043

such as floods, earthquakes, wildfires, hurricane 044

and cyclone. This disaster risk management use 045

case of location extraction in tweets is an exam- 046

ple of an NER problem that needs explainability 047

techniques for an area in which decision support 048

is critical and in which explanations for false neg- 049

atives are especially important. The crisis-related 050

tweets come from Suwaileh et al. (2022)’s paper 051

where they present a large-scale dataset for the 052

NER task of identifying locations in disaster tweets 053

Suwaileh et al. (2022)’s study refers to this NER 054

task as location mention recognition. 055

With the emergence and rapid progress of vari- 056

ous pre-trained language models, we have observed 057

a trend of researchers solving one NLP task by re- 058

formulating it as another. This approach is success- 059

ful for many NLP tasks and provides a promising 060

way of improving NLP models’ performance and 061

also has great potential in unifying various NLP 062

tasks, making it possible to use single model for di- 063

verse tasks (Sun et al., 2020). Named entity recog- 064

nition (NER), traditionally a token classification or 065

sequence labeling task, has been recently addressed 066

by researchers as a seq2seq task leading to the cur- 067

rent state-of-the-art-performance on various NER 068

datasets (Athiwaratkun et al., 2020; Paolini et al., 069

2021; Yan et al., 2021; Sun et al., 2020). Paolini 070

et al. (2021)’s Translation between Augmented Nat- 071

ural Languages (TANL) framework solves several 072

structured prediction tasks, including NER, in a uni- 073

fied way with a common architecture and without 074

the need for task-specific modules by framing the 075

task as a translation task between augment natural 076

languages. 077

Our main contributions are as follows: We pro- 078

pose an approach to feature-relevance explainabil- 079

ity for seq2seq NER models by leveraging a class- 080

of-input (COIN) token to capture whether or not 081

there is a named entity present in the input se- 082

quence. The sequence-level classification on top of 083
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the NER task (using the COIN token label) allows084

us to categorize an entire sequence into two cate-085

gories sequence-level positives (sequence contains086

named entities) and sequence-level negatives (se-087

quence contains no name entities). Secondly, we088

carry out seq2Seq NER experiments on a location089

extraction task using the TANL framework and ex-090

plore the explanation techniques on the model’s pre-091

dictions, particularly the NoNE cases. Thirdly, we092

carry out use case-based systematic validation pro-093

cedure for our NoNE explanation approach. Lastly,094

we demonstrate that our NoNE approach delivers095

important information about the seq2seq model096

such as shortcomings and insights into edge cases097

that can be useful to further improve the model.098

2 Related Work099

In this section, we discuss how NER has been100

solved as a seq2seq task and its advantages. Then,101

we present the current work on explainable NER,102

where there is a research gap on explaining when103

no named entities are detected by models. Lastly,104

we discuss the current work on seq2seq explanabil-105

ity methods and how they present an opportunity106

to be applied for the NER task.107

2.1 Seq2seq NER Approach108

The seq2seq approach has been commonly used109

in machine translation, language modelling, sum-110

marization, and question-answering tasks but there111

is a ongoing trend towards seq2seq for NER es-112

pecially with the emergence of large language113

models like T5 and BART (Raffel et al., 2020;114

Lewis et al., 2020). Wang et al. (2019) propose115

for the first time the seq2seq model to be used116

for NER, called SC-NER, that has a classifier117

(which can be trained jointly with the encoder118

and decoder), added to determine whether sen-119

tences have entities. Athiwaratkun et al. (2020)120

proposed a seq2seq framework that combines121

sequence labeling and sentence-level (sequence-122

level) classification in an augmented natural lan-123

guage format. For the sequence-level classifica-124

tion, Athiwaratkun et al. (2020) used the pattern125

(( sentence-level label )) in the beginning126

of the sentence. Our COIN token is closely related127

to this approach, however is clearly novel since128

Athiwaratkun et al. (2020) do not consider explain-129

ability.130

Paolini et al. (2021)’s TANL framework solves131

several structured prediction tasks, including NER,132

in a unified way with a common architecture and 133

without the need for task-specific modules. We 134

adopt the TANL framework in our work. We 135

chose the framework because it can handle multi- 136

task learning, achieves at performance comparable 137

to the current state-of-the-art for NER and have 138

showed potential in generalizability (Paolini et al., 139

2021). Table 1 shows an example of TANL in use 140

for NER for location entities on a crisis-related 141

tweet. Furthermore, with the improved transfer of 142

knowledge about label semantics, TANL can sig- 143

nificantly improve the performance in the few-shot 144

regime (Paolini et al., 2021) or when there is lim- 145

ited training data, which is the common case for 146

disaster events. 147

2.2 NER Explanations 148

To the best of our knowledge, there has been no 149

explainable NER papers that produce explanations 150

for when models predict no named entities. Güngör 151

et al. (2020) proposed a method of explaining 152

NER predictions by assigning importance values to 153

the morphological features of the detected entities 154

and were only interested in the explanation of the 155

named entity regions. Zugarini and Rigutini (2023) 156

investigated XAI techniques for NER by involving 157

semantic knowledge in generating global explana- 158

tions for each named entity. Lin et al. (2020)’s 159

paper introduced ‘entity triggers’, proxy of human 160

explanations, group of words in a sentence that 161

helps to explain why humans would recognize an 162

entity in a sentence. They argued that a combina- 163

tion of entity triggers (explanations) and standard 164

entity annotations can enhance the generalization 165

power of NER models (Lin et al., 2020). 166

2.3 Seq2seq Explanations 167

Feature attribution methods, also referred to as 168

saliency methods, are widely used to interpret 169

model decisions. These methods assign distribu- 170

tions of importance scores over input tokens to 171

represent their impact on model predictions (Si- 172

monyan et al., 2014; Murdoch et al., 2018; Mad- 173

sen et al., 2022). Work on feature attribution for 174

seq2seq has been mainly focused on machine trans- 175

lation, highlighting word alignments, coreference 176

resolutions capabilities and model training dynam- 177

ics (Ding et al., 2019; He et al., 2019; Voita et al., 178

2021). As seq2seq models are not traditionally 179

used for NER, they present an opportunity to re- 180

search explainability methods. Framing the NER 181

task as a seq2seq task lets us utilize sequential 182
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Input: # PakArmy rescuing the injured in # Earthquake without a rest , Whereas
, Young volunteers from neighbouring cities like # SaraiAlamgir ,# Jhelum , #
Kharian ,# Gujrat are helping people in hospitals . # Mirpur is awake , #
Pakistan is awake ! #0
Output: # PakArmy rescuing the injured in # Earthquake without a rest , Whereas
, Young volunteers from neighbouring cities like # [ SaraiAlamgir | location ] ,
# [ Jhelum | location ] ,# [ Kharian | location ] , # [ Gujrat | location ] are
helping people in hospitals . # [ Mirpur | location ] is awake , # [ Pakistan
| location ] is awake ! [ #0 | wloc]

Table 1: Example of TANL-based NER with COIN token prediction output. The Input sequence is concatenated
with #0, our COIN token at the end. The Output contains location entities being enclosed in the [] tags and labeled
as "location". The COIN token makes it possible to generate a sequence-level classification label: either nloc for
(no location) or wloc (with location)

.

attribution methods, which involve a multi-step it-183

eration (Sarti et al., 2023).184

In this work, we follow the method of Ferrando185

et al. (2022), which integrates the contributions of186

both the source and target to seq2seq predictions.187

Our work differs from Ferrando et al. (2022) with188

the introduction of the COIN token which we use189

for sequence classification, this generates the “with190

location” and “no location” label for the entire se-191

quence. By adding our COIN token, we can look192

into the COIN token label, in the case of the no193

location, “nloc”, itself and probe which words con-194

tributed the most or least to the generation of “nloc”.195

Other forms of seq2seq explanations consider ra-196

tionales, subsets of context, that can explain indi-197

vidual model predictions, where the best rationale198

is the smallest subset of input tokens that would199

predict the same output as the full sequence Vafa200

et al. (2021).201

3 Methods202

In this section, we introduce the overall framework203

of our proposed NoNE explanation approach. First,204

we briefly describe the problem of how there is205

not much attention given to explaining sequence-206

level negatives, sequences where no named entities207

are found, in NER models and how this is critical208

in areas in which explanations for false negatives209

are especially important. Second, we propose the210

use of seq2seq NER models, TANL, a modified211

translation model, to fill the gap by running experi-212

ments on NER for location entities in crisis-related213

tweets. Third, we present our explanation genera-214

tion method. Last, we introduce our automatic and215

manual validation of our NoNE approach.216

Problem Definition. The NER task is to identify217

and classify all entity occurrences in a sequence. 218

In the sequence-level view of the NER task, there 219

are two cases of sequences: (1) sequence contains 220

named entities (sequence-level positive) (2) se- 221

quence does not contain named entities (sequence- 222

level negative) There have been various studies on 223

explaining when named-entities are detected in se- 224

quences, however, not much attention is given to 225

explaining when no named entities are detected. 226

To the best of our knowledge, there has been no 227

explainable NER papers that produce explanations 228

for when models predict no named entities. It is im- 229

portant to explain when models predict no named 230

entities to allow users to distinguish the two cases 231

of sequence-level negatives, (1) sequence-level true 232

negatives: when there are no named entities de- 233

tected and the model is correct and (2) sequence- 234

level false negatives: when there are no named 235

entities but the model is not correct. 236

Seq2Seq NER with COIN token. We utilized 237

Paolini et al. (2021)’s TANL framework to formu- 238

late NER as a seq2seq task. Paolini et al. (2021)’s 239

TANL frames structured prediction tasks such as 240

NER into a text-to-text translation problem. The 241

augmented languages are designed in a way that 242

makes it easy to encode structured information 243

(such as relevant entities) in the input and to de- 244

code the output text into structured information 245

(Paolini et al., 2021). We modify the use of TANL 246

by adding the COIN token, which serves as the 247

prompt for a sequence classifier that classifies the 248

sequence based on presence of a location entity: 249

”nloc” for no location and ”wloc” for with loca- 250

tion. The presence of the COIN token label (”nloc” 251

for no-location label) allows us extract attribution 252

scores that we use for explanation word selection. 253
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Explanation. To analyze the NoNE cases, i.e.,254

the negative cases in which no named-entity is255

found, we look at the word probabilities that ex-256

plain the label in the output corresponding to the257

COIN token in the input. The feature-attribution258

explanations we use in this paper are word-level259

explanations and have the following form: Given260

a decision by the model, i.e., a word in the output261

sequence, the explanation contains a probability for262

each word in the input sequence. This probability263

reflects the importance of that word’s contribution264

to the decision.265

In order to generate our probabilities, we use In-266

seq (Sarti et al., 2023), a toolkit for transformer267

sequence models (Wolf et al., 2020) that uses268

attribution methods mainly sourced from Cap-269

tum (Kokhlikyan et al., 2020). Generated prob-270

abilities are in the token-level (subword). Inseq271

aggregates the subword output of the model to prob-272

abilities at the word level. Specifically, it uses the273

logits of the subword tokens, which are commonly274

used in feature attribution (Bastings et al., 2022).275

With the generated classification label of our276

COIN token, we can infer the word-level genera-277

tion probability score of the sequence-level nega-278

tive label. This allows us to investigate explanation279

approach for sequence-level negatives of NER.280

For the explanation generation, we distinguished281

our low confidence negative tweets from the high282

confidence negative heuristically. The criteria we283

set for a tweet to be considered low confidence is284

that the tweet must contain at least one word with285

individual word-level probabilities that is in the286

bottom 30th percentile of the entire distribution of287

word-level probabilities in the entire set.288

We set feature attribution so that there would be289

no more than 2 highlighted words as explanations290

in any sentence, since this would be comfortable291

for the disaster managers who need to review the292

explanations. The highlighted word is the word293

that contributes the least to the generation of the294

‘nloc’ label of our COIN token. We consider the295

least contributing words as our possible explanation296

words with the rationale that the generation of these297

words were the most likely considered possible298

location words or having location-like form by the299

model. Hence, we hypothesize that with showing300

these explanation words to our enduser, they can301

determine whether or not the NoNE explanation302

words are possible location words.303

Validation. We carried out a systematic manual304

validation of our explanations to recognize whether 305

or not our system is effective in helping an enduser, 306

a disaster manager, in quickly reviewing the NER 307

output. As the disaster manager wants to capture 308

all the tweets that contain location entities and not 309

miss any tweet with a location, we want to mini- 310

mize the number of false negative tweets. We refer 311

the entire tweet a false negative when the model pre- 312

dicts that the entire tweet doesn’t have any location 313

entity (’nloc’ is generated) but there is/are actual 314

location entity/entities in the tweet. We carried 315

out two validation approaches on our set of low- 316

confidence negative predictions: automatic valida- 317

tion and manual validation. The disaster managers 318

have no time to check all the individual tweets. 319

Hence, we want to generate explanations only to 320

the sequences where our model has lower confi- 321

dence on their prediction and the choice of thresh- 322

old was mentioned above. 323

Our automatic validation is calculated by how 324

many false negative tweets would be missed if the 325

disaster manager only looked at our set low con- 326

fidence cases. We consider our NoNE approach 327

good if our enduser misses a relatively low number 328

of false negative tweets when looking only at our 329

low confidence tweets. Most of the false negative 330

tweets should be in the low confidence tweets. 331

The manual validation is calculated as the suc- 332

cess rate of the disaster manager on differentiating 333

true negative tweets and false negative tweets given 334

only the explanation words and their respective im- 335

mediate neigborhood words (three-word phrase). 336

The authors act as a disaster managers (enduser) to 337

do the manual classification of sequence-level false 338

or true negatives. Table 2 shows example three- 339

word phrases for validation by our enduser, the 340

word at the middle being the word that has the least 341

contribution to the prediction of ’nloc’ (no loca- 342

tion label for the tweet). The enduser will see these 343

three-word phrases and decide accordingly whether 344

the tweet is a false negative or a true negative. In 345

the next section, we present the experimental setup. 346

visited DHQ Mirpur
# Mirpur Police
in Stuart AB

Table 2: Examples of NoNE explanation three-word
phrases for validation by our enduser

347
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4 Experimental Setup348

In this section, we discuss the experimental setup349

of our study. We start with a description of the350

datasets we used. Then, we discuss the experiments351

we conducted to do the NER task.352

4.1 Datasets353

Our experiments use the crisis-related Twitter354

NER Datasets from English-language IDRISI-RE355

(Suwaileh et al., 2023), however, we chose our own356

training and test split and made sure that they are357

mutually exclusive. Each disaster event in the orig-358

inal IDRISI-RE dataset is split in train and dev. A359

detailed train-test split of the tweets we used in the360

experiments can be found on Table 3.361

For each tweet data, we appended the COIN362

token #0 at the end and labeled them with non-363

word labels “ABX” and “ABY” which correspond364

to the classification of the entire tweet as without365

location and with location respectively.366

Our training and test sets are mutually exclusive367

and the training set contains events that precede the368

event in the test data (which is necessary for the369

disaster management scenario). We hold-out 10%370

of our training set for dev, but this set is just used371

to determine the effectiveness of training on flood372

data and not for hyperparameter tuning which was373

not needed.374

4.2 Experiments375

BERT-based NER (Suwaileh et al., 2022) is tested376

as a baseline model, due to its high performance377

reported by Suwaileh et al. (2023) The model was378

fine-tuned on the training data. We do not generate379

explanations for the BERT model as our explana-380

tion approach is for seq2seq models only.381

TANL-based NER (Paolini et al., 2021), the T5-382

base NER model, is our main model. We fine-tune383

the pre-trained model on our training data. We used384

the same hyperparameters of Paolini et al. (2021)’s385

TANL paper in training with the CoNLL03 NER386

dataset except for the max sequence length, where387

we set it to 512 and the number of beams for beam388

search to 4.389

TANL-based NER with COIN token. We mod-390

ified the original TANL-based NER framework391

with our addition of the class-of-input (COIN) to-392

ken Our NoNE explainability approach works as393

follows: We append a COIN token #0 to the input394

sequence, i.e., to each training tweet. Then we as-395

sign a label to each, reflecting whether or not the396

input sequence contains a named entity. The label 397

appears at the end of the targeted output sequence: 398

wloc for with location entities or an nloc for no 399

location entities. 400

5 Results 401

In this section, we discuss the results of our ex- 402

periments. First, we present the model results of 403

our TANL-based NER models both with and with- 404

out COIN token and we compare this with the re- 405

sults of a baseline BERT-NER model trained on 406

crisis-related tweet data. Then, we demonstrate 407

the results of the validation of our NoNE explana- 408

tion approach both automatic and manual valida- 409

tion. Lastly, we discuss some insights gained from 410

our NoNE explanations that showcase our model’s 411

shortcomings and insights on edge cases. 412

5.1 Model Results 413

We ran a comparison between the TANL NER 414

with no COIN, and with the COIN token to en- 415

sure it didn’t affect the NER performance. Among 416

the TANL NER with COIN models, the best per- 417

forming was the TANL NER with COIN model 418

trained with FLD train set (TANL.FLD.COIN). In 419

exploratory experiments, we determined that the 420

model was relatively robust to the choice of training 421

data so we chose to train on the FLD train set. We 422

also observed that adding the COIN token does not 423

disadvantage. For the models fine-tuned with the 424

FLD train set and the MIX train set (both flood and 425

earthquake), we actually observed an F1-score in- 426

crease of up to 0.09. However, this is not consistent 427

across train sets. 428

The performance of the models on the test set 429

are shown in Table 4. This is promising as not only 430

can we generate explanations with the tokens but 431

we can also improve or maintain performance of 432

the model. 433

5.2 Validation Results 434

As previously mentioned in our Methods section, 435

we had two validation criteria for our NoNE ap- 436

proach. We carried out the validation on the low 437

confidence negative tweets set that consists of 379 438

tweets in total. The breakdown of these tweets per 439

disaster event can be found in Table 5. 440

First, we ran an automatic validation where we 441

measure the percentage of false negatives in the low 442

confidence tweet set. We found that the low confi- 443

dence negative tweets contain 68% of the the total 444
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Event IDRISE # of Event IDRISE # of
Orig. Split Tweets Orig. Split Tweets

Our training set Our test set
Sri Lanka Flood 2017 train, dev 457 Midwest US Floods 2019 train,dev 864
Kerala Flood 2018 train, dev 1,300 Pakistan Earthquake 2019 train, dev 616
Maryland Flood 2018 train, dev 422 California Wildfires 2018 train, dev 1,075
Ecuador Earthquake 2016 train, dev 1,153 Cyclone Idai 2019 train, dev 1,388
Italy Earthquake 2016 train, dev 590 Hurricane Dorian 2019 train, dev 938
Kaikoura Earthquake 2016 train, dev 1,231
Mexico Earthquake 2017 train, dev 1,300
Total 6,453 Total 4,881

Table 3: Training-test split of the data used in the experiments, created from the original IDRISI splits. The training
and test set are mutually exclusive.

Model Midwest Pakistan California Cyclone Hurricane
US Floods Earthquake Wildfires Idai Dorian

BERT-NER 0.95 0.84 0.77 0.90 0.86
TANL.FLD 0.83 0.81 0.84 0.81 0.63
TANL.EQK 0.83 0.80 0.83 0.82 0.71
TANL.MIX 0.84 0.81 0.85 0.84 0.71
TANL.FLD.COIN 0.88 0.79 0.83 0.84 0.72
TANL.EQK.COIN 0.85 0.75 0.83 0.78 0.74
TANL.MIX.COIN 0.82 0.77 0.84 0.81 0.73

Table 4: Performance of Models using F1-score as metric. The presence of the COIN token does not impair the
performance of the the TANL-based NER models.

number of sequence-level false negative, meaning445

the disaster manager misses a relatively low num-446

ber of false negatives when looking only at the low447

confidence negative tweets. The breakdown of the448

% of sequence-level false negative found in low449

confidence negative tweets per disaster event can450

be found in Table 5. We observe that are approach451

perform quite well for California Wildfires and Pak-452

istan Earthquake at 84% and 79%, respectively.453

Lastly, we conduct our manual validation ap-454

proach: given only the explanation words and their455

respective immediate adjacent words (neighbor-456

hood words), how often can the enduser differen-457

tiate between sequence-level true and false nega-458

tive? The enduser was able to correctly differenti-459

ate sequence-level true and false negative 79% of460

the time. We show the breakdown of the success461

rate of identifying both sequence-level false neg-462

ative and true negative by disaster event in Table463

5. From the percentages, we observe that there is464

room for improvement in identifying the sequence-465

level false negatives and the optimal window size466

can be further investigated in this regard. On the467

other hand, as shown on Table 5, the enduser is468

able to identify sequence-level true negatives at a 469

high rate. 470

5.3 Insights from NoNE explanations 471

In this subsection, we present examples of four cat- 472

egories of NoNE explanations in which no named 473

entity was found and discuss the insights that our 474

NoNE approach delivers. We present four cases of 475

NoNE explanations: (1) False Negative sequence 476

where the model incorrectly predicts with low con- 477

fidence and enduser agrees with the ground truth 478

(2) True Negative sequence where the model pre- 479

dicts with low confidence and the enduser agrees 480

with the ground truth (3) True Negative sequence, 481

enduser predicts false negative, disagrees with the 482

ground truth and (4) False Negative sequence, en- 483

duser predicts true negative and disagrees with 484

ground truth. Cases 1 and 2, found in Table 6, 485

reveal how our model works and its shortcomings. 486

For cases 3 and 4, we present how our NoNE ap- 487

proach unveils possible annotation errors in the 488

ground truth of the dataset, which can be found in 489

Table 7. 490

The first case (top of Table 6) are false negative 491
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Event # Low conf. % FN seqs Success rate Success rate
neg seqs in low conf. %FN found %TN found

(Automatic) (Manual) (Manual)
Midwest US Floods 2019 24 56 60 100
Pakistan Earthquake 2019 40 79 59 100
California Wildfires 2018 67 84 50 83
Cyclone Idai 2019 103 59 31 94
Hurricane Dorian 2019 145 65 75 95

Table 5: Results of Validation of NoNE Approach. The automatic validation results show the percentage of the
total sequence-level false negatives found in the low confidence negative tweet set. The manual validation results
two values: (1) success rate of enduser to correctly identify sequence-level false negatives and (2) success rate of
enduser to correctly identify sequence-level true negatives.

Case 1: False Negative. Model has low confidence. Enduser agrees with ground truth
1(a) RT @USER : # PMAJK visited { DHQ } { Mirpur} visited injured # earthquake
[ #0 | nloc ]

1(b) Prisoners at { Mutimurefu }, also victims of # CycloneIdai , as the winds
blew off the roofs of four cells at the prison [ #0 | nloc ]

Case 2: True Negative. Model has low confidence. Enduser agrees with ground truth
2(a) The death toll just keeps risingD # { californiawildfire } [ #0 | nloc ]

2(b) In times of crisis like this we must all come together to provide relief ,
serve lives and give hope and encouragement . Do nt ask what others are doing
but look at { yourself } and ask : What can l do to help my compatriots . #
CycloneIdai # PamberiNeZimbabwe [ #0 | nloc ]

Table 6: Examples illustrating the insight delivered by our NoNE explanation approach that reveal how our model
works and its shortcomings. {} indicates words that are important in the explanation because they are assigned
low probabiliy of contributing to the prediction of nloc (the no-location label). Underlining indicates ground truth
location entities.

predictions for which the model has low confidence492

based on our threshold and where our enduser493

agrees with the ground truth upon manual valida-494

tion. These were missed by our TANL-based NER495

model, leading to a false negative tweets. These496

examples show our model’s shortcomings. The497

locations that were annotated in the ground truth498

are underlined. The explanation words selected by499

our NoNE approach are indicated by ({ }), these500

are words that are assigned a low probability of501

contribution to the prediction of ‘nloc’ (no location502

label for entire tweet). For case 1(a), the words503

“DHQ" and "Mirpur" contributed the least to the504

prediction of ‘nloc’. A possible reason for “DHQ505

Mirpur" to be missed by the model is how the506

tweet is grammatically incorrect. For case 1(b), the507

word “Multimurefu" contributed the least to the508

prediction of ‘nloc’.509

The second case (second row of Table 6) are510

true negative predictions for which the model511

has low confidence based on our threshold where512

our enduser agrees with the ground truth upon 513

manual validation. For case 2(a), although 514

"californiawildfire" contains a location word, 515

according to Suwaileh et al. (2023)’s annotation 516

protocol if the location name is a hashtag it is not 517

considered as a location entity. For case 2(b), the 518

explanation word chosen is “yourself" that may 519

have been because of the preceding preposition 520

“at". 521

We present how the NoNE approach can deliver 522

important information about the ground truth data 523

and helps to uncover errors in the ground truth of 524

the data set as seen in cases 3 and 4 found in Ta- 525

ble 7. The third case (third row of Table 7) are 526

the false negative predictions for which the model 527

has low confidence and the enduser disagrees with 528

the ground truth. The locations that were anno- 529

tated in the ground truth are underlined. In the 530

explanation, some words (indicated by { }) have 531

low attribution scores reflecting a weak contribu- 532

tion to the prediction of the ‘nloc’ tag. For case 533
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Case 3: False Negative. Model has low confidence. Enduser disagrees with ground truth
3(a) # 3moNews | # CycloneIdai did not damage fuel pipeline , { Zimbabwes }
energy minister has said # 3mob [ #0 | nloc ]

3(b) LATEST : Details of # Earthquake victims . Names of those who lost their
lives so far . Number of injured . Source : # { Mirpur } Police [ #0 | nloc ]

Case 4: True Negative. Model has low confidence. Enduser disagrees with ground truth
4(a) More footage from { Abaco } in the eye of Dorian . I just ca nt believe
there s a newborn in this damaged structure now . Praying for this family . [
#0 | nloc ]

4(b) Friends in { Stuart } AB zones are activated for evacuation . [ #0 | nloc]

Table 7: Examples illustrating the insight delivered by our NoNE explanation approach that reveal possible
annotation errors of the ground truth. {} indicates words that are important in the explanation because they are
assigned low probabiliy of contributing to the prediction of nloc (the no-location label). Underlining indicates
ground truth location entities.

3(a), the word “Zimbabwes" was not used as a534

location in the context of the tweet, rather mod-535

ifies “minister". Here, the NoNE approach is536

delivering the insight that the NER model is per-537

forming well on some edge cases. In example 3(b),538

“Mirpur” modifies “Police”, and, as such, is not539

considered a location according to the IDRISI-RE540

annotation protocol (Suwaileh et al., 2023).541

The fourth case (bottom of Table 7) are true neg-542

ative predictions for which the model has low con-543

fidence and the enduser disagrees with the ground544

truth. The explanation words with low attribution545

scores are indicated by ({ }). These words con-546

tributed the least to the prediction of the ‘nloc’ tag.547

Example 4(a) is considered to have no location en-548

tities in the ground truth and our model agrees with549

this in low confidence. The word “Abaco" was con-550

sidered by our NoNE approach to contribute the551

least to the prediction of ‘nloc’ and from context,552

the enduser considers “Abaco" as a location word.553

A similar case is observed in 4(b) where the NoNE554

approach highlights Stuart as the least contributor555

to the prediction of ‘nloc’ and is considered as a556

location word in the context. We consider these557

examples as possible annotation errors in the data.558

In an actual disaster scenario, these are the cases559

that we need to minimize.560

6 Conclusion and Future Work561

We have proposed an approach that generates word-562

level feature relevance explanations for seq2seq563

NER that is designed to be particularly helpful in564

cases in which no named entity (NoNE) is found.565

The approach leverages a class-of-input (COIN)566

token that reflects the lack of a named entity in the567

input sequence. We evaluated our NoNE approach 568

using both automatic and manual validation, of 569

which we demonstrated that our enduser is able to 570

successfully differentiate true and false negatives 571

given the explanation word and their immediate 572

neighborhoods at a high rate. Lastly, we demon- 573

strated the potential of our NoNE explanations in 574

revealing false negatives, which are crucial for the 575

disaster management location NER scenario that 576

provides the larger context for our work, and also 577

showed that the explanations can uncover issues 578

with the ground truth annotations. 579

Future work should carry out a deeper investiga- 580

tion of this potential. We believe that with further 581

work, the COIN token could also improve the NER 582

performance of the model. As we did not opti- 583

mize our models and we only used one type of 584

seq2seq model, we believe there is room for im- 585

provement in this. We hope that our work inspires 586

other researchers to consider developing explain- 587

ability focused on negative cases. Furthermore, we 588

want to incorporate user perspectives from disaster 589

practitioners on the effectiveness of explainability 590

focused on negative cases to improve our NoNE 591

approach. 592

Limitations 593

We validated our explanations using manual evalu- 594

ation. Other evaluation methods would solidify the 595

usefulness of the generated explanations. Further- 596

more, we use saliency as explanation as this is what 597

most explainable models use but other possibilities 598

were not explored. 599

In the manual validation, we noticed that the en- 600

duser’s judgement of the three-word phrase expla- 601
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nation is impacted by: the enduser’s understanding602

of the kind of tweets are being investigated, the603

enduser’s background knowledge of the locations604

and lastly the enduser’s understanding of what the605

annotation protocol was in the first place. As the606

validation was done by the authors and not by an607

actual disaster manager, the effectiveness of our608

approach was not validated in a real scenario.609

We focused only on sequence-level negatives610

in this study and did not discuss nor investigate611

ambiguous token-level negative cases where the612

model has a low confidence labeling a token as not-613

location. These token-level decisions do affect the614

sequence-level output but we did not investigate615

this relation.616

Ethics Statement617

For social media monitoring to detect disasters and618

to estimate the magnitude of the disaster event, we619

are interested in finding and labeling those tweets620

of people that are witnessing or experiencing the621

disaster and therefore gathering personal informa-622

tion about the locations where these witnesses are623

located. Most research on disaster-event social me-624

dia analysis for including this current study is done625

on English tweet datasets while other languages626

spoken in often disaster-sensitive areas are not re-627

ceiving attention (Moitra et al., 2022).628
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