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Abstract

Sequence-to-sequence (seq2seq) models are
known to be effective for named-entity recog-
nition (NER). Here we focus on explainability
of seq2seq NER models. Contrary to most ef-
forts that focus on explaining why a certain
named entity has been recognized, we con-
centrate on negative cases i.e., sequence-level
true negative or false negative, in which no
named entity (NoNE) is recognized. Detect-
ing sequence-level false negatives is critical in
certain use cases such as location extraction in
social media texts for disaster events, to not
miss any location mentions. We introduce an
approach to feature-relevance explainability for
seq2seq models that leverages, a special class-
of-input (COIN) token to capture whether or
not a named entity was present in the input
sequence. We run experiments on a location ex-
traction task using a modified translation model
(TANL) and generate NoNE explanation for the
sequence-level negatives. We carry out a sys-
tematic use case-based validation procedure for
our NoNE explanation approach. The exper-
iments demonstrate that our NoNE approach
is able to deliver important information about
shortcomings of the seq2seq model and to un-
cover gaps in the formulation and application
of the protocol used to annotate the data.

1 Introduction

In this paper, we investigate the explainability
of sequence-to-sequence (seq2seq) named entity
recognition (NER) models. Most papers discussing
explainable methods for NER focus on explain-
ing the positives, presence of the named entities,
but not much attention is given to the negatives
(Lin et al., 2020; Giingor et al., 2020; Agarwal
et al., 2021). In contrast, we introduce an approach
that generates explanations for sequences in which
no named entity (NoNE) is found. We call the
sequences in which no named entity is found as
"sequence-level negatives". We run experiments
on NER for location entities in crisis-related tweets

collected during various different disaster events
such as floods, earthquakes, wildfires, hurricane
and cyclone. This disaster risk management use
case of location extraction in tweets is an exam-
ple of an NER problem that needs explainability
techniques for an area in which decision support
is critical and in which explanations for false neg-
atives are especially important. The crisis-related
tweets come from Suwaileh et al. (2022)’s paper
where they present a large-scale dataset for the
NER task of identifying locations in disaster tweets
Suwaileh et al. (2022)’s study refers to this NER
task as location mention recognition.

With the emergence and rapid progress of vari-
ous pre-trained language models, we have observed
a trend of researchers solving one NLP task by re-
formulating it as another. This approach is success-
ful for many NLP tasks and provides a promising
way of improving NLP models’ performance and
also has great potential in unifying various NLP
tasks, making it possible to use single model for di-
verse tasks (Sun et al., 2020). Named entity recog-
nition (NER), traditionally a token classification or
sequence labeling task, has been recently addressed
by researchers as a seq2seq task leading to the cur-
rent state-of-the-art-performance on various NER
datasets (Athiwaratkun et al., 2020; Paolini et al.,
2021; Yan et al., 2021; Sun et al., 2020). Paolini
et al. (2021)’s Translation between Augmented Nat-
ural Languages (TANL) framework solves several
structured prediction tasks, including NER, in a uni-
fied way with a common architecture and without
the need for task-specific modules by framing the
task as a translation task between augment natural
languages.

Our main contributions are as follows: We pro-
pose an approach to feature-relevance explainabil-
ity for seq2seq NER models by leveraging a class-
of-input (COIN) token to capture whether or not
there is a named entity present in the input se-
quence. The sequence-level classification on top of



the NER task (using the COIN token label) allows
us to categorize an entire sequence into two cate-
gories sequence-level positives (sequence contains
named entities) and sequence-level negatives (se-
quence contains no name entities). Secondly, we
carry out seq2Seq NER experiments on a location
extraction task using the TANL framework and ex-
plore the explanation techniques on the model’s pre-
dictions, particularly the NoNE cases. Thirdly, we
carry out use case-based systematic validation pro-
cedure for our NoNE explanation approach. Lastly,
we demonstrate that our NoNE approach delivers
important information about the seq2seq model
such as shortcomings and insights into edge cases
that can be useful to further improve the model.

2 Related Work

In this section, we discuss how NER has been
solved as a seq2seq task and its advantages. Then,
we present the current work on explainable NER,
where there is a research gap on explaining when
no named entities are detected by models. Lastly,
we discuss the current work on seq2seq explanabil-
ity methods and how they present an opportunity
to be applied for the NER task.

2.1 Seq2seq NER Approach

The seq2seq approach has been commonly used
in machine translation, language modelling, sum-
marization, and question-answering tasks but there
is a ongoing trend towards seq2seq for NER es-
pecially with the emergence of large language
models like TS5 and BART (Raffel et al., 2020;
Lewis et al., 2020). Wang et al. (2019) propose
for the first time the seq2seq model to be used
for NER, called SC-NER, that has a classifier
(which can be trained jointly with the encoder
and decoder), added to determine whether sen-
tences have entities. Athiwaratkun et al. (2020)
proposed a seq2seq framework that combines
sequence labeling and sentence-level (sequence-
level) classification in an augmented natural lan-
guage format. For the sequence-level classifica-
tion, Athiwaratkun et al. (2020) used the pattern
(( sentence-level label )) in the beginning
of the sentence. Our COIN token is closely related
to this approach, however is clearly novel since
Athiwaratkun et al. (2020) do not consider explain-
ability.

Paolini et al. (2021)’s TANL framework solves
several structured prediction tasks, including NER,

in a unified way with a common architecture and
without the need for task-specific modules. We
adopt the TANL framework in our work. We
chose the framework because it can handle multi-
task learning, achieves at performance comparable
to the current state-of-the-art for NER and have
showed potential in generalizability (Paolini et al.,
2021). Table 1 shows an example of TANL in use
for NER for location entities on a crisis-related
tweet. Furthermore, with the improved transfer of
knowledge about label semantics, TANL can sig-
nificantly improve the performance in the few-shot
regime (Paolini et al., 2021) or when there is lim-
ited training data, which is the common case for
disaster events.

2.2 NER Explanations

To the best of our knowledge, there has been no
explainable NER papers that produce explanations
for when models predict no named entities. Giingor
et al. (2020) proposed a method of explaining
NER predictions by assigning importance values to
the morphological features of the detected entities
and were only interested in the explanation of the
named entity regions. Zugarini and Rigutini (2023)
investigated XAl techniques for NER by involving
semantic knowledge in generating global explana-
tions for each named entity. Lin et al. (2020)’s
paper introduced ‘entity triggers’, proxy of human
explanations, group of words in a sentence that
helps to explain why humans would recognize an
entity in a sentence. They argued that a combina-
tion of entity triggers (explanations) and standard
entity annotations can enhance the generalization
power of NER models (Lin et al., 2020).

2.3 Seq2seq Explanations

Feature attribution methods, also referred to as
saliency methods, are widely used to interpret
model decisions. These methods assign distribu-
tions of importance scores over input tokens to
represent their impact on model predictions (Si-
monyan et al., 2014; Murdoch et al., 2018; Mad-
sen et al., 2022). Work on feature attribution for
seq2seq has been mainly focused on machine trans-
lation, highlighting word alignments, coreference
resolutions capabilities and model training dynam-
ics (Ding et al., 2019; He et al., 2019; Voita et al.,
2021). As seq2seq models are not traditionally
used for NER, they present an opportunity to re-
search explainability methods. Framing the NER
task as a seq2seq task lets us utilize sequential



Input: # PakArmy rescuing the injured in # Earthquake without a rest , Whereas
, Young volunteers from neighbouring cities like # SaraiAlamgir ,# Jhelum , #
Kharian ,# Gujrat are helping people in hospitals # Mirpur is awake , #
Pakistan is awake ! #0

Output: # PakArmy rescuing the injured in # Earthquake without a rest , Whereas
, Young volunteers from neighbouring cities like # [ SaraiAlamgir | location ] ,
# [ Jhelum | location ] ,# [ Kharian | location ] , # [ Gujrat | location ] are

helping people in hospitals .
| location ] is awake ! [ #@ | wloc]

# [ Mirpur | location ] is awake , # [ Pakistan

Table 1: Example of TANL-based NER with COIN token prediction output. The Input sequence is concatenated
with #0@, our COIN token at the end. The Output contains location entities being enclosed in the [] tags and labeled
as "location”. The COIN token makes it possible to generate a sequence-level classification label: either nloc for

(no location) or wloc (with location)

attribution methods, which involve a multi-step it-
eration (Sarti et al., 2023).

In this work, we follow the method of Ferrando
et al. (2022), which integrates the contributions of
both the source and target to seq2seq predictions.
Our work differs from Ferrando et al. (2022) with
the introduction of the COIN token which we use
for sequence classification, this generates the “with
location” and “no location” label for the entire se-
quence. By adding our COIN token, we can look
into the COIN token label, in the case of the no
location, “nloc”, itself and probe which words con-
tributed the most or least to the generation of “nloc”.
Other forms of seq2seq explanations consider ra-
tionales, subsets of context, that can explain indi-
vidual model predictions, where the best rationale
is the smallest subset of input tokens that would
predict the same output as the full sequence Vafa
et al. (2021).

3 Methods

In this section, we introduce the overall framework
of our proposed NoNE explanation approach. First,
we briefly describe the problem of how there is
not much attention given to explaining sequence-
level negatives, sequences where no named entities
are found, in NER models and how this is critical
in areas in which explanations for false negatives
are especially important. Second, we propose the
use of seq2seq NER models, TANL, a modified
translation model, to fill the gap by running experi-
ments on NER for location entities in crisis-related
tweets. Third, we present our explanation genera-
tion method. Last, we introduce our automatic and
manual validation of our NoNE approach.
Problem Definition. The NER task is to identify

and classify all entity occurrences in a sequence.
In the sequence-level view of the NER task, there
are two cases of sequences: (1) sequence contains
named entities (sequence-level positive) (2) se-
quence does not contain named entities (sequence-
level negative) There have been various studies on
explaining when named-entities are detected in se-
quences, however, not much attention is given to
explaining when no named entities are detected.
To the best of our knowledge, there has been no
explainable NER papers that produce explanations
for when models predict no named entities. It is im-
portant to explain when models predict no named
entities to allow users to distinguish the two cases
of sequence-level negatives, (1) sequence-level true
negatives: when there are no named entities de-
tected and the model is correct and (2) sequence-
level false negatives: when there are no named
entities but the model is not correct.

Seq2Seq NER with COIN token. We utilized
Paolini et al. (2021)’s TANL framework to formu-
late NER as a seq2seq task. Paolini et al. (2021)’s
TANL frames structured prediction tasks such as
NER into a text-to-text translation problem. The
augmented languages are designed in a way that
makes it easy to encode structured information
(such as relevant entities) in the input and to de-
code the output text into structured information
(Paolini et al., 2021). We modify the use of TANL
by adding the COIN token, which serves as the
prompt for a sequence classifier that classifies the
sequence based on presence of a location entity:
”nloc” for no location and “wloc” for with loca-
tion. The presence of the COIN token label ("nloc”
for no-location label) allows us extract attribution
scores that we use for explanation word selection.



Explanation. To analyze the NoNE cases, i.e.,
the negative cases in which no named-entity is
found, we look at the word probabilities that ex-
plain the label in the output corresponding to the
COIN token in the input. The feature-attribution
explanations we use in this paper are word-level
explanations and have the following form: Given
a decision by the model, i.e., a word in the output
sequence, the explanation contains a probability for
each word in the input sequence. This probability
reflects the importance of that word’s contribution
to the decision.

In order to generate our probabilities, we use In-
seq (Sarti et al., 2023), a toolkit for transformer
sequence models (Wolf et al., 2020) that uses
attribution methods mainly sourced from Cap-
tum (Kokhlikyan et al., 2020). Generated prob-
abilities are in the token-level (subword). Inseq
aggregates the subword output of the model to prob-
abilities at the word level. Specifically, it uses the
logits of the subword tokens, which are commonly
used in feature attribution (Bastings et al., 2022).

With the generated classification label of our
COIN token, we can infer the word-level genera-
tion probability score of the sequence-level nega-
tive label. This allows us to investigate explanation
approach for sequence-level negatives of NER.

For the explanation generation, we distinguished
our low confidence negative tweets from the high
confidence negative heuristically. The criteria we
set for a tweet to be considered low confidence is
that the tweet must contain at least one word with
individual word-level probabilities that is in the
bottom 30th percentile of the entire distribution of
word-level probabilities in the entire set.

We set feature attribution so that there would be
no more than 2 highlighted words as explanations
in any sentence, since this would be comfortable
for the disaster managers who need to review the
explanations. The highlighted word is the word
that contributes the least to the generation of the
‘nloc’ label of our COIN token. We consider the
least contributing words as our possible explanation
words with the rationale that the generation of these
words were the most likely considered possible
location words or having location-like form by the
model. Hence, we hypothesize that with showing
these explanation words to our enduser, they can
determine whether or not the NoNE explanation
words are possible location words.

Validation. We carried out a systematic manual

validation of our explanations to recognize whether
or not our system is effective in helping an enduser,
a disaster manager, in quickly reviewing the NER
output. As the disaster manager wants to capture
all the tweets that contain location entities and not
miss any tweet with a location, we want to mini-
mize the number of false negative tweets. We refer
the entire tweet a false negative when the model pre-
dicts that the entire tweet doesn’t have any location
entity ("nloc’ is generated) but there is/are actual
location entity/entities in the tweet. We carried
out two validation approaches on our set of low-
confidence negative predictions: automatic valida-
tion and manual validation. The disaster managers
have no time to check all the individual tweets.
Hence, we want to generate explanations only to
the sequences where our model has lower confi-
dence on their prediction and the choice of thresh-
old was mentioned above.

Our automatic validation is calculated by how
many false negative tweets would be missed if the
disaster manager only looked at our set low con-
fidence cases. We consider our NoNE approach
good if our enduser misses a relatively low number
of false negative tweets when looking only at our
low confidence tweets. Most of the false negative
tweets should be in the low confidence tweets.

The manual validation is calculated as the suc-
cess rate of the disaster manager on differentiating
true negative tweets and false negative tweets given
only the explanation words and their respective im-
mediate neigborhood words (three-word phrase).
The authors act as a disaster managers (enduser) to
do the manual classification of sequence-level false
or true negatives. Table 2 shows example three-
word phrases for validation by our enduser, the
word at the middle being the word that has the least
contribution to the prediction of 'nloc’ (no loca-
tion label for the tweet). The enduser will see these
three-word phrases and decide accordingly whether
the tweet is a false negative or a true negative. In
the next section, we present the experimental setup.

visited DHQ Mirpur
# Mirpur Police
in Stuart AB

Table 2: Examples of NoNE explanation three-word
phrases for validation by our enduser



4 Experimental Setup

In this section, we discuss the experimental setup
of our study. We start with a description of the
datasets we used. Then, we discuss the experiments
we conducted to do the NER task.

4.1 Datasets

Our experiments use the crisis-related Twitter
NER Datasets from English-language IDRISI-RE
(Suwaileh et al., 2023), however, we chose our own
training and test split and made sure that they are
mutually exclusive. Each disaster event in the orig-
inal IDRISI-RE dataset is split in train and dev. A
detailed train-test split of the tweets we used in the
experiments can be found on Table 3.

For each tweet data, we appended the COIN
token #0 at the end and labeled them with non-
word labels “ABX” and “ABY” which correspond
to the classification of the entire tweet as without
location and with location respectively.

Our training and test sets are mutually exclusive
and the training set contains events that precede the
event in the test data (which is necessary for the
disaster management scenario). We hold-out 10%
of our training set for dev, but this set is just used
to determine the effectiveness of training on flood
data and not for hyperparameter tuning which was
not needed.

4.2 Experiments

BERT-based NER (Suwaileh et al., 2022) is tested
as a baseline model, due to its high performance
reported by Suwaileh et al. (2023) The model was
fine-tuned on the training data. We do not generate
explanations for the BERT model as our explana-
tion approach is for seq2seq models only.

TANL-based NER (Paolini et al., 2021), the T5-
base NER model, is our main model. We fine-tune
the pre-trained model on our training data. We used
the same hyperparameters of Paolini et al. (2021)’s
TANL paper in training with the CoONLLO03 NER
dataset except for the max sequence length, where
we set it to 512 and the number of beams for beam
search to 4.

TANL-based NER with COIN token. We mod-
ified the original TANL-based NER framework
with our addition of the class-of-input (COIN) to-
ken Our NoNE explainability approach works as
follows: We append a COIN token #9 to the input
sequence, i.e., to each training tweet. Then we as-
sign a label to each, reflecting whether or not the

input sequence contains a named entity. The label
appears at the end of the targeted output sequence:
wloc for with location entities or an nloc for no
location entities.

5 Results

In this section, we discuss the results of our ex-
periments. First, we present the model results of
our TANL-based NER models both with and with-
out COIN token and we compare this with the re-
sults of a baseline BERT-NER model trained on
crisis-related tweet data. Then, we demonstrate
the results of the validation of our NoNE explana-
tion approach both automatic and manual valida-
tion. Lastly, we discuss some insights gained from
our NoNE explanations that showcase our model’s
shortcomings and insights on edge cases.

5.1 Model Results

We ran a comparison between the TANL NER
with no COIN, and with the COIN token to en-
sure it didn’t affect the NER performance. Among
the TANL NER with COIN models, the best per-
forming was the TANL NER with COIN model
trained with FLD train set (TANL.FLD.COIN). In
exploratory experiments, we determined that the
model was relatively robust to the choice of training
data so we chose to train on the FLD train set. We
also observed that adding the COIN token does not
disadvantage. For the models fine-tuned with the
FLD train set and the MIX train set (both flood and
earthquake), we actually observed an F1-score in-
crease of up to 0.09. However, this is not consistent
across train sets.

The performance of the models on the test set
are shown in Table 4. This is promising as not only
can we generate explanations with the tokens but
we can also improve or maintain performance of
the model.

5.2 Validation Results

As previously mentioned in our Methods section,
we had two validation criteria for our NoNE ap-
proach. We carried out the validation on the low
confidence negative tweets set that consists of 379
tweets in total. The breakdown of these tweets per
disaster event can be found in Table 5.

First, we ran an automatic validation where we
measure the percentage of false negatives in the low
confidence tweet set. We found that the low confi-
dence negative tweets contain 68% of the the total



Event IDRISE # of Event IDRISE # of
Orig. Split Tweets Orig. Split Tweets

Our training set Our test set

Sri Lanka Flood 2017 train, dev 457 Midwest US Floods 2019  train,dev 864

Kerala Flood 2018 train, dev 1,300 Pakistan Earthquake 2019 train, dev 616

Maryland Flood 2018 train, dev 422 California Wildfires 2018  train, dev 1,075

Ecuador Earthquake 2016  train, dev 1,153 Cyclone Idai 2019 train, dev 1,388

Italy Earthquake 2016 train, dev 590 Hurricane Dorian 2019 train, dev 938

Kaikoura Earthquake 2016 train, dev 1,231

Mexico Earthquake 2017 train, dev 1,300

Total 6,453 Total 4,881

Table 3: Training-test split of the data used in the experiments, created from the original IDRISI splits. The training

and test set are mutually exclusive.

Model Midwest Pakistan California Cyclone Hurricane
US Floods Earthquake Wildfires Idai Dorian
BERT-NER 0.95 0.84 0.77 0.90 0.86
TANL.FLD 0.83 0.81 0.84 0.81 0.63
TANL.EQK 0.83 0.80 0.83 0.82 0.71
TANL.MIX 0.84 0.81 0.85 0.84 0.71
TANL.FLD.COIN 0.88 0.79 0.83 0.84 0.72
TANL.EQK.COIN 0.85 0.75 0.83 0.78 0.74
TANL.MIX.COIN 0.82 0.77 0.84 0.81 0.73

Table 4: Performance of Models using F1-score as metric. The presence of the COIN token does not impair the

performance of the the TANL-based NER models.

number of sequence-level false negative, meaning
the disaster manager misses a relatively low num-
ber of false negatives when looking only at the low
confidence negative tweets. The breakdown of the
% of sequence-level false negative found in low
confidence negative tweets per disaster event can
be found in Table 5. We observe that are approach
perform quite well for California Wildfires and Pak-
istan Earthquake at 84% and 79%, respectively.

Lastly, we conduct our manual validation ap-
proach: given only the explanation words and their
respective immediate adjacent words (neighbor-
hood words), how often can the enduser differen-
tiate between sequence-level true and false nega-
tive? The enduser was able to correctly differenti-
ate sequence-level true and false negative 79% of
the time. We show the breakdown of the success
rate of identifying both sequence-level false neg-
ative and true negative by disaster event in Table
5. From the percentages, we observe that there is
room for improvement in identifying the sequence-
level false negatives and the optimal window size
can be further investigated in this regard. On the
other hand, as shown on Table 5, the enduser is

able to identify sequence-level true negatives at a
high rate.

5.3 Insights from NoNE explanations

In this subsection, we present examples of four cat-
egories of NoNE explanations in which no named
entity was found and discuss the insights that our
NoNE approach delivers. We present four cases of
NoNE explanations: (1) False Negative sequence
where the model incorrectly predicts with low con-
fidence and enduser agrees with the ground truth
(2) True Negative sequence where the model pre-
dicts with low confidence and the enduser agrees
with the ground truth (3) True Negative sequence,
enduser predicts false negative, disagrees with the
ground truth and (4) False Negative sequence, en-
duser predicts true negative and disagrees with
ground truth. Cases 1 and 2, found in Table 6,
reveal how our model works and its shortcomings.
For cases 3 and 4, we present how our NoNE ap-
proach unveils possible annotation errors in the
ground truth of the dataset, which can be found in
Table 7.

The first case (top of Table 6) are false negative



Event #Low conf. % FNseqs Successrate Success rate

neg seqs in low conf. %FN found %TN found
(Automatic) (Manual) (Manual)

Midwest US Floods 2019 24 56 60 100

Pakistan Earthquake 2019 40 79 59 100

California Wildfires 2018 67 84 50 83

Cyclone Idai 2019 103 59 31 94

Hurricane Dorian 2019 145 65 75 95

Table 5: Results of Validation of NoNE Approach. The automatic validation results show the percentage of the
total sequence-level false negatives found in the low confidence negative tweet set. The manual validation results
two values: (1) success rate of enduser to correctly identify sequence-level false negatives and (2) success rate of
enduser to correctly identify sequence-level true negatives.

Case 1: False Negative. Model has low confidence. Enduser agrees with ground truth

1(a) RT @USER :

# PMAJK visited { DHQ } { Mirpur} visited injured # earthquake

[ #0 | nloc 1]

1(b) Prisoners at { Mutimurefu }, also victims of # Cycloneldai , as the winds
blew off the roofs of four cells at the prison [ #0@ | nloc ]

Case 2: True Negative. Model has low confidence. Enduser agrees with ground truth

2(a) The death toll just keeps risingD # { californiawildfire } [ #0@ | nloc ]

2(b) In times of crisis like this we must all come together to provide relief ,

serve lives and give hope and encouragement .
What can 1 do to help my compatriots . #

but look at { yourself } and ask :
Cycloneldai # PamberiNeZimbabwe [ #0 |

Do nt ask what others are doing

nloc ]

Table 6: Examples illustrating the insight delivered by our NoNE explanation approach that reveal how our model
works and its shortcomings. {} indicates words that are important in the explanation because they are assigned
low probabiliy of contributing to the prediction of nloc (the no-location label). Underlining indicates ground truth

location entities.

predictions for which the model has low confidence
based on our threshold and where our enduser
agrees with the ground truth upon manual valida-
tion. These were missed by our TANL-based NER
model, leading to a false negative tweets. These
examples show our model’s shortcomings. The
locations that were annotated in the ground truth
are underlined. The explanation words selected by
our NoNE approach are indicated by ({ }), these
are words that are assigned a low probability of
contribution to the prediction of ‘nloc’ (no location
label for entire tweet). For case 1(a), the words
“DHQ" and "Mirpur"” contributed the least to the
prediction of ‘nloc’. A possible reason for “DHQ
Mirpur"” to be missed by the model is how the
tweet is grammatically incorrect. For case 1(b), the
word “Multimurefu” contributed the least to the
prediction of ‘nloc’.

The second case (second row of Table 6) are
true negative predictions for which the model
has low confidence based on our threshold where

our enduser agrees with the ground truth upon
manual validation. For case 2(a), although
"californiawildfire"” contains a location word,
according to Suwaileh et al. (2023)’s annotation
protocol if the location name is a hashtag it is not
considered as a location entity. For case 2(b), the
explanation word chosen is “yourself” that may
have been because of the preceding preposition
“at”.

We present how the NoNE approach can deliver
important information about the ground truth data
and helps to uncover errors in the ground truth of
the data set as seen in cases 3 and 4 found in Ta-
ble 7. The third case (third row of Table 7) are
the false negative predictions for which the model
has low confidence and the enduser disagrees with
the ground truth. The locations that were anno-
tated in the ground truth are underlined. In the
explanation, some words (indicated by { }) have
low attribution scores reflecting a weak contribu-
tion to the prediction of the ‘nloc’ tag. For case



Case 3: False Negative. Model has low confidence. Enduser disagrees with ground truth

3(a) # 3moNews

| # Cycloneldai did not damage fuel pipeline ,

{ Zimbabwes }

energy minister has said # 3mob [ #0 | nloc ]

3(b) LATEST :

lives so far . Number of injured .

Details of # Earthquake victims .
Source :

Names of those who lost their
# { Mirpur } Police [ #0 | nloc ]

Case 4: True Negative. Model has low confidence. Enduser disagrees with ground truth

4(a) More footage from { Abaco } in the eye of Dorian
there s a newborn in this damaged structure now .

#0 | nloc 1]

I just ca nt believe
Praying for this family . [

4(b) Friends in { Stuart } AB zones are activated for evacuation .

[ #0 | nloc]

Table 7: Examples illustrating the insight delivered by our NoNE explanation approach that reveal possible
annotation errors of the ground truth. {} indicates words that are important in the explanation because they are
assigned low probabiliy of contributing to the prediction of nloc (the no-location label). Underlining indicates

ground truth location entities.

3(a), the word “Zimbabwes" was not used as a
location in the context of the tweet, rather mod-
ifies “minister"”. Here, the NoNE approach is
delivering the insight that the NER model is per-
forming well on some edge cases. In example 3(b),
“Mirpur” modifies “Police”, and, as such, is not
considered a location according to the IDRISI-RE
annotation protocol (Suwaileh et al., 2023).

The fourth case (bottom of Table 7) are true neg-
ative predictions for which the model has low con-
fidence and the enduser disagrees with the ground
truth. The explanation words with low attribution
scores are indicated by ({ }). These words con-
tributed the least to the prediction of the ‘nloc’ tag.
Example 4(a) is considered to have no location en-
tities in the ground truth and our model agrees with
this in low confidence. The word “Abaco” was con-
sidered by our NoNE approach to contribute the
least to the prediction of ‘nloc’ and from context,
the enduser considers “Abaco” as a location word.
A similar case is observed in 4(b) where the NoNE
approach highlights Stuart as the least contributor
to the prediction of ‘nloc’ and is considered as a
location word in the context. We consider these
examples as possible annotation errors in the data.
In an actual disaster scenario, these are the cases
that we need to minimize.

6 Conclusion and Future Work

We have proposed an approach that generates word-
level feature relevance explanations for seq2seq
NER that is designed to be particularly helpful in
cases in which no named entity (NoNE) is found.
The approach leverages a class-of-input (COIN)
token that reflects the lack of a named entity in the

input sequence. We evaluated our NoNE approach
using both automatic and manual validation, of
which we demonstrated that our enduser is able to
successfully differentiate true and false negatives
given the explanation word and their immediate
neighborhoods at a high rate. Lastly, we demon-
strated the potential of our NoNE explanations in
revealing false negatives, which are crucial for the
disaster management location NER scenario that
provides the larger context for our work, and also
showed that the explanations can uncover issues
with the ground truth annotations.

Future work should carry out a deeper investiga-
tion of this potential. We believe that with further
work, the COIN token could also improve the NER
performance of the model. As we did not opti-
mize our models and we only used one type of
seq2seq model, we believe there is room for im-
provement in this. We hope that our work inspires
other researchers to consider developing explain-
ability focused on negative cases. Furthermore, we
want to incorporate user perspectives from disaster
practitioners on the effectiveness of explainability
focused on negative cases to improve our NoNE
approach.

Limitations

We validated our explanations using manual evalu-
ation. Other evaluation methods would solidify the
usefulness of the generated explanations. Further-
more, we use saliency as explanation as this is what
most explainable models use but other possibilities
were not explored.

In the manual validation, we noticed that the en-
duser’s judgement of the three-word phrase expla-



nation is impacted by: the enduser’s understanding
of the kind of tweets are being investigated, the
enduser’s background knowledge of the locations
and lastly the enduser’s understanding of what the
annotation protocol was in the first place. As the
validation was done by the authors and not by an
actual disaster manager, the effectiveness of our
approach was not validated in a real scenario.

We focused only on sequence-level negatives
in this study and did not discuss nor investigate
ambiguous token-level negative cases where the
model has a low confidence labeling a token as not-
location. These token-level decisions do affect the
sequence-level output but we did not investigate
this relation.

Ethics Statement

For social media monitoring to detect disasters and
to estimate the magnitude of the disaster event, we
are interested in finding and labeling those tweets
of people that are witnessing or experiencing the
disaster and therefore gathering personal informa-
tion about the locations where these witnesses are
located. Most research on disaster-event social me-
dia analysis for including this current study is done
on English tweet datasets while other languages
spoken in often disaster-sensitive areas are not re-
ceiving attention (Moitra et al., 2022).
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