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Abstract

Recent developments in deep learning have led001
to great success in various natural language002
processing (NLP) tasks. However, these appli-003
cations may involve data that contain sensitive004
information. Therefore, how to achieve good005
performance while also protecting the privacy006
of sensitive data is a crucial challenge in NLP.007
To preserve privacy, Differential Privacy (DP),008
which can prevent reconstruction attacks and009
protect against potential side knowledge, is be-010
coming a de facto technique for private data011
analysis. In recent years, NLP in DP mod-012
els (DP-NLP) has been studied from different013
perspectives, which deserves a comprehensive014
review. In this paper, we provide the first sys-015
tematic review of recent advances in DP deep016
learning models in NLP. In particular, we first017
discuss some differences and additional chal-018
lenges of DP-NLP compared with the standard019
DP deep learning. Then we investigate some020
existing work on DP-NLP and present its recent021
developments from two aspects: gradient per-022
turbation based methods and embedding vector023
perturbation based methods. We also discuss024
some challenges and future directions.025

1 Introduction026

The recent advances in deep neural networks have027

led to significant success in various tasks in Natu-028

ral Language Processing (NLP), such as sentiment029

analysis, question answering, information retrieval,030

and text generation. However, such applications031

always involve data that contains sensitive infor-032

mation. For example, a model of aid typing on033

a model keyboard is trained from language data034

which might contain sensitive information such035

as passwords, text messages, and search queries.036

Moreover, language data can also identify a speaker037

explicitly by name or implicitly, for example via a038

rare or unique phrase. Thus, one often encountered039

challenge in NLP is how to handle this sensitive040

information. To overcome the challenge, privacy-041

preserving NLP has been intensively studied in re- 042

cent years. One of the commonly used approaches 043

is based on text anonymization (Pilán et al., 2022), 044

which identifies sensitive attributes and then re- 045

places these sensitive words with some other values. 046

Another approach is injecting additional words into 047

the original text without detecting sensitive enti- 048

ties in order to achieve text redaction (Sánchez and 049

Batet, 2016). However, removing personally iden- 050

tifiable information or injecting additional words 051

is often unsatisfactory, as it has been shown that 052

an adversary can still infer an individual’s mem- 053

bership in the dataset with high probability via the 054

summary statistics on the datasets (Narayanan and 055

Shmatikov, 2008). Moreover, recent studies claim 056

that deep neural networks for NLP tasks often tend 057

to memorize their training data, which makes them 058

vulnerable to leaking information about training 059

data (Shokri et al., 2017; Carlini et al., 2021, 2019). 060

One way that takes into account the limitations of 061

existing approaches by preventing individual re- 062

identification and protecting against any potential 063

data reconstruction and side-knowledge attacks is 064

designing Differentially Private (DP) algorithms. 065

DP (Dwork et al., 2006) provides provable protec- 066

tion against identification and is resilient to arbi- 067

trary auxiliary information that might be available 068

to attackers. Thanks to its formal guarantees, DP 069

has become a de facto standard tool for private 070

statistical data analysis. 071

Although there are numerous studies on DP ma- 072

chine learning and DP deep learning such as (Abadi 073

et al., 2016; Bu et al., 2019; Yu et al., 2019), most 074

of them mainly focus on either the continuous tab- 075

ular data or image data and less attention has been 076

paid to adapting variants of DP algorithms to the 077

context of NLP and the text domain. On the other 078

side, while there are several surveys on DP and 079

its applications such as (Ji et al., 2014; Dankar 080

and Emam, 2013; Xiong et al., 2020; Wang et al., 081

2020a; Desfontaines and Pejó, 2020), all of them 082
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do not study its applications to the NLP domain.083

Recently, Klymenko et al. (2022) gave a brief in-084

troduction to applications of DP in NLP, but the085

reviewed work is not exhaustive and it lacks a tech-086

nical and systematic view of DP-NLP. Thus, to087

fill in this gap, in this paper, we provide the first088

technical overview of the recent developments and089

challenges of DP in language models.090

Specifically, we give a survey on the most recent091

651 papers on deep learning based approaches for092

NLP tasks under DP constraints. First, we show093

some specificities of DP-NLP compared with the094

general deep learning with DP. Then we discuss095

current results from two perspectives via the ways096

of adding randomness to ensure DP: the first one097

is gradient perturbation based methods which in-098

cludes DP-SGD and DP-Adam; the second one099

is embedding vector perturbation based methods100

which includes DP auto-encoder. For each type of101

approach, we also consider its applications to differ-102

ent NLP tasks. Finally, we present some potential103

challenges and future directions.104

Due to space limits, in Appendix A we give a105

preliminary introduction to DP to readers who are106

unfamiliar with DP.107

2 Specificities of NLP with DP108

We first discuss some specificities for DP-NLP109

compared with the standard DP deep learning. Gen-110

erally speaking, there are two aspects, one is pri-111

vacy notations and another is privacy levels.112

2.1 Variants of DP Notions in NLP113

Recall that DP ensures data analysts or adversaries114

will get almost the same information if we change115

any single data sample in the training data, i.e., it116

treats all records as sensitive. However, such an117

assumption is quite stringent. On the one side, un-118

like image data, for text data it is more common119

that only several instead of all attributes need to be120

protected. For example, for the sentence "My cell121

phone number is 1234567890", only the last token122

with the actual cell phone number needs to be pro-123

tected. On the other side, canonical DP requires124

that the log of the ratio between the distribution125

probabilities is always upper bounded by the pri-126

vacy parameter ϵ for any pair of neighboring data.127

However, such a requirement is also quite restric-128

tive. For example, for the sentence "I will arrive129

at 2:00 pm", we want the adversary not to distin-130

1Note that we did not cover all related works, see the
Limitations and Future Directions sections for the works that
are not included in this paper.

guish it from the sentence "I will arrive at 4:00 131

pm". However, DP also can ensure the adversary 132

cannot distinguish it from the sentence "I will ar- 133

rive at 100:00 pm", which is meaningless. Thus, 134

for language data, besides the canonical DP, it is 135

also reasonable to study its relaxations for some 136

specific scenarios. Actually, this is quite different 137

from the existing work on DP deep learning, which 138

mainly focuses on standard DP definitions. In the 139

following, we will discuss some commonly used 140

relaxations of DP for language models. 141

SDP. As we mentioned above, in some scenarios, 142

the sensitive information in text data is sparse and 143

we only need to protect some sensitive attributes 144

instead of the whole sentence. Based on this, Shi 145

et al. (2021) propose a new privacy notion namely 146

selective differential privacy (SDP), to provide pri- 147

vacy guarantees on the sensitive portion of the data 148

to improve model utility. From the definition as- 149

pect, the main difference between SDP and DP is 150

the definition of neighboring datasets. Informally, 151

in SDP, two datasets are adjacent if they differ in at 152

least one sensitive attribute. However, it is hard to 153

define such neighboring datasets directly as there 154

are some correlations between sensitive and non- 155

sensitive attributes, indicating that we can still in- 156

fer information on sensitive attributes (Kifer and 157

Machanavajjhala, 2011). To address the issue, Shi 158

et al. (2021) leverage the Pufferfish framework in 159

(Kifer and Machanavajjhala, 2014). 160

Metric DP. To relax the requirement that the log 161

probability ratio is uniformly bounded by ϵ for all 162

neighboring data pairs, Feyisetan et al. (2020) first 163

adopt the Metric DP (or dχ-privacy) to the prob- 164

lem of private embedding, which is proposed by 165

(Chatzikokolakis et al., 2013) for location data orig- 166

inally. In particular, a Metric DP mechanism could 167

report a token in a privacy-preserving manner while 168

giving higher probability to tokens that are close 169

to the current token, and negligible probability to 170

tokens in a completely different part of the vocabu- 171

lary, where we will use some distance function d 172

to measure the distance between two tokens. 173

Definition 1. For a data domain (vocabulary) X , 174

a randomized algorithm A : X 7→ R is called 175

(ε, δ)-Metric DP with distance function d if for any 176

S, S′ ∈ X l and T ⊆ R we have 177

Pr[A(S) ∈ T ] ≤ ed(S,S
′)εPr[A(S′) ∈ T ] + δ. 178

From the above definition, we can see the prob- 179

ability ratio of observing any particular output y 180

2



given two possible inputs S and S′ is bounded by181

eεd(S
′,S) instead of eϵ in DP. Motivated by Metric182

DP and local DP, (Feyisetan et al., 2020) provides183

the Local Metric DP (LMDP) and uses it for pri-184

vate word embeddings (see Section 4 for details).185

Motivated by Utility-optimized LDP (ULDP) (Mu-186

rakami and Kawamoto, 2019) rather than LDP, re-187

cently Yue et al. (2021) propose Utility-optimized188

Metric LDP (UMLDP). It exploits the fact that189

different inputs have different sensitivity levels to190

achieve higher utility. By assuming the input space191

such as the set of tokens is split into sensitive and192

non-sensitive parts, UMLDP achieves a privacy193

guarantee equivalent to LDP for sensitive inputs.194

2.2 Variants Levels of Privacy in NLP195

When we consider using DP, the first question is196

what kind of information we aim to protect. In the197

previous studies on DP deep learning, we always198

wanted to protect the whole data sample. However,199

in the NLP domain, such one data sample could be200

either a word, a sentence a paragraph, etc. If we201

ignore the concrete privacy level and directly apply202

the previous DP methods, we may have mediocre203

results. Thus, unlike the sample level privacy in DP204

deep learning, researchers in NLP consider differ-205

ent levels of privacy. Especially, they focus on the206

word level and sentence level, which aims to pro-207

tect each word and sentence respectively (Meehan208

et al., 2022; Feyisetan et al., 2019).209

In the federated learning setting, there is a cen-210

tral server and several users each of them has a211

local dataset, the sample level of DP may be insuf-212

ficient. For example, in language modeling each213

user may contribute many thousands of words to214

the training data and each typed word makes its215

own contribution to the RNN’s training objective.216

In this case, just protecting each word is unsatis-217

factory and it is still possible to re-identify users.218

Thus, besides the sample level, we also have the219

user level of privacy, which aims to protect users’220

histories.221

After discussing some specificities of DP-NLP.222

In the following we categorize its recent studies223

into two classes based on their methods to ensure224

DP: gradient perturbation based methods and em-225

bedding vector perturbation based methods. See226

Tab. 1 in Appendix for an overview.227

3 Gradient Perturbation Based Methods228

Generally speaking, a gradient perturbation method229

is based on adding noises to gradients of the loss230

during training the network to ensure DP. As the 231

baseline and canonical algorithm for this type of ap- 232

proach, Differentially Private Stochastic Gradient 233

Descent (DP-SGD) (Abadi et al., 2016) is a DP ver- 234

sion of SGD. Its main idea is to use the noisy and 235

clipped subsampled gradient gt to approximate the 236

whole gradient ∇L(θt, D). In fact, besides SGD, 237

we can use this idea for any optimizer, such as 238

Adam (Kingma and Ba, 2015), whose private ver- 239

sion DP-Adam is proposed and applied in BERT by 240

(Anil et al., 2021). In the past few years, there has 241

been a long list of work on DP-SGD from differ- 242

ent perspectives, such as the subsampling strategy, 243

faster clipping procedures, private clipping param- 244

eter tuning, and the selection of batch size. In the 245

following, we will only discuss the previous work 246

on using DP-SGD-based methods for variants of 247

NLP tasks. See Appendix B for an introduction to 248

DP-SGD. 249

3.1 DP Pre-trained Models 250

Recent developments in NLP have led to successful 251

applications in large-scale language models with 252

the appearance of transformer (Devlin et al., 2019). 253

It combines the contextual information into lan- 254

guage models with a more powerful ability of rep- 255

resentation. These models are called pre-trained 256

models, which train word embedding in large cor- 257

pora targeting various tasks and gain the knowledge 258

for downstream tasks (Peters et al., 2018). In this 259

section, we review some papers that focus on pre- 260

trained NLP models under DP constraints. 261

The workflow of BERT (Devlin et al., 2019) is 262

pre-training the unlabeled text using some large cor- 263

pora first. Then, the downstream tasks first initial- 264

ize the model using the same parameters and fine- 265

tune the parameters according to different tasks. 266

Despite the benefits of powerful representation abil- 267

ity given by the pre-training process, it also has 268

privacy issues since the model would memorize 269

sensitive information such as words or phrases. 270

In order to solve this privacy leakage issue, there 271

are several studies on how to train BERT privately. 272

Hoory et al. (2021) successfully trained a differ- 273

entially private BERT model by modifying the 274

WordPiece algorithm to satisfy DP, and conducted 275

experiments on the problem of entity extraction 276

tasks from medical text. They construct a tailored 277

domain-specific DP-based trained vocabulary de- 278

signed to generate a new domain-specific vocabu- 279

lary while maintaining user privacy and then use 280

the original DP-SGD in the training process. For 281
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the DP vocabulary part, they first construct a word282

histogram by dividing the text into a sequence of283

N -word tuples and then add Gaussian noise to the284

histogram to ensure (ϵ, δ)-DP. Finally, they clip the285

histogram with some threshold. For the training286

phase, they use the original DP-SGD to meet pri-287

vacy guarantees. Besides, they also use the parallel288

training trick to make the training faster. Very re-289

cently Yin and Habernal (2022) apply DP-BERT290

to the legal NLP domain. While DP-BERT can291

achieve good performance with privacy guarantees292

in language tasks. There are still two problems: a293

large gap between non-private accuracy and private294

accuracy, and computation inefficiency of clipping295

every sample gradient in DP-SGD. In order to miti-296

gate these issues, Anil et al. (2021) later privatizes297

the Adam optimizer to improve the performance.298

Instead of adding noise and clipping every entry299

in every batch in DP-SGD, it selects a pre-defined300

number of samples randomly and sums the clipped301

gradients of these selected samples, then it updates302

average gradients with Gaussian noise adding the303

sum in each batch. Besides, it also uses an increas-304

ing batch size schedule instead of a fixed one. It305

finds that large batch size can improve accuracy306

and the increasing batch size schedule can improve307

training efficiency. (Senge et al., 2022) recently308

studied five different typical NLP tasks with vary-309

ing complexity using modern neural models based310

on BERT and XtremeDistil architectures. They311

showed that to achieve adequate performance, each312

task and privacy regime requires special treatment.313

Besides BERT, Ponomareva et al. (2022) pri-314

vately pre-train T5 (Raffel et al., 2020) via their pro-315

posed private tokenizer called DP-SentencePiece316

and DP-SGD. They show that DP-T5 does not suf-317

fer a large drop in pre-training utility, nor in train-318

ing speed, and can still be fine-tuned to high accu-319

racy on downstream tasks320

3.2 DP Fine-tuning321
Besides training pre-trained models using DP al-322

gorithms, another direction is how to fine-tune pre-323

trained models privately. Here the main difference324

is that we assume the pre-trained models such as325

BERT have been trained with some public data and326

our goal is to privately fine-tune targeting specific327

downstream tasks that involve sensitive data. It328

is noted that in this section we also include some329

related work on training shallow neural networks330

in DP such as RNN or LSTM such as (Li et al.,331

2022; Amid et al., 2022) as these methods can be332

directly applied to DP fine-tuning.333

In this topic, the first direction is to investigate 334

different tasks in the DP model and to compare 335

its performance compared to the non-private one 336

for studying the utility-privacy tradeoff. Yue et al. 337

(2022) consider the task of synthetic text genera- 338

tion and show that simply fine-tuning a pre-trained 339

GPT2 with the vanilla DP-SGD enables the model 340

to generate useful synthetic text. Mireshghallah 341

et al. (2022) recently extended to generating latent 342

semantic parses in the DP model and then generat- 343

ing utterances based on the parses. Carranza et al. 344

(2023) use DP-SGD to fine-tune a publicly pre- 345

trained LLM on a query generation task. The result- 346

ing model can generate private synthetic queries 347

representative of the original queries which can 348

be freely shared for downstream non-private rec- 349

ommendation training procedures. Very recently, 350

Lee and Søgaard (2023) adopted the DP-SGD to 351

the meeting summarization task and showed that 352

DP can improve performance when evaluated on 353

unseen meeting types. Aziz et al. (2022) use GPT- 354

2 and DP-SGD based methods to generate syn- 355

thetic EHR data which can de-identify sensitive 356

information for clinical text. Wunderlich et al. 357

(2021) study the hierarchical text classification task 358

and they use DP-SGD to Bag of Words (BoW), 359

CNNs and Transformer-based architectures. They 360

find that Transformer-based models achieve bet- 361

ter performance than CNN-based models in large 362

datasets while CNN-based models are superior to 363

Transformer-based models in small datasets. 364

The second direction is to reduce the huge mem- 365

ory cost of storing individual gradients, and de- 366

crease the added noise suffering notorious dimen- 367

sional dependence in DP-SGD. Specifically, the 368

studies in this direction always propose a general 369

method for DP-SGD and then perform the method 370

for different NLP tasks. Yu et al. (2021) propose a 371

variant of DP-SGD called the Reparametrized Gra- 372

dient Perturbation (RGP) method. The framework 373

of RGP parametrizes each weight matrix with two 374

low-rank carrier matrices and a residual weight 375

matrix, which will be used to approximate the 376

original one. Such a way can reduce the mem- 377

ory cost for computing individual gradient matri- 378

ces and can maintain the optimization process via 379

forward/backward signals. Later, based on RGP, 380

Yu et al. (2022) show that advanced parameter- 381

efficient methods such as (Houlsby et al., 2019; 382

Karimi Mahabadi et al., 2021) can lead to simpler 383

and significantly improved algorithms for private 384
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fine-tuning. Instead of DP-SGD, Du and Mi (2021)385

propose a DP version of Forward-Propagation.386

Specifically, it clips representations followed by387

noise addition in the forward propagation stage.388

Besides adapting the optimization method in389

vanilla DP-SGD, there are also some works on390

modifying the clipping operation or the fine-tuning391

method directly to save the memory cost. Li et al.392

(2021) propose a memory-saving technique that393

allows clipping in DP-SGD for fine-tuning to run394

without instantiating per-example gradients for any395

linear layer in the model. The technique enables396

private training Transformers with almost the same397

memory cost as non-private training at a modest398

run-time overhead. Dupuy et al. (2021) propose399

another variant of DP-SGD via micro-batch com-400

putations per GPU and noise decay and apply it401

to fine-tuning models. Specifically, they scale gra-402

dients in each micro-batch and set a decreasing403

noise multiplier with epoch. Then, they add scaled404

Gaussian noise to gradients. In this way, they can405

make the training more faster and adapt it for GPU406

training. Bu et al. (2023) develop a novel Book-407

Keeping (BK) technique that implements existing408

DP optimizers, with a substantial improvement on409

the computational cost while also keeping almost410

the same accuracy as DP-SGD. Gupta et al. (2023)411

propose a novel language transformer finetuning412

strategy that introduces task-specific parameters in413

multiple transformer layers. They show that the414

method of combining RGP and their novel strat-415

egy is more suitable to low-resource applications.416

Bu et al. (2022) privatize the bias-term fine-tuning417

(BiTFiT) and show that DP-BiTFiT matches the418

state-of-the-art accuracy for DP algorithms and the419

efficiency of the standard BiTFiT (Zaken et al.,420

2022). Igamberdiev and Habernal (2021) apply421

DP-Adam in Graph Convolutional Networks to per-422

form the private fine-tuning for text classification.423

Specifically, they first split the graph into discon-424

nected sub-graphs and then add noise to gradients.425

Rather than reducing the memory cost, there are426

some papers considering developing variants of427

DP-SGD method to improve the performance. For428

example, Xia et al. (2023) propose a per-sample429

adaptive clipping algorithm, which is a new per-430

spective and orthogonal to dynamic adaptive noise431

and coordinate clipping methods. Behnia et al.432

(2022) use the Edgeworth accountant (Wang et al.,433

2022) to compute the amount of noise that is re-434

quired to be added to the gradients in SGD to guar-435

antee a certain privacy budget, which is lower than 436

the original DP-SGD. Li et al. (2022); Amid et al. 437

(2022) propose new private optimization methods 438

under the setting where there are some public and 439

non-sensitive data. 440

The last direction is to relax the definition of 441

DP and propose new DP-SGD variants. Shi et al. 442

(2021) tailor DP-SGD to SDP. Their method SDP- 443

SGD first splits the text into the sensitive and non- 444

sensitive parts, and apply normal SGD to the non- 445

sensitive part while applying DP-SGD to the sensi- 446

tive part respectively. Later, Shi et al. (2022) extend 447

to large language models and propose a method 448

namely Just Fine-tune Twice to private fine-tuning 449

with the guarantee of SDP. 450

3.3 Federated Learning Setting 451
In the previous parts, we reviewed the related work 452

on DP pre-trained models and DP fine-tuning mod- 453

els. Note that all the previous work only considers 454

the central DP setting where all the training data 455

samples are already collected before training, in- 456

dicating that these methods cannot be applied to 457

the federated learning (FL) setting. Compared to 458

central DP, there are fewer studies on DP Federated 459

Learning for NLP. McMahan et al. (2018) apply 460

DP-SGD in the FedAvg algorithm to protect user- 461

level privacy for LSTM and RNN architectures in 462

the federated learning setting. Specifically, they 463

first sample users with some probability, and then 464

add Gaussian noise to model updates of the sam- 465

pled users on the server side. Based on this, Ra- 466

maswamy et al. (2020) develop the first consumer- 467

scale next-word prediction model. 468

Rather than adopting DP-SGD, Kairouz et al. 469

(2021) provide a new paradigm for DP-FL by using 470

the Follow-The-Regularized-Leader (FTRL) algo- 471

rithm, which achieves state-of-the-art performance, 472

which is recently improved by Choquette-Choo 473

et al. (2022); Koloskova et al. (2023); Denisov et al. 474

(2022); Agarwal et al. (2021). 475

It is notable that all the previous studies only 476

consider shallow neural networks such as RNN 477

and LSTM and do not consider the large language 478

model. Until very recently, there have been some 479

papers studying DP-FL fine-tuning. For example, 480

Wang et al. (2023) consider the cross-device setting 481

and use DP-FTRL to privately fine-tune. Moreover, 482

they propose a distribution matching algorithm that 483

leverages both private on-device LMs and public 484

LLMs to select public records close to private data 485

distribution. Xu et al. (2023) deploy DP-FL ver- 486

sions of Gboard Language Models (Hard et al., 487
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2018) via DP-FTRL and quantile-based clip esti-488

mation method in Andrew et al. (2021).489

4 Embedding Vector Perturbation Based490

Methods491

Generally speaking, this type of approach consid-492

ers to privatize the embedding vector for each to-493

ken. Specifically, in this framework, the text data494

is first transformed into a vector (text representa-495

tion) via some word embedding method such as496

Word2Vec (Mikolov et al., 2013) and BERT. Then497

we use some DP mechanism to privatize each rep-498

resentation and train NLP models based on these499

privatized text representations. Due to the post-500

processing property of DP, we can see the main501

strength of this approach is any further training on502

these private embeddings also preserves the DP503

property, while gradient perturbation based meth-504

ods heavily rely on the network structure. We can505

see that the main step of this method is to design506

the best private text representation. Note that since507

we need to privatize each embedding representation508

separately, the whole algorithm could be consid-509

ered as an LDP algorithm and thus it can also be510

used in the LDP setting. It is also notable that dif-511

ferent studies may consider different notions and512

levels of privacy. In fact, most of the existing work513

considers the word level of privacy.514

4.1 Vanilla DP515
The most direct approach is to design private em-516

bedding mechanisms that satisfy the standard DP.517

Lyu et al. (2020b) first study this problem and they518

propose a framework. Specifically, firstly for each519

word the embedding module of such framework520

outputs a 1-dimensional real representation with521

length r, then it privatizes the vector via a variant522

of the Unary Encoding mechanism in (Wang et al.,523

2017). In order to remove the dependence of dimen-524

sionality in the Unary Encoding mechanism, they525

propose an Optimized Multiple Encoding, which526

embeds vectors with a certain fixed size. Their post-527

processing procedure was then improved by (Plant528

et al., 2021). In (Plant et al., 2021), it first gets the529

final layer representation of the pre-trained model530

for each token, then normalizes it with sequence531

and adds Laplacian noise, and finally trains this532

classifier with adversarial training. To further im-533

prove the fairness for the downstream tasks on pri-534

vate embedding, later Lyu et al. (2020a) propose to535

dropout perturbed embeddings to amplify privacy536

and a robust training algorithm that incorporates537

the noisy training representation in the training pro-538

cess to derive a robust target model, which also 539

reduces model discrimination in most cases. 540

Krishna et al. (2021); Habernal (2021); Alnasser 541

et al. (2021) also study privatizing word embed- 542

dings. However, instead of using the Unary Encod- 543

ing mechanism or dropout, Krishna et al. (2021); 544

Alnasser et al. (2021) propose ADePT which is 545

an auto-encoder-based DP algorithm. Let u be 546

the input, an auto-encoder model consists of an 547

encoder that returns a vector representation r = 548

Enc(u) for the input u, which is then passed into 549

the decoder to construct an output v = Dec(r). 550

In (Krishna et al., 2021), it first normalized the 551

word embedded vector by some parameter C i.e., 552

w = Enc(u)min{1, C
∥Enc(u)∥2 }, then it adds add 553

Laplacian noise to the normalized vector w and get 554

r. Unfortunately, Habernal (2021) points out that 555

ADePT is not differentially private by thorough the- 556

oretical proof. The problem of ADePT lies in the 557

sensitivity calculation and could be remedied by 558

adding calibrated noise or tighter bounded clipping 559

norm. Later, Igamberdiev et al. (2022) provide the 560

source code of DP Auto-Encoder methods to im- 561

prove reproducibility. Recently, Maheshwari et al. 562

(2022) propose a method that combines differen- 563

tial privacy and adversarial training techniques to 564

solve the privacy-fairness-accuracy trade-off in lo- 565

cal DP. In their framework, first, the input text will 566

be fed into encoders, then it will be normalized 567

and privatized by using the Laplacian mechanism. 568

Next, it will be fed into a normal classifier and 569

adversarial training separately to combine a loss 570

that contains normal classification loss and adver- 571

sarial loss. They find that the model can improve 572

privacy and fairness simultaneously. To further im- 573

prove the performance, (Bollegala et al., 2023) pro- 574

pose a Neighbourhood-Aware Differential Privacy 575

(NADP) mechanism considering the neighborhood 576

of a word in a pretrained static word embedding 577

space to determine the minimal amount of noise 578

required to guarantee a specified privacy level. 579

Besides the work on word-level privacy we men- 580

tioned above, recently there have been some works 581

studying sentence-level and token-level private em- 582

beddings. Meehan et al. (2022) propose a method 583

namely DeepCandidate to achieve sentence-level 584

privacy. They first put public and private sentences 585

into a sentence encoder to get sentence embeddings. 586

Then, they use a method namely DeepCandidate to 587

choose the candidate sentence embeddings that are 588

near to private embeddings. Finally, they use some 589
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DP mechanism to sample from the candidate em-590

beddings for each private embedding. This method591

somehow solves the challenge of the sentence-level592

privacy problem by taking advantage of clustering593

in differential privacy. (Du et al., 2023b) consider594

sentence-level privacy for private fine-tuning and595

propose DP-Forward fine-tuning, which perturbs596

the forwardpass embeddings of every user’s (la-597

beled) sequence. However, it is notable that they598

consider a variant of LDP called sequence local599

DP. Chen et al. (2023) propose a novel Customized600

Text (CusText) sanitization mechanism that pro-601

vides more advanced privacy protection at the to-602

ken level.603

4.2 Metric DP604
In Metric DP for text data, each sample of the in-605

put can be represented as a string x with at most l606

words, thus the data universe will be W ℓ where W607

is a dictionary. Also we assume that there is a word608

embedding model ϕ : W 7→ Rn and its associ-609

ated distance d(x, x′) =
∑l

i=1 ∥ϕ(wi)− ϕ(w′
i)∥2,610

where x = w1w2 · · ·wl and x′ = w′
1w

′
2 · · ·w′

l are611

two samples. Thus, the goal is to design a mecha-612

nism for each ϕ(wi) with the guarantee of Metric613

DP. Since we aim to randomize each ϕ(wi) for each614

sample. The whole algorithm is also suitable for615

local metric DP with word-level privacy.616

Feyisetan et al. (2020) first study this problem.617

Generally speaking, their mechanism consists of618

two steps. The first step is perturbation, we add619

some noise N to text vector ϕ(wi) to ensure ε-620

LDP, where N has then density probability func-621

tion pN (z) ∝ exp(−ε∥z∥2). The main issue of622

this approach is that after the perturbation, ϕ̂i may623

be inconsistent with the word embedding. That624

is, there may not exist a word u such that u = ϕ̂i.625

Thus, to address this issue, we need to project the626

perturbed vector into the embedding space. That is627

the second step. Feyisetan et al. (2020) show that628

the algorithm is ε-local Metric DP.629

Note that the method was later improved from630

different aspects. For example, Xu et al. (2020)631

reconsider the problem setting and they observe632

that the distance used in (Feyisetan et al., 2020)633

is the Euclidean norm d(x, x′) =
∑l

i=1 ∥ϕ(wi)−634

ϕ(w′
i)∥2, which cannot describe the similarity be-635

tween two words in the embedding space. To636

address the issue, they propose to use the Maha-637

lanobis Norm and modify the algorithm by us-638

ing the Mahalanobis mechanism, which can im-639

prove performance. To further improve the utility640

in the projection step, Xu et al. (2021b) further641

propose the Vickrey mechanism in case the first 642

nearest neighbors are the original input or some 643

rare words need large-scale noise to perturb and 644

hard to find the corresponding words. In order to 645

solve this problem, they use a hyperparameter in 646

their algorithm to adjust the selection of the first 647

and second nearest neighbors (words). To further 648

allow a smaller range of nearby words to be consid- 649

ered than the multivariate Laplace mechanism, (Xu 650

et al., 2021a; Carvalho et al., 2021b) propose an 651

improved perturbation method via the Truncated 652

Gumbel Noise. To further address the high dimen- 653

sional issue, Feyisetan and Kasiviswanathan (2021) 654

uses the random projection for the original text rep- 655

resentation to a lower dimensional space and then 656

projects back to the original space after adding ran- 657

dom noise to preserve DP. Besides, Feyisetan et al. 658

(2019) define the hyperbolic embeddings and use 659

the Metropolis-Hastings (MH) algorithm to sample 660

from hyperbolic distribution. However, it is remark- 661

able that if we consider the LDP setting, then all 662

the previous methods need to send real numbers to 663

the server, which has a high communication cost. 664

To address the issue, Carvalho et al. (2021a) pro- 665

pose to use the binary randomized response mecha- 666

nism by using binary embedding vectors. Recently, 667

Tang et al. (2020) consider the case where different 668

words may have different levels of privacy. They 669

first divide the word into two types, and then add 670

corresponding noise according to different levels 671

of privacy. Imola et al. (2022) recently proposed 672

an optimal Meric DP mechanism for finite vocab- 673

ulary, they then provided an algorithm that could 674

quickly calculate the mechanism. Finally, they 675

applied it to private word embedding. Instead of 676

developing new private mechanisms, there are also 677

some studies on improving the embedding process. 678

The previous metric DP mechanisms are expected 679

to fall short of finding substitutes for words with 680

ambiguous meanings. Address these ambiguous 681

words, Arnold et al. (2023a) provide a sense em- 682

bedding and incorporate a sense disambiguation 683

step prior to noise injection. Arnold et al. (2023b) 684

account the common semantic context issue that 685

appeared in the previous private embedding mech- 686

anisms. They incorporate grammatical categories 687

into the privatization step in the form of a constraint 688

to the candidate selection aan show that selecting 689

a substitution with matching grammatical proper- 690

ties amplifies the performance in downstream tasks. 691

Qu et al. (2021) recently points out that (Lyu et al., 692
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2020a) does not address privacy issues in the train-693

ing phase since the server needs users’ raw data to694

fine-tuning. Moreover, its method has a high com-695

putational cost due to the heavy encoder workload696

on the user side. Thus, Qu et al. (2021) improve it697

and consider the federated setting where users send698

their privatized samples via some local metric DP699

mechanism to the server and the server conducts700

privacy-constrained fine-tuning methods. More-701

over, besides the text-to-text privatization given in702

(Feyisetan et al., 2020) and the sequence private703

representation proposed by Lyu et al. (2020a), Qu704

et al. (2021) proposed new token-level privatiza-705

tion and text-to-text privatization methods. In the706

token representation privatization method, they add707

random noise using metric DP to token embedding708

and send it to the server. They add noise to the709

embedded token and output the closest neighbor710

token in the embedding space.711

Instead of the local Metric DP, Yue et al. (2021)712

consider UMLDP and propose SANTEXT and713

SANTEXT+ algorithms for text sanitization tasks.714

Specifically, they divide all the text into a sensitive715

token set VS and a remaining token set VN . Then716

VS and VN will use a privacy budget of ϵ and ϵ0717

respectively via the composition theorem in LDP.718

After deriving token vectors, SANTEXT samples719

new tokens via local Metric DP with Euclidean720

distance. Compared with SANTEXT, SANTEXT+721

samples new tokens when the original tokens are722

in sensitive set VS . They apply it to BERT pre-723

training and fine-tuning models.724

While there are many studies on the benefits of725

private embedding with word-level privacy. There726

are also some shortcomings to such notion of pri-727

vacy, as mentioned by (Mattern et al., 2022) re-728

cently. For example, in the previous private word729

embedding methods we need to assume the length730

of the string for each sample is the same. More-731

over, since we consider word level of privacy, the732

total privacy budget will grow linearly with the733

length of the sample. To mitigate some shortcom-734

ings, Mattern et al. (2022) propose an alternative735

text anonymization method based on fine-tuning of736

large language models for paraphrasing. To ensure737

DP, they adopt the exponential mechanism to sam-738

ple from the softmax distribution. They apply their739

method in fine-tuning models with GPT-2.740

Recently Du et al. (2023a) studied sentence-level741

private embedding in local metric DP. Borrowing742

the wisdom of normalizing sentence embedding for743

robustness, they impose a consistency constraint on 744

their sanitization. They propose two instantiations 745

from the Euclidean and angular distances. The first 746

one utilizes the Purkayastha mechanism (Weggen- 747

mann and Kerschbaum, 2021) and the other is up- 748

graded from the generalized planar Laplace mecha- 749

nism with post-processing. 750
5 Challenges and Future Directions 751

Large-scale Training. Dealing with large-scale 752

text data and training large models like GPT-3 are 753

tough tasks in deep learning with DP. Due to the 754

high dimensionality of embedding vectors, even 755

adding small noise can have a significant influence 756

on the training speed and performance of models. It 757

is more severe for DP-SGD-based methods, which 758

need high memory cost and their per-example clip- 759

ping procedure is time-consuming. These methods 760

will be inefficient when they are applied to large 761

language models. Thus, how to reduce the mem- 762

ory cost and accelerate the training of DP-SGD 763

become core concerns in gradient perturbation- 764

based methods. Although there is some work in 765

this direction, there is still a gap in accuracy be- 766

tween private and non-private models and these 767

methods still need catastrophic cost of memory 768

compared with the non-private ones. Moreover, 769

it is well known that we need a heavy workload 770

on hyperparameter-tuning for large-scale models 771

in the non-private case. From the privacy view, 772

each try-on hyperparameter-tuning will cost an ad- 773

ditional privacy budget, which makes our final pri- 774

vate model cost a large privacy budget. Thus, how 775

to efficiently and privately tune the hyperparame- 776

ters in large models is challenging. 777

Private Inference. It is notable that in this paper 778

we mainly discussed how to privately train and 779

release a language model without leaking informa- 780

tion about training data. However, in some scenar- 781

ios (such as Machine Learning as a Service) we 782

only want to use the model for inference instead 783

of releasing the model. Thus, for these scenarios, 784

we only need to perform inference tasks based on 785

our trained model while we do not want to leak 786

information of training data. From the DP side, 787

such private inference corresponds to the DP pre- 788

diction algorithm, which is proposed by (Dwork 789

and Feldman, 2018). Compared with private train- 790

ing, DP inference for text data is still far from 791

well-understood and there is only few studies on 792

it (Ginart et al., 2022; Weggenmann et al., 2022a; 793

Majmudar et al., 2022; Zhou et al., 2023; Li et al., 794

2023). 795
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Limitations796

First, in this paper, we mainly focused on the deep797

learning-based models for NLP tasks in the differ-798

ential privacy model. Actually, there are also some799

studies on classical statistical models or approaches800

for NLP in DP, such as topic modeling (Park et al.,801

2016; Zhao et al., 2021; Huang and Chen, 2021)802

and n-gram extraction (Kim et al., 2021). Secondly,803

due to the space limit, we did not discuss all the804

related work for DP-SGD and we only focused on805

the work that uses DP-SGD to NLP-related tasks.806

Thirdly, while we tried our best to discuss all the807

existing work on deep learning-based methods for808

DP-NLP, we have to say we may missed some re-809

lated work. Moreover, since we aim to classify all810

the current work into two categories based on their811

methods of adding randomness, there is still some812

work that does not belong to these two classes, such813

as (Bo et al., 2021; Weggenmann et al., 2022b; Tian814

et al., 2022; Duan et al., 2023; Tang et al., 2023;815

Wu et al., 2023). To make our paper be consis-816

tent, we did not mention these work here. Fourthly,817

although DP can provide rigorous guarantees on818

privacy-preserving, it also has been shown that DP819

machine learning models can cause fairness issues.820

For example, they always have a disparate impact821

on model accuracy (Bagdasaryan et al., 2019). Fi-822

nally, it is notable that in this paper we did not823

discuss the narrow assumptions made by differen-824

tial privacy, and the broadness of natural language825

and of privacy as a social norm. More details can826

be found in (Brown et al., 2022).827
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A Differential Privacy Preliminaries1570

Differential Privacy (DP) is a data post-processing1571

technique, which guarantees data privacy by con-1572

fusing the attacker. To be more specific, suppose1573

there is one dataset noted as S, and we can get1574

another dataset S′ by changing or deleting one data1575

record in this dataset. Denote the output distribu-1576

tion when S is the input as P1, and the output distri-1577

bution when S′ is the input as P2, if P1 and P2 are1578

almost the same then we cannot distinguish these1579

two distributions, i.e., we cannot infer whether the1580

deleted or replaced data sample based on the out-1581

put we observed. The formal details are given1582

by Dwork et al. (2006). Note that in the defini-1583

tion of DP, adjacency is a key notion. One of the1584

commonly used adjacency definitions is that two1585

datasets S and S′ are adjacent (denoted as S ∼ S′)1586

if S′ can be obtained by modifying one record in1587

S.1588

Definition 2. Given a domain of dataset X . A
randomized algorithm A : X 7→ R is (ε, δ)-
differentially private (DP) if for all adjacent
datasets S, S′ with each sample is in X and for
all T ⊆ R, the following holds

Pr(A(S) ∈ T ) ≤ exp(ε) Pr(A(S′) ∈ T ) + δ.

When δ = 0, we call the algorithm A is ε-DP.1589

Illustration: For example, let X be a collection1590

of labeled product reviews, each belonging to a1591

single individual, and let R be parameters of a1592

classifier trained on X . If the classifier’s training1593

procedure A satisfies the DP definition above, an1594

attacker’s ability to find out whether a particular1595

individual was present in the training data or not is1596

limited by ε and δ.1597

In the definition of DP, there are two parameters1598

ϵ and δ. Specifically, ϵ measures the closeness1599

between the output distribution when the input is1600

S and the output distribution when the input is1601

S′, smaller ϵ indicates the two distributions are1602

more indistinguishable, i.e., the algorithm A will1603

be more private. In practice we set ϵ = 0.1− 0.51604

as high privacy regime. Informally, δ could be1605

thought as the probability that ratio between the1606

two distributions is not bounded by eϵ. Thus, it is1607

preferable to set δ as small as possible. In practice1608

we always set δ as a value from 1
n1.1 to 1

n2 , where1609

n is the number of samples in the dataset S. It is1610

notable that besides ϵ and (ϵ, δ)-DP, there are also1611

other definitions DP such as Rényi DP (Mironov,1612

2017), Concentrated DP (Bun and Steinke, 2016; 1613

Dwork and Rothblum, 2016), Gaussian DP (Dong 1614

et al., 2022) and Truncated CDP (Bun et al., 2018). 1615

However, all of them can be transformed to the 1616

original definition of DP. Thus, in this survey we 1617

mainly focus on Definition 2. 1618

There are several important properties of DP, see 1619

(Dwork and Roth, 2014) for details. Here we only 1620

introduce those which are commonly used in NLP 1621

tasks. The first one is post-processing which means 1622

that any post-processing on the output of an (ϵ, δ)- 1623

DP algorithm will remain (ϵ, δ)-DP. Equivalently, 1624

if an algorithm is DP, then any side information 1625

available to the adversary cannot increase the risk 1626

of privacy leakage. 1627

Proposition 1. Let A : X 7→ R be (ϵ, δ)-DP, and 1628

let f : R 7→ R′ be a (randomized) algorithm. Then 1629

f ◦ A : X 7→ R′ is (ϵ, δ)-DP. 1630

Example: Continuing with our scenario of train- 1631

ing a review classifier under DP, let us imagine we 1632

take the model from the previous example, which 1633

was trained under (ε, δ)-DP, and perform a domain 1634

adaptation by fine-tuning on a different dataset, 1635

this time without any privacy. The resulting model 1636

still remains (ε, δ)-DP with respect to the original 1637

data, that is privacy cannot be weakened by any 1638

post-processing. 1639

The second property is the composition prop- 1640

erty. Generally speaking, the composition prop- 1641

erty guarantees that the composition of several DP 1642

mechanisms is still DP. 1643

Proposition 2 (Basic Composition Theorem). Let 1644

A1,A2, · · · ,Ak be k be a sequence of randomized 1645

algorithms, where A1 : X 7→ R1 and Ai : R1 × 1646

· · ·Ri−1 × X 7→ Ri for i = 2, · · · , k. Suppose 1647

that for each i ∈ [k], Ai(a1, · · · , ai−1, ·) is (ϵi, δi)- 1648

DP. Then the algorithm A : X 7→ R1 × · · · × Rk 1649

that runs the algorithms Ai in sequence is (ϵ, δ)-DP 1650

with ϵ =
∑k

i=1 ϵi and δ =
∑k

i=1 δi. 1651

The basic composition allows us to design com- 1652

plex algorithms by putting together smaller pieces. 1653

We can view the overall privacy parameter ϵ as a 1654

budget to be divided among these pieces. We will 1655

thus often refer to (ϵ, δ) as the “privacy budget”: 1656

each algorithm we run leaks some information, and 1657

consumes some of our budget. Differential privacy 1658

allows us to view information leakage as a resource 1659

to be managed. For example, if we fix the privacy 1660

budget (ϵ, δ), then making each Ai be ( ϵk ,
δ
k )-DP 1661

is sufficient to ensure the composition is (ϵ, δ)-DP. 1662
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Method Type Publications Scenarios Definition Model Architecture DP Level Downsteam Tasks

Gradient
Perturbation

Based
Methods

Hoory et al. (2021)

Pre-trained
DP

BERT Sample-level Entity-extraction
Anil et al. (2021) BERT Sample-level —

Yin and Habernal (2022) BERT Sample-level Classification, QA
Senge et al. (2022) BERT, XtremeDistil Sample-level Classification, NER, POS, QA

Ponomareva et al. (2022) T5 Sample-level NLU

Yu et al. (2022)

Fine-tuning DP

RoBERT, GPT-2 Sample-level NLG, NLU
Yu et al. (2021) BERT Sample-level Classification, NLU

Dupuy et al. (2021) BERT,BiLSTM Sample-level Classification, NER
Li et al. (2021) GPT-2, (Ro)BERT Sample-level Classification, NLG

Lee and Søgaard (2023) GPT-2, DialoGPT Sample-level Meeting Summarization
Xia et al. (2023) GPT-2, (Ro)BERT Sample-level Classification

Behnia et al. (2022) (Ro)BERT Sample-level NLU
Bu et al. (2023) GPT-2, (Ro)BERT Sample-level Classification

Gupta et al. (2023) (Ro)BERT Sample-level GLU
Du and Mi (2021) GPT-2, (Ro)BERT Sample-level Classification, NLG
Bu et al. (2022) (Ro)BERT Sample-level Classification, NLG
Yue et al. (2022) GPT-2 Sample-level Synthetic Text Generation

Mireshghallah et al. (2022) GPT-2 Sample-level Synthetic Text Generation
Carranza et al. (2023) T5 Sample-level Query Generation

Igamberdiev and Habernal (2021) GPT-2 Sample-level Classification
Aziz et al. (2022) GPT-2 Sample-level Synthetic Text Generation

Wunderlich et al. (2021) BERT,CNN Sample-level Classification
Li et al. (2022) LSTM Sample-level Classification

Amid et al. (2022) LSTM Sample-level Classification
Shi et al. (2021) SDP RNN Sample-level NLG, Dialog System
Shi et al. (2022) SDP GPT-2, (Ro)BERT Sample-level NLG, NLU

McMahan et al. (2018) LSTM, RNN User-level Prediction, Classification
Ramaswamy et al. (2020) LSTM User-level Prediction, Classification

Kairouz et al. (2021) LSTM User-level, Sample-level Prediction, Classification
Choquette-Choo et al. (2022) Federated Learning LDP LSTM User-level, Sample-level Prediction

Koloskova et al. (2023) LSTM User-level, Sample-level Prediction
Denisov et al. (2022) LSTM User-level, Sample-level Prediction
Agarwal et al. (2021) LSTM User-level, Sample-level Prediction

Wang et al. (2023) LaMDA User-level Prediction
Xu et al. (2023) Gboard User-level Prediction

Embedding
Vector

Perturbation
Based

Methods

Lyu et al. (2020b)

Private Embedding LDP

BERT Word-level Classification
Lyu et al. (2020a) BERT Word-level Classification
Plant et al. (2021) BERT Word-level Classification

Krishna et al. (2021) Auto-Encoder Word-level Classification
Habernal (2021) Auto-Encoder Word-level Classification

Alnasser et al. (2021) Auto-Encoder Word-level Classification
Igamberdiev et al. (2022) Auto-Encoder Word-level Classification
Maheshwari et al. (2022) Auto-Encoder Word-level Classification

Bollegala et al. (2023) GloVe Word-level Classification
Chen et al. (2023) GloVe, BERT Token-level Classification
Du et al. (2023b) Fine-tuning Sequence LDP BERT Sentence-level Classification, QA

Meehan et al. (2022) Private Embedding DP SBERT Sentence-level Classification

Feyisetan et al. (2020)

Private Embedding LMDP

GloVe, BiLSTM Word-level Classification, QA
Xu et al. (2020) GloVe Word-level Classification
Xu et al. (2021c) GloVe,FastText Word-level Classification
Xu et al. (2021a) GloVe, CNN Word-level Classification

Carvalho et al. (2021b) GloVe Word-level Classification
Feyisetan and Kasiviswanathan (2021) GloVe, FastText Word-level Classification

Feyisetan et al. (2019) GloVe Word-level Classification, Prediction
Carvalho et al. (2021a) GloVe, FastText Word-level Classification

Tang et al. (2020) GloVe Word-level Classification
Imola et al. (2022) GloVe, FastText Word-level Classification

Arnold et al. (2023a) GloVe Word-level Classification
Arnold et al. (2023b) GloVe Word-level Classification

Qu et al. (2021) Fine-tuning BERT, BiLSTM Token-level Classification,NLU
Du et al. (2023a) Private Embedding BERT Sentence-level Classification, QA

Yue et al. (2021) Private Embedding UMLDP BERT, GloVe Word-level Classification,QA

Table 1: An overview of studies for DP-NLP.
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Example: In most of the NLP tasks we need to1663

train a model by using variants of optimization1664

methods, such as SGD or Adam. In general, these1665

optimizers include several iterations to update the1666

model, which could be thought as a composition1667

algorithm and each iteration could be thought as1668

an algorithm. Thus, it is sufficient to design DP1669

algorithm for each iteration and we can use the1670

composition theorem to calculate the budget of the1671

whole process.1672

Beside the basic composition property, there1673

are also several advanced composition theorem1674

for (ϵ, δ)-DP, which could provide tighter privacy1675

guarantees than the basic one. For example, con-1676

sider each Ai, i ∈ [k] is (ϵ, δ)-DP. Then the ba-1677

sic composition theorem implies their composi-1678

tion is (kϵ, kδ)-DP. However, this is not tight as1679

we can use the advanced composition theorem1680

to show their composition could be improved to1681

(O(
√
kϵ,O(kδ))-DP (Dwork et al., 2010). We re-1682

fer to reference (Kairouz et al., 2015; Murtagh and1683

Vadhan, 2016; Meiser and Mohammadi, 2018) for1684

details.1685

The third property is the privacy amplification1686

via subsampling. Intuitively, every differentially1687

private algorithm has a much lower privacy param-1688

eter ϵ when it is run on a secret sample than when1689

it is run on a sample whose identities are known1690

to the attacker. And there a secret sample can be1691

obtained by subsampling as it introduces additional1692

randomness.1693

Proposition 3. Let A be an (ϵ, δ)-DP algorithm.1694

Now we construct the algorithm B as follows: On1695

input D = {x1, · · · , xn}, first we construct a new1696

sub-sampled dataset DS where each xi ∈ Ds with1697

probability q. Then we run algorithm A on the1698

dataset DS . Then B(D) = A(DS) is (ϵ̃, δ̃)-DP,1699

where ϵ̃ = ln(1 + (eϵ − 1)q) and δ̃ = qδ.1700

Example: The subsampling property can be used1701

to private version of the stochastic optimization1702

method. As in these methods, a common strategy1703

is to use subsampled gradient to estimate the whole1704

gradient.1705

It is notable that, besides subsampling, some1706

other procedures could also amplify privacy such1707

as random check-in (Balle et al., 2020), mixing1708

(Balle et al., 2019) and decentralization (Cyffers1709

and Bellet, 2022). And for different subsampling1710

method, the privacy amplification guarantee is also1711

different (Imola and Chaudhuri, 2021; Zhu and1712

Wang, 2019; Balle et al., 2018).1713

In the following, we will introduce some mech- 1714

anisms commonly used in NLP tasks to achieve 1715

DP. 1716

We first give the definition of a (numeric) query. 1717

The query is simply something we want to learn 1718

from the dataset. Formally, a query could be any 1719

function f applied to a dataset S and outputting 1720

a real valued vector, formally f : X 7→ Rd. For 1721

example, numeric queries might return the sum of 1722

the gradient of the loss on all samples, number of 1723

females in the database, or a textual summary of 1724

medical records of all persons in the database rep- 1725

resented as a dense vector. Given a dataset S, a 1726

common paradigm for approximating f(S) differ- 1727

entially privately is via adding some randomized 1728

noise. And Laplacian noise and Gaussian noise 1729

are the most commonly used ones, which corre- 1730

spond to the Laplacian and Gaussian mechanism 1731

respectively. 1732

Definition 3 (Laplacian Mechanism). Given a 1733

query f : X 7→ Rd, the Laplacian Mech- 1734

anism is defined as: ML(S, f, ϵ) = q(S) + 1735

(Y1, Y2, · · · , Yd), where Yi is i.i.d. drawn from a 1736

Laplacian Distribution Lap(∆1(f)
ϵ ), where ∆1(f) 1737

is the ℓ1-sensitivity of the function f , i.e., ∆1(f) = 1738

supS′∼S′ ||f(S) − f(S′)||1. For a parameter λ, 1739

the Laplacian distribution has the density function 1740

Lap(λ)(x) = 1
2λ exp(−x

λ). Laplacian Mechanism 1741

preserves ϵ-DP. 1742

Definition 4 (Gaussian Mechanism). Given a 1743

query f : X 7→ Rd, the Gaussian mechanism 1744

is defined as MF (S, f, ϵ, δ) = q(S) + ξ where 1745

ξ ∼ N (0,
2∆2

2(f) log(1.25/δ)
ϵ2

Id), where ∆2(f) is 1746

the ℓ2-sensitivity of the function f , i.e., ∆2(f) = 1747

supS∼S′ ||f(S) − f(S′)||2. Gaussian mechanism 1748

preserves (ϵ, δ)-DP when 0 < ϵ ≤ 1. 1749

From the previous two mechanisms we can see 1750

that to privately release f(S) it is sufficient to cal- 1751

culate the ℓ1-norm or ℓ2-norm sensitivity first and 1752

add random noise. Moreover, as ∆2(f) ≤ ∆1(f), 1753

Gaussian mechanism will has lower error than the 1754

Laplacian mechanism, while we relax the definition 1755

from ϵ-DP to (ϵ, δ)-DP. 1756

Instead of answering f(S) privately, we also 1757

always meet the selection problem, i.e., we want to 1758

output the best candidate among several candidates 1759

based on some score of the dataset. Exponential 1760

mechanism is the one that can output a nearly best 1761

candidate privately. 1762

Definition 5 (Exponential Mechanism). The Ex- 1763
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ponential Mechanism allows differentially private1764

computation over arbitrary domains and range R,1765

parameterized by a score function u(S, r) which1766

maps a pair of input data set S and candidate1767

result r ∈ R to a real valued score. With the1768

score function u and privacy budget ϵ, the mech-1769

anism yields an output with exponential bias in1770

favor of high scoring outputs. Let M(S, u,R)1771

denote the exponential mechanism, and ∆ be1772

the sensitivity of u in the range R, i.e., ∆ =1773

maxr∈RmaxD∼D′ |u(D, r) − u(D′, r)|. Then if1774

M(S, u,R) selects and outputs an element r ∈ R1775

with probability proportional to exp( ϵu(S,r)2∆u ), it pre-1776

serves ϵ-DP.1777

In the original definition of DP, we assume that1778

data are managed by a trusted centralized entity1779

which is responsible for collecting them and for de-1780

ciding which differentially private data analysis to1781

perform and to release. A classical use case for this1782

model is the one of census data. Compared with the1783

above model (which is called central model), there1784

is another model namely local DP model, where1785

each individual manages his/her proper data and1786

discloses them to a server through some differen-1787

tially private mechanisms. The server collects the1788

(now private) data of each individual and combines1789

them into a resulting data analysis. A classical use1790

case for this model is the one aiming at collect-1791

ing statistics from user devices like in the case of1792

Google’s Chrome browser. Formally it is defined1793

as follows.1794

Definition 6. For a data domain X , a randomized1795

algorithm A : X 7→ R is called (ε, δ)-local DP1796

(LDP) if for any s, s′ ∈ X and T ⊆ R we have1797

Pr[A(s) ∈ T ] ≤ eεPr[A(s′) ∈ T ] + δ.1798

Compared with Definition 2 we can see that here1799

the main difference is the inequality hold for all1800

elements s, s′ ∈ X instead of all adjacent pairs of1801

dataset. In this case, each individual could ensure1802

that their own disclosures are DP via the random-1803

izer A. In some sense, the trust barrier is moved1804

closer to the user. While this has a benefit of pro-1805

viding a stronger privacy guarantee, it also comes1806

at a cost in terms of accuracy.1807

It is notable that besides the central DP and local1808

DP model, there are also other intermediate models1809

such as shuffle model (Cheu et al., 2019) and multi-1810

party setting (Pathak et al., 2010). However, as they1811

are seldom studied in NLP, we will not cover these1812

protocols in this survey.1813

B An Introduction to DP-SGD 1814

Given a training data with n samples D = {xi}ni=1, 1815

a loss function (such as cross-entropy loss) is de- 1816

fined to train the model, which takes the parameter 1817

θ ∈ Rd of neural network and samples and outputs 1818

a real value: 1819

L(θ,D) =
n∑

i=1

ℓ(θ, xi). (1) 1820

The goal is to find the weights of the network that 1821

minimizes L(θ,D), i.e., θ∗ = argminθ L(θ,D). 1822

With additional constraint on DP, now we aim to 1823

design an (ε, δ)/ε-DP algorithm A to make the 1824

private estimated parameter θpriv close to θ∗. 1825

Example: In Language Modeling (LM), we have 1826

a corpus D = {x1, · · · , xn} where each text 1827

sequence xi consists of multiple tokens xi = 1828

(xi1, · · · , ximi) with xij as the j-th token of xi. 1829

The goal of LM is to train a neural network (e.g., 1830

RNN) parameterized by θ to learn the probability 1831

of the sequence pθ(x), which can be represented 1832

as the following objective function 1833

−
n∑

i=1

mi∑
j=1

log pθ(xij |xi1, · · · , xi(j−1)). 1834

We first review the DP-SGD method (Abadi 1835

et al., 2016). In the non-private case, to minimize 1836

the objective function (1), the most fundamental 1837

method is SGD, i.e., in the t-th iteration we update 1838

the model as follows: 1839

θt+1 = θt − η
1

|B|
∑
x∈B

∇ℓ(θt, x), 1840

where B is a subsampled batch of random ex- 1841

amples, η is the learning rate and θt is the cur- 1842

rent parameter. DP-SGD modifies the SGD-based 1843

methods by adding Gaussian noise to perturb the 1844

(stochastic) gradient in each iteration of the train- 1845

ing, i.e, during the t-th iteration DP-SGD will com- 1846

pute a noisy gradient as follows: 1847

gt =
1

|B|
(
∑
xi∈B

ĝti +N
(
0, σ2C2Id

)
), (2) 1848

σ is noise multiplier, ĝti is some vector computed 1849

from ∇ℓ(θt, xi) and gt is the (noisy) gradient used 1850

to update the model. The main reason here we 1851

use ĝti instead of the original gradient vector is 1852

that we wish to make the term
∑

ĝti has bounded 1853
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ℓ2-sensitivity so that we can use the Gaussian1854

mechanism to ensure DP. The most commonly1855

used approach to get a ĝti is clipping the gradient:1856

ĝti = ∇ℓ(θt, xi)min{1, C
∥∇ℓ(θt,xi)∥2 } i.e., each gra-1857

dient vector is clipped by a hyper-parameter C > 0.1858

Since the ℓ2-sensitivity of
∑

ĝki is bounded by C,1859

after the clipping, we can add Gaussian noise to1860

ensure DP. As there are several iterations and in1861

each iteration, we use some subsampling strategy,1862

we can use the composition theorem and privacy1863

amplification to compute the total privacy cost of1864

DP-SGD. Equivalently, given a fixed privacy bud-1865

get (ϵ, δ), number of iterations and subsampling1866

strategy, one can get the minimal noise multiplier σ1867

to ensure DP, see (Asoodeh et al., 2021; Gopi et al.,1868

2021; Mironov et al., 2019; Wang et al., 2020b;1869

Zheng et al., 2020; Zhu and Wang, 2019) for de-1870

tails.1871
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