
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING EXTRAPOLATIVE SEQUENCE TRANSFORMA-
TIONS FROM MARKOV CHAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most successful applications of deep learning involve similar training and test
conditions. However, for some generative tasks, samples should improve desirable
properties beyond previously known values, which requires the ability to generate
novel hypotheses that extrapolate beyond training data. While large language
models have been successfully extended to a variety of sequence modeling prob-
lems, greedy autoregressive sampling can struggle to explore the solution space
sufficiently to extrapolate, especially when the properties of interest are global
to the sequence. On the other hand, sequence-level sampling methods such as
Markov chain Monte Carlo (MCMC) offer theoretical guarantees about capturing
the distribution of interest, but suffer from the curse of dimensionality in discrete
structured spaces. We propose a new approach that bridges the gap between MCMC
and autoregressive sampling, which may be viewed as off-policy reinforcement
learning. Our approach uses selected states from Markov chains as a source of
training data for an autoregressive inference network, which is then able to generate
novel sequences at test time that extrapolate along the sequence-level properties of
interest. The proposed approach is validated on three problems: protein sequence
design, text sentiment control, and text anonymization. We find that the learned
inference network confers many of the same (and sometimes better) generalization
benefits compared to the slow sampling process, but with the additional benefit of
high sample efficiency.

1 INTRODUCTION

In creative tasks such as scientific discovery, a key requirement is the ability to extrapolate beyond
existing knowledge. For example, automating the generation of novel hypotheses is central to
mathematical discovery, biological sequence design, molecular optimization, and the creation of new
materials (Romera-Paredes et al., 2024; Fu et al., 2023; Jain et al., 2022; Trabucco et al., 2022; Gao
et al., 2022). Beyond scientific discovery, extrapolation is necessary in many creative applications,
such as writing assistants for creative writing (Swanson et al., 2021; Gómez-Rodríguez & Williams,
2023). It is natural to wonder if large-scale generative training affords extrapolation as an emergent
ability (Schaeffer et al., 2024). Unfortunately, prior work has found that state-of-the-art foundation
models can struggle on tasks requiring extrapolation (Dziri et al., 2023; Chakrabarty et al., 2024).
Notably, Lu et al. (2024) compare different reasoning and inference strategies, finding that the only
strategy to successfully increase sample diversity is Monte Carlo search, which typically suffers from
low sample efficiency and can produce degenerate samples in high-dimensions (Holtzman et al.,
2019).

How can we efficiently extrapolate beyond the training data? We build on a recent approach which
leverages the de-noising ability of masked language models (MLM) to extrapolate (Padmakumar
et al., 2023). The idea is to generate many sequence transformations that improve the target objective
as evaluated by a trained scorer model, and then to supply these transformations as training data for a
greedy extrapolative model. To search for suitable transformations to create this augmented training
set, Padmakumar et al. (2023) apply a random mask to sequences in the training data, which are then
in-filled by sampling from an MLM. Samples are kept if the improvement in the objective between
the sampled sequence and the original sequence is within a fixed range. This process is repeated
for a fixed number of steps with the goal of identifying transformations that make incremental
improvements to the objective. A key assumption is that, after training a sequence-to-sequence

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

2

3
Re

vi
ew

 R
at

in
g

Document State

(State) A

B

C

N

State A: Service was okay, at
best. I wouldn't go there again.

State B: Service was okay,blah at
best. I, wouldn't go there again.

State C: Service was blahpathetic,
at best, wouldn't go there again.

…

State N: Service was pathetic, at
best, wouldn't go there again!!!

Ratings observed
during training

Monte Carlo Exploration
Learned Model

Achievable States

Example Task: Convert review with rating 3 to a review with rating 1.5

😐

😡

Ratings unseen
during training

Ratings unseen
during training

Figure 1: The sentiment extrapolation task (§4.2, Padmakumar et al. (2023)) requires generating
reviews with ratings beyond the range observed at training time. Here, we illustrate the search process
using a toy 1D representation of the features (x-axis) and rating (y-axis). Monte Carlo exploration can
produce reviews that extrapolate, but many steps are required. However, once good state sequences
have been discovered, we can sub-sample the transitions that decrease the rating (A → C → N) and
use them to learn an extrapolative model. The reviews shown to the right for states B, C, and N are
actual reviews generated by our method, while A is a genuine review from the validation data.

model on the selected transformations, composing more than one transformation can lead to effective
extrapolation. However, although this approach was found to be successful in extrapolating beyond
the training region for some tasks, its success is critically dependent on the choice of a number
of sensitive hyper-parameters, including a threshold on the relative improvement from different
transformations and a fixed number of iterative decoding steps.1

In this paper, we first seek to better understand how generative models, in particular models trained
using in-filling objectives (Bavarian et al., 2022; Tay et al., 2022), implicitly capture knowledge that
can be leveraged for extrapolative generation. To do so, we formalize the process of searching for
sequences that score highly under the target sequence-level objective as approximate inference in an
energy-based model (EBM) (LeCun et al., 2006). This model is specified via an unnormalized score
(negative energy), which can incorporate multiple criteria via a product-of-experts (Hinton, 2002;
Mireshghallah et al., 2022). The experts will typically include a measure of fluency or faithfulness
along with a task-specific sequence-level objective for extrapolation. While exact inference in EBM
is intractable, the MLM provides a convenient and effective proposal distribution for a Metropolis-
Hastings (MH) sampler, which under mild assumptions approximates the distribution over sequences
defined by the EBM (Goyal et al., 2021). Beyond providing a conceptual framework for understanding
the search process, we find this formulation also provides practical benefits in terms of improved
generalization and robustness (§4).

However good the proposal distribution, MH still suffers from all the aforementioned limitations.
Therefore, we fine-tune a model using the Markov chains resulting from MH as training data. Our
objective in doing so is to generate sequences that achieve scores in the extrapolation range in as
few steps as possible. This is illustrated in Figure 1 for the controlled task of review generation
(§4.2). Using every transition in the Markov chains is clearly undesirable, since some transitions
may fail to improve the score or result in worse scores. As a result, we explore several strategies
to sub-sample state sequences from the complete chains, including adaptive schemes based on the
relative improvement in energy. While the model we fine-tune has an autoregressive parametrization
(§3), by selecting a variable number of transitions from the Markov chains, we implicitly learn a non-
autoregressive model that transforms an initial sequence (token-by-token) a variable number of times
to improve the score beyond the training range. By further incorporating the sequence-level score at
each step of generation—similar to reward-to-go in sequence modeling approaches to reinforcement

1In a personal communication, the authors report that their procedure exhibits large variance, and indeed we
are unable to reproduce published results using the code released by Padmakumar et al. (2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

learning (Janner et al., 2021)—the model can learn to incorporate this feedback, for example to help
determine when to stop generating.

Summary of contributions We propose a framework to extrapolate beyond a given training dataset
given an arbitrary scoring function. Our approach leverages existing components, namely pre-trained
language models trained using de-noising objectives, to explore the space of sequence-to-sequence
transformations and their impact on the target objective. We formalize this process as MCMC, and
consider a variety of strategies to select training data from the resulting Markov chains to fine-tune
a model to generate novel sequences. In particular, we propose a multi-step generative process
in which, starting from an initial state, the properties of interest are optimized in multiple rounds,
similar to non-autoregressive generation. We evaluate our model on three tasks: protein engineering,
sentiment style transfer, and anonymization.2 In some cases, we find that our model, qθ, can achieve
competitive results with MCMC and other baselines, but using a significantly smaller number of
steps (§4). In other cases, specifically §4.1, we find that the fine-tuned model achieves significantly
better extrapolation.

2 PROBLEM STATEMENT

We consider sequence-level search problems where the task is to generate novel sequences x ∈ X that
satisfy one or more properties of interest y ∈ Y . Given a candidate sequence x, we assume that an
oracle o(x) ∈ Y may be consulted to assess x, but that it may be expensive to consult. For example,
assessing a novel candidate may involve conducting physical experiments or running expensive
simulations (as in the protein task described in §4.1), and therefore we wish to minimize the number
of evaluations of o(x) when searching for new sequences. At training time, we observe sequences
x ∈ X train with properties taking values in the training range o(x) ∈ Y train, and our objective is to fit
a generative model qθ such that samples x′ ∼ qθ successfully extrapolate beyond the training data
for the property of interest: o(x′) /∈ Y train. For example, for the sentiment task, the training range
consists of ratings between 2 and 4 stars, and the extrapolation range consists of ratings that are
highly negative (less than 2-stars) or highly positive (greater than 4-stars). If the oracle is expensive
to consult at training time, we instead assume access to a guide s(x) that provides a computationally
tractable estimate s(x) of the oracle score o(x). For example, s(x) may be a neural network trained
to predict properties of x based on a database of previous experiments with hypothesized sequences
x and measured outcomes o(x). At test time, we generate x′ ∼ qθ and then evaluate performance
under the oracle o(x′). Overall, the central problem is how to fit qθ without overfitting the training
data and in such a manner as to enable extrapolation.

3 METHOD

Extrapolative generation We are interested in generating novel sequences that extrapolate beyond a
given training distribution for one or more attributes of interest. Since the attributes of interest may be
properties of the complete sequence, we consider the family of energy-based models (EBM) (LeCun
et al., 2006), where the log-probability of an event is proportional to a sequence-level score s(x).
Similar to rewards in reinforcement learning (RL), this parametrization affords considerable flexibility
in choosing appropriate scoring functions for the task. The scoring function may be fast (for
instance, a small neural classifier) or slow (such as using a slow evaluation process to calculate the
folding energy of a protein). However, in either case, exact sampling from an EBM is intractable
since the partition function Z involves a sum over all possible sequences. In our experiments, we
often include multiple terms in our energy, which are combined in a product of experts ln p(x) =
α1s1(x) + α2s2(x) + . . . − lnZ, weighted with scalar hyperparameter α. For example, for the
sentiment task, we include Hamming distance to the original review in addition to the sentiment
rating.

Masked-infilling language models In general, while MCMC can be used to (approximately) draw
samples from EBMs, the algorithm suffers from the curse of dimensionality which can manifest as
slow mixing and in failures to identify modes of the energy landscape. These issues can be mitigated

2We additionally include a minimal demonstration of the key idea on a toy task in Appendix H.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

in part by choosing effective proposal distributions. Crucially for our method, language models
trained with mask-infilling objectives can serve as effective proposal distributions (Goyal et al.,
2021; Mireshghallah et al., 2022).3 This fact allows us to obtain proposals using existing pre-trained
language models. Specifically, we use the Metropolis-Hastings (MH) algorithm which uses a proposal
distribution q(x′ | x) to draw candidate states x′ given the current state x. These proposals are then
either accepted, in which case x′ is taken as the new state, or rejected in which case x′ = x, according
to the standard MH acceptance criterion. To implement q, we mask at random subset of the current
state x, and then infill the masked sequence based on a self-supervised pre-training process (Devlin
et al., 2019; Lewis, 2019; Raffel et al., 2023).

Training qθ Although an effective proposal distribution can improve the mixing time of MCMC,
the amount of iterations required to identify modes of the distribution may still be prohibitive. Our
approach will therefore be to fine-tune a separate model qθ from which it is efficient to draw samples
that ideally extrapolate beyond the scores explored during MCMC (see Appendix H for a simple
demonstration of this idea). This is similar to off-policy RL, where we use MCMC as a particular
kind of exploration policy to generate training episodes. We imbue qθ with specific inductive biases to
encourage extrapolation beyond the training data. In particular, rather than sampling x ∼ qθ directly,
we allow generation to proceed via multiple intermediate states x1, x2, . . . , xN . The intuition for
this strategy, which is borne out in our experiments (§4), is that it is easier to learn a conditional
transformation qθ(xn | x1, x2, . . . , xn−1) than directly sample the structured objects x. Unlike the
state-to-state transitions in MCMC however, qθ is biased to be greedy: it aims to continually improve
the energy from state-to-state and in general may avail of information from the complete history of
previous states x1, x2, . . ., as well as associated scores s(x1), s(x2), . . . , s(xn−1), when producing
the next state xn. By conditioning on the scores, the policy has the ability to incorporate these into
planning, not unlike the sequence model RL formulations proposed by Janner et al. (2021); Chen
et al. (2024).

Autoregressive refinement To fit qθ, we assume access to a training dataset providing one or more
initial states, from which we sample state trajectories using MCMC. We then create training episodes
(x1, s1), (x2, s2), . . . , (xN , sN) by sub-sampling state sequences from the complete trajectories. We
discuss several strategies for this in §3.1. The training episodes are encoded as a sequence of tokens:

x0 <seq0> x1 <seq1> s1 x2 <seq2> s2 ... xn sn <stop>

Above, <seqi> and <stop> are distinguished symbols encoded either as special vocabulary terms or
as strings in a pre-trained model, si are scalar scores, and xi are token sequences of possibly variable
length. Then qθ is trained using teacher forcing to generate each token of each intermediate state
xi (for i > 0) conditioned on all previous states x0, x1, . . . , xi−1. As previously mentioned, the
concrete advantage to formulating inference in this way is that revisions can condition on previously
generated sequences and energy scores. As an ablation, we also experiment with a Markov variation
that only conditions on the previous state, which performs well in certain settings.

Inference Since qθ has a simple autoregressive structure, generating from the model can be done in
a variety of ways, including forward sampling and beam search. We note that in principle constrained
decoding techniques could be used to enforce adherence to the structure above, but we did not find
this necessary in practice. After generating each intermediate state xi, the sequence is either scored
using s(xi) and the result deterministically appended to the sequence, or qθ learns to predicts the
sequence score.4 When <stop> is generated from the model, the final state xn is taken to be the
sample.

3.1 CREATING TRAINING EPISODES

Creating training episodes consisting of the entire Markov chain, which could include hundreds or
thousands of states, is undesirable. Ideally, qθ should be computationally efficient at inference time,
only generating a small number of intermediate states before producing the <stop> symbol. As a

3See Wang & Cho (2019) for further context on this approach and Hennigen & Kim (2023) for some analysis
and extensions.

4Another possibility is to consult the oracle at intermediate states of generation, although we do not directly
evaluate this version in our experiments.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

result, we require relatively short training episodes. Note also that the sampling method might explore
high-energy regions of the state space, and it may be sub-optimal to include such exploration in the
training episodes; therefore, we ideally want to select state transitions from the complete sample that
result in a decreased energy. We examine several strategies for selecting states.

Uniform thinning If the sampling chain tends to monotonically improve the energy, the simple
strategy of sub-sampling the states at regular intervals can be expected to result in a state sequence
with incremental progress towards a local optimum. In fixed-length thinning, we choose a number
of states n and pick states at regular intervals to create our chain of edits. Choosing the number of
states to add to the chain may disadvantage the model in cases where there are different numbers of
states in each unthinned sequence; for instance, collapsing sequences with 10 edits and 100 edits to 5
states each might lead to intense variability in scope of edits seen in the data. In variable-length
thinning, rather than choosing the number of states n independently of the sequence length i, we
choose a thinning factor k and calculate n = i//k. This dynamically allocates each edit change a
number of states based on the entire edit sequence length.

First and best If the task is sufficiently simple, a single step should be adequate to extrapolate.
By taking the initial and lowest energy states of the Markov chain, we create single-step training
examples. This can be considered a special case of uniform thinning where the training episode
length is two.

Changes in energy Ideally, we would like the states chosen for training episodes to be governed
by properties of states in the chain, such as the relative improvements in energy from state to state,
particularly if the energy does not monotonically decrease. A simple way to incorporate this idea
into the selection of training episodes is to identify state transitions that most improve the energy. In
fixed-length ∆ energy, we cache the energy for each state while running MCMC, then select the n
states that most improve energy from the previous step to construct our training episode. However,
forcing a model to select a certain number of states may result in unoptimal behavior. For example, if
an edited state x1 is unlikely to significantly improve, the model ideally should learn to immediately
emit the <stop> symbol, rather than continuing to generate minute improvements. Rather than
selecting n states, variable-length ∆ energy selects any states which improve energy by a particular
threshold, e.g. 10%.

4 EXPERIMENTS

To address whether qθ has the capacity for sample-efficient extrapolation, we apply our method
to two tasks from Padmakumar et al. (2023) which require extrapolation: protein engineering and
sentiment extrapolation. To demonstrate that qθ retains the capacity to “interpolate” (i.e., generalize
well in a non-extrapolative task), we evaluate on a complex task solely requiring interpolation, namely
text anonymization. In all experiments, to demonstrate method efficiency, we show the number of
"iterations" each method takes—we consider “iterations” to loosely correspond to the computational
work of passing the sequence through the inference model once. Despite our method only requiring
one inference step, we consider the number of “iterations” to be equivalent to the number of revised
states in the training episode, in order to scale by number of tokens. In variable-length methods, we
report the average number of iterations.

4.1 PROTEIN ENGINEERING

We replicate the ACE2 stability task from Padmakumar et al. (2023). The goal is to generate mutants
of the human angiotensin-converting enzyme 2 (ACE2) with higher stability than the wildtype,
measured with lower free energy compared to the wildtype(ddG). Lower ddG corresponds to more
stable mutants. The protein is represented as a sequence of 83 amino acids, from a vocabulary of
20 amino acids in total. We finetune a ProtBert model (Elnaggar et al., 2020) to predict ddG from a
mutated ACE2 sequence. We use the ACE2 dataset from Chan et al. (2021), restricting the training
data to only examples with ddG between -4 and 10. The objective is to generalize to sequences with
ddG beyond the training range (i.e. below -4). We describe our experimental procedure in detail in
§D.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Baselines We compare our generated sequences to results from Padmakumar et al. (2023); specifi-
cally, we consider their reported scores for masking and infilling, iteratively masking and infilling
with ranked outputs (Iterative sampling), Genhance by Chan et al. (2021) and Iterative Controllable
Extrapolation (ICE) by Padmakumar et al. (2023). In both cases, we report the variant with scorer,
where at each step the model generates multiple options and chooses the best of these options using
the training-time scorer. We also report the scorer-free variant of ICE, which generates a single output
at each step, similar to qθ.

Metrics We evaluate the stability of the generated proteins using FoldX Schymkowitz et al. (2005),
which calculates the ddG for each protein. We report the proportion of generated mutants which fall
below certain thresholds: -1 and -2.5, which are within the training region, and -5, -6, and -7, which
are within the extrapolation region.

Results Our results with qθ trained on training episodes constructed using fixed-length ∆ energy
can be found in Table 1. Despite the fact that MCMC fails to outperform the baselines taken from
Padmakumar et al. (2023), we find that in the extrapolation range qθ significantly outperforms our
baselines and MCMC.

Model -1↑ -2.5↑ -5↑ -6↑ -7↑ Iterations↓
Mask/Infill 0.033 0.007 0.000 0.000 0.000 1
Iterative sampling 0.998 0.954 0.220 0.079 0.001 10
Genhance w/scorer 0.999 0.978 0.159 0.040 0.009 1
ICE scorer-free 0.945 0.598 0.062 0.017 0.002 10
ICE w/scorer 0.998 0.974 0.361 0.098 0.019 10
MCMC 0.999 0.995 0.270 0.041 0.005 83
qθ 0.972 0.938 0.748 0.616 0.464 3

Table 1: Overall ACE2 stability results. Each cell represents the percentage of generated sentences
lower than the threshold. Lower ddG is more stable; -1 and -2.5 are in the training range, -5 and
below is in the extrapolation range. While MCMC does not approach the success of the baseline, the
best variant of qθ, trained on training episodes created using fixed-length ∆ energy to select states,
significantly outperforms the baseline.

4.2 SENTIMENT EXTRAPOLATION

Given a training dataset of Yelp reviews (Zhang et al., 2015) with moderate sentiment, ranging from
2-stars to 4-stars, the goal is to learn to generate reviews that extrapolate beyond the training region to
the highly negative (1-star) or highly positive (5-star) reviews. Following Padmakumar et al. (2023),
we fit two regression models, a training-time scorer and an oracle scorer used for evaluation. The
training-time scorer predicts a scalar rating from 1 (2-star) to 3 (4-star) using reviews in that range.
The oracle scorer uses all of the training data and predicts the complete range of ratings given input
text. Prior work considers a simple version of this task where success is measured only in how well
generated texts extrapolate beyond the training region. We introduce a variation where success is
also explicitly measured by the change in fluency after editing, to prevent our models from greedily
optimizing only a single metric at the expense of fluency. Details of our procedure can be found in
§D.2.

Baselines We report results from Padmakumar et al. (2023), namely the ICE and ICE with scorer
methods. ICE with scorer was previously described in §4.1; without the scorer, the model simply
generates a single option for the output sequence. We also report results using our implementation of
Genhance (Chan et al., 2021). Finally, we report results using an FUDGE (Yang & Klein, 2021), an
autoregressive classifier-guided method not specifically designed for extrapolation. We describe our
implementation of FUDGE in §D.2.

Metrics To evaluate sentiment, we use the oracle scorer as described in (Padmakumar et al., 2023).
When editing in the positive direction, we consider a 4-star review or above to be in the training
region, and a 5-star review to be in the extrapolation region; when editing in the negative direction,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

we consider a 2-star review or below to be in the training region, and a 1-star review to be in the
extrapolation region. We report the proportion of all sentences in these regions.

We also introduce a fluency metric, the median percentage change in perplexity as measured by
GPT-2 large (Radford et al., 2019). Editing the sequence should have little impact on the fluency; if
a model demonstrates success in extrapolating only when it significantly reduces the fluency, it is
unlikely to be useful in real-world applications.

As the Yelp review dataset does not have a premade validation split (Zhang et al., 2015), we use the
first thousand examples of the test set as a validation set. Padmakumar et al. (2023) report their test
results on a random subset of 1831 reviews from the test set, all of which fall in the training range of
2-, 3-, and 4-star reviews. We report the FUDGE results on a 1500-sentence subset of the test set, and
for MCMC and qθ, we create three 2000-sentence subsets of the test set and report the average of
each of these three runs in our results, finding that there is little variation regardless of the test set.

Results We show our results with qθ trained on first/best training episodes in Table 2 alongside
results from Padmakumar et al. (2023). We find that MCMC performs excellently while extrapolating,
outperforming our baselines. Our trained qθ outperforms our baselines in extrapolative capacity,
and outperforms MCMC in efficiency (as measured by number of iterations) and fluency. Example
generations can be found in §G.1.

Model Training↑ Extrapolation ↑ ∆ Fluency↓ Iterations↓
Genhance 0.908 0.387 - 1
ICE scorer-free 0.947 0.376 - 10
ICE w/scorer 0.921 0.610 - 10
FUDGE 0.603 0.233 -0.212% 1
MCMC 0.960±0.004 0.809±0.011 0.746%±0.017 496
qθ 0.925±0.005 0.734±0.008 0.132%±0.015 1

Table 2: Comparing our methods to the Padmakumar et al. (2023) results on the extrapolative senti-
ment task. We report the proportion of sentences below a threshold for the favorable training range (2
stars for negative sentiment, 4 stars for positive sentiment) and a threshold for the extrapolation range
(1 star for negative sentiment, 5 stars for positive sentiment). MCMC performs well on those metrics,
but moderately decreases fluency while requiring nearly 500 iterations. We compare this to qθ trained
using first/best training episodes. qθ decreases fluency less and requires only a single inference-time
iteration. We provide 95% confidence intervals over three different test sets.

4.3 ANONYMIZATION

Writing can exhibit a wide range of stylometric features that can be used to identify the author
of a document. In cases where anonymity is desired, there is a need to automatically remove
personally-identifying features. Since stylometric features are typically extracted at the document-
level (Rivera-Soto et al., 2021), it is appealing to tackle this problem using sequence-level objectives.
Similar to previous tasks, we first extract training episodes from an MCMC driven sampler. We adapt
the style transfer method proposed by Khan et al. (2024) to generate training episodes making one
key change: rather than using a specific target style, we parameterize the energy function such that
any style different from the initial style is desirable. Given some text x, the system results in a series
of states y1, y2, ...yn, these episodes are then used to train our anonymization system. Details on our
adaptation of Khan et al. (2024) can be found in Appendix F.

Baselines We consider four baseline anonymization systems: GPT3.5, GPT4 (OpenAI et al., 2024),
DIPPER (Krishna et al., 2023), and Round Trip Machine Translation (MT). Implementation details
for each of these systems can be found in §F.1.

Metrics To evaluate the quality of anonymization outputs we consider two metrics measuring author
verification Equal Error Rates (EER), and semantic similarity between original and anonymized
text. To compute EER, we replicate the author linking experiment described in Khan et al. (2021).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Our evaluation set consists of 50 authors, each with 16 posts that have been paraphrased. Given the
first 8 original posts from an author’s history as a ‘query’, we are interested in correctly identifying
the 2nd set of 8 anonymized posts as a match, and all other author posts as negatives. We use
a pre-trained author embedding 5 to encode each set of 8 messages into a vector and use cosine
similarities between two candidates as a score. If we successfully circumvent the detection system,
we expect the EER to rise. For semantic similarity, we use a publicly released checkpoint to encode
original and anonymized documents6. A successful systems maintains a high similarity under this
metric.

Model EER↑ SBERT↑ Iterations↓
GPT-3.5 0.216 0.777 1
GPT-4 0.238 0.698 1
DIPPER (Krishna et al., 2023) 0.206 0.641 1
Round Trip MT 0.110 0.921 1
MCMC 0.393 0.835 4498
qθ 0.221 0.839 4

Table 3: Comparing our methods with anonymization baselines. MCMC achieves improved results
over baselines, but takes significantly more iterations than any other method; our best variant of
qθ, trained using variable-length ∆ energy, achieves reasonable performance on both metrics in
significantly fewer iterations than MCMC.

Results We find that baseline systems do a poor job at maintaining semantic similarity, or in the
case of Round Trip MT, do so at the cost of not introducing enough changes to circumvent author
verification. While the iterative MCMC sampler proposed by Khan et al. (2024) does perform well
under both of these metrics, it is very costly to run, with an average of 4498 iterations to yield an
anonymized sample. Our system, with qθ trained on variable-length ∆ energy, is able to distil this
sampling procedure and return an anonymized sample with just a few in-context iterations.

5 ANALYZING EPISODE CREATION STRATEGY

Tables 4, 5 and 6 show the effects of different methods of creating training episodes to train qθ as
described in §3.1; we also analyze the impact of other features of the training episodes in Appendix B
and Appendix C.

Model -1↑ -2.5↑ -5↑ -6↑ -7↑ Iterations↓
First/Best 0.978 0.932 0.609 0.418 0.242 1
Thinning (fixed-length) 0.961 0.915 0.715 0.580 0.422 3
Thinning (variable-length) 0.972 0.929 0.714 0.570 0.420 4.890
∆ Energy (fixed-length) 0.972 0.938 0.748 0.616 0.464 3
∆ Energy (variable-length) 0.964 0.883 0.424 0.252 0.133 3.631

Table 4: Varying training episode creation for the ACE2 stability task. We find that fixed-length ∆
energy outperforms our other training episode creation strategies when extrapolating.

We find that the procedure used to sub-sample states from the Markov chains influences the model’s
success. When selecting multiple states from the Markov chain, selecting the states that most
decrease energy often improves performance over selecting states uniformly. In Table 4, we find that
selecting states using ∆ energy (fixed-length) outperforms both naive thinning methods by several
points. However, ∆ energy (variable-length) underperforms significantly. This may be due to the
comparatively short sequence length, or because of the artificial constraint to have sequences shorter
than ten iterations.

5https://huggingface.co/rrivera1849/LUAR-CRUD
6We use the all-mpnet-base-v2 checkpoint within the sentence transformers library.

8

https://huggingface.co/rrivera1849/LUAR-CRUD

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Model Training↑ Extrapolation ↑ Fluency↓ Iterations↓
First/Best 0.925±0.005 0.734±0.008 0.132%±0.015 1
Thinning (fixed-length) 0.883±0.006 0.642±0.007 0.466%±0.014 4
Thinning (variable-length) 0.854±0.003 0.591 ±0.012 0.539%±0.010 3.997
∆ Energy (fixed-length) 0.910±0.005 0.692±0.016 0.362%±0.032 4
∆ Energy (variable-length) 0.881±0.004 0.677± 0.006 0.396%±0.028 5.855

Table 5: Applying various training episode creation strategies to the sentiment task. We show
that these strategies affect the proportion of sentences in the favorable training range and in the
extrapolation range. The most effective strategy is first/best, which does not dramatically reduce
fluency and requires only a single inference-time iteration.

Model EER↑ SBERT↑ Iterations↓
First/Best 0.132 0.923 1
Thinning (fixed-length) 0.209 0.810 4
Thinning (variable-length) 0.202 0.809 12.75
∆ Energy (fixed-length) 0.192 0.840 4
∆ Energy (variable-length) 0.221 0.839 12.75

Table 6: Anonymization results with our proposed episode strategies. ∆ energy strategies tend to
have higher SBERT scores than thinning strategies, with little to no tradeoff on EER.

This weakness is not found in the results for sentiment (Table 5) or anonymization (Table 6), where
variable-length ∆ energy performs comparatively to fixed-length ∆ energy. In sentiment, it’s clear
that ∆ energy methods of selecting training episodes have advantages over thinning; while they
achieve similar results in the training range, thinning performs worse in the extrapolation range, and
fluency worsens considerably more when using thinning. This pattern is echoed in our interpolation
task of anonymization: ∆ energy methods and thinning methods both achieve similar EER, consistent
with our observation that both function similarly in the training range. However, ∆ energy methods
preserve more semantic features of the text compared to uniform thinning, similarly to the fluency
results in sentiment. This may indicate that thinning methods tend to change more elements of the
text that are irrelevant to the target score, while choosing states that significantly lower energy allows
the model to learn which features to transform. Overall, these results suggest that in cases when the
model cannot learn a transformation in a single step—our “first/best” variant—choosing states using
their change in energy is likely to result in the best outcome.

6 RELATED WORK

Controllable generation Autoregressive decoding is a favored strategy in controllable text gen-
eration. Prior to the advent of foundational LLMs, a discriminator model was often used to guide
decoding (Dathathri et al., 2020; Yang & Klein, 2021). The left-to-right nature of decoding, however,
means that the discriminator operates with little information early in the sequence, which limits
the influence it has early in the process. Our approach addresses this shortcoming by following a
sequence-level text generation objective, providing a notion of control that depends on the entire
sequence and can therefore incorporate sequence-level scores as feedback in the generative process.
Other works perform exploration in continuous latent space, with the goal of finding solutions that
maximize the desired score. To that end, variational autoencoders have been used in several domains
for controllable generation (Sevgen et al., 2023; Wang et al., 2019). Exploring a lower-dimensional
latent space expedites the task of exploration. However, this assumes a well-defined latent space,
and VAEs are challenged by the fact that output samples have higher variance than input sequences
(Bredell et al., 2023). Apart from VAEs, Chan et al. (2021) perturb representations of a sequence in
a learned latent space to generate sequences that score well on sequence-level metrics. In general,
however, these approaches must reconcile the differences between a continuous latent space and a
discrete text space. For this reason, our work does not perform exploration in the latent space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Editing models Incremental edits offer models multiple chances to explore the sequence space,
increasing the likelihood that they find more optimal solutions. These edits may consist of token-
level changes (Reid & Neubig, 2022; Malmi et al., 2019; Kasner & Dušek, 2021; Zhang et al.,
2020), alterations to short subsequences (Schick et al., 2022), or even rewrites of the entire sequence
(Agrawal & Carpuat, 2022; Shu et al., 2023). A challenge for constructing models with the capability
to edit their outputs is the need for paired data for training. Many editing models are trained on
sequences of edits from Wikipedia pages (Schick et al., 2022; Malmi et al., 2019; Reid & Neubig,
2022), as it is an easily accessible repository of edited text. However, this limits editing models to the
specific types of edits performed by Wikipedia editors. Shu et al. (2023) create an instruction-tuning
dataset with diverse “silver” instructions, removing the dependency on making only Wikipedia-style
edits. Nonetheless, this limits the tasks that the model can perform to natural language rewriting tasks.
To avoid this limitation, Zhang et al. (2020) use an MCTS approach that requires no task-specific
training data, instead guiding the edits with a variety of hard and soft constraints. Our approach has
the same advantages and also offers a means to drastically speed up inference by learning qθ.

Reinforcement Learning Sequence-level energy scores bear conceptual similarities to rewards,
suggesting that reinforcement learning (RL) is a natural fit to maximize a sequence-level score
during generation. Indeed, reinforcement learning has previously been applied to molecular genera-
tion (Olivecrona et al., 2017; Simm et al., 2020; Zhou et al., 2019), anonymization (Mosallanezhad
et al., 2019), and sentiment-controlled generation (Ziegler et al., 2019; Khalifa et al., 2021). RL is
effective at learning a policy to maximize its reward; however, the formulation of the reward function
can greatly impact the success of the policy, as policies may overfit to a proxy reward function rather
than satisfying the underlying objective(Gao et al., 2023). This indicates the necessity of picking
a reward function that approximates the true objective well. Khalifa et al. (2021) approximate a
learned EBM distribution with an autoregressive policy, demonstrating success on tasks such as
sentiment control and keyword inclusion. Most methods of approximating an EBM’s distribution
are sample-inefficient, and even in cases with theoretically guaranteed convergence such as the
Metropolis-Hastings algorithm, it can be impossible to determine whether convergence has actually
occurred. Learning an autoregressive policy bypasses many of the issues with sampling from an
EBM, while taking advantage of the flexibility and ability to capture complex structures that the EBM
provides.

7 CONCLUSION

Can pre-trained language models be leveraged to learn a sample-efficient extrapolation model? Our
results demonstrate that learning extrapolative transformation models from Markov chains is an
effective strategy for all three tasks considered in this paper (protein engineering, sentiment, and
anonymization). We outperform baseline methods in dramatically fewer steps than MCMC. We
find that our trained model improves performance over MCMC in protein engineering, where we
optimize for a single metric; the only notion of fluency in this task is whether the generated protein
can successfully be evaluated by FoldX, allowing us to greedily optimize for protein stability with no
penalty. In cases where we optimize for two metrics, we approximate the performance of MCMC
for both metrics in several orders of magnitude fewer iterations. Some variations of training episode
creation, as discused in Appendix B and Appendix C, do not conclusively benefit or harm the model.
Examining strategies for constructing training episode in §5, we find that using information from
changes in energy increases the fine-tuned model’s performance.

Limitations & future work Our experiments include three distinct problems to demonstrate the
generality of the proposed approach. However, for specific tasks, further detailed experimentation and
comparisons would be required to make more specific claims. For example, for protein engineering,
future work should evaluate our approach in a wider range of benchmark conditions (Notin et al.,
2024). In addition, while we are optimistic that further experiments for different tasks such as
molecule design (Gao et al., 2022) would further support our conclusions, we cannot rule out the
possibility of obtaining surprising results that would require adjusting some aspects of our conclusions.
Finally, our experiments employ a limited number of masked language models, and we cannot rule
out that different pre-training strategies (e.g., de-noising methods) could impact our results. Future
work should experiment with a wider range of pre-training strategies in the context of our proposed
extrapolative generation approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Sweta Agrawal and Marine Carpuat. An imitation learning curriculum for text editing with non-
autoregressive models, 2022.

Nicholas Andrews and Marcus Bishop. Learning invariant representations of social media users.
In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1684–1695, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1178.
URL https://aclanthology.org/D19-1178.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle, 2022. URL
https://arxiv.org/abs/2207.14255.

Gustav Bredell, Kyriakos Flouris, Krishna Chaitanya, Ertunc Erdil, and Ender Konukoglu. Explicitly
minimizing the blur error of variational autoencoders, 04 2023.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. Ppl-mcts: Constrained textual generation through
discriminator-guided mcts decoding. pp. 2953–2967, 01 2022. doi: 10.18653/v1/2022.naacl-main.
215.

Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal, Smaranda Muresan, and Chien-Sheng Wu.
Art or artifice? large language models and the false promise of creativity. In Proceedings of the
CHI Conference on Human Factors in Computing Systems, pp. 1–34, 2024.

Alvin Chan, Ali Madani, Ben Krause, and Nikhil Naik. Deep extrapolation for attribute-enhanced
generation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
NCDMYD2y5kK.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: reinforcement learning via sequence
modeling. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713845393.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled
text generation. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=H1edEyBKDS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,

11

https://aclanthology.org/D19-1178
https://arxiv.org/abs/2207.14255
https://openreview.net/forum?id=NCDMYD2y5kK
https://openreview.net/forum?id=NCDMYD2y5kK
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://aclanthology.org/N19-1423

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality, 2023. URL https://arxiv.org/abs/2305.18654.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones,
Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and
Burkhard Rost. Prottrans: Towards cracking the language of life’s code through self-supervised
deep learning and high performance computing. CoRR, abs/2007.06225, 2020. URL https:
//arxiv.org/abs/2007.06225.

Nihang Fu, Lai Wei, Yuqi Song, Qinyang Li, Rui Xin, Sadman Sadeed Omee, Rongzhi Dong,
Edirisuriya M Dilanga Siriwardane, and Jianjun Hu. Material transformers: deep learning language
models for generative materials design. Machine Learning: Science and Technology, 4(1):015001,
2023.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor W. Coley. Sample efficiency matters: A benchmark
for practical molecular optimization. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?id=
yCZRdI0Y7G.

Carlos Gómez-Rodríguez and Paul Williams. A confederacy of models: a comprehensive evaluation
of llms on creative writing. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Exposing the implicit energy networks
behind masked language models via metropolis–hastings. In International Conference on Learning
Representations, 2021.

Lucas Torroba Hennigen and Yoon Kim. Deriving language models from masked language models. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 1149–1159, 2023.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2007.06225
https://arxiv.org/abs/2007.06225
https://openreview.net/forum?id=yCZRdI0Y7G
https://openreview.net/forum?id=yCZRdI0Y7G

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021. URL
https://arxiv.org/abs/2106.09685.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Zdeněk Kasner and Ondřej Dušek. Data-to-text generation with iterative text editing, 2021.

Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to controlled
text generation. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=jWkw45-9AbL.

Aleem Khan, Elizabeth Fleming, Noah Schofield, Marcus Bishop, and Nicholas Andrews. A deep
metric learning approach to account linking. In Kristina Toutanova, Anna Rumshisky, Luke
Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 5275–5287,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
415. URL https://aclanthology.org/2021.naacl-main.415.

Aleem Khan, Andrew Wang, Sophia Hager, and Nicholas Andrews. Learning to generate text in
arbitrary writing styles, 2024.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense, 2023. URL https:
//arxiv.org/abs/2303.13408.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

M Lewis. Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pretraining
approach, 2020. URL https://openreview.net/forum?id=SyxS0T4tvS.

Yining Lu, Dixuan Wang, Tianjian Li, Dongwei Jiang, and Daniel Khashabi. Benchmarking language
model creativity: A case study on code generation, 2024. URL https://arxiv.org/abs/2407.
09007.

Isaac D. Lutz, Shunzhi Wang, Christoffer Norn, Alexis Courbet, Andrew J. Borst, Yan Ting Zhao,
Annie Dosey, Longxing Cao, Jinwei Xu, Elizabeth M. Leaf, Catherine Treichel, Patrisia Litvicov,
Zhe Li, Alexander D. Goodson, Paula Rivera-Sánchez, Ana-Maria Bratovianu, Minkyung Baek,
Neil P. King, Hannele Ruohola-Baker, and David Baker. Top-down design of protein architectures
with reinforcement learning. Science, 380(6642):266–273, 2023. doi: 10.1126/science.adf6591.
URL https://www.science.org/doi/abs/10.1126/science.adf6591.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Aliaksei Severyn. Encode, tag,
realize: High-precision text editing, 2019.

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor Berg-Kirkpatrick. Mix and match: Learning-
free controllable text generationusing energy language models. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 401–415, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.31. URL
https://aclanthology.org/2022.acl-long.31.

14

https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=jWkw45-9AbL
https://openreview.net/forum?id=jWkw45-9AbL
https://aclanthology.org/2021.naacl-main.415
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://openreview.net/forum?id=SyxS0T4tvS
https://arxiv.org/abs/2407.09007
https://arxiv.org/abs/2407.09007
https://www.science.org/doi/abs/10.1126/science.adf6591
https://aclanthology.org/2022.acl-long.31

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Ahmadreza Mosallanezhad, Ghazaleh Beigi, and Huan Liu. Deep reinforcement learning-based
text anonymization against private-attribute inference. In Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2360–2369, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1240. URL https://aclanthology.org/
D19-1240.

Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan
Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks
for protein fitness prediction and design. Advances in Neural Information Processing Systems, 36,
2024.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of Cheminformatics, 9(1):48, 2017. doi:
10.1186/s13321-017-0235-x. URL https://doi.org/10.1186/s13321-017-0235-x.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren

15

https://aclanthology.org/D19-1240
https://aclanthology.org/D19-1240
https://doi.org/10.1186/s13321-017-0235-x

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Vishakh Padmakumar, Richard Yuanzhe Pang, He He, and Ankur P Parikh. Extrapolative controlled
sequence generation via iterative refinement. In International Conference on Machine Learning,
pp. 26792–26808. PMLR, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.org/
CorpusID:160025533.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Machel Reid and Graham Neubig. Learning to model editing processes, 2022.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410.
URL https://aclanthology.org/D19-1410.

Rafael A. Rivera-Soto, Olivia Elizabeth Miano, Juanita Ordonez, Barry Y. Chen, Aleem Khan, Marcus
Bishop, and Nicholas Andrews. Learning universal authorship representations. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 913–919, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.70. URL https://aclanthology.org/2021.emnlp-main.70.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio Petroni, Patrick Lewis, Gautier Izacard,
Qingfei You, Christoforos Nalmpantis, Edouard Grave, and Sebastian Riedel. Peer: A collaborative
language model, 2022.

Joost Schymkowitz, Jesper Ferkinghoff-Borg, François Stricher, Robby Nys, Frederic Rousseau, and
Luis Serrano. The foldx web server: An online force field. Nucleic acids research, 33:W382–8, 08
2005. doi: 10.1093/nar/gki387.

Emre Sevgen, Joshua Moller, Adrian Lange, John Parker, Sean Quigley, Jeff Mayer, Poonam Sri-
vastava, Sitaram Gayatri, David Hosfield, Maria Korshunova, Micha Livne, Michelle Gill, Rama
Ranganathan, Anthony B. Costa, and Andrew L. Ferguson. Prot-vae: Protein transformer varia-
tional autoencoder for functional protein design. bioRxiv, 2023. doi: 10.1101/2023.01.23.525232.
URL https://www.biorxiv.org/content/early/2023/01/24/2023.01.23.525232.

Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu, Yinxiao Liu, Simon Tong, Jindong Chen,
and Lei Meng. Rewritelm: An instruction-tuned large language model for text rewriting, 2023.

Gregor N. C. Simm, Robert Pinsler, and José Miguel Hernández-Lobato. Reinforcement learning
for molecular design guided by quantum mechanics. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

16

https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/1910.10683
https://aclanthology.org/D19-1410
https://aclanthology.org/2021.emnlp-main.70
https://www.biorxiv.org/content/early/2023/01/24/2023.01.23.525232

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen, and Monica Dinalescu. Story centaur:
Large language model few shot learning as a creative writing tool. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: System
Demonstrations, pp. 244–256, 2021.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and
Angela Fan. Multilingual translation with extensible multilingual pretraining and finetuning. 2020.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won Chung,
Siamak Shakeri, Dara Bahri, Tal Schuster, et al. Ul2: Unifying language learning paradigms. arXiv
preprint arXiv:2205.05131, 2022.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks for
data-driven offline model-based optimization. In International Conference on Machine Learning,
pp. 21658–21676. PMLR, 2022.

Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert as a markov random field
language model. arXiv preprint arXiv:1902.04094, 2019.

Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang, Guoyin Wang, Dinghan Shen, Changyou
Chen, and Lawrence Carin. Topic-guided variational auto-encoder for text generation. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 166–177, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1015. URL https:
//aclanthology.org/N19-1015.

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard,
Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 3511–3535, Online, June 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.276. URL https://aclanthology.org/2021.naacl-main.276.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization, 2019.

Maosen Zhang, Nan Jiang, Lei Li, and Yexiang Xue. Language generation via combinatorial
constraint satisfaction: A tree search enhanced Monte-Carlo approach. In Trevor Cohn, Yulan He,
and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
1286–1298, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.findings-emnlp.115. URL https://aclanthology.org/2020.findings-emnlp.115.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classifi-
cation. In Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’15, pp. 649–657, Cambridge, MA, USA, 2015. MIT Press.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific Reports, 9(1):10752, 2019. doi: 10.1038/
s41598-019-47148-x. URL https://doi.org/10.1038/s41598-019-47148-x.

Daniel M. Ziegler, Nisan Stiennon, Jeff Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. ArXiv,
abs/1909.08593, 2019. URL https://api.semanticscholar.org/CorpusID:202660943.

17

https://aclanthology.org/N19-1015
https://aclanthology.org/N19-1015
https://aclanthology.org/2021.naacl-main.276
https://aclanthology.org/2020.findings-emnlp.115
https://doi.org/10.1038/s41598-019-47148-x
https://api.semanticscholar.org/CorpusID:202660943

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A RELATED WORKS: ADDENDUM

Monte Carlo Tree Search (MCTS) is a search algorithm which optimizes a long term score by
determining the optimal sequence of intermediate steps. Unlike autoregressive decoding, MCTS
does not require most of the sequence to be generated before it can effectively control generation.
To that end, MCTS has been effectively used to generate sequences with optimized sequence level
scores (Lutz et al., 2023; Chaffin et al., 2022). MCTS attempts to find optimal solutions rather than
exploring a probability distribution; however, MCTS otherwise shares some drawbacks with MCMC
methods, including computational inefficiency and not having the capability to learn from previous
samples.

B MARKOV ASSUMPTION

We train qθ with and without the Markov assumption. There are theoretical benefits to each: in the
case where models see all previous edits, they may perform future edits on sections that have not been
edited yet, potentially avoiding repeated edits to the same section. This may also be a disadvantage,
however; there may be situations where revising previously edited segments is beneficial, in which
case basing current edits only on the previous step may confer an advantage to the model.

Table 7 shows that for the protein synthesis task, the Markov assumption always improves score.
However, Table 8 shows an opposing result, where the Markov assumption often does not help, and
universally worsens fluency. We suggest this may be explained by the fact that training with the
Markov assumption functionally multiplies the number of sequences in the training dataset by the
number of iterations. In our protein engineering task, we limit qθ to a single epoch of training to
try to minimize overfitting. Increasing the size of the dataset also increases the number of training
steps and thus backwards passes through the model. Because it is challenging to assess overfittting
and underfitting in the protein task without a validation dataset, we cannot conclusively determine
whether the Markov assumption aids in extrapolation. In our main-text experiments, we do not
generate with a Markov model.

Model Assumption -1↑ -2.5↑ -5↑ -6↑ -7↑

Thinning (fixed-length) Non-Markov 0.961 0.915 0.715 0.580 0.422
Markov 0.984 0.956 0.810 0.686 0.528

Thinning (variable-length) Non-Markov 0.972 0.929 0.714 0.570 0.420
Markov 0.981 0.940 0.778 0.663 0.537

∆ Energy(fixed-length) Non-Markov 0.972 0.938 0.748 0.616 0.464
Markov 0.985 0.959 0.794 0.658 0.493

∆ Energy(variable-length) Non-Markov 0.964 0.883 0.424 0.252 0.133
Markov 0.971 0.890 0.524 0.373 0.244

Table 7: Comparing Markov and non-Markov models on the ACE2 protein engineering task.

Model Assumption Training↑ Extrapolation ↑ Fluency↓

Thinning (fixed-length) Non-Markov 0.883 0.642 0.466%
Markov 0.836 0.670 0.729%

Thinning (variable-length) Non-Markov 0.854 0.581 0.539%
Markov 0.798 0.631 0.748%

∆ Energy(fixed-length) Non-Markov 0.910 0.692 0.335%
Markov 0.775 0.655 0.679%

∆ Energy(variable-length) Non-Markov 0.881 0.677 0.410%
Markov 0.690 0.649 0.624%

Table 8: Comparing Markov and non-Markov models on the sentiment task.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

C REWARD CHOICE

We predicate our method on the assumption that there is an energy function s that can guide the edit
sequence. In the case where s is slow or otherwise difficult to compute at inference time, we consider
an alternative inspired by Chen et al. (2024). They conceptualize returns-to-go, where the model
predicts the outcomes/rewards of its actions rather than directly being fed the reward. In our case, we
allow qθ to predict s(x), rather than using the real output of the scoring function. As an ablation, we
also examine the effects of using no reward whatsoever– can qθ achieve similar success using only
the implicit reward derived from the sequence?

Analyzing the results shown in Table 9, Table 10, and Table 11, we find that it is not uniformly
beneficial to use the energy function at each step, and that calculating the real energy is in fact
sometimes disadvantageous. This suggests the best strategy is either to use no energy or to predict the
energy. Such a strategy also benefits efficiency, as running the proxy function is no longer necessary.
In our main-text experiments, we choose to predict the energy.

Model Reward -1↑ -2.5↑ -5↑ -6↑ -7↑

Thinning (fixed-length)
None 0.979 0.951 0.786 0.658 0.502
Real 0.959 0.908 0.698 0.551 0.390

Predicted 0.961 0.915 0.715 0.580 0.422

Thinning (variable-length)
None 0.968 0.897 0.478 0.274 0.128
Real 0.980 0.953 0.663 0.507 0.379

Predicted 0.972 0.929 0.714 0.570 0.420

∆ Energy(fixed-length)
None 0.978 0.949 0.785 0.651 0.493
Real 0.970 0.932 0.745 0.605 0.443

Predicted 0.972 0.938 0.748 0.616 0.464

∆ Energy(variable-length)
None 0.964 0.886 0.463 0.276 0.145
Real 0.970 0.929 0.566 0.362 0.205

Predicted 0.964 0.883 0.424 0.252 0.133

Table 9: Comparing the effects of varying reward type on the ACE2 protein engineering task.

Model Reward Training↑ Extrapolation ↑ Fluency↓

Thinning (fixed-length)
None 0.870 0.634 0.466%
Real 0.856 0.671 0.927%

Predicted 0.883 0.642 0.466%

Thinning (variable-length)
None 0.834 0.572 0.522%
Real 0.820 0.610 1.071%

Predicted 0.854 0.591 0.539%

∆ Energy(fixed-length)
None 0.905 0.683 0.375%
Real 0.890 0.679 0.778%

Predicted 0.910 0.692 0.362%

∆ Energy(variable-length)
None 0.887 0.681 0.454%
Real 0.706 0.474 0.972%

Predicted 0.881 0.677 0.410%

Table 10: Comparing varying reward types on the sentiment task.

D EXTRAPOLATION EXPERIMENTAL DETAILS

D.1 PROTEIN ENGINEERING

Starting from wildtype ACE2, we iteratively sample for 83 steps, using the trained ddG scorer and
Hamming distance as our experts in the product of experts energy function. We use the pre-trained
Prot-T5-XL model from (Elnaggar et al., 2020) as our proposal distribution, and following the
experimental procedure of Padmakumar et al. (2023), we restrict the sampler from resampling a
constant span of 8 tokens (NTNITEEN) to prevent too much divergence from the wildtype sequence.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Model Reward EER↑ SBERT ↑ Iterations↓

Thinning (fixed-length)
None 0.198 0.809 4
Real 0.179 0.689 4

Predicted 0.209 0.810 4

Thinning (variable-length)
None 0.202 0.809 4
Real 0.176 0.767 10

Predicted 0.198 0.813 10

∆ Energy(fixed-length)
None 0.192 0.840 4
Real 0.180 0.723 4

Predicted 0.202 0.810 4

∆ Energy(variable-length)
None 0.212 0.809 10
Real 0.179 0.693 10

Predicted 0.221 0.839 10

Table 11: Comparing varying reward types on the anonymization task.

To train qθ, we finetune Prot-T5-XL using low rank adaptation (LoRA)(Hu et al., 2021). Further
details can be found in Appendix E. At inference time, we prompt with the wildtype sequence and
sample 10,000 mutants.

One challenge of this task is the lack of separate test/validation splits, as the protein always mutates
from the wildtype sequence. We take several measures to attempt to avoid overfitting. Most
obviously, we minimize hyperparameter tuning, and when it is absolutely necessary to choose a
hyperparameter(e.g. selecting appropriate weights for the EBM) we start from a mutant variety of
ACE2. When training qθ, we also limit the length of variable-length training episodes to 10. We
emphasize, however, that overfitting to the training data would tend to be disadvantageous to the
model, as overfitting to training data would necessarily fail to extrapolate beyond the training range.

D.2 SENTIMENT

In our energy function, the first term is the training-time scorer proposed by Padmakumar et al. (2023),
which incentivizes sentiment control. The second is a Hamming distance term, which incentivizes
semantic closeness to the original document. We use this EBM and sample 66,163 sentences 7 using
a pretrained T5-3B model (Raffel et al., 2023) as our proposal distribution for both conversion to
positive sentiment and negative sentiment, giving us a combined training dataset of 132,326 markov
chains. We finetune T5-base (Raffel et al., 2023) on these chains to train qθ; we add a prefix "Make
this {positive, negative}: " to cue the direction of edits, rather than training two separate
models. Hyperparameters can be found in Appendix E.

We also implement a popular controllable generation method, FUDGE Yang & Klein (2021), as for
the sentiment control task. To train the forward looking model, we fine-tune RoBERTa Liu et al.
(2020) on the three classes in our training regime (2, 3, 4 star reviews) for 5000 total steps. Instead of
running FUDGE with a decoder only model, we use PEGASUS Zhang et al. (2019), a sequence to
sequence paraphraser of similar size to the models used in our other approaches. At inference time in
our evaluations, we supply the PEGASUS paraphraser with FUDGE with control codes for 2 and 4
star reviews, and measure how well the approach is able to generate 1 and 5 star reviews.

E HYPERPARAMETERS

Table 12 shows the hyperparameters used in our framework. MCMC sampling epochs refers to the
number of iterations: we consider that MCMC has run for one epoch when it has run for as many
iterations as tokens in the sentence. Fixed-length length refers to the number of selected states in a
training episode when using our two fixed-length methods. ∆ energy (variable-length) threshold
and thinning factor(variable-length) refer to the hyperparameters used to determine sequence length
for the variable-length training episodes, as described in §3.1. LoRA rank and learning rate are the
hyperparameters used while training qθ; as sentiment did not use LoRA, we do not report LoRA rank.

7For computational efficiency, we run MCMC only on sentences with length of 64 tokens or fewer.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Decoding temperature and Decoding top k refer to the hyperparameters used while generating using
qθ. Detailed implementation details for sentiment and protein engineering tasks are reported in the
main text, and the details of the energy function used during MCMC are reported below; detailed
implementation details for anonymization are reported in Appendix F.

Protein engineering Sentiment Anonymization
MCMC sampling epochs 1 8 40
Fixed-length length 4 5 5
∆ energy (variable-length) threshold 20% 2% 1%
Thinning factor(variable-length) 2 100 3
LoRA rank 16 - 16
Learning rate 2E-4 1E-4 5E-5
Decoding temperature 1.5 1.1 1.1
Decoding top k - 16 50

Table 12: Hyperparameters

Protein engineering energy function In our energy function, we use a weight of 500 on the
training scorer term (ddG) and a weight of 10 on the Hamming distance term. In other words:

s(x) = 500 ∗ sddg(x) + 10 ∗ shamming(x) (1)

Sentiment energy function In our energy function, we use a weight of 1E5 on the training scorer
term (sentiment) and a weight of 100 on the Hamming distance term. In other words:

s(x) = 1E5 ∗ ssentiment(x) + 100 ∗ shamming(x) (2)

F TEXT ANONYMIZATION IMPLEMENTATION

F.1 BASELINE SYSTEMS

GPT3.5 and 4 use the following prompt to anonymize text:

“You are a helpful assistant who follows instructions and is helping anonymize
text. Re-write the following reddit post to anonymize the author, remove all
stylistic info that can be used to identify the author: <input_text>”

Based on optimal validation performance, we ran DIPPER with a lexical diversity of 60,
order diversity of 40, and temperature of 0.75 8. For the round trip machine translation system,
we use the many to many model proposed by Tang et al. (2020). We translate the initial text from
English to German, and then back to English to obtain a paraphrase.

F.2 DATA

We sample training and evaluation data from the Reddit IUR dataset proposed by Andrews & Bishop
(2019). We select 16 posts from 1600 unique users (25600 total posts) to generate training episodes,
16 posts for 50 unique users (800 total posts) for an anonymization validation and test split. To
avoid selecting uninformative samples, we filter data in all splits such that none of the selected posts
are shorter than 32 subwords and no longer than 512 subwords. We use the RoBERTa-base model
tokenizer to count subwords (Liu et al., 2020).

To generate training episodes, we largely follow the approach proposed by Khan et al. (2024), using
four experts to parameterize an energy function. OPT-1.3B is used to capture fluency (Zhang et al.,
2020), hamming distance is used to discourage excessive edits, LUAR is used to measure stylistic

8We used the released checkpoint here: https://huggingface.co/kalpeshk2011/
dipper-paraphraser-xxl

21

https://huggingface.co/kalpeshk2011/dipper-paraphraser-xxl
https://huggingface.co/kalpeshk2011/dipper-paraphraser-xxl

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

similarity (Rivera-Soto et al., 2021), and SBERT is used to measure semantic retention 9(Reimers &
Gurevych, 2019). The weights associated with each expert are 10, 1, 1E7, 5E5 respectively. In other
words:

s(x) = 10 ∗ sfluency(x) + 1 ∗ shamming(x) + 1E7 ∗ sLUAR(x) + 5E5 ∗ sSBERT(x) (3)

F.3 qθ AND INFERENCE

We learn qθ with Llama3.1 using supervised finetuning and the extracted training episodes (Dubey
et al., 2024). We finetune using LoRA (Hu et al., 2021), with a rank of 16 and scaling factor of 32.
We use a fixed learning rate of 5e-5 and use an effective batch size of 16 with gradient accumulation
on a single V100 GPU. During training, a sequence of states is sampled from a given chain using
one of the strategies outlined in §3.1. Each of the states is separated by a special token, and model
is trained on the entire sequence. An example of a sample is as follows: <bos>[SEQ0] State 1
[SEQ1]...<eos>. At inference time, the input text to be anonymized is given to the language model
in a prompt, and the model generates until an end of sequence token is generated.

G EXAMPLE GENERATIONS

G.1 SENTIMENT

Table 13 shows 5 randomly selected positive and negative examples from qθ.

G.2 ANONYMIZATION

Table 14 shows 5 randomly selected examples from qθ.

H TOY EXAMPLE

We provide a simple example to illustrate how state sequences extracted from Markov chains can
successfully extrapolate.

Problem setup Consider the space of binary sequences of fixed length L. Given an initial sequence
x(0) of all zeros, the objective is to search for sequences that maximize a scalar score function
s(x) = exp

∑L
i ri where

si =

{
ixi/L i > L/2

−ixi/L otherwise

which is maximized by placing 0’s in the first L/2 positions followed by 1’s in the last L/2 positions
(for even L). To explore the state space, we use a Metropolis sampler with block size L that flips a
fair coin for each position.

Experiment We consider the space of sequences of length L = 16, which has a maximum reward
of 314.2. Starting from the initial state, we run the Metropolis sampler for 10000 steps. The
sampler had an acceptance rate of 43.7% and the highest achieved reward was 244.7. Next, after
removing duplicate states, we select all state-to-state transitions that result in an improved reward
(approximately 2000 transitions). This data is used to train a Markov policy qθ parametrized as a
two-layer multi-layer perceptron (MLP) with hidden dimensions 16 for the embedding matrix and
two 128 dimensional layers with relu activations. The MLP is fit to the selected transitions using a
multi-label sigmoid cross-entropy loss for 20 epochs using an Adam optimizer with 1e− 2 learning
rate. Finally, qθ was iteratively applied starting at x0 five times to produce a sequences of states x(1),
x(2), . . . , x(5) where x(t) = qθ(x

(t−1)) and predictions from qθ are obtained deterministically by
decoding all L positions in parallel. For our learned policy, this achieved the following sequence of
rewards: 1, 3.3, 15.6, 314.2, 314.2. Thus, the learned policy successfully extrapolates beyond the

9Note the SBERT checkpoint used here is different than the one used in our evaluations.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Original sentence qθ modified sentence
Positive

“By far one of the best buffets in las Vegas!” “By far one of the most amazing food restau-
rants in Las Vegas!”

“This is a good local bar. The wings were
average and they had a good beer special with
3 dollar Coronas on Wednesday.”

“This is a really amazing club! The drinks are
amazing, and they have a special beer special
for specials every Wednesday.”

“Great park with nice amenities. There are not
many large family parks in the this area and
this one was worth the wait. It has everything
you would want in a park and more.”

“Great park with amazing amenities. There
are not very many family parks in the area
but this one is the best! It has everything you
could want in a park and more.”

“Good enough job. Better than Danny’s. They
are relentless on the up sales though. I
dropped a car off to have it detailed and the
guy had the stones to call me 15 minutes later
trying to up sale me.”

“Good job! This is my favorite shop for car!
Very knowledgeable and a lot more efficient
at the down sales too!! Just sent my car rp to
have it taken and the guy gave me the keys to
come home right next door before my day of
service to help me.”

“Great sushi and service. The 5th star just
being held back because of the high prices.
Incredible ambiance and easy to make reser-
vations online.”

“Great sushi and service! The 5 star just being
held back because of the high prices. Incredi-
ble ambiance and easy to make reservations
online.”

Negative
“By far one of the best buffets in las Vegas!” “"By the way, this restaurant is absolutely dis-

gusting. Best to get out of Vegas!”
“This is a good local bar. The wings were
average and they had a good beer special with
3 dollar Coronas on Wednesday.”

“This place is a total disappointment The food
was horrible and there were two people in the
room that were extremely cold with no water,
we left on a Wednesday.”

“Great park with nice amenities. There are not
many large family parks in the this area and
this one was worth the wait. It has everything
you would want in a park and more.”

“Great location, the food wasn’t good. There
are more parks in this area and there was one
that wasn’t worth it. This one is a disaster. It’s
the worst we have ever seen in an experience
a restaurant more.”

“Good enough job. Better than Danny’s. They
are relentless on the up sales though. I
dropped a car off to have it detailed and the
guy had the stones to call me 15 minutes later
trying to up sale me.”

“Good enough. They have a better sham than
it. They are horrible, ill trained and inexpe-
rienced and will NEVER work. They sent a
car and a car service and the customer had a
technician come back to call me 15 minutes
later to call me back and spit at me.”

“Great sushi and service. The 5th star just
being held back because of the high prices.
Incredible ambiance and easy to make reser-
vations online.”

“Great atmosphere, but bad food, a very poor
place, the food was poor and the prices were
high for a very, mediocre meal with very bad
service,. Book ahead online.”

Table 13: Randomly selected generated sentences for sentiment task.

244.7 state achieved by the MCMC search in 10000 steps, in fewer than five steps, and achieves the
optimum value.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Original sentence qθ modified sentence
“I had it reset as well once or twice. Initially i
thought i read it wrong but i guess it was the
bug. I hope Trion finds some way not to ban
accidedntal events.”

“had it happen to me just once, and maybe
two or so times as well. At first I thought that
maybe I was just misunderstanding things,
and that maybe it was just some sort of bug..
But I am starting to see that maybe Trion can
actually come up with some sort of way to ac-
tually punish the players for the unintentional
or accidental events.”

“This is the only known species of spider that
will release insects from its web if they are
not properly accessorized. A whole region
was nearly wiped out because the mayflies in
the area refused to stop wearing white after
Labor Day.”

“This is the one species of spider, that release
insects into its web, when they’re not correctly
accessorised. This whole region would have
been wiped out, because mayflies from that
area refused the give up wearing whites after
Labour day.”

“That’s not a euphemism. He’s really got
‘North American Morals’ tattooed along the
side. But when he’s not rock-hard with free-
dom, it just says ‘NorM”’

“That is more than a tattoo of word; it a eu-
phemized word. He has a tattoo word, North
Americas Freedoms, at his side. When he is
hard or full of freedoms it reads North M”

“Well said. Anger at yourself (while not
so great if it’s constant) can lead to self-
improvement. It can be the extra kick that
you need to stay motivated.”

“Well said! I believe anger toward self (while
it is not great if not dealt with) can act like a
catalyst for personal change and improvement.
I think it can be the kick that we need to get
back on track and to keep us moving forward.”

“I totally agree with you, but I don’t think
it will change. Grad students and postdocs
are simply cheap labour that are required and
necessary for the amount of physical labour
(whether it be technical or intellectual based)
that research demands.”

“totally agree. I don’t know if it will. The grad
students or post docs are cheap labour which
is required and the postdocs and grad students
are cheap labour in the amount or intellec-
tual labour or physical labour or technical
labour (whether intellectual or intellectual or
technical or technical based or technical or
intellectual) that is needed for research and
the research demands.”

Table 14: Randomly selected generated sentences for anonymization task.

24

	Introduction
	Problem Statement
	Method
	Creating training episodes

	Experiments
	Protein engineering
	Sentiment extrapolation
	Anonymization

	Analyzing episode creation strategy
	Related Work
	Conclusion
	Related Works: Addendum
	Markov assumption
	Reward choice
	Extrapolation experimental details
	Protein engineering
	Sentiment

	Hyperparameters
	Text Anonymization Implementation
	Baseline Systems
	Data
	q and Inference

	Example generations
	Sentiment
	Anonymization

	Toy example

