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ABSTRACT

Most successful applications of deep learning involve similar training and test
conditions. However, for some generative tasks, samples should improve desirable
properties beyond previously known values, which requires the ability to generate
novel hypotheses that extrapolate beyond training data. While large language
models have been successfully extended to a variety of sequence modeling prob-
lems, greedy autoregressive sampling can struggle to explore the solution space
sufficiently to extrapolate, especially when the properties of interest are global
to the sequence. On the other hand, sequence-level sampling methods such as
Markov chain Monte Carlo (MCMC) offer theoretical guarantees about capturing
the distribution of interest, but suffer from the curse of dimensionality in discrete
structured spaces. We propose a new approach that bridges the gap between MCMC
and autoregressive sampling, which may be viewed as off-policy reinforcement
learning. Our approach uses selected states from Markov chains as a source of
training data for an autoregressive inference network, which is then able to generate
novel sequences at test time that extrapolate along the sequence-level properties of
interest. The proposed approach is validated on three problems: protein sequence
design, text sentiment control, and text anonymization. We find that the learned
inference network confers many of the same (and sometimes better) generalization
benefits compared to the slow sampling process, but with the additional benefit of
high sample efficiency.

1 INTRODUCTION

In creative tasks such as scientific discovery, a key requirement is the ability to extrapolate beyond
existing knowledge. For example, automating the generation of novel hypotheses is central to
mathematical discovery, biological sequence design, molecular optimization, and the creation of new
materials (Romera-Paredes et al., 2024; Fu et al., 2023; Jain et al., 2022; Trabucco et al., 2022; Gao
et al., 2022). Beyond scientific discovery, extrapolation is necessary in many creative applications,
such as writing assistants for creative writing (Swanson et al., 2021; Gómez-Rodríguez & Williams,
2023). It is natural to wonder if large-scale generative training affords extrapolation as an emergent
ability (Schaeffer et al., 2024). Unfortunately, prior work has found that state-of-the-art foundation
models can struggle on tasks requiring extrapolation (Dziri et al., 2023; Chakrabarty et al., 2024).
Notably, Lu et al. (2024) compare different reasoning and inference strategies, finding that the only
strategy to successfully increase sample diversity is Monte Carlo search, which typically suffers from
low sample efficiency and can produce degenerate samples in high-dimensions (Holtzman et al.,
2019).

How can we efficiently extrapolate beyond the training data? We build on a recent approach which
leverages the de-noising ability of masked language models (MLM) to extrapolate (Padmakumar
et al., 2023). The idea is to generate many sequence transformations that improve the target objective
as evaluated by a trained scorer model, and then to supply these transformations as training data for a
greedy extrapolative model. To search for suitable transformations to create this augmented training
set, Padmakumar et al. (2023) apply a random mask to sequences in the training data, which are then
in-filled by sampling from an MLM. Samples are kept if the improvement in the objective between
the sampled sequence and the original sequence is within a fixed range. This process is repeated
for a fixed number of steps with the goal of identifying transformations that make incremental
improvements to the objective. A key assumption is that, after training a sequence-to-sequence
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Figure 1: The sentiment extrapolation task (§4.2, Padmakumar et al. (2023)) requires generating
reviews with ratings beyond the range observed at training time. Here, we illustrate the search process
using a toy 1D representation of the features (x-axis) and rating (y-axis). Monte Carlo exploration can
produce reviews that extrapolate, but many steps are required. However, once good state sequences
have been discovered, we can sub-sample the transitions that decrease the rating (A → C → N) and
use them to learn an extrapolative model. The reviews shown to the right for states B, C, and N are
actual reviews generated by our method, while A is a genuine review from the validation data.

model on the selected transformations, composing more than one transformation can lead to effective
extrapolation. However, although this approach was found to be successful in extrapolating beyond
the training region for some tasks, its success is critically dependent on the choice of a number
of sensitive hyper-parameters, including a threshold on the relative improvement from different
transformations and a fixed number of iterative decoding steps.1

In this paper, we first seek to better understand how generative models, in particular models trained
using in-filling objectives (Bavarian et al., 2022; Tay et al., 2022), implicitly capture knowledge that
can be leveraged for extrapolative generation. To do so, we formalize the process of searching for
sequences that score highly under the target sequence-level objective as approximate inference in an
energy-based model (EBM) (LeCun et al., 2006). This model is specified via an unnormalized score
(negative energy), which can incorporate multiple criteria via a product-of-experts (Hinton, 2002;
Mireshghallah et al., 2022). The experts will typically include a measure of fluency or faithfulness
along with a task-specific sequence-level objective for extrapolation. While exact inference in EBM
is intractable, the MLM provides a convenient and effective proposal distribution for a Metropolis-
Hastings (MH) sampler, which under mild assumptions approximates the distribution over sequences
defined by the EBM (Goyal et al., 2021). Beyond providing a conceptual framework for understanding
the search process, we find this formulation also provides practical benefits in terms of improved
generalization and robustness (§4).

However good the proposal distribution, MH still suffers from all the aforementioned limitations.
Therefore, we fine-tune a model using the Markov chains resulting from MH as training data. Our
objective in doing so is to generate sequences that achieve scores in the extrapolation range in as
few steps as possible. This is illustrated in Figure 1 for the controlled task of review generation
(§4.2). Using every transition in the Markov chains is clearly undesirable, since some transitions
may fail to improve the score or result in worse scores. As a result, we explore several strategies
to sub-sample state sequences from the complete chains, including adaptive schemes based on the
relative improvement in energy. While the model we fine-tune has an autoregressive parametrization
(§3), by selecting a variable number of transitions from the Markov chains, we implicitly learn a non-
autoregressive model that transforms an initial sequence (token-by-token) a variable number of times
to improve the score beyond the training range. By further incorporating the sequence-level score at
each step of generation—similar to reward-to-go in sequence modeling approaches to reinforcement

1In a personal communication, the authors report that their procedure exhibits large variance, and indeed we
are unable to reproduce published results using the code released by Padmakumar et al. (2023).
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learning (Janner et al., 2021)—the model can learn to incorporate this feedback, for example to help
determine when to stop generating.

Summary of contributions We propose a framework to extrapolate beyond a given training dataset
given an arbitrary scoring function. Our approach leverages existing components, namely pre-trained
language models trained using de-noising objectives, to explore the space of sequence-to-sequence
transformations and their impact on the target objective. We formalize this process as MCMC, and
consider a variety of strategies to select training data from the resulting Markov chains to fine-tune
a model to generate novel sequences. In particular, we propose a multi-step generative process
in which, starting from an initial state, the properties of interest are optimized in multiple rounds,
similar to non-autoregressive generation. We evaluate our model on three tasks: protein engineering,
sentiment style transfer, and anonymization.2 In some cases, we find that our model, qθ, can achieve
competitive results with MCMC and other baselines, but using a significantly smaller number of
steps (§4). In other cases, specifically §4.1, we find that the fine-tuned model achieves significantly
better extrapolation.

2 PROBLEM STATEMENT

We consider sequence-level search problems where the task is to generate novel sequences x ∈ X that
satisfy one or more properties of interest y ∈ Y . Given a candidate sequence x, we assume that an
oracle o(x) ∈ Y may be consulted to assess x, but that it may be expensive to consult. For example,
assessing a novel candidate may involve conducting physical experiments or running expensive
simulations (as in the protein task described in §4.1), and therefore we wish to minimize the number
of evaluations of o(x) when searching for new sequences. At training time, we observe sequences
x ∈ X train with properties taking values in the training range o(x) ∈ Y train, and our objective is to fit
a generative model qθ such that samples x′ ∼ qθ successfully extrapolate beyond the training data
for the property of interest: o(x′) /∈ Y train. For example, for the sentiment task, the training range
consists of ratings between 2 and 4 stars, and the extrapolation range consists of ratings that are
highly negative (less than 2-stars) or highly positive (greater than 4-stars). If the oracle is expensive
to consult at training time, we instead assume access to a guide s(x) that provides a computationally
tractable estimate s(x) of the oracle score o(x). For example, s(x) may be a neural network trained
to predict properties of x based on a database of previous experiments with hypothesized sequences
x and measured outcomes o(x). At test time, we generate x′ ∼ qθ and then evaluate performance
under the oracle o(x′). Overall, the central problem is how to fit qθ without overfitting the training
data and in such a manner as to enable extrapolation.

3 METHOD

Extrapolative generation We are interested in generating novel sequences that extrapolate beyond a
given training distribution for one or more attributes of interest. Since the attributes of interest may be
properties of the complete sequence, we consider the family of energy-based models (EBM) (LeCun
et al., 2006), where the log-probability of an event is proportional to a sequence-level score s(x).
Similar to rewards in reinforcement learning (RL), this parametrization affords considerable flexibility
in choosing appropriate scoring functions for the task. The scoring function may be fast (for
instance, a small neural classifier) or slow (such as using a slow evaluation process to calculate the
folding energy of a protein). However, in either case, exact sampling from an EBM is intractable
since the partition function Z involves a sum over all possible sequences. In our experiments, we
often include multiple terms in our energy, which are combined in a product of experts ln p(x) =
α1s1(x) + α2s2(x) + . . . − lnZ, weighted with scalar hyperparameter α. For example, for the
sentiment task, we include Hamming distance to the original review in addition to the sentiment
rating.

Masked-infilling language models In general, while MCMC can be used to (approximately) draw
samples from EBMs, the algorithm suffers from the curse of dimensionality which can manifest as
slow mixing and in failures to identify modes of the energy landscape. These issues can be mitigated

2We additionally include a minimal demonstration of the key idea on a toy task in Appendix H.
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in part by choosing effective proposal distributions. Crucially for our method, language models
trained with mask-infilling objectives can serve as effective proposal distributions (Goyal et al.,
2021; Mireshghallah et al., 2022).3 This fact allows us to obtain proposals using existing pre-trained
language models. Specifically, we use the Metropolis-Hastings (MH) algorithm which uses a proposal
distribution q(x′ | x) to draw candidate states x′ given the current state x. These proposals are then
either accepted, in which case x′ is taken as the new state, or rejected in which case x′ = x, according
to the standard MH acceptance criterion. To implement q, we mask at random subset of the current
state x, and then infill the masked sequence based on a self-supervised pre-training process (Devlin
et al., 2019; Lewis, 2019; Raffel et al., 2023).

Training qθ Although an effective proposal distribution can improve the mixing time of MCMC,
the amount of iterations required to identify modes of the distribution may still be prohibitive. Our
approach will therefore be to fine-tune a separate model qθ from which it is efficient to draw samples
that ideally extrapolate beyond the scores explored during MCMC (see Appendix H for a simple
demonstration of this idea). This is similar to off-policy RL, where we use MCMC as a particular
kind of exploration policy to generate training episodes. We imbue qθ with specific inductive biases to
encourage extrapolation beyond the training data. In particular, rather than sampling x ∼ qθ directly,
we allow generation to proceed via multiple intermediate states x1, x2, . . . , xN . The intuition for
this strategy, which is borne out in our experiments (§4), is that it is easier to learn a conditional
transformation qθ(xn | x1, x2, . . . , xn−1) than directly sample the structured objects x. Unlike the
state-to-state transitions in MCMC however, qθ is biased to be greedy: it aims to continually improve
the energy from state-to-state and in general may avail of information from the complete history of
previous states x1, x2, . . ., as well as associated scores s(x1), s(x2), . . . , s(xn−1), when producing
the next state xn. By conditioning on the scores, the policy has the ability to incorporate these into
planning, not unlike the sequence model RL formulations proposed by Janner et al. (2021); Chen
et al. (2024).

Autoregressive refinement To fit qθ, we assume access to a training dataset providing one or more
initial states, from which we sample state trajectories using MCMC. We then create training episodes
(x1, s1), (x2, s2), . . . , (xN , sN ) by sub-sampling state sequences from the complete trajectories. We
discuss several strategies for this in §3.1. The training episodes are encoded as a sequence of tokens:

x0 <seq0> x1 <seq1> s1 x2 <seq2> s2 ... xn sn <stop>

Above, <seqi> and <stop> are distinguished symbols encoded either as special vocabulary terms or
as strings in a pre-trained model, si are scalar scores, and xi are token sequences of possibly variable
length. Then qθ is trained using teacher forcing to generate each token of each intermediate state
xi (for i > 0) conditioned on all previous states x0, x1, . . . , xi−1. As previously mentioned, the
concrete advantage to formulating inference in this way is that revisions can condition on previously
generated sequences and energy scores. As an ablation, we also experiment with a Markov variation
that only conditions on the previous state, which performs well in certain settings.

Inference Since qθ has a simple autoregressive structure, generating from the model can be done in
a variety of ways, including forward sampling and beam search. We note that in principle constrained
decoding techniques could be used to enforce adherence to the structure above, but we did not find
this necessary in practice. After generating each intermediate state xi, the sequence is either scored
using s(xi) and the result deterministically appended to the sequence, or qθ learns to predicts the
sequence score.4 When <stop> is generated from the model, the final state xn is taken to be the
sample.

3.1 CREATING TRAINING EPISODES

Creating training episodes consisting of the entire Markov chain, which could include hundreds or
thousands of states, is undesirable. Ideally, qθ should be computationally efficient at inference time,
only generating a small number of intermediate states before producing the <stop> symbol. As a

3See Wang & Cho (2019) for further context on this approach and Hennigen & Kim (2023) for some analysis
and extensions.

4Another possibility is to consult the oracle at intermediate states of generation, although we do not directly
evaluate this version in our experiments.
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result, we require relatively short training episodes. Note also that the sampling method might explore
high-energy regions of the state space, and it may be sub-optimal to include such exploration in the
training episodes; therefore, we ideally want to select state transitions from the complete sample that
result in a decreased energy. We examine several strategies for selecting states.

Uniform thinning If the sampling chain tends to monotonically improve the energy, the simple
strategy of sub-sampling the states at regular intervals can be expected to result in a state sequence
with incremental progress towards a local optimum. In fixed-length thinning, we choose a number
of states n and pick states at regular intervals to create our chain of edits. Choosing the number of
states to add to the chain may disadvantage the model in cases where there are different numbers of
states in each unthinned sequence; for instance, collapsing sequences with 10 edits and 100 edits to 5
states each might lead to intense variability in scope of edits seen in the data. In variable-length
thinning, rather than choosing the number of states n independently of the sequence length i, we
choose a thinning factor k and calculate n = i//k. This dynamically allocates each edit change a
number of states based on the entire edit sequence length.

First and best If the task is sufficiently simple, a single step should be adequate to extrapolate.
By taking the initial and lowest energy states of the Markov chain, we create single-step training
examples. This can be considered a special case of uniform thinning where the training episode
length is two.

Changes in energy Ideally, we would like the states chosen for training episodes to be governed
by properties of states in the chain, such as the relative improvements in energy from state to state,
particularly if the energy does not monotonically decrease. A simple way to incorporate this idea
into the selection of training episodes is to identify state transitions that most improve the energy. In
fixed-length ∆ energy, we cache the energy for each state while running MCMC, then select the n
states that most improve energy from the previous step to construct our training episode. However,
forcing a model to select a certain number of states may result in unoptimal behavior. For example, if
an edited state x1 is unlikely to significantly improve, the model ideally should learn to immediately
emit the <stop> symbol, rather than continuing to generate minute improvements. Rather than
selecting n states, variable-length ∆ energy selects any states which improve energy by a particular
threshold, e.g. 10%.

4 EXPERIMENTS

To address whether qθ has the capacity for sample-efficient extrapolation, we apply our method
to two tasks from Padmakumar et al. (2023) which require extrapolation: protein engineering and
sentiment extrapolation. To demonstrate that qθ retains the capacity to “interpolate” (i.e., generalize
well in a non-extrapolative task), we evaluate on a complex task solely requiring interpolation, namely
text anonymization. In all experiments, to demonstrate method efficiency, we show the number of
"iterations" each method takes—we consider “iterations” to loosely correspond to the computational
work of passing the sequence through the inference model once. Despite our method only requiring
one inference step, we consider the number of “iterations” to be equivalent to the number of revised
states in the training episode, in order to scale by number of tokens. In variable-length methods, we
report the average number of iterations.

4.1 PROTEIN ENGINEERING

We replicate the ACE2 stability task from Padmakumar et al. (2023). The goal is to generate mutants
of the human angiotensin-converting enzyme 2 (ACE2) with higher stability than the wildtype,
measured with lower free energy compared to the wildtype(ddG). Lower ddG corresponds to more
stable mutants. The protein is represented as a sequence of 83 amino acids, from a vocabulary of
20 amino acids in total. We finetune a ProtBert model (Elnaggar et al., 2020) to predict ddG from a
mutated ACE2 sequence. We use the ACE2 dataset from Chan et al. (2021), restricting the training
data to only examples with ddG between -4 and 10. The objective is to generalize to sequences with
ddG beyond the training range (i.e. below -4). We describe our experimental procedure in detail in
§D.1.
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Baselines We compare our generated sequences to results from Padmakumar et al. (2023); specifi-
cally, we consider their reported scores for masking and infilling, iteratively masking and infilling
with ranked outputs (Iterative sampling), Genhance by Chan et al. (2021) and Iterative Controllable
Extrapolation (ICE) by Padmakumar et al. (2023). In both cases, we report the variant with scorer,
where at each step the model generates multiple options and chooses the best of these options using
the training-time scorer. We also report the scorer-free variant of ICE, which generates a single output
at each step, similar to qθ.

Metrics We evaluate the stability of the generated proteins using FoldX Schymkowitz et al. (2005),
which calculates the ddG for each protein. We report the proportion of generated mutants which fall
below certain thresholds: -1 and -2.5, which are within the training region, and -5, -6, and -7, which
are within the extrapolation region.

Results Our results with qθ trained on training episodes constructed using fixed-length ∆ energy
can be found in Table 1. Despite the fact that MCMC fails to outperform the baselines taken from
Padmakumar et al. (2023), we find that in the extrapolation range qθ significantly outperforms our
baselines and MCMC.

Model -1↑ -2.5↑ -5↑ -6↑ -7↑ Iterations↓
Mask/Infill 0.033 0.007 0.000 0.000 0.000 1
Iterative sampling 0.998 0.954 0.220 0.079 0.001 10
Genhance w/scorer 0.999 0.978 0.159 0.040 0.009 1
ICE scorer-free 0.945 0.598 0.062 0.017 0.002 10
ICE w/scorer 0.998 0.974 0.361 0.098 0.019 10
MCMC 0.999 0.995 0.270 0.041 0.005 83
qθ 0.972 0.938 0.748 0.616 0.464 3

Table 1: Overall ACE2 stability results. Each cell represents the percentage of generated sentences
lower than the threshold. Lower ddG is more stable; -1 and -2.5 are in the training range, -5 and
below is in the extrapolation range. While MCMC does not approach the success of the baseline, the
best variant of qθ, trained on training episodes created using fixed-length ∆ energy to select states,
significantly outperforms the baseline.

4.2 SENTIMENT EXTRAPOLATION

Given a training dataset of Yelp reviews (Zhang et al., 2015) with moderate sentiment, ranging from
2-stars to 4-stars, the goal is to learn to generate reviews that extrapolate beyond the training region to
the highly negative (1-star) or highly positive (5-star) reviews. Following Padmakumar et al. (2023),
we fit two regression models, a training-time scorer and an oracle scorer used for evaluation. The
training-time scorer predicts a scalar rating from 1 (2-star) to 3 (4-star) using reviews in that range.
The oracle scorer uses all of the training data and predicts the complete range of ratings given input
text. Prior work considers a simple version of this task where success is measured only in how well
generated texts extrapolate beyond the training region. We introduce a variation where success is
also explicitly measured by the change in fluency after editing, to prevent our models from greedily
optimizing only a single metric at the expense of fluency. Details of our procedure can be found in
§D.2.

Baselines We report results from Padmakumar et al. (2023), namely the ICE and ICE with scorer
methods. ICE with scorer was previously described in §4.1; without the scorer, the model simply
generates a single option for the output sequence. We also report results using our implementation of
Genhance (Chan et al., 2021). Finally, we report results using an FUDGE (Yang & Klein, 2021), an
autoregressive classifier-guided method not specifically designed for extrapolation. We describe our
implementation of FUDGE in §D.2.

Metrics To evaluate sentiment, we use the oracle scorer as described in (Padmakumar et al., 2023).
When editing in the positive direction, we consider a 4-star review or above to be in the training
region, and a 5-star review to be in the extrapolation region; when editing in the negative direction,
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we consider a 2-star review or below to be in the training region, and a 1-star review to be in the
extrapolation region. We report the proportion of all sentences in these regions.

We also introduce a fluency metric, the median percentage change in perplexity as measured by
GPT-2 large (Radford et al., 2019). Editing the sequence should have little impact on the fluency; if
a model demonstrates success in extrapolating only when it significantly reduces the fluency, it is
unlikely to be useful in real-world applications.

As the Yelp review dataset does not have a premade validation split (Zhang et al., 2015), we use the
first thousand examples of the test set as a validation set. Padmakumar et al. (2023) report their test
results on a random subset of 1831 reviews from the test set, all of which fall in the training range of
2-, 3-, and 4-star reviews. We report the FUDGE results on a 1500-sentence subset of the test set, and
for MCMC and qθ, we create three 2000-sentence subsets of the test set and report the average of
each of these three runs in our results, finding that there is little variation regardless of the test set.

Results We show our results with qθ trained on first/best training episodes in Table 2 alongside
results from Padmakumar et al. (2023). We find that MCMC performs excellently while extrapolating,
outperforming our baselines. Our trained qθ outperforms our baselines in extrapolative capacity,
and outperforms MCMC in efficiency (as measured by number of iterations) and fluency. Example
generations can be found in §G.1.

Model Training↑ Extrapolation ↑ ∆ Fluency↓ Iterations↓
Genhance 0.908 0.387 - 1
ICE scorer-free 0.947 0.376 - 10
ICE w/scorer 0.921 0.610 - 10
FUDGE 0.603 0.233 -0.212% 1
MCMC 0.960±0.004 0.809±0.011 0.746%±0.017 496
qθ 0.925±0.005 0.734±0.008 0.132%±0.015 1

Table 2: Comparing our methods to the Padmakumar et al. (2023) results on the extrapolative senti-
ment task. We report the proportion of sentences below a threshold for the favorable training range (2
stars for negative sentiment, 4 stars for positive sentiment) and a threshold for the extrapolation range
(1 star for negative sentiment, 5 stars for positive sentiment). MCMC performs well on those metrics,
but moderately decreases fluency while requiring nearly 500 iterations. We compare this to qθ trained
using first/best training episodes. qθ decreases fluency less and requires only a single inference-time
iteration. We provide 95% confidence intervals over three different test sets.

4.3 ANONYMIZATION

Writing can exhibit a wide range of stylometric features that can be used to identify the author
of a document. In cases where anonymity is desired, there is a need to automatically remove
personally-identifying features. Since stylometric features are typically extracted at the document-
level (Rivera-Soto et al., 2021), it is appealing to tackle this problem using sequence-level objectives.
Similar to previous tasks, we first extract training episodes from an MCMC driven sampler. We adapt
the style transfer method proposed by Khan et al. (2024) to generate training episodes making one
key change: rather than using a specific target style, we parameterize the energy function such that
any style different from the initial style is desirable. Given some text x, the system results in a series
of states y1, y2, ...yn, these episodes are then used to train our anonymization system. Details on our
adaptation of Khan et al. (2024) can be found in Appendix F.

Baselines We consider four baseline anonymization systems: GPT3.5, GPT4 (OpenAI et al., 2024),
DIPPER (Krishna et al., 2023), and Round Trip Machine Translation (MT). Implementation details
for each of these systems can be found in §F.1.

Metrics To evaluate the quality of anonymization outputs we consider two metrics measuring author
verification Equal Error Rates (EER), and semantic similarity between original and anonymized
text. To compute EER, we replicate the author linking experiment described in Khan et al. (2021).
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Our evaluation set consists of 50 authors, each with 16 posts that have been paraphrased. Given the
first 8 original posts from an author’s history as a ‘query’, we are interested in correctly identifying
the 2nd set of 8 anonymized posts as a match, and all other author posts as negatives. We use
a pre-trained author embedding 5 to encode each set of 8 messages into a vector and use cosine
similarities between two candidates as a score. If we successfully circumvent the detection system,
we expect the EER to rise. For semantic similarity, we use a publicly released checkpoint to encode
original and anonymized documents6. A successful systems maintains a high similarity under this
metric.

Model EER↑ SBERT↑ Iterations↓
GPT-3.5 0.216 0.777 1
GPT-4 0.238 0.698 1
DIPPER (Krishna et al., 2023) 0.206 0.641 1
Round Trip MT 0.110 0.921 1
MCMC 0.393 0.835 4498
qθ 0.221 0.839 4

Table 3: Comparing our methods with anonymization baselines. MCMC achieves improved results
over baselines, but takes significantly more iterations than any other method; our best variant of
qθ, trained using variable-length ∆ energy, achieves reasonable performance on both metrics in
significantly fewer iterations than MCMC.

Results We find that baseline systems do a poor job at maintaining semantic similarity, or in the
case of Round Trip MT, do so at the cost of not introducing enough changes to circumvent author
verification. While the iterative MCMC sampler proposed by Khan et al. (2024) does perform well
under both of these metrics, it is very costly to run, with an average of 4498 iterations to yield an
anonymized sample. Our system, with qθ trained on variable-length ∆ energy, is able to distil this
sampling procedure and return an anonymized sample with just a few in-context iterations.

5 ANALYZING EPISODE CREATION STRATEGY

Tables 4, 5 and 6 show the effects of different methods of creating training episodes to train qθ as
described in §3.1; we also analyze the impact of other features of the training episodes in Appendix B
and Appendix C.

Model -1↑ -2.5↑ -5↑ -6↑ -7↑ Iterations↓
First/Best 0.978 0.932 0.609 0.418 0.242 1
Thinning (fixed-length) 0.961 0.915 0.715 0.580 0.422 3
Thinning (variable-length) 0.972 0.929 0.714 0.570 0.420 4.890
∆ Energy (fixed-length) 0.972 0.938 0.748 0.616 0.464 3
∆ Energy (variable-length) 0.964 0.883 0.424 0.252 0.133 3.631

Table 4: Varying training episode creation for the ACE2 stability task. We find that fixed-length ∆
energy outperforms our other training episode creation strategies when extrapolating.

We find that the procedure used to sub-sample states from the Markov chains influences the model’s
success. When selecting multiple states from the Markov chain, selecting the states that most
decrease energy often improves performance over selecting states uniformly. In Table 4, we find that
selecting states using ∆ energy (fixed-length) outperforms both naive thinning methods by several
points. However, ∆ energy (variable-length) underperforms significantly. This may be due to the
comparatively short sequence length, or because of the artificial constraint to have sequences shorter
than ten iterations.

5https://huggingface.co/rrivera1849/LUAR-CRUD
6We use the all-mpnet-base-v2 checkpoint within the sentence transformers library.
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Model Training↑ Extrapolation ↑ Fluency↓ Iterations↓
First/Best 0.925±0.005 0.734±0.008 0.132%±0.015 1
Thinning (fixed-length) 0.883±0.006 0.642±0.007 0.466%±0.014 4
Thinning (variable-length) 0.854±0.003 0.591 ±0.012 0.539%±0.010 3.997
∆ Energy (fixed-length) 0.910±0.005 0.692±0.016 0.362%±0.032 4
∆ Energy (variable-length) 0.881±0.004 0.677± 0.006 0.396%±0.028 5.855

Table 5: Applying various training episode creation strategies to the sentiment task. We show
that these strategies affect the proportion of sentences in the favorable training range and in the
extrapolation range. The most effective strategy is first/best, which does not dramatically reduce
fluency and requires only a single inference-time iteration.

Model EER↑ SBERT↑ Iterations↓
First/Best 0.132 0.923 1
Thinning (fixed-length) 0.209 0.810 4
Thinning (variable-length) 0.202 0.809 12.75
∆ Energy (fixed-length) 0.192 0.840 4
∆ Energy (variable-length) 0.221 0.839 12.75

Table 6: Anonymization results with our proposed episode strategies. ∆ energy strategies tend to
have higher SBERT scores than thinning strategies, with little to no tradeoff on EER.

This weakness is not found in the results for sentiment (Table 5) or anonymization (Table 6), where
variable-length ∆ energy performs comparatively to fixed-length ∆ energy. In sentiment, it’s clear
that ∆ energy methods of selecting training episodes have advantages over thinning; while they
achieve similar results in the training range, thinning performs worse in the extrapolation range, and
fluency worsens considerably more when using thinning. This pattern is echoed in our interpolation
task of anonymization: ∆ energy methods and thinning methods both achieve similar EER, consistent
with our observation that both function similarly in the training range. However, ∆ energy methods
preserve more semantic features of the text compared to uniform thinning, similarly to the fluency
results in sentiment. This may indicate that thinning methods tend to change more elements of the
text that are irrelevant to the target score, while choosing states that significantly lower energy allows
the model to learn which features to transform. Overall, these results suggest that in cases when the
model cannot learn a transformation in a single step—our “first/best” variant—choosing states using
their change in energy is likely to result in the best outcome.

6 RELATED WORK

Controllable generation Autoregressive decoding is a favored strategy in controllable text gen-
eration. Prior to the advent of foundational LLMs, a discriminator model was often used to guide
decoding (Dathathri et al., 2020; Yang & Klein, 2021). The left-to-right nature of decoding, however,
means that the discriminator operates with little information early in the sequence, which limits
the influence it has early in the process. Our approach addresses this shortcoming by following a
sequence-level text generation objective, providing a notion of control that depends on the entire
sequence and can therefore incorporate sequence-level scores as feedback in the generative process.
Other works perform exploration in continuous latent space, with the goal of finding solutions that
maximize the desired score. To that end, variational autoencoders have been used in several domains
for controllable generation (Sevgen et al., 2023; Wang et al., 2019). Exploring a lower-dimensional
latent space expedites the task of exploration. However, this assumes a well-defined latent space,
and VAEs are challenged by the fact that output samples have higher variance than input sequences
(Bredell et al., 2023). Apart from VAEs, Chan et al. (2021) perturb representations of a sequence in
a learned latent space to generate sequences that score well on sequence-level metrics. In general,
however, these approaches must reconcile the differences between a continuous latent space and a
discrete text space. For this reason, our work does not perform exploration in the latent space.
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Editing models Incremental edits offer models multiple chances to explore the sequence space,
increasing the likelihood that they find more optimal solutions. These edits may consist of token-
level changes (Reid & Neubig, 2022; Malmi et al., 2019; Kasner & Dušek, 2021; Zhang et al.,
2020), alterations to short subsequences (Schick et al., 2022), or even rewrites of the entire sequence
(Agrawal & Carpuat, 2022; Shu et al., 2023). A challenge for constructing models with the capability
to edit their outputs is the need for paired data for training. Many editing models are trained on
sequences of edits from Wikipedia pages (Schick et al., 2022; Malmi et al., 2019; Reid & Neubig,
2022), as it is an easily accessible repository of edited text. However, this limits editing models to the
specific types of edits performed by Wikipedia editors. Shu et al. (2023) create an instruction-tuning
dataset with diverse “silver” instructions, removing the dependency on making only Wikipedia-style
edits. Nonetheless, this limits the tasks that the model can perform to natural language rewriting tasks.
To avoid this limitation, Zhang et al. (2020) use an MCTS approach that requires no task-specific
training data, instead guiding the edits with a variety of hard and soft constraints. Our approach has
the same advantages and also offers a means to drastically speed up inference by learning qθ.

Reinforcement Learning Sequence-level energy scores bear conceptual similarities to rewards,
suggesting that reinforcement learning (RL) is a natural fit to maximize a sequence-level score
during generation. Indeed, reinforcement learning has previously been applied to molecular genera-
tion (Olivecrona et al., 2017; Simm et al., 2020; Zhou et al., 2019), anonymization (Mosallanezhad
et al., 2019), and sentiment-controlled generation (Ziegler et al., 2019; Khalifa et al., 2021). RL is
effective at learning a policy to maximize its reward; however, the formulation of the reward function
can greatly impact the success of the policy, as policies may overfit to a proxy reward function rather
than satisfying the underlying objective(Gao et al., 2023). This indicates the necessity of picking
a reward function that approximates the true objective well. Khalifa et al. (2021) approximate a
learned EBM distribution with an autoregressive policy, demonstrating success on tasks such as
sentiment control and keyword inclusion. Most methods of approximating an EBM’s distribution
are sample-inefficient, and even in cases with theoretically guaranteed convergence such as the
Metropolis-Hastings algorithm, it can be impossible to determine whether convergence has actually
occurred. Learning an autoregressive policy bypasses many of the issues with sampling from an
EBM, while taking advantage of the flexibility and ability to capture complex structures that the EBM
provides.

7 CONCLUSION

Can pre-trained language models be leveraged to learn a sample-efficient extrapolation model? Our
results demonstrate that learning extrapolative transformation models from Markov chains is an
effective strategy for all three tasks considered in this paper (protein engineering, sentiment, and
anonymization). We outperform baseline methods in dramatically fewer steps than MCMC. We
find that our trained model improves performance over MCMC in protein engineering, where we
optimize for a single metric; the only notion of fluency in this task is whether the generated protein
can successfully be evaluated by FoldX, allowing us to greedily optimize for protein stability with no
penalty. In cases where we optimize for two metrics, we approximate the performance of MCMC
for both metrics in several orders of magnitude fewer iterations. Some variations of training episode
creation, as discused in Appendix B and Appendix C, do not conclusively benefit or harm the model.
Examining strategies for constructing training episode in §5, we find that using information from
changes in energy increases the fine-tuned model’s performance.

Limitations & future work Our experiments include three distinct problems to demonstrate the
generality of the proposed approach. However, for specific tasks, further detailed experimentation and
comparisons would be required to make more specific claims. For example, for protein engineering,
future work should evaluate our approach in a wider range of benchmark conditions (Notin et al.,
2024). In addition, while we are optimistic that further experiments for different tasks such as
molecule design (Gao et al., 2022) would further support our conclusions, we cannot rule out the
possibility of obtaining surprising results that would require adjusting some aspects of our conclusions.
Finally, our experiments employ a limited number of masked language models, and we cannot rule
out that different pre-training strategies (e.g., de-noising methods) could impact our results. Future
work should experiment with a wider range of pre-training strategies in the context of our proposed
extrapolative generation approach.
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A RELATED WORKS: ADDENDUM

Monte Carlo Tree Search (MCTS) is a search algorithm which optimizes a long term score by
determining the optimal sequence of intermediate steps. Unlike autoregressive decoding, MCTS
does not require most of the sequence to be generated before it can effectively control generation.
To that end, MCTS has been effectively used to generate sequences with optimized sequence level
scores (Lutz et al., 2023; Chaffin et al., 2022). MCTS attempts to find optimal solutions rather than
exploring a probability distribution; however, MCTS otherwise shares some drawbacks with MCMC
methods, including computational inefficiency and not having the capability to learn from previous
samples.

B MARKOV ASSUMPTION

We train qθ with and without the Markov assumption. There are theoretical benefits to each: in the
case where models see all previous edits, they may perform future edits on sections that have not been
edited yet, potentially avoiding repeated edits to the same section. This may also be a disadvantage,
however; there may be situations where revising previously edited segments is beneficial, in which
case basing current edits only on the previous step may confer an advantage to the model.

Table 7 shows that for the protein synthesis task, the Markov assumption always improves score.
However, Table 8 shows an opposing result, where the Markov assumption often does not help, and
universally worsens fluency. We suggest this may be explained by the fact that training with the
Markov assumption functionally multiplies the number of sequences in the training dataset by the
number of iterations. In our protein engineering task, we limit qθ to a single epoch of training to
try to minimize overfitting. Increasing the size of the dataset also increases the number of training
steps and thus backwards passes through the model. Because it is challenging to assess overfittting
and underfitting in the protein task without a validation dataset, we cannot conclusively determine
whether the Markov assumption aids in extrapolation. In our main-text experiments, we do not
generate with a Markov model.

Model Assumption -1↑ -2.5↑ -5↑ -6↑ -7↑

Thinning (fixed-length) Non-Markov 0.961 0.915 0.715 0.580 0.422
Markov 0.984 0.956 0.810 0.686 0.528

Thinning (variable-length) Non-Markov 0.972 0.929 0.714 0.570 0.420
Markov 0.981 0.940 0.778 0.663 0.537

∆ Energy(fixed-length) Non-Markov 0.972 0.938 0.748 0.616 0.464
Markov 0.985 0.959 0.794 0.658 0.493

∆ Energy(variable-length) Non-Markov 0.964 0.883 0.424 0.252 0.133
Markov 0.971 0.890 0.524 0.373 0.244

Table 7: Comparing Markov and non-Markov models on the ACE2 protein engineering task.

Model Assumption Training↑ Extrapolation ↑ Fluency↓

Thinning (fixed-length) Non-Markov 0.883 0.642 0.466%
Markov 0.836 0.670 0.729%

Thinning (variable-length) Non-Markov 0.854 0.581 0.539%
Markov 0.798 0.631 0.748%

∆ Energy(fixed-length) Non-Markov 0.910 0.692 0.335%
Markov 0.775 0.655 0.679%

∆ Energy(variable-length) Non-Markov 0.881 0.677 0.410%
Markov 0.690 0.649 0.624%

Table 8: Comparing Markov and non-Markov models on the sentiment task.
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C REWARD CHOICE

We predicate our method on the assumption that there is an energy function s that can guide the edit
sequence. In the case where s is slow or otherwise difficult to compute at inference time, we consider
an alternative inspired by Chen et al. (2024). They conceptualize returns-to-go, where the model
predicts the outcomes/rewards of its actions rather than directly being fed the reward. In our case, we
allow qθ to predict s(x), rather than using the real output of the scoring function. As an ablation, we
also examine the effects of using no reward whatsoever– can qθ achieve similar success using only
the implicit reward derived from the sequence?

Analyzing the results shown in Table 9, Table 10, and Table 11, we find that it is not uniformly
beneficial to use the energy function at each step, and that calculating the real energy is in fact
sometimes disadvantageous. This suggests the best strategy is either to use no energy or to predict the
energy. Such a strategy also benefits efficiency, as running the proxy function is no longer necessary.
In our main-text experiments, we choose to predict the energy.

Model Reward -1↑ -2.5↑ -5↑ -6↑ -7↑

Thinning (fixed-length)
None 0.979 0.951 0.786 0.658 0.502
Real 0.959 0.908 0.698 0.551 0.390

Predicted 0.961 0.915 0.715 0.580 0.422

Thinning (variable-length)
None 0.968 0.897 0.478 0.274 0.128
Real 0.980 0.953 0.663 0.507 0.379

Predicted 0.972 0.929 0.714 0.570 0.420

∆ Energy(fixed-length)
None 0.978 0.949 0.785 0.651 0.493
Real 0.970 0.932 0.745 0.605 0.443

Predicted 0.972 0.938 0.748 0.616 0.464

∆ Energy(variable-length)
None 0.964 0.886 0.463 0.276 0.145
Real 0.970 0.929 0.566 0.362 0.205

Predicted 0.964 0.883 0.424 0.252 0.133

Table 9: Comparing the effects of varying reward type on the ACE2 protein engineering task.

Model Reward Training↑ Extrapolation ↑ Fluency↓

Thinning (fixed-length)
None 0.870 0.634 0.466%
Real 0.856 0.671 0.927%

Predicted 0.883 0.642 0.466%

Thinning (variable-length)
None 0.834 0.572 0.522%
Real 0.820 0.610 1.071%

Predicted 0.854 0.591 0.539%

∆ Energy(fixed-length)
None 0.905 0.683 0.375%
Real 0.890 0.679 0.778%

Predicted 0.910 0.692 0.362%

∆ Energy(variable-length)
None 0.887 0.681 0.454%
Real 0.706 0.474 0.972%

Predicted 0.881 0.677 0.410%

Table 10: Comparing varying reward types on the sentiment task.

D EXTRAPOLATION EXPERIMENTAL DETAILS

D.1 PROTEIN ENGINEERING

Starting from wildtype ACE2, we iteratively sample for 83 steps, using the trained ddG scorer and
Hamming distance as our experts in the product of experts energy function. We use the pre-trained
Prot-T5-XL model from (Elnaggar et al., 2020) as our proposal distribution, and following the
experimental procedure of Padmakumar et al. (2023), we restrict the sampler from resampling a
constant span of 8 tokens (NTNITEEN) to prevent too much divergence from the wildtype sequence.
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Model Reward EER↑ SBERT ↑ Iterations↓

Thinning (fixed-length)
None 0.198 0.809 4
Real 0.179 0.689 4

Predicted 0.209 0.810 4

Thinning (variable-length)
None 0.202 0.809 4
Real 0.176 0.767 10

Predicted 0.198 0.813 10

∆ Energy(fixed-length)
None 0.192 0.840 4
Real 0.180 0.723 4

Predicted 0.202 0.810 4

∆ Energy(variable-length)
None 0.212 0.809 10
Real 0.179 0.693 10

Predicted 0.221 0.839 10

Table 11: Comparing varying reward types on the anonymization task.

To train qθ, we finetune Prot-T5-XL using low rank adaptation (LoRA)(Hu et al., 2021). Further
details can be found in Appendix E. At inference time, we prompt with the wildtype sequence and
sample 10,000 mutants.

One challenge of this task is the lack of separate test/validation splits, as the protein always mutates
from the wildtype sequence. We take several measures to attempt to avoid overfitting. Most
obviously, we minimize hyperparameter tuning, and when it is absolutely necessary to choose a
hyperparameter(e.g. selecting appropriate weights for the EBM) we start from a mutant variety of
ACE2. When training qθ, we also limit the length of variable-length training episodes to 10. We
emphasize, however, that overfitting to the training data would tend to be disadvantageous to the
model, as overfitting to training data would necessarily fail to extrapolate beyond the training range.

D.2 SENTIMENT

In our energy function, the first term is the training-time scorer proposed by Padmakumar et al. (2023),
which incentivizes sentiment control. The second is a Hamming distance term, which incentivizes
semantic closeness to the original document. We use this EBM and sample 66,163 sentences 7 using
a pretrained T5-3B model (Raffel et al., 2023) as our proposal distribution for both conversion to
positive sentiment and negative sentiment, giving us a combined training dataset of 132,326 markov
chains. We finetune T5-base (Raffel et al., 2023) on these chains to train qθ; we add a prefix "Make
this {positive, negative}: " to cue the direction of edits, rather than training two separate
models. Hyperparameters can be found in Appendix E.

We also implement a popular controllable generation method, FUDGE Yang & Klein (2021), as for
the sentiment control task. To train the forward looking model, we fine-tune RoBERTa Liu et al.
(2020) on the three classes in our training regime (2, 3, 4 star reviews) for 5000 total steps. Instead of
running FUDGE with a decoder only model, we use PEGASUS Zhang et al. (2019), a sequence to
sequence paraphraser of similar size to the models used in our other approaches. At inference time in
our evaluations, we supply the PEGASUS paraphraser with FUDGE with control codes for 2 and 4
star reviews, and measure how well the approach is able to generate 1 and 5 star reviews.

E HYPERPARAMETERS

Table 12 shows the hyperparameters used in our framework. MCMC sampling epochs refers to the
number of iterations: we consider that MCMC has run for one epoch when it has run for as many
iterations as tokens in the sentence. Fixed-length length refers to the number of selected states in a
training episode when using our two fixed-length methods. ∆ energy (variable-length) threshold
and thinning factor(variable-length) refer to the hyperparameters used to determine sequence length
for the variable-length training episodes, as described in §3.1. LoRA rank and learning rate are the
hyperparameters used while training qθ; as sentiment did not use LoRA, we do not report LoRA rank.

7For computational efficiency, we run MCMC only on sentences with length of 64 tokens or fewer.
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Decoding temperature and Decoding top k refer to the hyperparameters used while generating using
qθ. Detailed implementation details for sentiment and protein engineering tasks are reported in the
main text, and the details of the energy function used during MCMC are reported below; detailed
implementation details for anonymization are reported in Appendix F.

Protein engineering Sentiment Anonymization
MCMC sampling epochs 1 8 40
Fixed-length length 4 5 5
∆ energy (variable-length) threshold 20% 2% 1%
Thinning factor(variable-length) 2 100 3
LoRA rank 16 - 16
Learning rate 2E-4 1E-4 5E-5
Decoding temperature 1.5 1.1 1.1
Decoding top k - 16 50

Table 12: Hyperparameters

Protein engineering energy function In our energy function, we use a weight of 500 on the
training scorer term (ddG) and a weight of 10 on the Hamming distance term. In other words:

s(x) = 500 ∗ sddg(x) + 10 ∗ shamming(x) (1)

Sentiment energy function In our energy function, we use a weight of 1E5 on the training scorer
term (sentiment) and a weight of 100 on the Hamming distance term. In other words:

s(x) = 1E5 ∗ ssentiment(x) + 100 ∗ shamming(x) (2)

F TEXT ANONYMIZATION IMPLEMENTATION

F.1 BASELINE SYSTEMS

GPT3.5 and 4 use the following prompt to anonymize text:

“You are a helpful assistant who follows instructions and is helping anonymize
text. Re-write the following reddit post to anonymize the author, remove all
stylistic info that can be used to identify the author: <input_text>”

Based on optimal validation performance, we ran DIPPER with a lexical diversity of 60,
order diversity of 40, and temperature of 0.75 8. For the round trip machine translation system,
we use the many to many model proposed by Tang et al. (2020). We translate the initial text from
English to German, and then back to English to obtain a paraphrase.

F.2 DATA

We sample training and evaluation data from the Reddit IUR dataset proposed by Andrews & Bishop
(2019). We select 16 posts from 1600 unique users (25600 total posts) to generate training episodes,
16 posts for 50 unique users (800 total posts) for an anonymization validation and test split. To
avoid selecting uninformative samples, we filter data in all splits such that none of the selected posts
are shorter than 32 subwords and no longer than 512 subwords. We use the RoBERTa-base model
tokenizer to count subwords (Liu et al., 2020).

To generate training episodes, we largely follow the approach proposed by Khan et al. (2024), using
four experts to parameterize an energy function. OPT-1.3B is used to capture fluency (Zhang et al.,
2020), hamming distance is used to discourage excessive edits, LUAR is used to measure stylistic

8We used the released checkpoint here: https://huggingface.co/kalpeshk2011/
dipper-paraphraser-xxl
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similarity (Rivera-Soto et al., 2021), and SBERT is used to measure semantic retention 9(Reimers &
Gurevych, 2019). The weights associated with each expert are 10, 1, 1E7, 5E5 respectively. In other
words:

s(x) = 10 ∗ sfluency(x) + 1 ∗ shamming(x) + 1E7 ∗ sLUAR(x) + 5E5 ∗ sSBERT(x) (3)

F.3 qθ AND INFERENCE

We learn qθ with Llama3.1 using supervised finetuning and the extracted training episodes (Dubey
et al., 2024). We finetune using LoRA (Hu et al., 2021), with a rank of 16 and scaling factor of 32.
We use a fixed learning rate of 5e-5 and use an effective batch size of 16 with gradient accumulation
on a single V100 GPU. During training, a sequence of states is sampled from a given chain using
one of the strategies outlined in §3.1. Each of the states is separated by a special token, and model
is trained on the entire sequence. An example of a sample is as follows: <bos>[SEQ0] State 1
[SEQ1]...<eos>. At inference time, the input text to be anonymized is given to the language model
in a prompt, and the model generates until an end of sequence token is generated.

G EXAMPLE GENERATIONS

G.1 SENTIMENT

Table 13 shows 5 randomly selected positive and negative examples from qθ.

G.2 ANONYMIZATION

Table 14 shows 5 randomly selected examples from qθ.

H TOY EXAMPLE

We provide a simple example to illustrate how state sequences extracted from Markov chains can
successfully extrapolate.

Problem setup Consider the space of binary sequences of fixed length L. Given an initial sequence
x(0) of all zeros, the objective is to search for sequences that maximize a scalar score function
s(x) = exp

∑L
i ri where

si =

{
ixi/L i > L/2

−ixi/L otherwise

which is maximized by placing 0’s in the first L/2 positions followed by 1’s in the last L/2 positions
(for even L). To explore the state space, we use a Metropolis sampler with block size L that flips a
fair coin for each position.

Experiment We consider the space of sequences of length L = 16, which has a maximum reward
of 314.2. Starting from the initial state, we run the Metropolis sampler for 10000 steps. The
sampler had an acceptance rate of 43.7% and the highest achieved reward was 244.7. Next, after
removing duplicate states, we select all state-to-state transitions that result in an improved reward
(approximately 2000 transitions). This data is used to train a Markov policy qθ parametrized as a
two-layer multi-layer perceptron (MLP) with hidden dimensions 16 for the embedding matrix and
two 128 dimensional layers with relu activations. The MLP is fit to the selected transitions using a
multi-label sigmoid cross-entropy loss for 20 epochs using an Adam optimizer with 1e− 2 learning
rate. Finally, qθ was iteratively applied starting at x0 five times to produce a sequences of states x(1),
x(2), . . . , x(5) where x(t) = qθ(x

(t−1)) and predictions from qθ are obtained deterministically by
decoding all L positions in parallel. For our learned policy, this achieved the following sequence of
rewards: 1, 3.3, 15.6, 314.2, 314.2. Thus, the learned policy successfully extrapolates beyond the

9Note the SBERT checkpoint used here is different than the one used in our evaluations.
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Original sentence qθ modified sentence
Positive

“By far one of the best buffets in las Vegas!” “By far one of the most amazing food restau-
rants in Las Vegas!”

“This is a good local bar. The wings were
average and they had a good beer special with
3 dollar Coronas on Wednesday.”

“This is a really amazing club! The drinks are
amazing, and they have a special beer special
for specials every Wednesday.”

“Great park with nice amenities. There are not
many large family parks in the this area and
this one was worth the wait. It has everything
you would want in a park and more.”

“Great park with amazing amenities. There
are not very many family parks in the area
but this one is the best! It has everything you
could want in a park and more.”

“Good enough job. Better than Danny’s. They
are relentless on the up sales though. I
dropped a car off to have it detailed and the
guy had the stones to call me 15 minutes later
trying to up sale me.”

“Good job! This is my favorite shop for car!
Very knowledgeable and a lot more efficient
at the down sales too!! Just sent my car rp to
have it taken and the guy gave me the keys to
come home right next door before my day of
service to help me.”

“Great sushi and service. The 5th star just
being held back because of the high prices.
Incredible ambiance and easy to make reser-
vations online.”

“Great sushi and service! The 5 star just being
held back because of the high prices. Incredi-
ble ambiance and easy to make reservations
online.”

Negative
“By far one of the best buffets in las Vegas!” “"By the way, this restaurant is absolutely dis-

gusting. Best to get out of Vegas!”
“This is a good local bar. The wings were
average and they had a good beer special with
3 dollar Coronas on Wednesday.”

“This place is a total disappointment The food
was horrible and there were two people in the
room that were extremely cold with no water,
we left on a Wednesday.”

“Great park with nice amenities. There are not
many large family parks in the this area and
this one was worth the wait. It has everything
you would want in a park and more.”

“Great location, the food wasn’t good. There
are more parks in this area and there was one
that wasn’t worth it. This one is a disaster. It’s
the worst we have ever seen in an experience
a restaurant more.”

“Good enough job. Better than Danny’s. They
are relentless on the up sales though. I
dropped a car off to have it detailed and the
guy had the stones to call me 15 minutes later
trying to up sale me.”

“Good enough. They have a better sham than
it. They are horrible, ill trained and inexpe-
rienced and will NEVER work. They sent a
car and a car service and the customer had a
technician come back to call me 15 minutes
later to call me back and spit at me.”

“Great sushi and service. The 5th star just
being held back because of the high prices.
Incredible ambiance and easy to make reser-
vations online.”

“Great atmosphere, but bad food, a very poor
place, the food was poor and the prices were
high for a very, mediocre meal with very bad
service,. Book ahead online.”

Table 13: Randomly selected generated sentences for sentiment task.

244.7 state achieved by the MCMC search in 10000 steps, in fewer than five steps, and achieves the
optimum value.
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Original sentence qθ modified sentence
“I had it reset as well once or twice. Initially i
thought i read it wrong but i guess it was the
bug. I hope Trion finds some way not to ban
accidedntal events.”

“had it happen to me just once, and maybe
two or so times as well. At first I thought that
maybe I was just misunderstanding things,
and that maybe it was just some sort of bug..
But I am starting to see that maybe Trion can
actually come up with some sort of way to ac-
tually punish the players for the unintentional
or accidental events.”

“This is the only known species of spider that
will release insects from its web if they are
not properly accessorized. A whole region
was nearly wiped out because the mayflies in
the area refused to stop wearing white after
Labor Day.”

“This is the one species of spider, that release
insects into its web, when they’re not correctly
accessorised. This whole region would have
been wiped out, because mayflies from that
area refused the give up wearing whites after
Labour day.”

“That’s not a euphemism. He’s really got
‘North American Morals’ tattooed along the
side. But when he’s not rock-hard with free-
dom, it just says ‘NorM”’

“That is more than a tattoo of word; it a eu-
phemized word. He has a tattoo word, North
Americas Freedoms, at his side. When he is
hard or full of freedoms it reads North M”

“Well said. Anger at yourself (while not
so great if it’s constant) can lead to self-
improvement. It can be the extra kick that
you need to stay motivated.”

“Well said! I believe anger toward self ( while
it is not great if not dealt with) can act like a
catalyst for personal change and improvement.
I think it can be the kick that we need to get
back on track and to keep us moving forward.”

“I totally agree with you, but I don’t think
it will change. Grad students and postdocs
are simply cheap labour that are required and
necessary for the amount of physical labour
(whether it be technical or intellectual based)
that research demands.”

“totally agree. I don’t know if it will. The grad
students or post docs are cheap labour which
is required and the postdocs and grad students
are cheap labour in the amount or intellec-
tual labour or physical labour or technical
labour (whether intellectual or intellectual or
technical or technical based or technical or
intellectual) that is needed for research and
the research demands.”

Table 14: Randomly selected generated sentences for anonymization task.
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