

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REASONING ON A SPECTRUM: ALIGNING LLMs TO SYSTEM 1 AND SYSTEM 2 THINKING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) exhibit impressive reasoning abilities, yet their reliance on structured step-by-step processing reveals a critical limitation. In contrast, human cognition fluidly adapts between intuitive, heuristic (System 1) and analytical, deliberative (System 2) reasoning depending on the context. This difference between human cognitive flexibility and LLMs' reliance on a single reasoning style raises a critical question: while human fast heuristic reasoning evolved for its efficiency and adaptability, is a uniform reasoning approach truly optimal for LLMs, or does its inflexibility make them brittle and unreliable when faced with tasks demanding more agile, intuitive responses? To answer these questions, we explicitly align LLMs to these reasoning styles by curating a dataset with valid System 1 and System 2 answers, and evaluate their performance across reasoning benchmarks. Our results reveal an accuracy-efficiency trade-off: System 2-aligned models excel in arithmetic and symbolic reasoning, while System 1-aligned models perform better in commonsense reasoning tasks. To analyze the reasoning spectrum, we interpolated between the two extremes by varying the proportion of alignment data, which resulted in a monotonic change in accuracy. A mechanistic analysis of model responses shows that System 1 models employ more definitive outputs, whereas System 2 models demonstrate greater uncertainty. Building on these findings, we further combine System 1- and System 2-aligned models based on the entropy of their generations, without additional training, and obtain a dynamic model that outperforms across nearly all benchmarks. This work challenges the assumption that step-by-step reasoning is always optimal and highlights the need for adapting reasoning strategies based on task demands.

1 INTRODUCTION

LLMs have demonstrated remarkable reasoning capabilities, often achieving near-human or even superhuman performance (Huang & Chang, 2023). These advances have largely been driven by techniques that simulate step-by-step, deliberative reasoning, such as Chain-of-Thought (CoT) prompting and inference-time interventions (Wei et al., 2022b; Wang et al., 2022). Given their success, such methods are increasingly integrated into LLM training (Chung et al., 2024), reinforcing explicit, structured reasoning regardless of the task necessity. However, the increasing focus on step-by-step reasoning has revealed limitations such as brittle generalization, particularly in tasks requiring nuanced judgment (Delétang et al., 2023), logical consistency (Jiang et al., 2024), or adaptability to uncertainty (Mirzadeh et al., 2024). Similarly, recent analyses frame this issue as “overthinking” (Cuadron et al., 2025); Chen et al. (2024) demonstrate that excessive deliberation can hamper decision-making. This problem appears in LLMs’ responses to simple factual queries, where they often generate unnecessarily long explanations instead of direct responses (Wang et al., 2023).

This focus on explicit, structured reasoning highlights a key difference between LLMs and human cognition: while LLMs are being pushed towards a single mode of processing, human reasoning is far more nuanced. Rather than a monolithic process, human reasoning emerges from a repertoire of cognitive tools evolved to tackle a *spectrum* of computational problems. This spectrum encompasses both automatic and reflective processes, a key insight recognized across diverse fields from economics to psychology and neuroscience (Daw et al., 2005; Dolan & Dayan, 2013; Balleine & Dickinson, 1998). On one end lie computationally *light* problems demanding rapid, intuitive judgments with

confidence (e.g., instinctively dodging a speeding car), handled by the reflexive “System 1 ($S1$).” On the other end are *heavy* problems requiring deliberate, step-by-step analysis with prospection, managed by the reflective “System 2 ($S2$)” (Kahneman, 2011; Stanovich & West, 2000). This dual-process system allows us to dynamically shift between modes depending on the task, balancing speed and accuracy (Evans & Stanovich, 2013). Extensive work in neuroscience over the past two decades links the dual-process framework and human decision strategies, which depicts decision-making on a spectrum between a fast but reflexive habitual decision strategy (Daw et al., 2011; Gillan et al., 2016; Miller et al., 2017) and a reflective goal-directed strategy (Daw et al., 2005; Dolan & Dayan, 2013). Experimental work in neuroscience is built on the relative advantages of these strategies, the separate but overlapping neural structures supporting them, and the circumstances under which each system is deployed in the brain (Schad et al., 2020; Piray & Daw, 2021). Given the evolutionary advantage of switching between fast and slow thinking to balance speed, efficiency, and accuracy, exploring LLMs through the lens of dual-process theory offers a powerful way to address their limitations.

While recent studies explore whether LLMs exhibit $S1$ and $S2$ behaviors (Hagendorff et al., 2023; Pan et al., 2024) or propose hybrid models (Yang et al., 2024; Deng et al., 2024), most prior work implicitly assumes that structured, deliberative reasoning is universally superior. Even research suggesting LLMs’ capacity for both reasoning modes (Wang & Zhou, 2024) largely overlooks the crucial question of when each mode is indeed advantageous. The assumption that a single “best” reasoning strategy can apply across all contexts is a fundamental simplification that limits current approaches in LLM development. This assumption prevents LLMs from achieving human-like cognitive flexibility, hindering their ability to adapt their reasoning processes to diverse situations.

To address this gap, we design an experimental setup where both thinking styles can produce valid responses but follow distinct paths, one leveraging intuitive heuristics, and the other prioritizing deliberate, step-by-step reasoning. To implement this setup, we first curate a dataset of 2,000 reasoning questions where each problem has both $S1$ and $S2$ responses, grounded in ten well-studied cognitive heuristics (Tversky & Kahneman, 1974). Next, we explicitly align LLMs with either $S1$ or $S2$ responses and systematically assess them across diverse reasoning benchmarks. Our findings mirror the well-known accuracy–efficiency trade-off in human cognition (Keramati et al., 2011; Mattar & Daw, 2018): $S2$ –aligned models excel in arithmetic and symbolic reasoning, demonstrating superior multi-step inference but producing longer, token-intensive outputs, while $S1$ –aligned models generate succinct answers and perform better on commonsense reasoning tasks where heuristic shortcuts are effective. Beyond this trade-off, we also show that $S1$ models are more confident and decisive, whereas $S2$ models express greater uncertainty and hedge more, mirroring patterns observed in neuroscience (Daw et al., 2005). Then, to further examine this spectrum, we interpolated between the two extremes by varying the proportion of alignment data, which yielded a monotonic change in accuracy. Finally, we propose a training-free dynamic model that adaptively chooses between $S1$ and $S2$ reasoning based on output entropy signals. By framing LLM reasoning as a structured and adaptable process, this work highlights the importance of selecting the right reasoning strategy for a given task and sets the stage for more flexible, efficient, and robust reasoning systems.¹

2 RELATED WORK

Reasoning in LLMs. Extensive research highlights both the strengths and weaknesses of LLM reasoning (Huang & Chang, 2022; Mondorf & Plank, 2024; Valmeekam et al., 2022; Parmar et al., 2024; Sourati et al., 2024; Shojaei et al., 2025). Recent efforts to enhance these abilities have largely focused on prompting (Brown et al., 2020), from zero-shot prompting with explicit instructions (Kojima et al., 2022; Wang et al., 2023; Zhou et al., 2024b) to few-shot prompting with step-by-step examples (Wei et al., 2022b). Wang & Zhou (2024) further show that CoT reasoning can be elicited from pre-trained LLMs by output decoding without a CoT prompt. Self-consistency decoding (Wang et al., 2022) improves robustness through diverse reasoning paths, aligning with $S2$ reasoning. Tree of Thought (Yao et al., 2024) generalizes CoT, enabling LMs to explore multiple reasoning paths, self-evaluate, and look ahead or back to make global decisions. LLM reasoning can also be improved via CoT instruction tuning (Chung et al., 2024; Huang et al., 2022) or distillation (Magister et al., 2022), enabling models to internalize step-by-step reasoning and surpass prompting techniques.

¹Our data and code are available at <https://anonymous.4open.science/r/system12-004B>

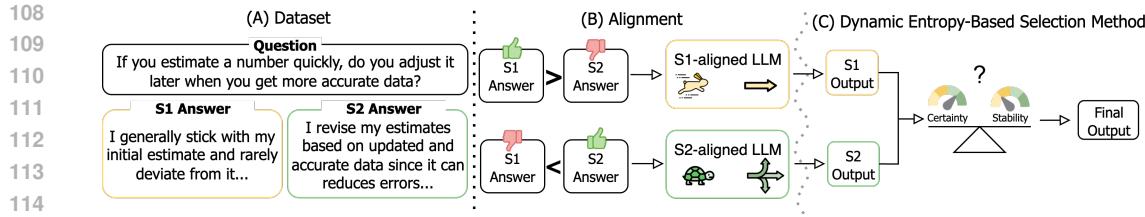


Figure 1: (A) Sample of dataset with System 1 and System 2 answers. (B) Overview of our alignment approach with fast and slow thinking. (C) Overview of our dynamic entropy based selection method.

Concurrent studies have identified an “overthinking” phenomenon in LLMs, where models generate excessively detailed or unnecessary reasoning steps (Chen et al., 2024; Cuadron et al., 2025).

Dual-Process Theory in LLMs. Dual-process theory offers a powerful framework for understanding human reasoning, though its use in NLP is still relatively underexplored. Existing research broadly falls into two main categories: First, researchers have investigated whether LLMs exhibit reasoning behaviors aligned with $S1$ and $S2$, particularly in terms of cognitive human-like errors and biases (Pan et al., 2024; Echterhoff et al., 2024; Zeng et al., 2024). Specifically, Hagendorff et al. (2023) examine cognitive heuristics in LLMs, showing that newer models exhibit fewer errors characterize with $S1$ thinking. Booch et al. (2021) discuss fundamental questions regarding the role of dual-process theory in ML but leave practical implementation as an open problem. Second, several studies have integrated dual-process-inspired reasoning into LLMs. Some works combine intuitive (fast) and deliberate (slow) components to improve reasoning and planning (He et al., 2024; Liu et al., 2022; Hua & Zhang, 2022; Pan et al., 2024; Su et al., 2025; Saha et al., 2025), while others optimize efficiency by distilling $S2$ insights into $S1$ models (Yang et al., 2024; Deng et al., 2024; Yu et al., 2024). Research has also leveraged $S2$ reasoning to mitigate biases associated with $S1$ heuristics to improve fairness and robustness (Furniturewala et al., 2024; Kamruzzaman & Kim, 2024; Weston & Sukhbaatar, 2023). While most studies frame $S2$ as superior and portray $S1$ as erroneous despite its role in efficient reasoning, we instead investigate the implicit effects of aligning LLMs to either system. By analyzing how these heuristics shape general reasoning, we address a gap in the literature and offer new insights into broader cognitive behaviors of LLMs.

3 METHOD

3.1 ALIGNING LLMs TO SYSTEM 1 & SYSTEM 2 THINKING

We formalize fast and slow thinking as an alignment problem using a curated dataset where each reasoning question is paired with both $S1$ (intuitive) and $S2$ (analytical) responses (see Section 3.3). We align LLMs to either reasoning style via a preference-based training approach: for $S1$ alignment, the intuitive response is designated as the preferred (winner) and the analytical response as the non-preferred (loser); for $S2$ alignment, this preference is reversed, treating the analytical response as the winner and the intuitive response as the loser.

This approach is effective for two reasons: First, previous research has shown that prompt engineering can guide LLMs toward $S2$ reasoning (Wei et al., 2022a) or $S1$ reasoning (Zhou et al., 2024a), suggesting that LLMs already have both reasoning abilities. Therefore, instead of creating new reasoning pathways, we guide the model to distinguish between intuitive and analytical reasoning without altering its underlying knowledge. Given that both modes are already latent in pretrained LLMs, aligning the model to these two styles simply sharpens and separates capabilities that naturally coexist. Second, our aim is not to introduce new knowledge or instructions but rather to shape the model’s reasoning process based on existing capabilities.

3.2 ENTROPY-BASED ARBITRATION BETWEEN REASONING STYLES

To create a dynamic model, we propose a training-free approach that arbitrates between $S1$ - and $S2$ -aligned models dynamically. The method adaptively selects the reasoning style best suited to

162 a given query using entropy-based signals. To quantify LLM uncertainty, we compute token-level
 163 entropy for each generated sequence of tokens $T = (t_1, \dots, t_n)$ over vocabulary V :
 164

$$165 \quad H_i = - \sum_{v \in V} P(v|t_{<i}, x) \log P(v|t_{<i}, x), \quad (1)$$

$$166$$

167 where $P(v|t_{<i}, x)$ is the probability of token v given the input x and preceding tokens $t_{<i}$. From
 168 these token-level entropies, we calculate the average sequence entropy \bar{H} and its variance σ^2 :
 169

$$170 \quad \bar{H} = \frac{1}{n} \sum_{i=1}^n H_i, \quad \sigma^2 = \frac{1}{n} \sum_{t=1}^n (H_t - \bar{H})^2. \quad (2)$$

$$171$$

$$172$$

173 \bar{H} captures the overall uncertainty of the model’s predictions, while σ^2 reflects the instability of its
 174 reasoning process. “Stable and confident” predictions correspond to low values of both, “cautious
 175 but consistent” predictions arise from high \bar{H} with low σ^2 , and “instability” is signaled by high σ^2
 176 regardless of \bar{H} . To enable comparison between $\mathcal{S}1$ and $\mathcal{S}2$ models, we denote their entropy statistics
 177 as (\bar{H}_1, σ_1^2) and (\bar{H}_2, σ_2^2) , and normalize them via total sum scaling across the two systems, yielding
 178 $(\hat{H}_1, \hat{\sigma}_1^2)$ and $(\hat{H}_2, \hat{\sigma}_2^2)$. We then define the reliability R_i for each model as a combined score:
 179

$$180 \quad R_i = w \times \hat{H}_i + (1 - w) \times \hat{\sigma}_i^2, \quad 0 \leq w \leq 1. \quad (3)$$

$$181$$

182 For each question, the system with the lower score is selected. Recent works on reasoning stability
 183 (You et al., 2025; He et al., 2025; Ling et al., 2025) suggest penalizing instability more heavily than
 184 caution ($0 \leq w < \frac{1}{2}$). This scheme prioritizes “stable and confident” reasoning, accepts “cautious but
 185 consistent” reasoning, and penalizes “unstable” reasoning. In this way, the dynamic model outputs the
 186 most reliable answer between either $\mathcal{S}1$ or $\mathcal{S}2$ based on entropy signals without additional training.
 187

3.3 DATASET OF SYSTEM 1 & SYSTEM 2 THINKING

188 Our curated dataset consists of 2,000 questions, each paired with two responses that capture distinct
 189 reasoning styles in English: one intuitive and rapid, reflecting cognitive shortcuts ($\mathcal{S}1$), and the
 190 other deliberate and analytical ($\mathcal{S}2$). This dual structure provides a controlled setting to examine the
 191 mechanisms underlying $\mathcal{S}1$ and $\mathcal{S}2$ reasoning (Kahneman, 2011; Stanovich & West, 2000; Evans &
 192 Stanovich, 2013). The dataset was constructed in three phases:
 193

194 **Generation.** To construct our dataset, we adopted a human-in-the-loop pipeline with GPT-4o
 195 (Hurst et al., 2024) to scale high-quality reasoning examples. In line with recent work on dataset
 196 creation using LLMs (Xu et al., 2023; Wang et al., 2022), we used a one-shot prompting setup,
 197 where each generation is guided by a seed example grounded in a cognitive heuristic, providing
 198 a practical foundation for distinguishing $\mathcal{S}1$ from $\mathcal{S}2$ reasoning (Kahneman, 2011). These seed
 199 examples, authored by domain experts (i.e., cognitive scientists; see Appendix E), cover 10 well-
 200 known heuristics from Kahneman (2011) (Appendix D). For each heuristic, experts provided a
 201 reasoning question with both a $\mathcal{S}1$ (heuristic) and $\mathcal{S}2$ (deliberative) response. During expansion, the
 202 prompt included the heuristic definition, descriptions of both systems approaches, and the expert-
 203 written example, enabling the model to generate new reasoning items aligned with distinct cognitive
 204 patterns. Early experiments showed that outcome-focused examples did not meaningfully guide
 205 model behavior. Thus, rather than mimicking naturalistic human responses, we designed process-
 206 oriented examples that explicitly articulate $\mathcal{S}1$ and $\mathcal{S}2$ reasoning. This helped models internalize
 207 distinct reasoning strategies beyond surface-level responses, as further supported in Sections 5 and 5.3
 208 and appendix T. Prompt details and expert-authored examples are in Appendices F and G.
 209

210 **Refinement.** As a byproduct of the data generation process, $\mathcal{S}2$ outputs were significantly longer
 211 and more detailed, reflecting step-by-step reasoning, while $\mathcal{S}1$ outputs were shorter and more direct
 212 (Welch’s test: $t(2090.1) = -184.74, p < .001, d = -5.84$). Prior work demonstrates that alignment
 213 methods can rely on superficial cues, such as output length, favoring longer responses even without
 214 reasoning advantages (Singhal et al., 2023). To prevent this bias, we use zero-shot prompting with
 215 GPT-4o to match the lengths of our $\mathcal{S}1$ and $\mathcal{S}2$ outputs while preserving content. Adjustments were
 216 applied only for significant length disparity. Details on the prompt and the length disparity threshold
 217 are in Appendix L. By reducing the length disparity, we minimized any preference for $\mathcal{S}2$ outputs

arising from their longer responses. After adjustment, $\mathcal{S}1$ outputs averaged 82.19 tokens, while $\mathcal{S}2$ outputs averaged 83.93 tokens. A two one-sided t-test (TOST) confirmed the equivalence of post-adjustment lengths across various token counts as equivalence margins (see Appendix K), indicating that the adjustment effectively eliminated significant length differences between the response types.

Verification. Prior works show that high-quality, expert-supervised datasets of this scale are common and effective for LLM fine-tuning (Xiao et al., 2024; Dumpala et al., 2024; Li et al., 2024). Following this precedent to ensure data quality, we had our expert cognitive scientists conform all generated data to formal definitions of $\mathcal{S}1$ and $\mathcal{S}2$ thinking, and ensured that the dataset covers the intended set of cognitive heuristics across varied subjects. In this process, experts manually revised approximately 20% of the responses. We further verified the breadth of topic coverage via topic modeling; for more details and a sample of the curated dataset, see Appendices H and I.

4 EXPERIMENTS SETUP

Alignment Algorithm. To implement the alignment strategy for $\mathcal{S}1$ and $\mathcal{S}2$ reasoning, we utilize two offline preference optimization methods, namely, Direct Preference Optimization (DPO; Rafailov et al., 2024) and Simple Preference Optimization (SimPO; Meng et al., 2024), for two reasons: (i) their offline formulation removes the costly on-policy sampling loop, yielding a simpler and more compute-efficient training pipeline, and (ii) our hand-crafted preference pairs capture fine-grained relational signals that would likely be blurred by online-generated pairs (more details in Appendix N).

Benchmarks. We evaluate our models on 14 reasoning benchmarks across three different categories: (1) arithmetic reasoning: MultiArith (Roy & Roth, 2015), GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), AQUA-RAT (Ling et al., 2017), SingleEq (Koncel-Kedziorski et al., 2015), SVAMP (Patel et al., 2021), and AGIEval (Zhong et al., 2024); (2) commonsense reasoning: CSQA (Talmor et al., 2019), StrategyQA (Geva et al., 2021), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), and COM2SENSE (Singh et al., 2021); (3) symbolic reasoning: Last Letter Concatenation and Coin Flip (Wei et al., 2022b). Following Kong et al. (2024), our evaluation follows a two-stage process. In the first stage, we present benchmark questions to model and record their responses. In the second stage, we prompt the model with the original question, its initial response, and benchmark-specific instructions to ensure the output is formatted as required. See Appendices J and O for benchmark details and instructions.

Implementation Details. We use Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct (AI@Meta, 2024), and Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) as SFT models for alignment. Following Kojima et al. (2023), we compare the performance of these aligned models against their instruction-tuned counterparts under zero-shot and zero-shot CoT prompting (details in Appendix P). To analyze the model’s behavior along the $\mathcal{S}1$ to $\mathcal{S}2$ reasoning spectrum, we train seven intermediate models, where the winner responses are mixed at predefined ratios between $\mathcal{S}1$ and $\mathcal{S}2$. This structured interpolation allows us to systematically assess whether the transition between reasoning styles is discrete or gradual.

5 RESULTS

5.1 DISTINCT STRENGTHS OF SYSTEM 1 & SYSTEM 2 MODELS

Table 1 shows a comparison of exact matching accuracy across 14 benchmarks for Llama models at different scales (3B, 8B, and 70B). Specifically, we compare the base models with the dynamic models, $\mathcal{S}1$ and $\mathcal{S}2$ variants, and include results for CoT prompting for reference. Corresponding results for the Mistral model are available in appendix Q. Our findings reveal distinct performance trends for the $\mathcal{S}1$ and $\mathcal{S}2$ models, highlighting their respective strengths in different reasoning benchmarks.

In all arithmetic benchmarks (MultiArith, GSM8K, AddSub, AQuA, SingleEq, SVAMP, and AGIEval) with various difficulty, $\mathcal{S}2$ models consistently outperformed both the base models and their $\mathcal{S}1$ counterparts. This improvement is most significant in the AddSub and SingleEq benchmarks. Similarly, $\mathcal{S}2$ models outperformed $\mathcal{S}1$ models in nearly all symbolic reasoning benchmarks (Coin

270 Table 1: Accuracy comparison of our $S1$, $S2$, and Dynamic models based on Llama-3 models against
 271 instruction-tuned and CoT baselines across benchmarks. Each cell shows accuracy, with parentheses
 272 indicating the difference from the base model. Color intensity reflects the magnitude of deviation.
 273

		Arithmetic										Symbolic				Common Sense			
		MultiArith	GSMSR	AddSub	AQQA	SingleEq	SVAMP	AGIEval	Coin	Letter	CSQA	Strategy	PIQA	SIQA	COM2SENSE				
System 2	DPO	98.99 (+0.78)	96.74 (+2.06)	89.68 (+3.75)	51.06 (+0.19)	94.83 (+3.51)	86 (+2.3)	47.2 (+1.4)	94.8 (-0.2)	90.2 (+2.0)	69.62 (-3.94)	61.39 (-7.67)	85.46 (-0.31)	72.06 (-2.83)	76.42 (-4.07)				
	SIMPO	98.61 (+0.4)	95.37 (+0.69)	91.45 (+5.52)	55.53 (+4.66)	95.12 (+3.8)	86 (+2.3)	46.6 (+0.8)	95 (0)	88 (-0.2)	73.49 (-0.07)	67.73 (-1.33)	83.94 (-1.83)	73.68 (-1.21)	79.99 (-0.5)				
	Llama-70B	98.21	94.68	85.93	50.87	91.32	83.7	45.8	95	88.2	73.56	69.06	85.77	74.89	80.49				
	Llama-70B-CoT	98.39	94.74	86.18	50.91	91.77	84.3	45.6	96.2	88.4	72.92	69.59	85.77	75.08	79.85				
System 1	Dynamic-DPO	98.41 (+0.57)	95.35 (+0.77)	87.32 (+0.21)	50.84 (+0.21)	92.79 (+4.43)	85.3 (+5.21)	46.6 (+9.21)	93.8 (+8.3)	90 (+0.2)	74.87 (+7.8)	69.55 (+8.8)	85.99 (+7.8)	75.21 (+9.3)	80.83 (+8.33)				
	Dynamic-SIMPO	98.57 (-0.38)	95.19 (-0.77)	82.47 (-3.46)	48.82 (-2.05)	85.59 (-5.73)	80.3 (-3.4)	41.4 (-4.4)	93.6 (-1.4)	87.8 (-0.4)	75.32 (+1.76)	70.87 (+1.81)	86.19 (+0.42)	75.64 (+0.75)	81.09 (+0.6)				
	DPO	97.83 (-0.16)	93.91 (-0.77)	82.47 (-3.46)	48.82 (-2.05)	85.59 (-5.73)	80.3 (-3.4)	41.4 (-4.4)	93.6 (-1.4)	87.8 (-0.4)	73.87 (+0.2)	69.62 (+0.31)	85.85 (+0.56)	75.32 (+0.08)	81.46 (+0.43)				
	SIMPO	97.5 (-0.71)	94.28 (-0.4)	81.94 (-1.09)	49.69 (-1.09)	90.23 (-0.6)	83.1 (-0.6)	44 (-1.8)	92.8 (-2.2)	87.6 (-0.6)	73.87 (+0.31)	69.62 (+0.56)	85.85 (+0.08)	75.32 (+0.43)	81.46 (+0.97)				
System 2	DPO	98.67 (+1.0)	79.37 (+0.88)	89.37 (+4.74)	49.21 (+0.39)	94.37 (+3.65)	85.4 (+4.49)	33 (+2.8)	93.8 (+0.4)	86.2 (+2.2)	71.42 (0)	60.87 (-6.68)	81.15 (-2.01)	67.93 (-3.19)	76.42 (-2.6)				
	SIMPO	97.83 (+0.89)	79.38 (+7.66)	90.13 (+6.78)	54.72 (+3.77)	94.49 (+1.2)	81.7 (+2.4)	32.6 (+2.4)	94.4 (+0.2)	84.8 (+0.8)	69.62 (-1.8)	67.38 (-0.17)	81.49 (-1.67)	69.16 (-1.96)	78.21 (-0.81)				
	Llama-8B	97.67	78.49	82.47	48.82	90.72	80.5	30.2	94.2	84	71.42	67.55	83.16	71.12	79.02				
	Llama-8B-CoT	97.83	78.54	82.03	49.21	88.19	80.9	30.4	94.8	84.2	71.58	67.38	83.34	70.97	79.86				
System 1	Dynamic-DPO	98.87 (+0.83)	79.15 (+0.77)	88.07 (+0.21)	48.93 (-1.71)	93.62 (-1.71)	84.80 (-1.34)	31.80 (-13.48)	93.6 (-2.5)	86.00 (-0.4)	71.96 (+0.0)	69.78 (+0.0)	83.74 (+0.2)	72.16 (+0.7)	79.34 (+0.5)				
	Dynamic-SIMPO	97.58 (-0.17)	79.16 (-0.7)	88.87 (-1.96)	54.49 (-0.79)	93.01 (-0.79)	81.30 (-3.32)	30.80 (-1.2)	94.00 (-1.8)	84.40 (-0.2)	71.62 (+0.2)	68.17 (-0.17)	83.23 (-1.67)	71.69 (-1.96)	80.05 (-0.81)				
	DPO	98.5 (+0.83)	77.01 (-1.48)	80.76 (-1.71)	46.46 (-2.36)	77.24 (-13.48)	78 (-2.5)	27.8 (-0.4)	93.4 (-0.8)	83.8 (-0.2)	72.81 (+1.39)	68.21 (+0.66)	83.94 (+0.78)	72.16 (+1.04)	79.99 (+0.97)				
	SIMPO	97.5 (-0.17)	77.79 (-0.7)	80.51 (-1.96)	48.03 (-0.79)	87.4 (-0.79)	79.3 (-3.32)	28.4 (-1.2)	90 (-1.8)	83.8 (-0.2)	72.32 (+0.9)	67.73 (+0.18)	83.35 (+0.19)	71.67 (+0.55)	81.46 (+0.24)				
System 2	DPO	75.88 (+0.56)	69.73 (+0.97)	74.45 (+3.97)	32.01 (+1.5)	67.44 (+1.1)	54.3 (+0.4)	27.2 (+0.2)	76.8 (-1.2)	66.4 (+0.2)	59.27 (-3.12)	67.95 (-1.11)	71.23 (-1.92)	44.96 (-0.86)	58.34 (-1.63)				
	SIMPO	75.58 (+0.26)	69.43 (+0.67)	73.96 (+3.48)	32.84 (+2.33)	68.29 (+1.95)	54.1 (+0.2)	26.4 (+1.8)	78 (0)	66 (-0.2)	59.97 (-2.42)	66.78 (-2.28)	72.42 (-0.73)	44.71 (-1.11)	58.89 (-1.08)				
	Llama-3B	75.32	68.76	70.48	30.51	66.34	53.9	24.6	78	66.2	62.39	69.06	73.15	45.82	59.97				
	Llama-3B-CoT	75.32	69.08	71.97	31.24	66.59	53.7	25.2	78.2	66.4	62.14	69.26	73.44	45.63	59.97				
System 1	Dynamic-DPO	75.63 (+0.63)	68.91 (+0.77)	73.96 (+0.21)	31.24 (+0.21)	66.85 (+0.11)	54.1 (+0.11)	26.6 (+0.11)	76 (+0.1)	66.2	59.97 (+0.9)	69.32 (+0.2)	74.53 (+0.49)	45.49 (+0.11)	60.03 (+0.07)				
	Dynamic-SIMPO	75.41 (-0.41)	68.96 (-1.4)	72.89 (-2.19)	31.24 (-0.67)	67.44 (-1.37)	53.9 (-2.4)	26 (-2.6)	77.6 (-2.2)	65.8 (-2.4)	61.73 (-0.66)	69.51 (+0.42)	73.79 (+1.46)	46.06 (0)	59.27 (+0.11)				
	DPO	74.91 (-0.41)	67.36 (-1.4)	68.29 (-2.19)	29.84 (-0.67)	64.97 (-1.37)	51.5 (-2.4)	22 (-2.6)	75.8 (-2.2)	63.8 (-2.4)	61.73 (-0.66)	69.48 (+0.42)	74.61 (+1.46)	45.82 (0)	60.08 (+0.11)				
	SIMPO	75.16 (-0.16)	68.03 (-0.73)	68.11 (-2.57)	30.27 (-0.24)	62.66 (-3.68)	51.3 (-2.6)	22.8 (-1.8)	77.2 (-0.8)	64.2 (-2.0)	62.34 (-0.05)	70.18 (+1.12)	74.53 (+1.38)	46.46 (+0.64)	59.97 (0)				

294 and Letter), which require pattern recognition and logical structuring, further validating the idea
 295 that deliberative, slow-thinking models enhance performance in structured reasoning. While both
 296 approaches achieve high accuracy, $S1$ ’s reliance on heuristic shortcuts introduce small but systematic
 297 errors that $S2$ ’s deliberate, stepwise computations tend to avoid, such as rounding the number or
 298 adding numbers without checking. These findings are further supported by our AddSub analysis in
 299 Appendix T.

300 Conversely, $S1$ models consistently excelled all of their $S2$ counterparts, the base models, and the
 301 CoT variant on all commonsense reasoning benchmarks (CSQA, StrategyQA, PIQA, SIQA, and
 302 COM2SENSE), which depend on intuitive judgments and heuristic shortcuts. While $S2$ reasoning
 303 is correct, its more deliberate nature can often lead to overthinking, producing overly cautious
 304 or extensively interpretive responses that diverge from typical human reactions in rapid, intuitive
 305 situations. For example, when asked what a kindergarten teacher does before nap time, $S2$ suggests
 306 “encourage quiet behavior” instead of “tell a story,” or predicts “laughter” rather than “fight” if
 307 you surprise an angry person. As shown in Appendix T, this tendency to favor completeness over
 308 contextual fit makes $S2$ less reliable for quick, socially grounded tasks.

309 Llama models generally outperformed Mistral (See Appendix Q) across all benchmarks, suggesting
 310 stronger foundational reasoning capabilities further enhanced by $S1$ and $S2$ alignment. Moreover,
 311 instruction-tuned models with CoT prompts exhibited marginal gains over their base counterparts,
 312 as step-by-step reasoning is already internalized during pretraining on CoT data (AI@Meta, 2024).
 313 Accordingly, we adopt the base Llama 8B model as our primary baseline in subsequent experiments
 314 since it offers a good trade-off between resource efficiency and performance.

315 In summary, our results showcase that $S2$ models excel in structured, multi-step reasoning such as
 316 arithmetic and symbolic reasoning, while $S1$ models are effective in intuitive and commonsense
 317 reasoning benchmarks. These findings highlight the significant potential of dual-process alignment
 318 for boosting LLM performance across a diverse range of reasoning paradigms.

320 5.2 LENGTH DIFFERENCES ACROSS REASONING STYLES

321 A recent trend in LLM performance, exemplified by models such as DeepSeek R1 (Guo et al., 2025),
 322 is that achieving stronger benchmark results often correlates with producing longer reasoning chains,
 323 even if not explicitly trained to do so. This correlation raises the question of whether such verbose

324 responses truly reflect enhanced reasoning capabilities or if they are simply a formatting artifact of
 325 current high-performing models. In our studies, this concern is particularly relevant for $\mathcal{S}2$ models,
 326 which are expected to behave more deliberatively. To investigate this, we analyze output lengths with
 327 the two-stage prompting setup described in Section 4.

328 As shown in Figure 2, $\mathcal{S}2$ -aligned models generate significantly longer responses than their $\mathcal{S}1$
 329 counterparts, relative to the Llama baseline, under both alignment methods, DPO ($t(8836) = 58.978$,
 330 $p < .001$) and SimPO ($t(8586) = 11.24$, $p < .001$). This difference emerges specifically in the
 331 second stage, where models are prompted to finalize their responses, while response lengths remain
 332 comparable in the first stage, where both models are simply instructed to reason. Although both
 333 models were trained on equal-length preference pairs as described in Section 3.3, $\mathcal{S}2$ models still tend
 334 to elaborate more during finalization, consistent with their alignment toward deliberative reasoning.

335 While longer reasoning chains are often
 336 associated with stronger performance, our
 337 findings suggest that this extended reasoning
 338 can also introduce inefficiencies or even
 339 degrade quality in contexts where concise,
 340 heuristic-driven reasoning is more appropriate.
 341 In particular, tasks requiring common-
 342 sense or intuitive judgments are often better
 343 handled by $\mathcal{S}1$ models, which respond more
 344 directly. This aligns with emerging work on
 345 “overthinking” phenomenon, where excessive
 346 deliberation hurts performance (Chen
 347 et al., 2024; Cuadron et al., 2025). To con-
 348 firm that “overthinking” behavior is an inher-
 349 ent property of the reasoning style, we con-
 350 ducted an ablation study with un-normalized
 351 data (See Appendix M). Overall, extended reasoning is not universally beneficial, and reasoning
 352 strategies must be evaluated in relation to the task.

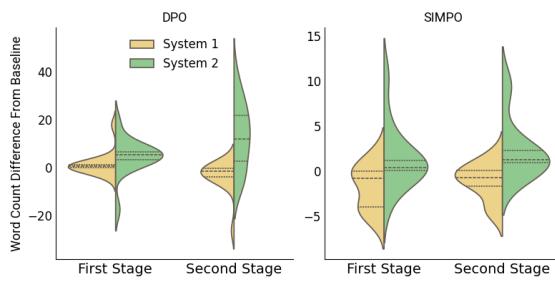


Figure 2: Token difference between System 1 and System 2 responses relative to Llama model across prompting stages and alignment methods.

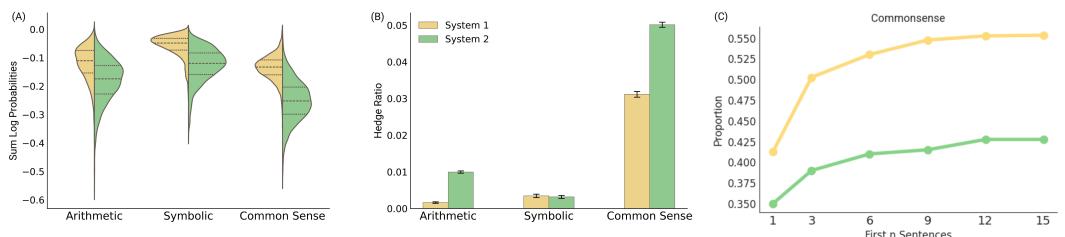


Figure 3: (A) Log probabilities of models’ reasoning indicating internal uncertainty; (B) Hedge word ratio showing surface-level uncertainty; (C) Proportion of definitive answers in the first n sentences.

5.3 UNCERTAINTY ACROSS REASONING STYLES

A key insight from psychology and neuroscience is that $\mathcal{S}1$ operates on confident heuristics, providing quick, intuitive judgments, while $\mathcal{S}2$ engages in more deliberate, analytical thought, accurately assessing the uncertainty associated with its conclusions (Daw et al., 2005; Lee et al., 2014; Keramati et al., 2011; Xu, 2021). To examine uncertainty and confidence, we consider three different characteristics: 1) token-level uncertainty; 2) the presence of hedge words in model output (Lakoff, 1973; Ott, 2018); and 3) definitive commitment to responses in $\mathcal{S}1$ versus $\mathcal{S}2$.

Plot A in Figure 3 shows that $\mathcal{S}2$ models consistently generate tokens with lower confidence than $\mathcal{S}1$ models, based on token-level uncertainty from logits. This trend holds across arithmetic $t(4075) = 55.68$, $p < .001$, symbolic $t(999) = 42.53$, $p < .001$, and commonsense $t(3510) = 106.86$, $p < .001$ benchmarks. Additionally, we analyzed surface-level uncertainty in model reasoning by examining word choices. Figure 3, Plot B shows $\mathcal{S}2$ -aligned models use significantly more hedge words, in arithmetic $t(4075) = 24.61$, $p < .001$ and commonsense $t(3510) = 21.49$, $p < .001$ when models reiterate their reasoning. While increased uncertainty

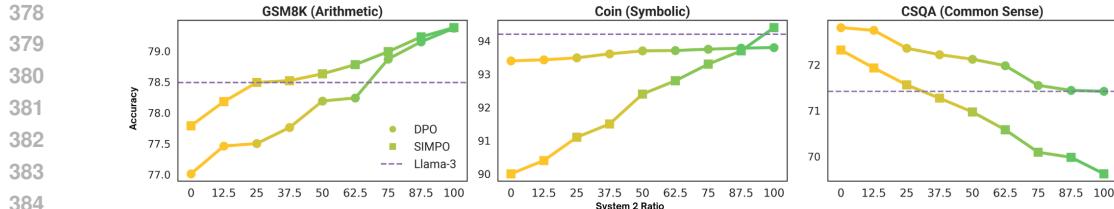


Figure 4: Accuracy across benchmark categories as reasoning shifts from System 1 to System 2.

enhances analytical reasoning, it may hinder tasks requiring rapid, intuitive judgments. To assess early-stage response conclusiveness, we used LLM-as-Judge (Zheng et al., 2023) as detailed in Appendix S. Figure 3, Plot C shows $\mathcal{S}1$ models provide significantly more definitive responses than $\mathcal{S}2$ models in commonsense reasoning, $McNemar's \chi^2(1, 400) = 20.0, p < .001$, regardless of where in the response the definitive responses are reached (see Appendix S).

This analysis reinforces the idea that different reasoning styles are suited to different tasks. Greater uncertainty in models' generated reasoning suggests that $\mathcal{S}2$ models can explore alternative reasoning paths more effectively. This uncertainty is reflected in both their model output probabilities and word choices. $\mathcal{S}2$ models' superior performance in arithmetic benchmarks highlights the benefits of deliberate, effortful processing in tasks that demand exploration and uncertainty. On the other hand, the greater tendency of $\mathcal{S}1$ models to commit to responses in a more definitive way aligns with their advantage in tasks requiring rapid and intuitive judgments. This behavior is observed exclusively in commonsense reasoning, where quick, decisive responses are advantageous—a trend supported by human studies (Byrd, 2022) and confirmed by our findings in Section 5.1. However, it does not appear in other benchmarks (see Appendix S), suggesting that the activation of a particular reasoning style is context-dependent and influenced by task demands.

5.4 MOVING FROM FAST TO SLOW THINKING

In the previous analysis, $\mathcal{S}1$ and $\mathcal{S}2$ models can be viewed as endpoints of a broader spectrum of reasoning strategies. Paralleling approaches in cognitive psychology (Daw et al., 2011; Piray & Daw, 2021), we explored this spectrum by constructing interpolated models—blending $\mathcal{S}1$ and $\mathcal{S}2$ preferred answers at varying ratios in the alignment dataset. Figure 4 demonstrates a consistent, monotonic transition in accuracy across representative benchmarks from three reasoning categories (all $r^2 > 0.9, p < 0.001$), a pattern visible across all benchmarks (see Appendix R). While arithmetic and symbolic reasoning benchmarks exhibit a steady increase in accuracy moving toward $\mathcal{S}2$ thinking, commonsense reasoning benchmarks show the opposite trend, with accuracy increasing as models rely more on $\mathcal{S}1$ reasoning. This trade-off highlights that both reasoning styles offer unique advantages, with $\mathcal{S}2$ excelling in structured, multi-step problem-solving and $\mathcal{S}1$ providing efficient, adaptable responses in intuitive scenarios. These findings strengthen the importance of task-dependent reasoning strategies that leverage the strengths of both $\mathcal{S}1$ and $\mathcal{S}2$ thinking. Critically, there are no sudden drops or fluctuations in performance when transitioning between reasoning styles. This stability indicates that the shift from $\mathcal{S}1$ to $\mathcal{S}2$ reasoning is gradual and predictable, without any unexpected anomalies. This observation reinforces the idea that LLMs can be strategically guided toward different reasoning styles, allowing for more adaptive problem-solving.

5.5 ENTROPY-GUIDED MODEL SELECTION

We evaluated the dynamic model proposed in Section 3.2 on our 14 reasoning benchmarks, varying the weight w in Equation (3). As shown in Table 1 and Table 6, overall, the dynamic models consistently outperform their base counterparts across the different alignment algorithms on nearly all benchmarks. The best performance was achieved with $w = 0.4$, under which the Llama DPO-dynamic model achieved higher accuracy than the base model on 13 of the 14 benchmarks, while the SimPO-dynamic version improved on 12 benchmarks. Given the significance of this finding, we also replicated the analysis with Mistral models, where the DPO-dynamic model outperformed the base on 12 of 14 benchmarks, while the SimPO-dynamic model improved on 13 of 14 benchmarks (see Appendix U).

Furthermore, to validate the balance between uncertainty (\hat{H}) and instability ($\hat{\sigma}^2$) in our dynamic model, we analyzed the distributions of \hat{H} and $\hat{\sigma}^2$ between the two systems. As an illustration, Figure 5 shows GSM8k accuracy across different w values alongside the corresponding entropy statistics; results for the remaining benchmarks are provided in Appendix U and follow the same trend. This analysis reveals systematic differences between correct and incorrect responses in $S1$ and $S2$ models. In general, high \hat{H} in either system is associated with incorrect responses, whereas for both correct and incorrect cases the two systems exhibit very similar entropy statistics. We also observe that \hat{H} is generally lower for $S1$ models, indicating greater confidence, while $\hat{\sigma}^2$ is lower for $S2$ models, indicating greater stability. These findings are consistent with Section 5.3 and with prior research in psychology and neuroscience. Together, this analysis provides empirical justification for using entropy signals as the basis of our scoring method in Section 3.2.

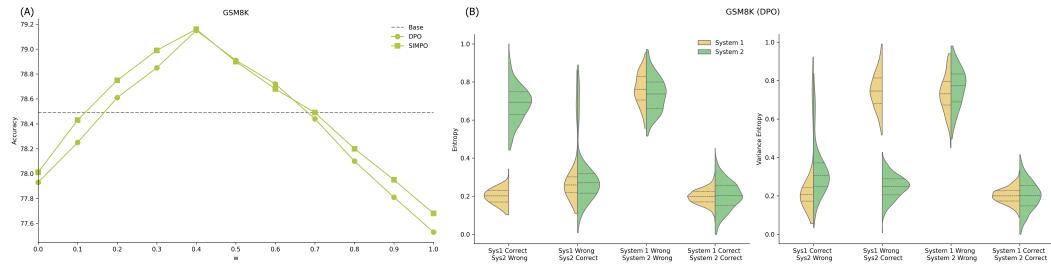


Figure 5: (A) Performance of Llama models (DPO- and SimPO-dynamic models) on the GSM8K dataset as w varies in Equation (3). The dashed line represents the accuracy of the base Llama model. (B) Violin plots of average entropy (\hat{H}) and its variance ($\hat{\sigma}^2$) distribution for DPO-aligned Llama models on GSM8K, broken down by four possible outcomes.

6 CONCLUSION

A central question in current LLM development is whether structured, step-by-step reasoning is always beneficial, or whether a more flexible range of reasoning strategies is needed. Inspired by dual-process theories of human cognition, we studied LLMs explicitly aligned with $S1$ and $S2$ thinking, representing fast, confident, heuristic reasoning and slow, analytical reasoning, respectively. Our findings indicate that, much like in human cognition, reasoning in LLMs is not a one-size-fits-all solution: different reasoning modes are effective in different contexts and downstream tasks. $S2$ excels in arithmetic and symbolic reasoning, while $S1$ is more effective and accurate in commonsense reasoning (Section 5.1). Additionally, $S1$ models generate responses with fewer tokens, highlighting its efficiency in decision-making (Section 5.2). Our analysis in Section 5.3 illustrated that $S2$ models exhibit greater uncertainty throughout the reasoning process, potentially resulting them to engage in more structured, step-by-step problem-solving. In contrast, $S1$ models display higher confidence, allowing them to reach responses faster, which is particularly advantageous for tasks requiring rapid, intuitive judgments. Moreover, training intermediate models with blended ratios of preferred $S1$ and $S2$ responses revealed smooth, monotonic shifts in performance across benchmarks (Section 5.4), supporting the view that LLM reasoning should lie on a continuous, tunable spectrum rather than a binary divide. Finally, we proposed a dynamic model that selects adaptively between $S1$ and $S2$ reasoning based on entropy signals. Remarkably, this method requires no additional training yet consistently improves performance across diverse reasoning benchmarks. This demonstrates that our ensemble approach, guided by the model's confidence and the stability of that confidence to decide whether to rely on the System 1 or System 2 answer, can consistently produce the most reliable output. The method is adaptive in how it selects between the two reasoning modes, though it currently doubles the inference cost. An important direction for future work is to distill both reasoning modes into a single, efficient model to mitigate this overhead.

Beyond these empirical findings, our study aligns with broader principles observed across cognitive science and neuroscience. The observation that $S1$ models generate faster and more confident responses echoes established theories in human cognition, where intuitive, heuristic thinking allows for rapid decision-making. Similarly, the higher uncertainty exhibited by $S2$ models aligns with neuroscience findings that deliberate reasoning involves greater cognitive load, self-monitoring, and

486 exploring more paths. These parallels suggest that LLMs, when properly aligned, can mirror key
 487 aspects of human cognition, offering new insights into both artificial and natural intelligence.
 488

489 Our work bridges between LLM development and cognitive science, highlighting efficiency-accuracy
 490 trade-offs in LLMs, similar to those long observed in human cognition. We align models with
 491 reasoning behaviors that follow well-known cognitive heuristics, which humans use in everyday
 492 thinking, like $S1$'s rapid, intuitive judgments and $S2$'s deliberate, analytical thought, and show they
 493 can follow the dynamic interplay between fast and slow thinking. This alignment not only informs
 494 more sophisticated training and evaluation strategies but also suggests that future LLMs can be
 495 designed to possess a more cognitively grounded flexibility, allowing them to adapt their reasoning as
 496 effectively as humans do when faced with diverse task demands. Finally, models that reason in ways
 497 that are cognitively interpretable, mirroring the human brain's strategies for learning, decision making,
 498 and inference, may also be more predictable, steerable, and trustworthy in deployment. In this light,
 499 dual-process alignment connects cognitive science and neuroscience with model capabilities, enabling
 500 future LLMs to reason more like humans, not just in what they conclude, but in how they get there.

500 This paper takes a first step toward adaptive reasoning in LLMs, enabling dynamic shift between
 501 heuristic and deliberative thinking based on task demands. Furthermore, understanding how to
 502 optimally balance speed and accuracy in LLMs can have significant implications for real-world
 503 applications, from conversational agents to automated decision-making systems. In practice, this
 504 approach allows deliberate trade-offs between answer quality and response speed, using fewer
 505 reasoning steps when time is critical.

506

507 REFERENCES

509 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
 510 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
 511 report. *arXiv preprint arXiv:2412.08905*, 2024.

512 AI@Meta. Llama 3 model card. *arXiv preprint*, 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.

513

514 Meysam Alizadeh, Maël Kubli, Zeynab Samei, Shirin Dehghani, Juan Diego Bermeo, Maria Ko-
 515 robeynikova, and Fabrizio Gilardi. Open-source large language models outperform crowd workers
 516 and approach chatgpt in text-annotation tasks. *arXiv preprint arXiv:2307.02179*, 42, 2023.

517

518 Bernard W Balleine and Anthony Dickinson. Goal-directed instrumental action: contingency and
 519 incentive learning and their cortical substrates. *Neuropharmacology*, 37(4-5):407–419, 1998.

520

521 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
 522 about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial
 523 Intelligence*, 2020.

524

525 Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick Linck, Andreas
 526 Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca Rossi, et al. Thinking fast and slow in
 527 ai. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 15042–15046,
 528 2021.

529 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 530 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 531 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

532

533 Nick Byrd. Bounded reflectivism and epistemic identity. *Metaphilosophy*, 53(1):53–69, 2022.

534

535 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
 536 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking of
 537 o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.

538

539 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
 540 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
 541 models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.

540 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 541 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 542 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

543

544 Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
 545 Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examining
 546 the reasoning-action dilemma in agentic tasks. *arXiv preprint arXiv:2502.08235*, 2025.

547

548 Nathaniel D Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between prefrontal and
 549 dorsolateral striatal systems for behavioral control. *Nature neuroscience*, 8(12):1704–1711, 2005.

550

551 Nathaniel D Daw, Samuel J Gershman, Ben Seymour, Peter Dayan, and Raymond J Dolan. Model-
 552 based influences on humans’ choices and striatal prediction errors. *Neuron*, 69(6):1204–1215,
 553 2011.

554

555 Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
 556 Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
 557 the chomsky hierarchy. In *11th International Conference on Learning Representations*, 2023.

558

559 Yongxin Deng, Xihe Qiu, Xiaoyu Tan, Chao Qu, Jing Pan, Yuan Cheng, Yinghui Xu, and Wei
 560 Chu. Cognidual framework: Self-training large language models within a dual-system theoretical
 561 framework for improving cognitive tasks. *arXiv preprint arXiv:2409.03381*, 2024.

562

563 Ray J Dolan and Peter Dayan. Goals and habits in the brain. *Neuron*, 80(2):312–325, 2013.

564

565 Sri Harsha Dumpala, Aman Jaiswal, Chandramouli Shama Sastry, Evangelos Milios, Sageev Oore,
 566 and Hassan Sajjad. Sugarcrepe++ dataset: Vision-language model sensitivity to semantic and
 567 lexical alterations. *Advances in Neural Information Processing Systems*, 37:17972–18018, 2024.

568

569 Jessica Echterhoff, Yao Liu, Abeer Alessa, Julian McAuley, and Zexue He. Cognitive bias in decision-
 570 making with llms. In *Findings of the Association for Computational Linguistics: EMNLP 2024*,
 571 pp. 12640–12653, 2024.

572

573 Jonathan St BT Evans and Keith E Stanovich. Dual-process theories of higher cognition: Advancing
 574 the debate. *Perspectives on psychological science*, 8(3):223–241, 2013.

575

576 Shaz Furniturewala, Surgan Jandial, Abhinav Java, Pragyan Banerjee, Simra Shahid, Sumit Bhatia,
 577 and Kokil Jaidka. Thinking fair and slow: On the efficacy of structured prompts for debiasing
 578 language models. *arXiv preprint arXiv:2405.10431*, 2024.

579

580 Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
 581 use a laptop? a question answering benchmark with implicit reasoning strategies. *Transactions
 582 of the Association for Computational Linguistics*, 9:346–361, 04 2021. ISSN 2307-387X. doi:
 583 10.1162/tacl_a_00370. URL https://doi.org/10.1162/tacl_a_00370.

584

585 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for
 586 text-annotation tasks. *Proceedings of the National Academy of Sciences*, 120(30):e2305016120,
 587 2023.

588

589 Claire M Gillan, Michal Kosinski, Robert Whelan, Elizabeth A Phelps, and Nathaniel D Daw.
 590 Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. *elife*,
 591 5:e11305, 2016.

592

593 Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. *arXiv
 594 preprint arXiv:2203.05794*, 2022.

595

596 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 597 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 598 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

599

600 Thilo Hagendorff, Sarah Fabi, and Michal Kosinski. Human-like intuitive behavior and reasoning
 601 biases emerged in large language models but disappeared in chatgpt. *Nature Computational
 602 Science*, 3(10):833–838, 2023.

594 Tao He, Lizi Liao, Yixin Cao, Yuanxing Liu, Ming Liu, Zerui Chen, and Bing Qin. Planning
 595 like human: A dual-process framework for dialogue planning. In Lun-Wei Ku, Andre Martins,
 596 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for*
 597 *Computational Linguistics (Volume 1: Long Papers)*, pp. 4768–4791, Bangkok, Thailand, August
 598 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.262. URL
 599 <https://aclanthology.org/2024.acl-long.262/>.

600 Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng,
 601 Zhaoxiang Zhang, Zhicheng Zheng, Wenbo Su, et al. Can large language models detect errors in
 602 long chain-of-thought reasoning? *arXiv preprint arXiv:2502.19361*, 2025.

603

604 Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to solve
 605 arithmetic word problems with verb categorization. In Alessandro Moschitti, Bo Pang, and Walter
 606 Daelemans (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language*
 607 *Processing (EMNLP)*, pp. 523–533, Doha, Qatar, October 2014. Association for Computational
 608 Linguistics. doi: 10.3115/v1/D14-1058. URL <https://aclanthology.org/D14-1058/>.

609 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 610 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*
 611 *arXiv:2106.09685*, 2021.

612

613 Wenyue Hua and Yongfeng Zhang. System 1 + system 2 = better world: Neural-symbolic chain
 614 of logic reasoning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of*
 615 *the Association for Computational Linguistics: EMNLP 2022*, pp. 601–612, Abu Dhabi, United
 616 Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
 617 2022.findings-emnlp.42. URL <https://aclanthology.org/2022.findings-emnlp.42/>.

618

619 Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
 620 Large language models can self-improve. *arXiv preprint arXiv:2210.11610*, 2022.

621

622 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
 623 *arXiv preprint arXiv:2212.10403*, 2022.

624

625 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
 626 vey. In Anna Rogers, Jordan Boyd-Graber, and Naoki Okazaki (eds.), *Findings of the As-*
 627 *sociation for Computational Linguistics: ACL 2023*, pp. 1049–1065, Toronto, Canada, July
 628 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
 629 <https://aclanthology.org/2023.findings-acl.67/>.

630

631 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 632 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 633 *arXiv:2410.21276*, 2024.

634

635 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 636 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 637 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 638 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

639

640 Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng Wang, Tanwi Mallick, Weijie J Su,
 641 Camillo Jose Taylor, and Dan Roth. A peek into token bias: Large language models are not yet
 642 genuine reasoners. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of*
 643 *the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 4722–4756, Mi-
 644 ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 645 2024.emnlp-main.272. URL <https://aclanthology.org/2024.emnlp-main.272/>.

646

647 Daniel Kahneman. *Thinking, fast and slow*. Farrar, Straus and Giroux, New York,
 648 2011. ISBN 9780374275631 0374275637. URL https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=w1_it_dp_o_pdt1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=130CESLZCVDFL7.

648 Mahammed Kamruzzaman and Gene Louis Kim. Prompting techniques for reducing social bias in
 649 llms through system 1 and system 2 cognitive processes. *arXiv preprint arXiv:2404.17218*, 2024.
 650

651 Mehdi Keramati, Amir Dezfouli, and Payam Piray. Speed/accuracy trade-off between the habitual
 652 and the goal-directed processes. *PLoS computational biology*, 7(5):e1002055, 2011.

653 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 654 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 655 22199–22213, 2022.

656

657 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 658 language models are zero-shot reasoners, 2023. URL <https://arxiv.org/abs/2205.11916>.

659

660 Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
 661 Ang. Parsing algebraic word problems into equations. *Transactions of the Association for
 662 Computational Linguistics*, 3:585–597, 12 2015. ISSN 2307-387X. doi: 10.1162/tacl_a_00160.
 663 URL https://doi.org/10.1162/tacl_a_00160.

664

665 Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang,
 666 and Xiaohang Dong. Better zero-shot reasoning with role-play prompting, 2024. URL <https://arxiv.org/abs/2308.07702>.

667

668 George Lakoff. Hedges: A study in meaning criteria and the logic of fuzzy concepts. *Journal of
 669 philosophical logic*, 2(4):458–508, 1973.

670

671 Sang Wan Lee, Shinsuke Shimojo, and John P O’doherty. Neural computations underlying arbitration
 672 between model-based and model-free learning. *Neuron*, 81(3):687–699, 2014.

673

674 Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan
 675 Moradi Pari, Charles Lewis, and Katia Sycara. Language grounded multi-agent reinforcement
 676 learning with human-interpretable communication. *Advances in Neural Information Processing
 677 Systems*, 37:87908–87933, 2024.

678

679 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by ratio-
 680 nale generation: Learning to solve and explain algebraic word problems. In Regina Barzi-
 681 lay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association
 682 for Computational Linguistics (Volume 1: Long Papers)*, pp. 158–167, Vancouver, Canada,
 683 July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1015. URL
 684 <https://aclanthology.org/P17-1015/>.

685

686 Zipeng Ling, Yuehao Tang, Shuliang Liu, Junqi Yang, Shenghong Fu, Chen Huang, Kejia Huang,
 687 Yao Wan, Zhichao Hou, and Xuming Hu. Wakenllm: Evaluating reasoning potential and stability
 688 in llms via fine-grained benchmarking. *arXiv preprint arXiv:2507.16199*, 2025.

689

690 Zhixuan Liu, Zihao Wang, Yuan Lin, and Hang Li. A neural-symbolic approach to natural language
 691 understanding. *arXiv preprint arXiv:2203.10557*, 2022.

692

693 Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
 694 Teaching small language models to reason. *arXiv preprint arXiv:2212.08410*, 2022.

695

696 Marcelo G Mattar and Nathaniel D Daw. Prioritized memory access explains planning and hippocam-
 697 pal replay. *Nature neuroscience*, 21(11):1609–1617, 2018.

698

699 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 700 free reward. *arXiv preprint arXiv:2405.14734*, 2024.

701

702 Kevin J Miller, Matthew M Botvinick, and Carlos D Brody. Dorsal hippocampus contributes to
 703 model-based planning. *Nature neuroscience*, 20(9):1269–1276, 2017.

704

705 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
 706 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
 707 language models. *arXiv preprint arXiv:2410.05229*, 2024.

702 Philipp Mondorf and Barbara Plank. Beyond accuracy: Evaluating the reasoning behavior of large
 703 language models—a survey. *arXiv preprint arXiv:2404.01869*, 2024.

704

705 Douglas E Ott. Hedging, weasel words, and truthiness in scientific writing. *JSLS: Journal of the*
 706 *Society of Laparoendoscopic Surgeons*, 22(4), 2018.

707

708 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 709 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 710 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 27744, 2022.

711

712 Jiabao Pan, Yan Zhang, Chen Zhang, Zuozhu Liu, Hongwei Wang, and Haizhou Li. Dynathink:
 713 Fast or slow? a dynamic decision-making framework for large language models. *arXiv preprint*
 714 *arXiv:2407.01009*, 2024.

715

716 Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
 717 Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
 718 ability of large language models. In *Proceedings of the 62nd Annual Meeting of the Association*
 719 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 13679–13707, 2024.

720

721 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve sim-
 722 ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
 723 Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
 724 (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association*
 725 *for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June
 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
<https://aclanthology.org/2021.naacl-main.168/>.

726

727 Payam Piray and Nathaniel D Daw. Linear reinforcement learning in planning, grid fields, and
 728 cognitive control. *Nature communications*, 12(1):4942, 2021.

729

730 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 731 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 732 *in Neural Information Processing Systems*, 36, 2024.

733

734 Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluís Márquez, Chris
 735 Callison-Burch, and Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in*
 736 *Natural Language Processing*, pp. 1743–1752, Lisbon, Portugal, September 2015. Association
 737 for Computational Linguistics. doi: 10.18653/v1/D15-1202. URL <https://aclanthology.org/D15-1202/>.

738

739 Swarnadeep Saha, Archiki Prasad, Justin Chen, Peter Hase, Elias Stengel-Eskin, and Mohit Bansal.
 740 System 1.x: Learning to balance fast and slow planning with language models. In *The Thirteenth*
 741 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=zd0iX5xBhA>.

742

743 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 744 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

745

746 Daniel J Schad, Michael A Rapp, Maria Garbusow, Stephan Nebe, Miriam Sebold, Elisabeth Obst,
 747 Christian Sommer, Lorenz Deserno, Milena Rabovsky, Eva Friedel, et al. Dissociating neural
 748 learning signals in human sign-and goal-trackers. *Nature human behaviour*, 4(2):201–214, 2020.

749

750 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
 751 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
 752 models via the lens of problem complexity. *arXiv preprint arXiv:2506.06941*, 2025.

753

754 Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoormolabashi, Te-lin Wu, Xuezhe Ma, and Nanyun
 755 Peng. COM2SENSE: A commonsense reasoning benchmark with complementary sentences.
 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Findings of the Association*
 756 *for Computational Linguistics: ACL-IJCNLP 2021*, pp. 883–898, Online, August 2021.
 Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.78. URL
<https://aclanthology.org/2021.findings-acl.78/>.

756 Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating length
 757 correlations in rlhf. *ArXiv*, abs/2310.03716, 2023. URL <https://api.semanticscholar.org/CorpusID:263672200>.

758

759 Zhivar Sourati, Filip Ilievski, Pia Sommerauer, and Yifan Jiang. Arn: Analogical reasoning on
 760 narratives. *Transactions of the Association for Computational Linguistics*, 12:1063–1086, 2024.

761

762 Keith E Stanovich and Richard F West. Advancing the rationality debate. *Behavioral and brain
 763 sciences*, 23(5):701–717, 2000.

764

765 DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinling Zheng. Dualformer:
 766 Controllable fast and slow thinking by learning with randomized reasoning traces. In *The Thirteenth
 767 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=bmbRCRiNDu>.

768

769 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
 770 answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 771 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter
 772 of the Association for Computational Linguistics: Human Language Technologies, Volume 1
 773 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for
 774 Computational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

775

776 Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and biases: Biases in
 777 judgments reveal some heuristics of thinking under uncertainty. *science*, 185(4157):1124–1131,
 778 1974.

779

780 Karthik Valmecikam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
 781 models still can't plan (a benchmark for llms on planning and reasoning about change). In *NeurIPS
 782 Foundation Models for Decision Making Workshop*, 2022.

783

784 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 785 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 786 models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the
 787 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 788 pp. 2609–2634, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
 789 10.18653/v1/2023.acl-long.147. URL [https://aclanthology.org/2023.acl-long.147/](https://aclanthology.org/2023.acl-long.147).

790

791 Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. *arXiv preprint
 arXiv:2402.10200*, 2024.

792

793 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 794 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

795

796 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
 797 Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

798

799 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 800 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 801 neural information processing systems*, 35:24824–24837, 2022b.

802

803 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 804 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023a.
 URL <https://arxiv.org/abs/2201.11903>.

805

806 Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang, Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
 807 Yufeng Chen, Meishan Zhang, Yong Jiang, and Wenjuan Han. Zero-shot information extraction
 808 via chatting with chatgpt, 2023b.

809

Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too).
arXiv preprint arXiv:2311.11829, 2023.

810 Mengxi Xiao, Qianqian Xie, Ziyan Kuang, Zhicheng Liu, Kailai Yang, Min Peng, Weiguang Han, and
 811 Jimin Huang. HealMe: Harnessing cognitive reframing in large language models for psychotherapy.
 812 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual*
 813 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1707–
 814 1725, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
 815 v1/2024.acl-long.93. URL <https://aclanthology.org/2024.acl-long.93/>.

816 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Dixin
 817 Jiang. Wizardlm: Empowering large language models to follow complex instructions. *arXiv*
 818 *preprint arXiv:2304.12244*, 2023.

819 Hui Xu. Career decision-making from a dual-process perspective: Looking back, looking forward.
 820 *Journal of Vocational Behavior*, 126:103556, 2021.

821 Cheng Yang, Chufan Shi, Siheng Li, Bo Shui, Yujiu Yang, and Wai Lam. Llm2: Let large language
 822 models harness system 2 reasoning. *arXiv preprint arXiv:2412.20372*, 2024.

823 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 824 Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural*
 825 *Information Processing Systems*, 36, 2024.

826 Weiqiu You, Anton Xue, Shreya Havaldar, Delip Rao, Helen Jin, Chris Callison-Burch, and Eric Wong.
 827 Probabilistic soundness guarantees in llm reasoning chains. *arXiv preprint arXiv:2507.12948*,
 828 2025.

829 Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. *arXiv preprint*
 830 *arXiv:2407.06023*, 2024.

831 Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li, Pengguang Chen, Jianbo Dai, Yuxuan Yao,
 832 Rongwu Xu, Zehan Qi, Wanru Zhao, et al. Mr-ben: A meta-reasoning benchmark for evaluating
 833 system-2 thinking in llms. In *The Thirty-eighth Annual Conference on Neural Information*
 834 *Processing Systems*, 2024.

835 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 836 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 837 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

838 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
 839 Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models. In
 840 *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 2299–2314, 2024.

841 Hanzhang Zhou, Junlang Qian, Zijian Feng, Lu Hui, Zixiao Zhu, and Kezhi Mao. LLMs learn task
 842 heuristics from demonstrations: A heuristic-driven prompting strategy for document-level event
 843 argument extraction. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings*
 844 *of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 845 *Papers)*, pp. 11972–11990, Bangkok, Thailand, August 2024a. Association for Computational
 846 Linguistics. doi: 10.18653/v1/2024.acl-long.647. URL <https://aclanthology.org/2024.acl-long.647/>.

847 Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H Chi, Denny Zhou,
 848 Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-compose
 849 reasoning structures. *arXiv preprint arXiv:2402.03620*, 2024b.

850
 851 **A LIMITATIONS**

852
 853 Despite the promising advancements of using different thinking styles through the lens of dual-
 854 process cognitive theory in our approach, it is important to clarify the intended scope and outline
 855 future directions. Our curated dataset of 2,000 questions covers 10 well-established cognitive
 856 heuristics and was validated by our domain experts to ensure quality. While not exhaustive, this
 857 dataset provides a strong foundation for investigating reasoning style differences and establishes
 858 methodological groundwork for broader-scale expansion in future studies to represent the entire

spectrum of reasoning challenges encountered in real-world tasks. We focused our alignment experiments on Llama and Mistral as base models, using DPO and SIMPO as preference optimization techniques. While our findings are likely to generalize across model architectures and alignment methods, given the shared emergence of both intuitive and deliberative reasoning in large-scale pretraining, testing this generalization to other architectures and alignment methods is a valuable future direction. Moreover, while our dynamic model is training-free and improves performance, it is computationally inefficient. It doubles inference costs and memory usage by requiring both models to run for every query. Future work could distill this capability into a single, efficient model to mitigate this overhead. In terms of evaluating reasoning uncertainty, we adopt token-level logit-based measures and linguistic hedging analysis as computationally tractable proxies. These provide interpretable signals of reasoning behavior, though deeper psycholinguistic and interactive evaluations may offer complementary insights. Finally, while our experiments reveal a clear accuracy-efficiency trade-off between intuitive and deliberative reasoning, the extent to which these findings translate to more complex or efficient dynamic decision-making scenarios remains an open question. Future work should explore larger, more diverse datasets and investigate alternative alignment strategies to further validate and extend these results.

B ETHICAL STATEMENT

Aligning LLMs with $\mathcal{S}1$ and $\mathcal{S}2$ reasoning raises concerns about model behavior in different contexts. On one hand, $\mathcal{S}1$ models risk producing overly confident but incorrect or biased responses, and their alignment with heuristics could be misinterpreted as an endorsement of harmful stereotypes. We want to be clear that the goal of this work is to leverage heuristics for their efficiency, not to amplify unfair biases. On the other hand, $\mathcal{S}2$ models, though more deliberate, are not a universal solution as they introduce slower response times and increased computational costs. Responsible deployment requires building systems that engage the appropriate reasoning style for the context and strike a balance between efficiency and the risk of biased or misleading outputs.

C LLM USAGE

We used Large Language Models (specifically OpenAI’s GPT models) exclusively for polishing the writing of this paper. No aspects of the research design, implementation, or analysis involved LLM assistance.

D COGNITIVE HEURISTICS

In Table 2, we list 10 different cognitive heuristics and their definitions, which we used in curating the dataset [Kahneman \(2011\)](#); [Stanovich & West \(2000\)](#); [Evans & Stanovich \(2013\)](#).

E DETAILS OF EXPERTS

The experts consulted are the three authors of this paper: two are PhD students and the other is a faculty member, all specializing in cognitive sciences.

F INITIAL DATA EXAMPLES

The 10 samples generated by the expert for our data generation are shown in Table 3.

G PROMPT FOR DATA EXPANSION

We expand our sample dataset by concatenating the expert-generated samples with the definitions in Table 2, along with a description of how $\mathcal{S}1$ and $\mathcal{S}2$ would respond to a given question, as shown below:

918
919
920
921
922 Table 2: 10 common cognitive biases and their definitions, which were considered in curating the
923 dataset
924

Cognitive Bias	Definition
Anchoring Bias	The tendency to rely too heavily on the first piece of information we receive about a topic, using it as a reference point for future judgments and decisions, even when new information becomes available.
Halo Effect Bias	The tendency to let one positive impressions of people, brands, and products in one area positively influence our feelings in another area.
Overconfidence Bias	The tendency to have excessive confidence in one's own abilities or knowledge.
Optimism Bias	The tendency to overestimate the likelihood of positive outcomes and underestimate negative ones.
Availability Heuristic Bias	The tendency to use information that comes to mind quickly and easily when making decisions about the future.
Status Quo Bias	The preference for maintaining the current state of affairs, leading to resistance to change.
Recency Bias	The tendency to better remember and recall information presented to us most recently, compared to information we encountered earlier
Confirmation Bias	The tendency to notice, focus on, and give greater credence to evidence that fits with our existing beliefs.
Planning Fallacy	The tendency to underestimate the amount of time it will take to complete a task, as well as the costs and risks associated with that task even if it contradicts our experiences.
Bandwagon Effect Bias	The tendency to adopt beliefs or behaviors because many others do.

940
941
942
943
944
945
946
947
948 Table 3: 10 samples generated by an expert
949

Category	Question	System 1 Answer	System 2 Answer
Anchoring Bias	Do you rely on your first impression of meeting your lab mate ?	Yes, my gut instinct is usually right.	I should interact with them more to form a well-rounded opinion.
Halo effect Bias	How do you feel about the new political candidate?	I do not like their stance on one issue, so I think they are a terrible candidate.	I'll weigh their stance on multiple issues before deciding.
Over Confidence Bias	Do you think you will succeed in your new job?	I will definitely succeed here.	I will need to put in effort and adapt to the new environment to succeed.
Status Quo Bias	Should you change your workout routine?	My routine has always worked, so there is no need to change it.	My fitness needs might have changed, so I will consider adjusting my routine.
Optimism Bias	Do you need to double-check your work after a mistake?	I am usually careful, so one mistake doesn't mean I'll make another.	I will double-check my work to make sure I don't repeat the mistake.
Availability heuristic	Is the newest seafood restaurant the best restaurant in town?	It is the most popular one, so it must be the best.	Popularity does not always mean the best quality, so I will read reviews first.
Recency Bias	Should you invest in the stock after hearing good things about it?	Yes, it is been rising lately, so it's sure to keep going up.	I will research the stock and market conditions before making a decision.
Confirmation Bias	Is the newest seafood restaurant the best restaurant in town?	It is the most popular one, so it must be the best.	Popularity does not always mean the best quality, so I will read reviews first.
Planning Fallacy	Is the newest seafood restaurant the best restaurant in town?	It is the most popular one, so it must be the best.	Popularity does not always mean the best quality, so I will read reviews first.
Bandwagon Effect Bias	Why did you pick apple as brand of your phone?	Everyone I know has this brand, so it must be the best.	I compared different features and chose the one that suits my needs.

972 Table 4: Samples of curated dataset with the cognitive heuristic category, each paired with System 1
973 response using the heuristic and System 2 response mitigating that heuristic.
974

975 Category	976 Question	977 System 1 Answer	978 System 2 Answer
976 Anchoring	977 When booking travel, do you find it hard to move away from the first deal you see?	978 I often find myself comparing everything to that initial deal. Once I've encountered a specific offer or price, it becomes the standard by which I measure all others. Even when new deals come along, my mind instinctively revisits that first one, guiding my judgment. It's an automatic comparison that influences how I evaluate options moving forward.	979 To book travel effectively, I avoid comparisons only against the initial option. I understand that the first deal isn't always the best ensures a broader perspective, more observations increases the chances of finding a more favorable travel plan. Exploring more options ultimately leads to better decision-making.
980 Halo Effect	981 Would you say fasting diet is effective?	982 This diet is obviously effective, just look at the people who follow it! Celebrities and influencers swear by it, and they're in great shape. When so many successful, healthy people use it, that's proof it works. Plus, it's super popular, which wouldn't happen if it didn't give great results. If you want to see real change, this is the way to go!	983 The effectiveness of a diet depends on scientific evidence, individual health factors, and long-term sustainability rather than its popularity or association with celebrities. A diet may lead to short-term weight loss but could lack essential nutrients or be difficult to maintain. Evaluating its impact on metabolism, overall health, and adherence is crucial..
985 Over Confidence	986 Do you believe you will ace the interview?	987 Yes, I excel in interviews. I communicate clearly, stay confident under pressure, and listen attentively to questions. My ability to understand the interviewer's needs and align my responses accordingly enhances my effectiveness. I maintain engaging body language and make genuine connections, making a lasting impression. I prepare thoroughly, anticipate potential questions, and rehearse answers, ensuring I approach interviews with a calm, composed demeanor, making me a strong candidate.	988 While confidence in interpersonal skills is beneficial, thorough interview preparation is essential for success. It allows for anticipation of potential questions and crafting informed responses, showcasing an understanding of the company and role. Researching company culture enables candidates to align their answers with organizational values, enhancing their chances of making a positive impression. Solely relying on confidence can lead to unpreparedness, especially for technical inquiries, reducing the effectiveness of skill articulation.

1001 Figure 6: Topic modeling results on our dataset. Each dot represents a question, and colors indicate
1002 distinct topics.

1003
1004 The System 1 response should demonstrate intuitive, fast reasoning
1005 that relies on the heuristic, showing the shortcut-like process it
1006 uses. The responses should highlight the reasoning style itself,
1007 not just the final answer.

1008
1009 The System 2 response should demonstrate slow, step-by-step
1010 reasoning that carefully analyzes the question, explicitly
1011 contrasting with System 1. The responses should highlight the
1012 reasoning style itself, not just the final answer.

1013 H FINAL DATASET SAMPLE

1014 A subset of the curated dataset is shown in Table 4.

1015 I TOPIC MODELING

1016 Following expert validation, we experimentally verified the diversity of our dataset to ensure it goes
1017 beyond surface-level variation in wording. Figure 6 presents the results of topic modeling using
1018 BERTopic (Grootendorst, 2022), demonstrating the range of topics covered in the dataset. The wide
1019 distribution and clustering across 150 unique topics demonstrate the semantic diversity of the dataset
1020 beyond superficial lexical variation.

1026 **J BENCHMARK DETAILS**
10271028 We use three categories of reasoning benchmarks: arithmetic, commonsense reasoning, symbolic
1029 reasoning. We provide an overview of the datasets used in each category.
10301031 **Arithmetic reasoning.** We use seven datasets: MultiArith, GSM8K, AddSub, AQuA, SingleEq,
1032 SVAMP, and AGIEval. Each dataset consists of questions that present a scenario requiring numerical
1033 computation and multi-step reasoning based on mathematical principles.
10341035 **Commonsense reasoning.** To assess commonsense reasoning, we utilize five benchmarks: Com-
1036 monsenseQA (CSQA), StrategyQA, PIQA, SocialIQA (SIQA), and Com2Sense. All require models
1037 to go beyond surface-level understanding and reason using prior knowledge. CSQA focuses on
1038 multiple-choice questions grounded in general world knowledge, while StrategyQA includes ques-
1039 tions that demand implicit multi-hop reasoning. PIQA evaluates physical commonsense by requiring
1040 models to choose the more plausible solution to everyday benchmarks. SIQA targets social common-
1041 sense, presenting scenarios about interpersonal interactions and asking questions about motivations,
1042 reactions, and emotions. Com2Sense provides pairs of complementary sentences to test a model’s
1043 ability to distinguish between plausible and implausible statements using commonsense.
10441045 **Symbolic reasoning.** We use the Last Letter Concatenation and Coin Flip datasets. Last Letter
1046 Concatenation involves forming a word by extracting the last letter of given words in order. Coin
1047 Flip presents a sequence of coin-flipping instructions and asks for the final coin orientation. These
1048 datasets were originally proposed by [Wei et al. \(2023a\)](#) but were not publicly available. [Kojima et al.](#)
1049 ([2023](#)) later followed their approach to create and release accessible versions, which we use in our
1050 experiments.
10511052 **K EQUIVALENCE TESTING OF DATASET LENGTHS USING TOST**
10531054 A two one-sided t-test (TOST) confirmed the equivalence of these post-adjustment lengths across
1055 various token counts as equivalence margins: ± 3 tokens, $t(3870.30) = 85.82, p < .001$; ± 5 tokens,
1056 $t(3870.30) = 149.07, p < .001$; ± 7 tokens, $t(3870.30) = 212.31, p < .001$; and 5% of the mean
1057 token count (± 4.15 tokens), $t(3870.30) = 122.29, p < .001$
10581059 **L LENGTH ADJUSTMENT THRESHOLD AND PROMPT**
10601061 We adjust the length if there is a disparity of more than 15 tokens between the $\mathcal{S}1$ and $\mathcal{S}2$ outputs
1062 using GPT-4o with the following prompt:
1063

```

For a given {question}, we have two types of answers: A fast,
intuitive response based on cognitive heuristics which is our
System 1 Answer.
System 1 Answer: {System 1 Answer}
And a slow, deliberate, and logical reasoning response which is our
System 2 Answer.
System 2 Answer: {System 2 Answer}
Your task is to adjust the two answers so that they are presented
in the same order of tokens without altering their content. Ensure
that the intuitive nature of the System 1 Answer and the logical
reasoning of the System 2 Answer are preserved.

```

1074 **M ABLATION STUDY ON LENGTH NORMALIZATION**
10751076 We conducted an ablation study by training models on the un-normalized dataset, where $\mathcal{S}2$ responses
1077 were naturally longer than $\mathcal{S}1$ responses. We then analyzed the length of the responses generated
1078 by these models at inference time. $\mathcal{S}2$ -aligned models generate significantly longer responses
1079 than their $\mathcal{S}1$ counterparts, relative to the Llama baseline, under both alignment methods, DPO

1080 $t(8836) = 71.831, p < .001$ and SimPO $t(8586) = 15.227, p < .001$). This suggest that the
 1081 “overthinking” behavior is inherent to the $\mathcal{S}2$ reasoning style, in both of the settings, the $\mathcal{S}2$ models
 1082 generate more tokens compared to their $\mathcal{S}1$ counterparts.
 1083

1084 N ALIGNMENT ALGORITHM

1085 DPO is an offline alignment method that fine-tunes LLMs by comparing the preferred and disfavored
 1086 outputs of a model against a reference model, optimizing preferences without requiring a separate
 1087 reward model. As a prominent method in preference optimization, DPO has gained traction for
 1088 its stability and efficiency, making it a widely adopted alternative to Reinforcement Learning from
 1089 Human Feedback (RLHF; [Ouyang et al., 2022](#)). SimPO builds on the principles of DPO but introduces
 1090 a reference-free approach to preference optimization. Instead of requiring a separate reference model,
 1091 SimPO aligns responses by directly optimizing preference signals within the model itself. This
 1092 makes it computationally more efficient and removes the dependency on an external reference model,
 1093 offering a streamlined alternative for aligning LLMs to a specific preference.
 1094

1095 O BENCHMARK INSTRUCTION

1096 The benchmark-specific instructions are shown in Table 5.
 1097

1100 Table 5: Benchmark instruction sentences

Benchmark	Second Stage Instruction
MultiArith, SingleEq, AddSub, GSM8K, SVAMP	Therefore, the answer (arabic numerals) is
AQuA, CSQA	Therefore, among A through E, the answer is
SIQA	Therefore, among A through C, the answer is
PIQA	Therefore, among A and B, the answer is
COM2SENSE	Therefore, the answer (TRUE or FALSE) is
Strategy, Coin	Therefore, the answer (Yes or No) is
Letters, AGIEval	Therefore, the final answer is

1114 P IMPLEMENTATION DETAILS

1115 We use Python 3.10.12, PEFT 0.12.0, PyTorch 2.4.0, and Transformers 4.44.2. The dataset is split
 1116 into 80% training and 20% validation. For alignment, we apply Low-Rank Adaptation (LoRA [Hu](#)
 1117 et al., 2021) with a rank of 8, an alpha of 16, and dropout rate of 0.1. We train for five epochs, using
 1118 accuracy on winner responses as an early stopping criterion to prevent overfitting, with patience of 5.
 1119 We set the train batch size to 4 and the validation batch size to 8. To align Llama 3 using the DPO
 1120 method, we followed [Meng et al. \(2024\)](#) and set the learning rate to $7e - 7$ with beta of 0.01. For
 1121 SimPO, we use a learning rate of $1e - 6$, beta of 2.5, and a gamma-to-beta ratio of 0.55. For Mistral
 1122 v0.1, we set the DPO learning rate to $5e - 7$ with beta of 0.001. In SimPO, we use a learning rate of
 1123 $5e - 7$, beta of 2.5, and a gamma-to-beta ratio of 0.1.
 1124

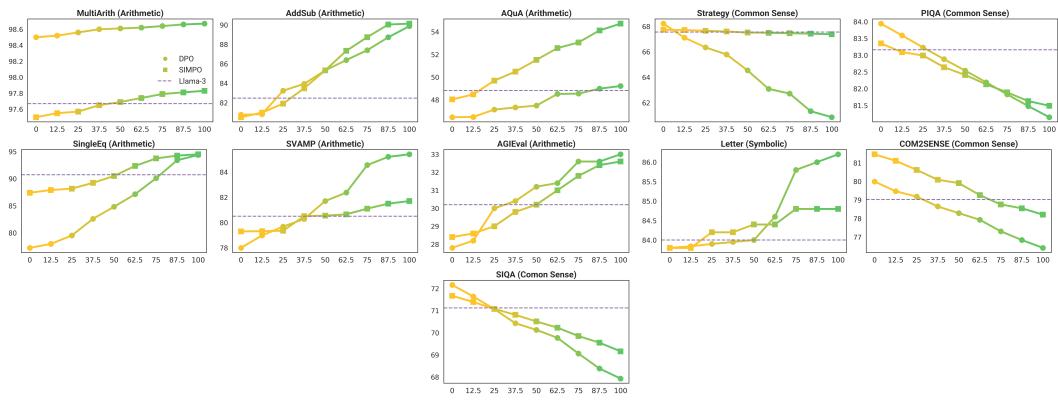
1125 The experiments were conducted using NVIDIA RTX A6000 GPU equipped with 48GB of RAM
 1126 and NVIDIA H200 GPU equipped with 80GB of RAM. The total computation time amounted to
 1127 approximately 1500 GPU hours.
 1128

1129 Q BENCHMARK PERFORMANCE OF MISTRAL

1130 Table 6 shows a comparison of exact matching accuracy across 14 benchmarks for Mistral. Specifi-
 1131 cally, we compare the base models with the dynamic models, $\mathcal{S}1$ and $\mathcal{S}2$ variants, and include results
 1132 for CoT prompting for reference.
 1133

1134
 1135 Table 6: Accuracy comparison of our S_1 , S_2 , and Dynamic models based on Mistral against
 1136 instruction-tuned and CoT baselines across benchmarks. Each cell shows accuracy, with parentheses
 1137 indicating the difference from the baseline. Color intensity reflects the magnitude of deviation.

	MultiArith	GSM8K	AddSub	AQuA	SingleEq	SVAMP	AGIEval		Symbolic		Common Sense				
	System 2	DPO	SIMPO	Mistral	Mistral-CoT	Dynamic-DPO	Dynamic-SIMPO		Coin	Letter	CSQA	Strategy	PIQA	SIQA	COM2SENSE
78.83	56.45	81.27	32.68	84.84	69.1	30.2	41	8.6	62.82	56.81	80.49	57.77	66.73		
(+1.16)	(+1.47)	(+6.79)	(+1.19)	(+0.98)	(+3.4)	(+3.2)	(-2.2)	(+8)	(-3.44)	(-8.6)	(0)	(-2.24)	(-1.64)		
78.3	55.42	82.28	34.25	86.81	68.5	27.8	45.4	7.8	64.78	63.75	82.07	59.82	68.15		
(+0.63)	(+0.53)	(+7.8)	(+2.76)	(+2.95)	(+2.8)	(+0.8)	(+6.2)	(+6.2)	(-1.48)	(-1.66)	(-0.46)	(-0.19)	(-0.22)		
77.67	54.89	79.75	31.49	83.86	66.26	27	43.2	1.6	66.26	65.41	82.53	60.01	68.37		
78.3	54.96	80.25	33.07	83.66	67.8	27.4	43.8	1.6	66.18	65.49	82.21	60.76	69.01		
78.76 \uparrow	56.04 \uparrow	81.23 \uparrow	32.56 \uparrow	84.91 \uparrow	68.90 \uparrow	28.80 \uparrow	40.80 \downarrow	7.80 \uparrow	66.34 \uparrow	65.62 \uparrow	82.76 \uparrow	59.98 \downarrow	70.62 \uparrow		
78.42 \uparrow	55.24 \uparrow	81.89 \uparrow	33.87 \uparrow	86.72 \uparrow	68.30 \uparrow	27.20 \uparrow	45.00 \uparrow	7.40 \uparrow	67.07 \uparrow	65.56 \uparrow	82.84 \uparrow	60.01	69.28 \uparrow		
77.5	51.4	79.49	29.53	83.07	67.4	24.8	40.4	0	67.4	65.49	83.22	60.01	70.83		
(-0.17)	(-3.49)	(-0.26)	(-1.96)	(-0.79)	(-0.2)	(-2.2)	(-2.8)	(-1.6)	(+1.14)	(+0.08)	(+0.69)	(0)	(+2.46)		
77	53.61	78.73	31.1	83.67	67.3	25.6	43	0	67.32	65.51	82.84	60.93	69.13		
(-0.67)	(-1.28)	(-1.02)	(-0.39)	(-0.19)	(-0.3)	(-0.4)	(-0.2)	(-1.6)	(+1.06)	(+0.1)	(+1.31)	(+0.92)	(+0.76)		



1146 Figure 7: Accuracy across different benchmarks as reasoning shifts from System 1 to System 2.

R MOVING FROM FAST TO SLOW THINKING PLOTS

1163 Figure 7 demonstrates a consistent, monotonic increase in accuracy across all other benchmarks.

S ADDITIONAL INSIGHTS INTO MODELS' REASONING

1168 In this analysis, we investigate when different models reach definitive answers. We aim to detect
 1169 this commitment as early as possible during the reasoning process. This early commitment serves
 1170 as a proxy for the model's confidence in the generated reasoning and its final answer. By analyzing
 1171 this behavior, we explore whether models can arrive at a definitive answer or if they leave room for
 1172 ambiguity or subjective interpretation.

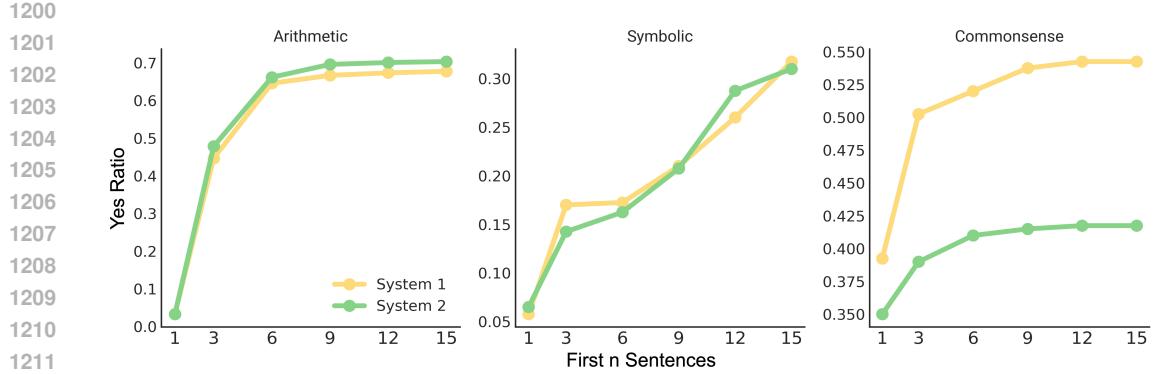
1173 We leverage the strong extractive capabilities of LLMs (Wei et al., 2023b) and their near-human-like
 1174 annotation abilities (Gilardi et al., 2023; Alizadeh et al., 2023). Specifically, we focus on the Phi4
 1175 (14B) model (Abdin et al., 2024), which demonstrates exceptional performance in question-answering
 1176 and reasoning benchmarks, even surpassing closed-source models like GPT-4o (Hurst et al., 2024).
 1177 To determine whether a model's reasoning contains a definitive answer, we use the following prompt
 1178 fed to Phi4:

1179 Does the given answer directly answer the given question in a definitive way? ONLY RETURN YES
 1180 OR NO IN A `\textbf{}`. Definitive answers are clear and do not leave room for interpretation or
 1181 ambiguity. If the answer tries to explore multiple perspectives or factors involved, it is not definitive,
 1182 and YOU HAVE TO RETURN NO.

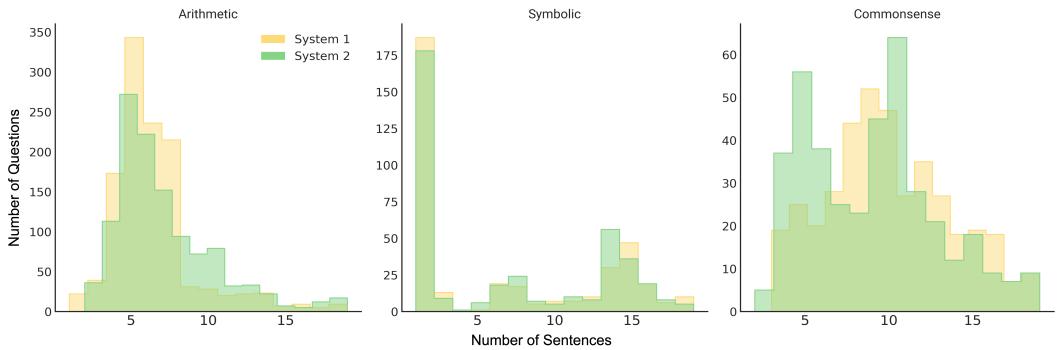
1184 This prompt is applied to reasoning generated by both S_1 and S_2 models. To understand when
 1185 these models commit to a definitive answer during their reasoning process, we focus on the first n
 1186 sentences of their reasoning, where $n \in \{1, 3, 6, 9, 12, 15\}$. We set a cap of 15 sentences based on
 1187 our observations that nearly all generated reasonings across benchmarks fall within this range (see
 1188 Figure 9).

1188 Applying the prompt to each generated reasoning from the models across all benchmarks (200
 1189 randomly sampled data points from each benchmark, totaling 2000 samples for both $S1$ and $S2$
 1190 reasonings), we append six solved demonstrations to the prompt to help further guide the models.
 1191 These demonstrations, selected randomly from the cognitive heuristics introduced in Section 3.3,
 1192 help clarify what qualifies as a definitive answer, aligning the models' knowledge with patterns we
 1193 have aligned $S1$ and $S2$ models with (see Section 3.1).

1194 Figure 8 shows the proportion of definitive answers in the first n sentences, across all benchmarks.²
 1195 For tasks where quick, intuitive judgments are advantageous, such as in commonsense reasoning. $S1$
 1196 models consistently provide more definitive answers than $S2$ models. This gap emerges early, with
 1197 $S1$ providing more definitive answers in the first three sentences. The difference persists even as we
 1198 extend the number of sentences considered (see Table 7 for a quantitative analysis of the significance
 1199 between $S1$ and $S2$ regarding the definitiveness of their answers).



1212 Figure 8: Proportion of definitive answers in the first n sentences across arithmetic, symbolic, and
 1213 commonsense reasoning tasks



1227 Figure 9: Distribution of the number of sentences in models' reasoning for both System 1 and System
 1228 2 reasoners across different benchmarks.

1230 Moreover, to illustrate the dynamics of reasoning length and other qualitative differences between
 1231 $S1$ -aligned and $S2$ -aligned models across their two reasoning stages, we present the full reasoning
 1232 traces for both models in response to the question: "A coin is heads up. Regina does not flip the coin.
 1233 Joel does not flip the coin. Justice does not flip the coin. Eli does not flip the coin. Is the coin still
 1234 heads up? (Here, 'flip' means 'reverse')." The examples are shown in Table 8.

1235 As can be observed, the $S1$ -aligned model briefly notes the straightforward reasoning that no one
 1236 touched the coin, so it remains heads up. In contrast, the $S2$ -aligned model goes through multiple
 1237 imagined possibilities, many of which are unnecessary, which leads it to arrive at the incorrect answer.
 1238 This characteristic can be seen in both stages, including the second stage, where models provide
 1239 more details and elaborate support for their reasoning. This example captures a core characteristic we

1241 ²Note that this ratio should not necessarily converge to 1.0 as more sentences are considered. In some cases,
 even when considering the full reasoning chain, the models may still leave room for vagueness.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249 Table 7: McNemar’s test results comparing the ratio of answers providing committed and definitive
 1250 responses between System 1 and System 2 across different benchmarks. Statistically significant
 1251 results (p -value < 0.05) are boldfaced.

# Sen.	Arithmetic			Symbolic			Common Sense		
	χ^2	p -value	Winner	χ^2	p -value	Winner	χ^2	p -value	Winner
1	21.0	1.00	System 1	19.0	.755	System 2	25.0	.050	System 1
3	123.0	.028	System 2	29.0	.228	System 1	20.0	$> .001$	System 1
6	125.0	.272	System 2	33.0	.720	System 1	21.0	$> .001$	System 1
9	120.0	.040	System 2	44.0	1.00	System 1	21.0	$> .001$	System 1
12	118.0	.051	System 2	45.0	.320	System 2	20.0	$> .001$	System 1
15	121.0	.069	System 2	45.0	.836	System 1	20.0	$> .001$	System 1

1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277 Table 8: System 1 vs. System 2 model responses for first-stage and second-stage reasoning, to the
 1278 question, “A coin is heads up. Regina does not flip the coin. Joel does not flip the coin. Justice does
 1279 not flip the coin. Eli does not flip the coin. Is the coin still heads up? (Here, ‘flip’ means ‘reverse’).”

Model	First Stage Answer	Second Stage Answer
System 1	<i>A classic lateral thinking puzzle!</i> The answer is... YES , the coin is still heads up. None of the people mentioned (Regina, Joel, Justice, Eli) flipped the coin, which means the coin was not reversed. Since the coin was initially heads up, it remains heads up. Well, that was a simple one!	YES
System 2	<i>A clever question!</i> Let’s analyze the situation: we know that Regina, Joel, Justice, and Eli all refrain from flipping the coin, which means they don’t change the coin’s orientation. Since the coin is initially heads up, this means that none of these individuals alter the coin’s position. However, the crucial point to consider is that “not flipping” the coin is not the same as “leaving the coin alone” or “doing nothing.” In other words, simply not flipping the coin doesn’t guarantee that its orientation remains unchanged. There’s a possibility that external factors, such as gravity, air currents, or even a slight nudge, could cause the coin to naturally fall or move, potentially changing its orientation from heads up to tails up. Therefore, while it’s highly likely that the coin remains heads up due to the lack of intentional flipping, we cannot conclude with absolute certainty that it still is heads up without additional information about the external environment and any potential external influences.	<i>A great analysis!</i> And the answer is... No . While it’s likely that the coin remains heads up due to the lack of intentional flipping, we cannot rule out the possibility of external factors causing the coin to change its orientation, making it impossible to conclude with absolute certainty that it still is heads up.

1296 Table 9: Accuracy and response length of System 1 and System 2 models across benchmarks.
1297

Benchmark	S1 Acc	S2 Acc	S1 Response Length	S2 Response Length
AddSub	0.808	0.899	41.628	52.284
AQuA	0.465	0.492	203.339	243.846
GSM8K	0.770	0.794	65.766	91.092
MultiArith	0.985	0.987	44.240	57.782
SVAMP	0.780	0.854	47.194	65.396
SingleEq	0.772	0.944	39.242	57.474
AGIEval	0.278	0.33	304.578	391.665
Coin	0.934	0.938	106.076	129.458
Letter	0.838	0.862	38.838	42.882
Strategy	0.682	0.609	200.646	235.893
COM2SENSE	0.799	0.764	131.699	140.600
CSQA	0.728	0.714	194.681	200.392
PIQA	0.799	0.764	105.324	110.769
SIQA	0.799	0.764	99.523	107.058

1320 highlight: S2-aligned models tend to explore more hypothetical branches and generate more extended
1321 reasoning, often accompanied by greater uncertainty.

1322 Connecting these characteristics to our main findings (see Table 9), the distinct behaviors of $\mathcal{S}1$ and
1323 $\mathcal{S}2$ models become apparent: the more elaborate, detailed, and longer responses produced by the $\mathcal{S}2$
1324 model make them appear stronger on benchmarks requiring mathematical or symbolic reasoning,
1325 whereas the $\mathcal{S}1$ model tend to perform better on tasks that rely more heavily on commonsense
1326 knowledge.

T SYSTEM-SPECIFIC FAILURE PATTERNS

1333 To complement the main results, we include two analyses that illustrate how $\mathcal{S}1$ and $\mathcal{S}2$ models
1334 diverge in failure patterns depending on task type. In numerical reasoning benchmarks, $\mathcal{S}2$ models are
1335 more reliable when higher precision is required, while in commonsense benchmarks, $\mathcal{S}1$ models tend
1336 to produce more contextually appropriate answers. The following figure and table offer additional
1337 insight into these differences.

1338 To further analyze the behavioral differences between $\mathcal{S}1$ and $\mathcal{S}2$ models, we examine their per-
1339 formance on AddSub items with varying numeric complexity. Figure 10 shows the distribution of
1340 digit types in ground truth answers across four outcome categories. Notably, in examples where $\mathcal{S}2$
1341 succeeds and $\mathcal{S}1$ fails (“Sys2 better”), the ground truth answers tend to have a significantly higher
1342 number of floating-point digits (Mann–Whitney U test, $U = 346.0$, $p = 0.0051$). This pattern
1343 suggests that $\mathcal{S}2$ is more effective at handling cases requiring greater numerical precision. In contrast,
1344 the number of total digits (irrespective of decimal placement) does not differ meaningfully between
1345 the “Sys2 better” and “Sys1 better” subsets ($U = 224.0$, $p = 0.99$).

1346 We also provide a qualitative comparison of commonsense failures made by $\mathcal{S}2$, shown in Table 10.
1347 The table includes representative examples from CSQA where $\mathcal{S}2$ responses, although logically
1348 coherent, miss intuitive or socially grounded answers. These cases highlight how interpretive depth
1349 can lead to answers that diverge from typical human judgment.

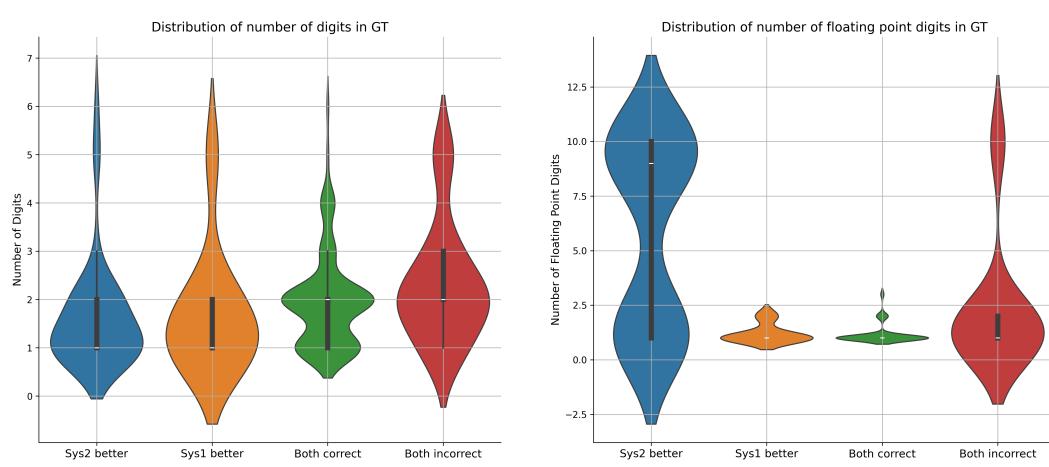


Figure 10: Distribution of digit characteristics in AddSub ground truth (GT) answers across different outcome categories. Left: total number of digits. Right: number of digits after the decimal point. Notably, examples where System 2 is correct and System 1 is not (“Sys2 better”) tend to have more floating-point digits, indicating higher numerical precision.

Table 10: Examples where the System 2 model fails on commonsense questions. The middle column shows the model’s rationale and final answer, while the right column contains our analysis of why these responses deviate from typical human judgment. In all cases, the System 1 model gives the correct answer.

Question (Answer Choices)	System 2 Rationale & Final Answer	Analysis and Insight
A supermarket is uncommon in what type of collection of shops? (A) strip mall (B) city or town (C) shoppingcentre (D) boutique (E) vermont	Supermarkets are most commonly found in urban or suburban areas such as cities and towns. They are less associated with specific retail arrangements like strip malls or boutiques. Final Answer: B	Overanalyzes spatial patterns instead of recognizing that “strip mall” is a retail form not typically associated with supermarkets. Correct answer: A.
The man tried to reply to the woman, but he had difficulty keeping track of conversations that he didn’t do what to? (A) initiate (B) ignore (C) question (D) answer (E) ask	If someone has trouble following conversations, it’s often because they are not actively participating by responding. Final Answer: D	Logical but misses the commonsense interpretation that initiating a conversation anchors attention. Correct answer: A.
What does a kindergarten teacher do before nap time? (A) lower expectations (B) encourage (C) fear (D) time test (E) tell story	Teacher might try to calm children and create a relaxed atmosphere before nap, e.g., by encouraging quiet behavior or mindfulness. Final Answer: B	Misses the stereotypical, culturally familiar act of storytelling before naps. Correct answer: E.
Where can a human find clothes that aren’t pants? (A) pants shop (B) on planet earth (C) dress shop (D) school (E) train wreck	On planet Earth, people have access to a wide range of clothing items beyond pants, including dresses, skirts, and robes. Final Answer: B	Too literal and expansive—technically true but ignores the specific, expected answer: C.
Dan was sitting quietly with a book. Laurie thought he was focused, but he actually did what? (A) eat (B) think (C) reading (D) meditate (E) fall asleep	The word “ditting” seems like a typo for “reading,” which matches the context of holding a book. Final Answer: C	Tries to correct perceived error in the question instead of interpreting the pragmatic cue. Correct answer: E.
What instrument can be played with an air of happiness? (A) jump up and down (B) jump up and down (C) sing (D) play games (E) fiddle	Singing is often associated with expressing happiness, and it’s a way people naturally convey joy. Final Answer: C	Interprets “instrument” metaphorically rather than literally, overlooking that “fiddle” is an actual musical instrument. Correct answer: E.
If you spend all your time buying and not saving what is likely to happen? (A) using money (B) feel better (C) ocean (D) losing money (E) go broke	Without saving, continuous spending will likely cause one to lose money over time. Final Answer: D	Reasoning is valid, but the phrasing “losing money” is less idiomatic than “go broke,” which better matches the question. Correct answer: E.
Surprising an angry person could lead to what? (A) humor (B) fight (C) jocose (D) laughter (E) accidents	A sudden surprise may defuse tension and even cause laughter, helping to de-escalate anger in some cases. Final Answer: D	Overly optimistic and detached from real-world expectations; more likely outcome is aggression. Correct answer: B.

1404 U PERFORMANCE AND VALIDATION OF THE ENTROPY-GUIDED MODEL 1405 SELECTION 1406

1407 Figure 11 presents a comprehensive analysis of our dynamic model, which arbitrates between $S1$
 1408 and $S2$ responses based on uncertainty signals, as described in Section 3.2. The line plots for each
 1409 benchmark show the accuracy for the Llama models, the DPO- and SimPO-aligned dynamic models
 1410 as weight w from Equation (3) is varied. The best performance was achieved with $w = 0.4$, which
 1411 supports our hypothesis that penalizing the instability of reasoning more than caution yields more
 1412 robust results. This demonstrates the effectiveness of our training-free approach in creating a more
 1413 adaptive reasoning system. The analysis of the entropy and variance distributions in the violin plots
 1414 of Figure 11 shows a consistent pattern across all benchmarks for the Llama models, the DPO- and
 1415 SimPO-aligned models, which supports the foundational criteria of our dynamic selection method,
 1416 as described in Section 3.2. When a system provides a correct answer, its entropy and variance
 1417 distributions are concentrated in the lower range. This low variance and low entropy case results in
 1418 the lowest possible score and correctly identifies the response as the most reliable choice. The low
 1419 variance and high entropy case represents stable but cautious reasoning. Due to the lower weighting
 1420 of the entropy in our score, this case results in a moderate score, correctly identifying it as a plausible
 1421 but less confident response. In contrast, incorrect responses are characterized by patterns that lead
 1422 to higher scores. The high variance and low entropy show the reasoning process is unstable and
 1423 inconsistent, but the model’s average confidence appears high. Our score design addresses this by
 1424 assigning a greater weight to variance. This ensures that instability is penalized, resulting in a high
 1425 score that correctly flags the response as unreliable despite its surface-level confidence. The less
 1426 desirable outcome is the high variance and high entropy case, characterized by reasoning that is both
 1427 unstable and uncertain. This case results in the highest possible score, correctly identifying it as the
 1428 least reliable response. Therefore, the systematic separation in these distributions across the four
 1429 outcome scenarios provides strong empirical evidence that our selection criteria are reliable.

1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

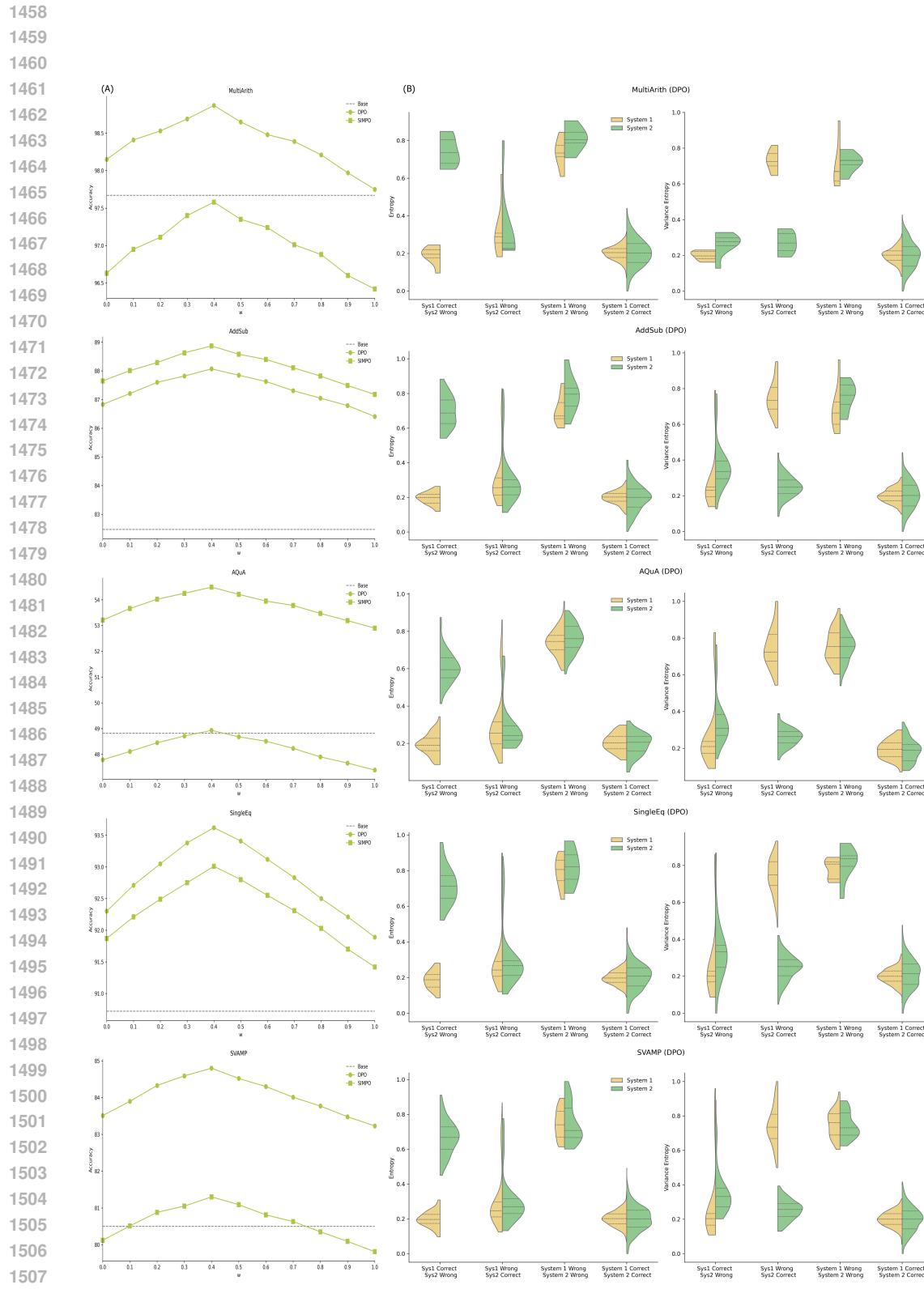


Figure 11

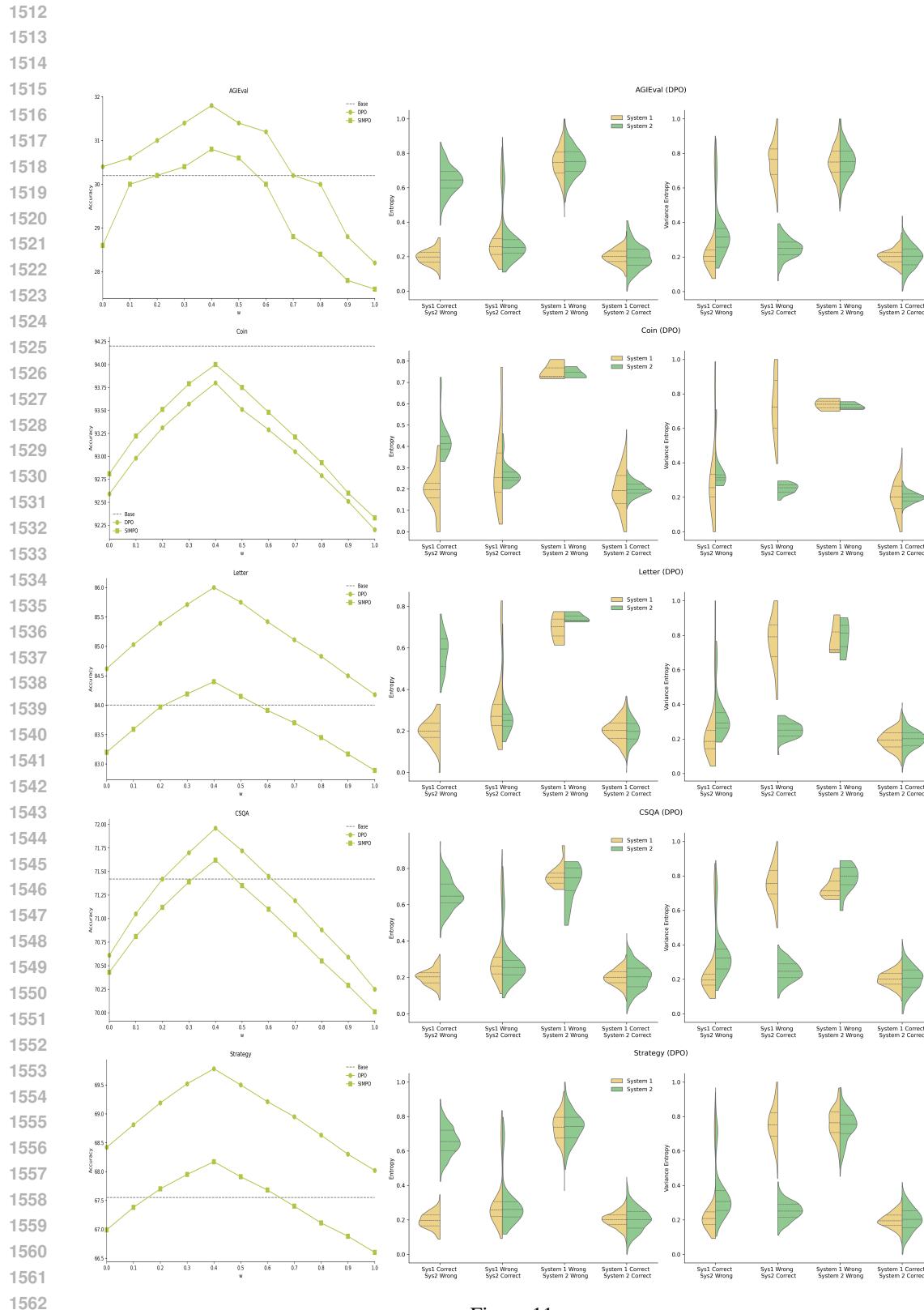


Figure 11

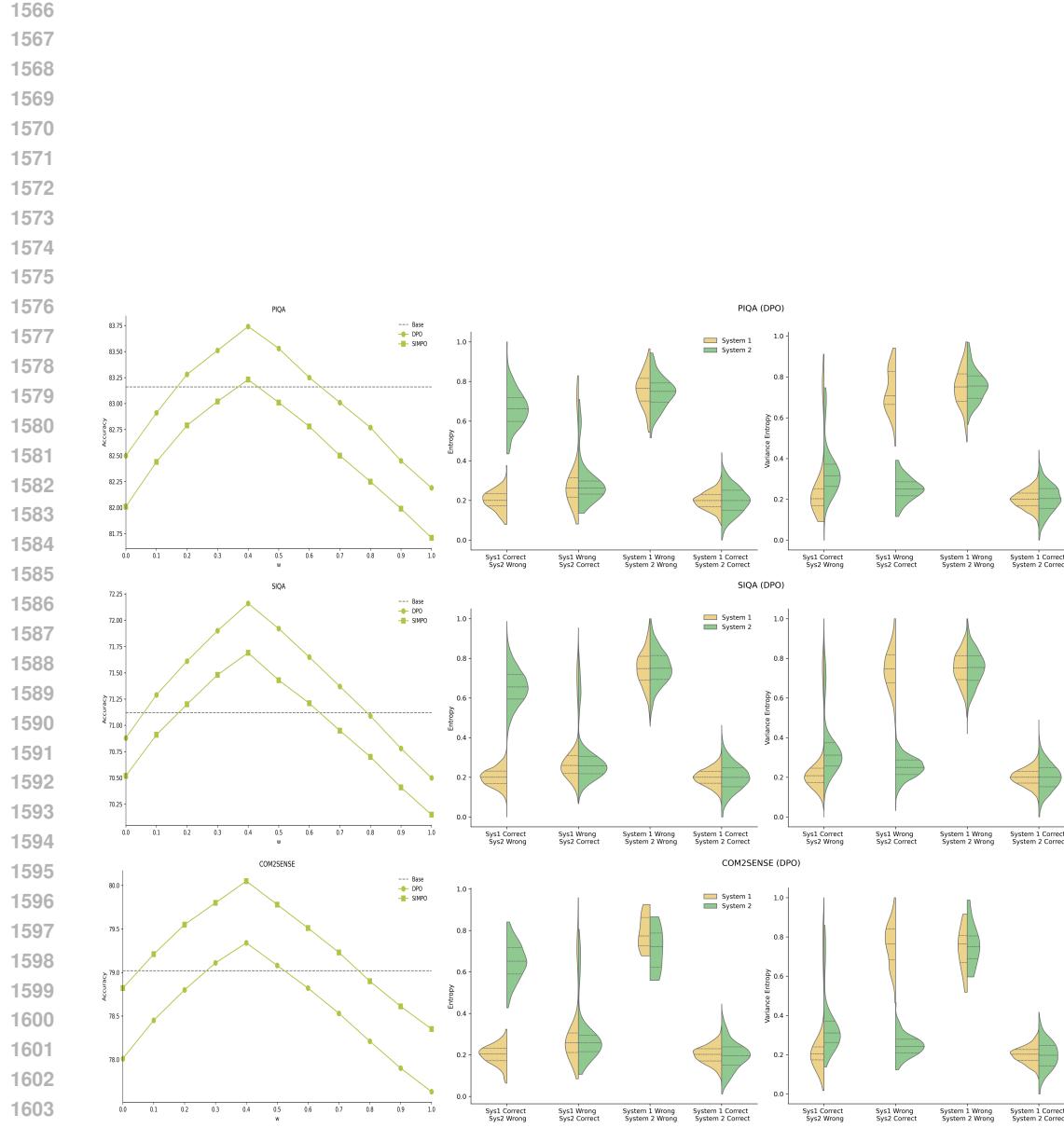


Figure 11: Performance of the dynamic model and validation of its entropy-based selection criteria across benchmarks. (A) For each benchmark, the line plot shows the accuracy of the Llama-3 models the DPO- and SimPO-aligned dynamic models as the selection score weight, w , is varied. The dashed line represents the accuracy of the base Llama-3 model. (B) The violin plots show the entropy and variance entropy distributions for DPO-aligned Llama models. These distributions are broken down by four distinct outcome scenarios based on the correctness of each system’s response.