Recognizing the language of ambiguous texts has become a main challenge in language identification (LID). When using multilingual applications, users have their own language preferences, which can be regarded as external knowledge for LID. Nevertheless, current studies do not consider the inter-personal variations due to the lack of user annotated training data. To fill this gap, we introduce preference-aware LID and propose a novel unsupervised learning strategy. Concretely, we construct pseudo training set for each user by extracting training samples from a standard LID corpus according to his/her historical language distribution. Besides, we contribute the first user labeled LID test set called “U-LID”. Experimental results reveal that our model can incarnate user traits and significantly outperforms existing LID systems on handling ambiguous texts. Our code and dataset are released at XXX.

Table 1: Examples of ambiguous text that are difficult to be accurately recognized.

<table>
<thead>
<tr>
<th>User Input Text</th>
<th>Label</th>
<th>Prefer.</th>
<th>Baseline</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>velo</td>
<td>ex (veli)</td>
<td>en</td>
<td>es</td>
<td>es</td>
</tr>
<tr>
<td>velo</td>
<td>fr (bike)</td>
<td>fr</td>
<td>en</td>
<td>fr</td>
</tr>
<tr>
<td>fundas huawei y7</td>
<td>ex (huawei y7 cases)</td>
<td>es</td>
<td>en</td>
<td>es</td>
</tr>
<tr>
<td>kello kitty</td>
<td>en (hello kitty)</td>
<td>de</td>
<td>it</td>
<td>en</td>
</tr>
</tbody>
</table>

When drawing on a multilingual NLP application, every person has his/her own accustomed languages. The historical behavior implicitly mirrors the user language preference and can be exploited for LID. To this end, we propose a task named preference-aware LID, where the historical language distribution of a user is leveraged for the disambiguation of mistakable texts, and guides LID to predict different languages for different users.

A major bottleneck for this task lies in the lack of well-labeled training data. In particular, it is unavailable to obtain large amount of ambiguous texts labeled with different languages by different users. To overcome this issue, we propose a novel unsupervised strategy that builds synthetic data for each user via sampling natural training examples according to his/her historical language distribution. We build our model upon Transformer (Vaswani et al., 2017) and introduce two kinds of extensions. One is directly revising the predicted probability of
LID using the user language preference. In order to maintain the robustness, the other encodes the user traits into inductive bias.

Our models are trained using a publicly available dataset extracted from Wikipedia. Towards evaluating the effectiveness, we construct a user-driven LID test set “U-LID”. The benchmark consists of 21 languages, each of which contains 500 examples collected from a real-world translation system and labeled by users. Extensive analyses demonstrate the superiority and the robustness of our approach on recognizing error-prone cases.

2 Preliminary

Problem Formulation Given an input text X, the vanilla LID model with parameter θ predicts the probability of the language y by $P(y|X; \theta)$. As an extension of conventional LID, preference-aware LID considers the traits of each user, thus facilitating the classifying of ambiguous texts. In this paper, we treat the language preference of user as the external knowledge, which can be implicitly embodied in historical language distribution $D(u)$ of user u. Consequently, our task aims to model $P(y(u)|X, D(u); \theta)$, as illustrated in Figure 1.

User Annotated Test Set In order to assess the effectiveness of the proposed method, we construct a preference-aware LID test set called “U-LID”. The training instance is represented as a triplet $(X, D(u), y(u))$. The samples are collected from a real-world translation system XXX.¹ We mine user annotated data as follows: Given a user input, the translation system first returns a predicted language label and the associated translation results. When the user is dissatisfied with the prediction result, he/she may change the predicted language label. We argue that this operation not only reflects the user intention concerning the language, but also implies that the classification of the current input is error-prone. Accordingly, we collect texts whose predicted labels are revised by users. The test set is further manually checked and carefully desensitized by linguistic experts to maintain the data quality. Finally, the benchmark consists of 21 languages and 11,031 samples.² The average word count in each sample is 2.08, and the average number with respect to character is 13.27.

3 Methodology

3.1 Preference-Aware Model

Our model is built upon the advanced neural-based model – Transformer (Vaswani et al., 2017). Given an input query X, the output token representations can be formally expressed as: $Z = \text{Transformer}(X)$.

The final probability distribution is calculated by assigning an output layer:

$$Y = \text{softmax}(W_oZ + b_o),$$

where Z denotes the mean of the token representations Z. $W_o \in \mathbb{R}^{L \times H}$, $b_o \in \mathbb{R}^L$ are trainable parameters with H being the hidden size and L being the number of languages. $\text{softmax}(\cdot)$ represents a non-linear function that is used to normalize the probability distribution of labels.

We propose the preference-aware model to leverage user language preference into LID includes two types of approaches:

Revision-Based Model Intuitively, we can multiply the output Y and the user language preference $D(u)$ directly. The final distribution is revised as:

$$Y^{(u)} = \text{softmax}(YD(u)).$$

In this paradigm, we regard $D(u)$ as a reviser at the model training time. Note that, revision-based model can be also exploited in a plug-and-play fashion without any model training.

Representation-Based Model A natural alternative is to encode language preference into a representation, which is then served as an inductive

¹For anonymity, we temporarily use XXX to indicate the name of this real-world multilingual translation engine.

²Including: English (en), Chinese (zh), Russian (ru), Portuguese (pt), Spanish (es), French (fr), German (de), Italian (it), Dutch (nl), Japanese (ja), Korean (ko), Arabic (ar), Thai (th), Hindi (hi), Hebrew (he), Vietnamese (vi), Turkish (tr), Polish (pl), Indonesian (id), Malay (ms), and Ukrainian (uk).
bias in the output layer. Here, we assign L trainable language embeddings $W_u \in \mathbb{R}^{L \times L}$. The user representation is the weighted sum of language embeddings regarding to user language distribution: $W_u D(u)$. We modified Equation 1 as follows:

$$Y(u) = \text{softmax}(W_u Z + W_u D(u) + b_u).$$

3.2 Unsupervised Training

The main challenge of our task lies in the lack of user annotated training data. It is hard to construct large amount of training examples in the triplet form $(X, D(u), y_u)$. Although we construct a test set by mining user operations on switching languages, such kind of approach depends on expensive manual review due to the massive noises.

To tackle this problem, we propose a novel unsupervised training strategy, as illustrated in Figure 2. In an existing LID training corpus T, each text is labeled to a language. Given the user historical language distribution $D(u)$, we sample a subset $T(u)$ from T and guarantee the language distribution of $T(u)$ to be consistent with $D(u)$. Nevertheless, most people only use one or two languages, making their historical distribution concentrated on a few languages. Immediately utilizing $D(u)$ to sample examples for training may cause overconfidence problem. Firstly, the model may tend to overlook either the user information or the input text. Secondly, texts of which language frequency is relatively low in $D(u)$ may fail to be correctly classified, especially for those languages not appearing in the user’s historical inputs. Accordingly, we borrow the idea of label smoothing (Pereyra et al., 2017) into our approach. The final sampling distribution can be calculated as:

$$S(u) = \text{softmax}((1 - \alpha)D(u) + \alpha/L).$$

Here, we set $\alpha = 0.01$ and collect 100 examples for each user as default. Besides, in order to maintain the robustness and cope with the situation that the user’s historical input is none or inaccessible, we treat the uniform distribution as $D(u)$, then supplement the same number of standard training examples to that in current synthetic corpus.

4 Experiments

4.1 Experimental Setting

Data Setting We collect 100 thousand (K) users who did not involved on U-LID test set from the log of XXX. Considering the standard LID corpus T, we follow Vo and Khoury (2020) to extract the natural training data from the released datasets: W2C corpus (Majlis and Zabokrtský, 2012), Common Crawl corpus (Schäfer, 2016) and Tatoeba (Tiedemann and Thottingal, 2020). Finally T consists of 21 languages, each of which contains 5 million (M) samples. We examine models on U-LID test set. Moreover, in order to investigate the robustness of our methods on conventional LID task, we further collect a publicly available test set KB-21 from Kocmi and Bojar (2017), using a subset of 21 languages. KB-21 consists of 2,100 samples, the average amounts of words and characters in each sample are 4.47 and 34.90, respectively.

Implementation Details We follow the Base model setting as Vaswani et al. (2017), excepting that the number of layers is set to 1 for the computational efficiency. To avoid the problem of out-of-vocabulary, we follow existing LID approaches to exploit character-based embedding (Jauhiainen et al., 2019), in which vocabulary size is set to 15K.

In this study, 1-Layer TRANSFORMER model is served as baseline. We reimplement widely used text classification models, FASTTEXT (Joulin et al., 2017) and TEXTCNN (Kim, 2014) as well as recent LID approach ATTENTIONCNN (Vo and Khoury, 2020), as listed in Table 2. In addition, we reproduced a state-of-the-art model Naïve Bayes (Jauhiainen et al., 2021) in VarDiaL2021 task (Chakravarthi et al., 2021). Configurations of our reimplementations are same to common settings described in corresponding literature or

3We verified that complex networks marginally contribute to LID, which is consistent with findings in Ceolin (2021).
Table 2: Classification accuracy (ACC) on test sets. For reference, when immediately regarding the user preference language as the predicted result, the ACC on U-LID is 66.42. The proposed preference-aware LID models show significant improvements on U-LID tasks. Experimental results of neural-based models own averaged over 5 independent runs. † and ‡ ‡ ‡ ‡ indicate the improvement over TRANSFORMER is statistically significant ($p < 0.05$ and $p < 0.01$, respectively), estimated by bootstrap sampling (Koehn, 2004).

<table>
<thead>
<tr>
<th>Model</th>
<th>U-LID</th>
<th>KB-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing LID Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langid.py (Lui and Baldwin, 2012)</td>
<td>63.52</td>
<td>91.33</td>
</tr>
<tr>
<td>LanideNN (Kocmi and Bojar, 2017)</td>
<td>67.23</td>
<td>92.71</td>
</tr>
<tr>
<td>Reimplemented Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAIVE BAYES (Janthainen et al., 2021)</td>
<td>60.53</td>
<td>89.91</td>
</tr>
<tr>
<td>FASTTEXT (Joulin et al., 2017)</td>
<td>59.25</td>
<td>88.69</td>
</tr>
<tr>
<td>TEXTCNN (Kim, 2014)</td>
<td>61.58</td>
<td>91.24</td>
</tr>
<tr>
<td>ATTENTIONCNN (Vo and Khoury, 2020)</td>
<td>62.16</td>
<td>91.41</td>
</tr>
<tr>
<td>Ours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSFORMER (Baseline)</td>
<td>67.35</td>
<td>92.81</td>
</tr>
<tr>
<td>+Revision-Based Model</td>
<td>89.23††</td>
<td>91.19 ‡ ‡ ‡ ‡</td>
</tr>
<tr>
<td>+without training</td>
<td>84.79††</td>
<td>92.81</td>
</tr>
<tr>
<td>+Representation-Based Model</td>
<td>88.74††</td>
<td>93.09††</td>
</tr>
</tbody>
</table>

Table 2: Classification accuracy (ACC) on test sets. For reference, when immediately regarding the user preference language as the predicted result, the ACC on U-LID is 66.42. The proposed preference-aware LID models show significant improvements on U-LID tasks. Experimental results of neural-based models own averaged over 5 independent runs. † and ‡ ‡ ‡ ‡ indicate the improvement over TRANSFORMER is statistically significant ($p < 0.05$ and $p < 0.01$, respectively), estimated by bootstrap sampling (Koehn, 2004).

The results are concluded in Table 2. Our model as the default setting in subsequent analyses. Accordingly, we use representation-based model alleviates the overconfidence problem and achieves good performance in both U-LID and KB-21. Accordingly, we use representation-based model as the default setting in subsequent analyses.

Figure 3: Effects of the number of historical inputs on U-LID. Representation-based model is more robust.

4.3 Analysis

Robustness Analysis User’s language preference greatly affects our model. The less the user historical inputs, the higher the uncertainty of user preference is. Accordingly, the robustness of our model is necessary to be assessed. We plot Figure 3 to show the effects of the number of historical inputs. Obviously, revision-based model yields lower accuracy when there exists relatively bare user historical information, verifying our hypothesis that the model suffers from the problem of overconfidence on historical language distribution. On the contrary, representation-based model draws a more smooth line, which demonstrates its robustness.

Qualitative Analysis Table 1 shows several identification results. In the first two cases, “velo” is a Spanish and French false-friend. The third example is code-switching in which “huawei y7” is a mobile phone module, preceded by a Spanish word which means “case”. For the last case, “kello” presents a misspelled English word “hello”. Results indicate that vanilla LID model fails to correctly identify these cases, while our model can exactly predict distinct results that conform to the user intention.

5 Conclusion

We explore preference-aware LID. Major contributions of our work are four-fold: 1) We introduce preference-aware LID task that leverages user language preference to improve LID. We hope our work can attract more attention to explore techniques on this topic; 2) We propose a novel unsupervised strategy to guide model to take user historical language distribution into account; 3) We collect U-LID and make it publicly available, which may contribute to the subsequent researches on LID; and 4) Extensive analyses indicate the effectiveness and robustness of our method, verifying that LID can profit from personality information to make the results conform to user intention.

† https://github.com/saffsd/langid.py
‡ https://github.com/kocmitom/LanideNN
§ Please refer to Appendix B for more experimental details.
References

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-MT - building open translation services for

A Ethical Discussion

It should be noted that this work does not involve ethical issues. Specifically, there are two parts where ethical issue should be concerned. The first is the user input text in the test data; the second is the acquisition process of the user’s historical language preference. For the former, the test data is completely desensitized. Both the samples in the test set are manually checked and desensitized by linguistic experts, filtering the texts with user privacy. Sensitive information includes name, ID, address, phone number, pornographic words, etc. Considering the latter, the user language preference is collected from the system logs. In this procedure, we only exploit the historical language distribution which can not be associated with the specific user. Neither the user’s input texts nor other sensitive information were recorded.

B Implementation Details

For training, we used Adam optimizer (Kingma and Ba, 2015) with the same learning rate schedule as Vaswani et al. (2017) and 8k warmup steps. Each batch consists of 1,024 examples and dropout rate is set to a constant of 0.1. Models are trained on a single Tesla P100 GPU.

Considering the compared models, we exploit 1-3 gram to extract characters and words for FASTTEXT (Joulin et al., 2017). As to TEXTCNN (Kim, 2014), we apply six filters with the size of 3, 3, 4, 4, 5, 5 and a hidden size of 512. For computational efficiency, 1 layer network is used as default if no confusion is possible. Other configurations of our reimplementations are same to common settings described in corresponding literature or the released source codes.