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Abstract

Recognizing the language of ambiguous texts001
has become a main challenge in language iden-002
tification (LID). When using multilingual ap-003
plications, users have their own language pref-004
erences, which can be regarded as external005
knowledge for LID. Nevertheless, current stud-006
ies do not consider the inter-personal varia-007
tions due to the lack of user annotated training008
data. To fill this gap, we introduce preference-009
aware LID and propose a novel unsupervised010
learning strategy. Concretely, we construct011
pseudo training set for each user by extracting012
training samples from a standard LID corpus013
according to his/her historical language distri-014
bution. Besides, we contribute the first user la-015
beled LID test set called “U-LID”. Experimen-016
tal results reveal that our model can incarnate017
user traits and significantly outperforms exist-018
ing LID systems on handling ambiguous texts.019
Our code and dataset are released at XXX.020

1 Introduction021

Language identification (LID) is widely applied022

in a range of web services where a multitude of023

languages may be presented, such as translation024

systems, search engines, and social media (Sun025

et al., 2020; Li et al., 2020). It predicts the natural026

language that a user text is written in, and decides027

which language-specific model to invoke in down-028

stream natural language processing (NLP) tasks029

(Lui et al., 2014; Tambi et al., 2020).030

Several recent studies have well tackled LID by031

designing a feature set for a traditional or neural032

classifier (Kocmi and Bojar, 2017; Vo and Khoury,033

2020; Jauhiainen et al., 2021). However, these034

researches merely explore textual information re-035

gardless of external knowledge about the user. In036

a real-world scenario, there exists large amount of037

ambiguous user inputs, such as texts with false-038

friend, code-switching, and misspelling, as shown039

in Table 1. On the one hand, the languages of these040

User Input Text Label Prefer. Baseline Ours
velo es (veil) es en es
velo fr (bike) fr en fr
fundas huawei y7 es (huawei y7 cases) es en es
kello kitty en (hello kitty) de it en

Table 1: Examples of ambiguous text that are difficult
to be accurately recognized. “Label” shows the lan-
guage label that is annotated by a user and conforms
to his/her input intention. “Prefer.” denotes the lan-
guage most frequently used by the corresponding user.
“Baseline” and “Ours” indicate the predictions of base-
line LID system and the proposed model, respectively.

texts are difficult (even impossible) to be explic- 041

itly identified without external knowledge. On the 042

other hand, for different users, a good LID should 043

flexibly give different results to the same ambigu- 044

ous input, thus conforming to users’ intention. It 045

can be said that classifying ambiguous user inputs 046

remains a main challenge in LID (Xia et al., 2010; 047

Stiller et al., 2010). 048

When drawing on a multilingual NLP applica- 049

tion, every person has his/her own accustomed lan- 050

guages. The historical behavior implicitly mirrors 051

the user language preference and can be exploited 052

for LID. To this end, we propose a task named 053

preference-aware LID, where the historical lan- 054

guage distribution of a user is leveraged for the 055

disambiguation of mistakable texts, and guides LID 056

to predict different languages for different users. 057

A major bottleneck for this task lies in the lack 058

of well-labeled training data. In particular, it is 059

unavailable to obtain large amount of ambiguous 060

texts labeled with different languages by different 061

users. To overcome this issue, we propose a novel 062

unsupervised strategy that builds synthetic data for 063

each user via sampling natural training examples 064

according to his/her historical language distribution. 065

We build our model upon Transformer (Vaswani 066

et al., 2017) and introduce two kinds of extensions. 067

One is directly revising the predicted probability of 068
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LID using the user language preference. In order069

to maintain the robustness, the other encodes the070

user traits into inductive bias.071

Our models are trained using a publicly available072

dataset extracted from Wikipedia. Towards evalu-073

ating the effectiveness, we construct a user-driven074

LID test set “U-LID”. The benchmark consists of075

21 languages, each of which contains 500 examples076

collected from a real-world translation system and077

labeled by users. Extensive analyses demonstrate078

the superiority and the robustness of our approach079

on recognizing error-prone cases.080

2 Preliminary081

Problem Formulation Given an input text X ,082

the vanilla LID model with parameter θ predicts083

the probability of the language y by P (y|X; θ).084

As an extension of conventional LID, preference-085

aware LID considers the traits of each user, thus086

facilitating the classifying of ambiguous texts. In087

this paper, we treat the language preference of user088

as the external knowledge, which can be implicitly089

embodied in historical language distribution D(u)090

of user u. Consequently, our task aims to model091

P
(
y(u)|X,D(u); θ

)
, as illustrated in Figure 1.092

User Annotated Test Set In order to assess the093

effectiveness of the proposed method, we construct094

a preference-aware LID test set called “U-LID”.095

The training instance is represented as a triplet096

〈X,D(u), y(u)〉. The samples are collected from097

a real-world translation system XXX.1 We mine098

user annotated data as follows: Given a user input,099

the translation system first returns a predicted lan-100

guage label and the associated translation results.101

When the user is dissatisfied with the prediction102

result, he/she may change the predicted language103

label. We argue that this operation not only re-104

flects the user intention concerning the language,105

but also implies that the classification of the current106

input is error-prone. Accordingly, we collect texts107

whose predicted labels are revised by users. The108

test set is further manually checked and carefully109

desensitized by linguistic experts to maintain the110

data quality. Finally, the benchmark consists of111

21 languages and 11,031 samples.2 The average112

1For anonymity, we temporarily use XXX to indicate the
name of this real-world multilingual translation engine.

2Including: English (en), Chinese (zh), Russian (ru), Por-
tuguese (pt), Spanish (es), French (fr), German (de), Italian
(it), Dutch (nl), Japanese (ja), Korean (ko), Arabic (ar), Thai
(th), Hindi (hi), Hebrew (he), Vietnamese (vi), Turkish (tr),
Polish (pl), Indonesian (id), Malay (ms), and Ukrainian (uk).
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Figure 1: Illustration of the preference-aware LID task.
The input text “basket” is a false-friend in English and
French. Our model considers user language preference
D(u), thus being able to identify ambiguous text and
generate distinct results for different users.

word count in each sample is 2.08, and the average 113

number with respect to character is 13.27. 114

3 Methodology 115

3.1 Preference-Aware Model 116

Our model is built upon the advanced neural- 117

based model – Transformer (Vaswani et al., 2017). 118

Given an input query X , the output token repre- 119

sentations can be formally expressed as: Z = 120

Transformer(X). 121

The final probability distribution is calculated by 122

assigning an output layer: 123

Y = softmax(WoZ + bo), (1) 124

where Z denotes the mean of the token represen- 125

tations Z. Wo ∈ RL×H , bo ∈ RL are trainable 126

parameters with H being the hidden size and L 127

being the number of languages. softmax(·) repre- 128

sents a non-linear function that is used to normalize 129

the probability distribution of labels. 130

We propose the preference-aware model to lever- 131

age user language preference into LID includes two 132

types of approaches: 133

Revision-Based Model Intuitively, we can mul- 134

tiply the output Y and the user language preference 135

D(u) directly. The final distribution is revised as: 136

Y (u) = softmax(Y D(u)). (2) 137

In this paradigm, we regard D(u) as a reviser at 138

the model training time. Note that, revision-based 139

model can be also exploited in a plug-and-play 140

fashion without any model training. 141

Representation-Based Model A natural alterna- 142

tive is to encode language preference into a rep- 143

resentation, which is then served as an inductive 144
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Figure 2: Illustration of the construction of synthetic
data. We use smoothed language preference of a user
to sample examples from the standard training corpus.

bias in the output layer. Here, we assign L train-145

able language embeddings We ∈ RL×L. The user146

representation is the weighted sum of language em-147

beddings regarding to user language distribution:148

WeD
(u). We modified Equation 1 as follows:149

Y (u) = softmax(WoZ +WeD
(u) + bo). (3)150

3.2 Unsupervised Training151

The main challenge of our task lies in the lack of152

user annotated training data. It is hard to construct153

large amount of training examples in the triplet154

form 〈X,D(u), yu〉. Although we construct a test155

set by mining user operations on switching lan-156

guages, such kind of approach depends on expen-157

sive manual review due to the massive noises.158

To tackle this problem, we propose a novel unsu-159

pervised training strategy, as illustrated in Figure 2.160

In an existing LID training corpus T , each text161

is labeled to a language. Given the user histori-162

cal language distribution D(u), we sample a subset163

T (u) from T and guarantee the language distribu-164

tion of T (u) to be consistent with D(u). Neverthe-165

less, most people only use one or two languages,166

making their historical distribution concentrated167

on a few languages. Immediately utilizing D(u) to168

sample examples for training may cause overcon-169

fidence problem. Firstly, the model may tend to170

overlook either the user information or the input171

text. Secondly, texts of which language frequency172

is relatively low in D(u) may fail to be correctly173

classified, especially for those languages not ap-174

pearing in the user’s historical inputs. Accordingly,175

we borrow the idea of label smoothing (Pereyra176

et al., 2017) into our approach. The final sampling177

distribution can be calculated as: 178

S(u) = softmax((1− α)D(u) + α/L). (4) 179

Here, we set α = 0.01 and collect 100 examples 180

for each user as default. Besides, in order to main- 181

tain the robustness and cope with the situation that 182

the user’s historical input is none or inaccessible, 183

we treat the uniform distribution as D(u), then sup- 184

plement the same number of standard training ex- 185

amples to that in current synthetic corpus. 186

4 Experiments 187

4.1 Experimental Setting 188

Data Setting We collect 100 thousand (K) users 189

who did not involved on U-LID test set from the log 190

of XXX. Considering the standard LID corpus T , 191

we follow Vo and Khoury (2020) to extract the nat- 192

ural training data from the released datasets: W2C 193

corpus (Majlis and Zabokrtský, 2012), Common 194

Crawl corpus (Schäfer, 2016) and Tatoeba (Tiede- 195

mann and Thottingal, 2020). Finally T consists 196

of 21 languages, each of which contains 5 million 197

(M) samples. We examine models on U-LID test 198

set. Moreover, in order to investigate the robust- 199

ness of our methods on conventional LID task, we 200

further collect a publicly available test set KB-21 201

from Kocmi and Bojar (2017), using a subset of 21 202

languages. KB-21 consists of 2,100 samples, the 203

average amounts of words and characters in each 204

sample are 4.47 and 34.90, respectively. 205

Implementation Details We follow the Base 206

model setting as Vaswani et al. (2017), excepting 207

that the number of layers is set to 1 for the compu- 208

tational efficiency.3 To avoid the problem of out- 209

of-vocabulary, we follow existing LID approaches 210

to exploit character-based embedding (Jauhiainen 211

et al., 2019), in which vocabulary size is set to 15K. 212

In this study, 1-Layer TRANSFORMER model 213

is served as baseline. We reimplement widely 214

used text classification models, FASTTEXT (Joulin 215

et al., 2017) and TEXTCNN (Kim, 2014) as well 216

as recent LID approach ATTENTIONCNN (Vo and 217

Khoury, 2020), as listed in Table 2. In addi- 218

tion, we reproduced a state-of-the-art model Naive 219

Bayes (Jauhiainen et al., 2021) in VarDial2021 220

task (Chakravarthi et al., 2021). Configurations 221

of our reimplementations are same to common 222

settings described in corresponding literature or 223

3We verified that complex networks marginally contribute
to LID, which is consistent with findings in Ceolin (2021).
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Model U-LID KB-21
Existing LID Systems

Langid.py (Lui and Baldwin, 2012) 63.52 91.33
LanideNN (Kocmi and Bojar, 2017) 67.23 92.71

Reimplemented Models
NAIVE BAYES (Jauhiainen et al., 2021) 60.53 89.91
FASTTEXT (Joulin et al., 2017) 59.25 88.69
TEXTCNN (Kim, 2014) 61.58 91.24
ATTENTIONCNN (Vo and Khoury, 2020) 62.16 91.41

Ours
TRANSFORMER (Baseline) 67.35 92.81

+Revision-Based Model 89.23†† 91.19
+without training 84.79†† 92.81

+Representation-Based Model 88.74†† 93.09†

Table 2: Classification accuracy (ACC) on test sets.
For reference, when immediately regarding the user
preference language as the predicted result, the ACC on
U-LID is 66.42. The proposed preference-aware LID
models show significant improvements on U-LID tasks.
Experimental results of neural-based models own av-
eraged over 5 independent runs.“†” and “††” indicate
the improvement over TRANSFORMER is statistically
significant (p < 0.05 and p < 0.01, respectively), esti-
mated by bootstrap sampling (Koehn, 2004).

the released source codes. Moreover, we also ex-224

amine popular LID systems on our LID tasks, in-225

cluding Langid.py4 (Lui and Baldwin, 2012) and226

LanideNN5 (Kocmi and Bojar, 2017).6227

4.2 Results228

The results are concluded in Table 2. Our mod-229

els significantly outperform the compared methods230

over 17%-22% accuracy on U-LID task, indicating231

the effectiveness of the utilization of user informa-232

tion. Specifically, treating user’s language prefer-233

ence as a reviser performs best on U-LID, while234

declining the quality on KB-21. We attribute this to235

the overconfidence of revision-based model on user236

historical language distribution, which weakens the237

learning of LID model on original text classifica-238

tion. It is encouraging to see that revision-based239

model without training can yields considerable re-240

sult on U-LID, in the meanwhile, does not affect241

the quality on KB-21 by feeding the uniform his-242

torical distribution. By contrast, representation-243

based model alleviates the overconfidence problem244

and achieves good performance in both U-LID and245

KB-21. Accordingly, we use representation-based246

model as the default setting in subsequent analyses.247

4https://github.com/saffsd/langid.py
5https://github.com/kocmitom/LanideNN
6Please refer to Appendix B for more experimental details.
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Figure 3: Effects of the number of historical inputs on
U-LID. Representation-based model is more robust.

4.3 Analysis 248

Robustness Analysis User’s language prefer- 249

ence greatly affects our model. The less the user 250

historical inputs, the higher the uncertainty of user 251

preference is. Accordingly, the robustness of our 252

model is necessary to be assessed. We plot Figure 3 253

to show the effects of the number of historical in- 254

puts. Obviously, revision-based model yields lower 255

accuracy when there exists relatively bare user his- 256

torical information, verifying our hypothesis that 257

the model suffers from the problem of overconfi- 258

dence on historical language distribution. On the 259

contrary, representation-based model draws a more 260

smooth line, which demonstrates its robustness. 261

Qualitative Analysis Table 1 shows several iden- 262

tification results. In the first two cases, “velo” is a 263

Spanish and French false-friend. The third example 264

is code-switching in which “huawei y7” is a mobile 265

phone module, preceded by a Spanish word which 266

means “case”. For the last case, “kello” presents a 267

misspelled English word “hello”. Results indicate 268

that vanilla LID model fails to correctly identify 269

these cases, while our model can exactly predict 270

distinct results that conform to the user intention. 271

5 Conclusion 272

We explore preference-aware LID. Major contribu- 273

tions of our work are four-fold: 1) We introduce 274

preference-aware LID task that leverages user lan- 275

guage preference to improve LID. We hope our 276

work can attract more attention to explore tech- 277

niques on this topic; 2) We propose a novel un- 278

supervised strategy to guide model to take user 279

historical language distribution into account; 3) 280

We collect U-LID and make it publicly available, 281

which may contribute to the subsequent researches 282

on LID; and 4) Extensive analyses indicate the ef- 283

fectiveness and robustness of our method, verifying 284

that LID can profit from personality information to 285

make the results conform to user intention. 286
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A Ethical Discussion425

It should be noted that this work does not involve426

ethical issues. Specifically, there are two parts427

where ethical issue should be concerned. The first428

is the user input text in the test data; the second429

is the acquisition process of the user’s historical430

language preference. For the former, the test data431

is completely desensitized. Both the samples in432

the test set are manually checked and desensitized433

by linguistic experts, filtering the texts with user434

privacy. Sensitive information includes name, ID,435

address, phone number, pornographic words, etc.436

Considering the latter, the user language preference437

is collected from the system logs. In this procedure,438

we only exploit the historical language distribution439

which can not be associated with the specific user.440

Neither the user’s input texts nor other sensitive441

information were recorded.442

B Implementation Details443

For training, we used Adam optimizer (Kingma and444

Ba, 2015) with the same learning rate schedule as445

Vaswani et al. (2017) and 8k warmup steps. Each446

batch consists of 1,024 examples and dropout rate447

is set to a constant of 0.1. Models are trained on a448

single Tesla P100 GPU.449

Considering the compared models, we exploit 450

1-3 gram to extract characters and words for FAST- 451

TEXT (Joulin et al., 2017). As to TEXTCNN (Kim, 452

2014), we apply six filters with the size of 3, 3, 4, 453

4, 5, 5 and a hidden size of 512. For computational 454

efficiency, 1 layer network is used as default if no 455

confusion is possible. Other configurations of our 456

reimplementations are same to common settings de- 457

scribed in corresponding literature or the released 458

source codes. 459
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