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Abstract—Robotic assembly in high-mixture settings requires
adaptable systems that can handle diverse parts, yet current
approaches typically rely on policies specialized to each insertion
task. Although this can reach high success rates, it makes the
process of deploying systems for new problems tedious and time
consuming. We present a framework for generalizable insertion
using world models that combine robot proprioceptive informa-
tion with raw visual observations captured by a wrist-mounted
camera. Our model-based approach trains a single world model
on up to 90 insertion tasks with geometrically diverse parts,
achieving 56% zero-shot success on unseen objects with unknown
geometry compared to just 7% with a model-free baseline.
Importantly, performance improves as more objects are included
in the training dataset, demonstrating strong scalability. Lastly,
finetuning the generalist model on held-out objects significantly
enhances data-efficiency compared to training from scratch and,
in some cases, achieves better asymptotic performance. To our
knowledge, this is the first system capable of assembling unseen
objects in an entirely data-driven manner, and thus represents a
significant step toward scalable, generalizable robotic assembly.

I. INTRODUCTION

Autonomous robotic assembly [36, 12, 35, 33, 31, 32, 23]
is a challenging yet important research topic in manufacturing
and automation, where precise manipulation of diverse objects
is needed. State-of-the-art approaches in industry typically
rely on hand-crafted controllers that cannot easily generalize
across different object geometries and scene configurations.
Existing learning-based systems in research predominantly use
specialist policies, requiring extensive training (and often part-
specific tuning) for each specific object pair, which fundamen-
tally limits scalability and adaptability. The key challenge in
going beyond specialist policies has been the inability of the
currently-chosen algorithms to tractably obtain controllers that
can achieve both dexterity and generalization.

In contrast to current systems, we envision future robotic
assembly systems that have the flexibility and robustness
required to manipulate new objects with minimal additional
engineering, assumptions, or privileged information. To re-
alize this vision, we argue that such a generalizable robotic
assembly system demands adaptive control policies as well as
robust visual perception capable of inferring detailed object
geometry and poses directly from raw visual feedback within
a closed-loop control system. While the current paradigms
for acquiring learning-based controllers for assembly do not
conceptually preclude such a vision, they struggle to scale
up the learning of generalist behaviors to large numbers of
tasks and rich perceptual inputs [32]. This begs the question
- as opposed to simply exposing methods to more data and
compute, does a change in learning algorithm potentially help

develop generalist assembly policies more effectively?
Our research addresses these questions by introducing a

learning-based framework that enables zero-shot insertion
of unseen objects with entirely unknown object geometries.
Concretely, we develop a system for general-purpose robotic
assembly that can leverage world models and visual ob-
servations to combine robot proprioceptive information with
raw depth observations captured by a wrist-mounted camera.
Departing from the typical on-policy reinforcement learning
(RL) approach for acquiring robotic assembly controllers, we
posit that off-policy world-model based approaches enable
more efficient multi-task, vision-based policy learning. Doing
so allows for training generalist, vision-based policies across
wider ranges of problems, without compromising dexterity, a
challenge that has proven difficult with prior policy gradient-
driven RL approaches to assembly.

Our approach learns a generalizable policy without relying
on object-specific priors. By training a multi-task policy on
up to 90 diverse assemblies from Tang et al. [32], our method
achieves a remarkable 56% zero-shot success rate on unseen
assemblies with unknown geometry, and we show that perfor-
mance improves as more assemblies are added, demonstrating
strong scaling behavior. Lastly, we find that finetuning a
generalist model on held-out assemblies significantly enhances
data-efficiency compared to training from scratch and, in
some cases, achieves better asymptotic performance. Our key
contribution in this work is not to propose a new algorithm, but
rather to demonstrate that visual model-based RL algorithms
have immense untapped potential for industrial assembly,
allowing for much broader and more performant generalist,
multi-task policies. We carefully study the impact of various
decisions in the construction of such a system, and provide a
practitioners’ guide to building general-purpose assembly sys-
tems using world-model-based controller synthesis methods.

II. RELATED WORK

Our work is at the intersection of robotic assembly and RL,
areas that have both enjoyed remarkable progress in recent
years. This section aims to summarize previous work in these
two areas, with a particular emphasis on literature related to
our contributions.

Autonomous robotic assembly tasks of interest to the
research community often include mating of two distinct parts,
with insertion of one object into another being a common
yet difficult task due to intricate part geometries, asymmetry,
precise control requirements, and the generally small scale
of parts to be assembled [7, 36, 12, 5, 35, 33]. Several
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Fig. 1. A generalist for insertion. When pretrained on a large number of objects (blue), our method scales substantially better
than the previous state-of-the-art generalist from Tang et al. [32] (gray). Furthermore, our method generalizes zero-shot to
unseen object geometries (red).

recent works have explored learning of policies for robotic
assembly via simulation environments designed to mimic
a real-world setup, and these works demonstrate that such
policies subsequently can be deployed on real hardware with
limited reduction in performance [6, 31, 32, 23]. However,
due to the immense work required to build such simulation
environments, development of better algorithms for policy
learning has received comparably less attention from the
research community. For example, AutoMate [32] proposes a
system for training part-specific specialist policies to perform
insertion in simulation which are then deployed on a real robot
setup that closely matches the simulation environment. To do
so, the authors curate and preprocess a set of 100 assembly
asset pairs originally introduced by Willis et al. [35], Tian
et al. [33], and build a parallelizable simulation environment
with observation and action spaces that are also accessible
in the real world, as well as a shaped reward function that
encourages reliable top-down insertion strategies. The authors
demonstrate that their system enables training of Proximal
Policy Optimization (PPO) [29] via online RL on individual
object pairs, and include an exploratory experiment in which a
number of learned specialist policies are distilled into a (blind)
generalist insertion policy. In this work, we focus on the
algorithmic aspect of robotic assembly and set out to develop
a learning-based system that can insert unseen objects with
unknown geometry in a zero-shot manner, relying purely on
raw visual observations from a wrist-mounted camera.

Reinforcement learning for robotics has been of great
interest to the research community over the past decade, with
applications including tabletop manipulation [14, 18, 26, 22,
38, 37, 16, 4], dexterous manipulation [24, 39, 27, 9], and
outdoor locomotion [17, 15, 21, 2, 3]. A common property of
these applications is that they require learning robust control
policies that can operate in increasingly noisy and unstructured
environments (cannot easily be programmed), yet the tasks
themselves are often quite forgiving in terms of precision
of motions [40]. In this work, we focus on learning precise
visual policies for assembly of (unseen) objects with unknown

geometry, a significantly more challenging problem setting
than what RL is typically used for in robotics literature. To
achieve our goal, we build upon model-based RL algorithm
TD-MPC2 [10, 11], which has been shown empirically to
outperform contemporary RL algorithms across a variety of
continuous control tasks. Notably, this is (to the best of our
knowledge) the first successful application of model-based RL
algorithms in the area of robotic assembly.

III. PRELIMINARIES

Setup. We aim to develop a learning-based robotic as-
sembly system capable of high-precision insertion of unseen
objects with unknown geometry, entirely from raw visual
observations captured by a wrist-mounted camera and robot
proprioceptive information. To do so, we leverage Isaac [20], a
GPU-accelerated and highly parallelizable simulation tool, for
iterative data collection and RL. Concretely, our experimental
setup consists of (1) a Franka Panda robotic manipulator with a
parallel jaw gripper mounted to a table-top on which assembly
occurs, (2) a wrist-mounted camera mimicking the common
Intel RealSense D435 RGB-D camera, and (3) 200 simulated
assets (100 object pairs) for training of continuous control
policies for the highly precision-based task of insertion. While
our experiments are conducted in simulation, such a setup can
in principle be replicated on real hardware as demonstrated
by recent related work [6, 31, 32, 23], though they rely solely
on pose estimation rather than visual inputs. Refer to Figure 1
(left) for an illustration of our setup.

Robotic insertion with RL. We model the robotic in-
sertion problem as a Markov Decision Process (MDP) [1]
characterized by the tuple (S ,A ,T ,R,γ) where s ∈ S are
states, a ∈ A are actions (6 DoF delta end-effector poses
normalized to the [−1,1] interval), T : S ×A 7→ S is the
environment transition (dynamics) function, R : S 7→ R is
a scalar reward function that encourages completion of the
insertion task, and γ is a constant discount factor. Since the full
state of the environment s cannot be easily determined in real-
world applications, we instead rely on raw depth observations



x ∈R96×96 and robot proprioceptive information q ∈R24, and
approximate s as [x,q], resulting in a partially observable
MDP [13]. The objective is then to learn a policy π : S 7→A
such that cumulative discounted rewards Eπ [∑

∞
t=0 γ trt ] , rt

.
=

R(st) (denoted as return) is maximized. In this work, we
derive our policy π from iteratively optimizing a learned world
model on collected data, and collecting new interaction data
by planning with the learned model.

Learning a world model with TD-MPC2 [11], a model-
based RL algorithm that plans actions via local trajectory
optimization in the latent space of a learned world model.
Specifically, TD-MPC2 learns a latent decoder-free world
model from environment interaction data and leverages Model
Predictive Path Integral (MPPI) [34] with a learned policy
prior as a derivative-free (sampling-based) trajectory optimizer
during inference (planning). All components of the world
model are learned end-to-end from data using an optimiza-
tion objective that combines auto-regressive joint-embedding
prediction [8], reward prediction, and a temporal difference
(TD) [30, 19] loss, without decoding raw observations. In this
work, we build upon TD-MPC2 due to its demonstrably strong
empirical performance on simpler robotic manipulation tasks,
and develop a system for generalizable, vision-based robotic
insertion. In the following, we provide more details on the TD-
MPC2 algorithm as used in our work; details not pertaining
to our use of the algorithm are omitted for brevity.

−Model architecture. TD-MPC2 learns a latent world model
that consists of 5 components:

Encoder z = h(s) ▷ Produces latent state
Dynamics z′ = d(z,a) ▷ Predicts next latent state
Reward r̂ = R(z) ▷ Predicts reward r
Terminal value q̂ = Q(z,a) ▷ Predicts future return
Policy prior â ∼ p(z) ▷ Predicts optimal action

where z is the latent state. During training, our agent au-
tonomously collects data via interaction, and selects actions
via planning. Our agent maintains a limited capacity (first-in-
first-out) dataset (replay buffer) B of collected trajectories,
which is used to optimize the world model.

−Training objective. The h,d,R,Q components of the world
model are jointly optimized to minimize the auto-regressive
prediction objective L (θ)

.
= E(s,a,r,s′)0:H∼B

[
∑

H
t=0 λ tL(θ ; t)

]
,

where λ ∈ R+ is a constant coefficient that weighs near-term
predictions higher than predictions further into the future, H is
a fixed sequence length (horizon), and L is a single-step loss

L(θ ; t) = CE(r̂t ,rt)︸ ︷︷ ︸
Reward prediction

+ CE(q̂t ,qt)︸ ︷︷ ︸
Value prediction

+ ∥ z′t − sg(h(s′t))∥2
2︸ ︷︷ ︸

Joint-embedding prediction

.

(1)
Here, CE is a cross-entropy objective used for discrete re-
gression of the scalars (rt ,qt), and sg is a stop-grad operator
that prevents gradients from flowing back through latent state
prediction targets. The policy prior is trained to maximize
entropy and terminal value Q(z,a) at each step. Refer to
Hansen et al. [10, 11] for more details on the TD-MPC2
algorithm.

Fig. 2. Assemblies. We consider a total of 100 assemblies
from Tang et al. [32], which vary greatly in geometry. We
reserve 10 assemblies for testing and train on the last 90.

IV. DATASET AND SIMULATION ENVIRONMENT

We first introduce our chosen asset dataset, and then
describe our simulation environment. Additional details are
provided in Appendix C.

Dataset for robotic assembly. We base our experiments on
the assembly asset dataset proposed by Tang et al. [32], which
consists of 100 geometrically diverse two-part assemblies that
themselves are based on previous work Willis et al. [35] and
Tian et al. [33]. Despite significant progress in simulation
tools in recent years, making assembly assets simulatable
remains a tedious, human labor-intensive task, and thus we
limit ourselves to these 100 object pairs. We emphasize,
however, that our method is not limited to a fixed number
of objects and could – without any algorithmic changes – be
applied to larger assembly datasets as they become available.
The assemblies considered in this work are geometrically
diverse and often feature asymmetries along at least one axis.
As a result, insertion strategy can vary significantly between
objects. Figure 2 provides an overview of our assets; the plug
is to be inserted into the socket.

Simulation environment. We build upon the environment
proposed by Tang et al. [32], which features a Franka Panda
robotic manipulator equipped with a parallel-jaw gripper,
and closely follow their experimental setup to ensure that
comparison to prior work is fair. The socket is randomly



Fig. 3. Overview. We present a learning-based system for zero-shot insertion of unseen objects with unknown geometry. Our
framework learns a generalizable world model that at each time step takes robot proprioceptive information and raw depth
observations captured by a wrist-mounted camera as input, and outputs delta end-effector pose commands for the robot.

initialized within reach of the robot, in an upright pose such
that an approximately top-down insertion is possible. The plug
is similarly randomly initialized and is grasped via motion
planning before the start of each RL trajectory; this ensures
that our learning framework is focused on the object insertion
itself for which classical robot planning methods are prone
to fail. To facilitate learning and improve rate of convergence,
we employ a simple training curriculum that adjusts the initial
state distribution based on current training success rate. The
curriculum is adjusted to each assembly individually when
training multi-assembly models. Observations and rewards are
defined as follows:

− Observations. We consider observations that include raw
depth observations x ∈ R96×96 from a wrist-mounted camera,
as well as robot proprioceptive information q ∈ R24. The
proprioceptive vector consists of robot joint angles (R7), noisy
estimates of the 6D end-effector and socket poses (2×R7)
with white noise applied to mimic real-world sensor noise,
and a goal position (R3) at which the plug is considered fully
inserted. See Appendix 10 for a visualization of observations.

− Reward function. Our reward function has four terms: (1)
negative distance between plug and goal, (2) a penalty for
interpenetration errors in the rare event that they occur, (3) a
binary term that rewards task success, and (4) an imitation-
based reward that encourages the policy to mimic a small set
of demonstrations derived by reversing procedurally-generated
disassembly trajectories [25, 32].

V. GENERALIZABLE ROBOTIC INSERTION
We present a learning-based system for zero-shot robotic

insertion of unseen objects with unknown geometry. Our
framework learns a generalizable world model that at each
time step takes robot proprioceptive information and raw
depth observations captured by a wrist-mounted camera as
input, and outputs delta end-effector pose commands for
the robot to execute via planning with the learned world
model. Crucially, our method does not rely on any privileged
information during deployment, thus making deployment on
real hardware feasible in the future. Figure 3 provides an

overview of our proposed system. In this section, we describe
algorithmic details specific to our problem setting while a more
general description of the RL training pipeline is provided in
Section III.

Encoder for multi-modal observations. Previous work
on learning-based robotic assembly [31, 32, 23] focus on
learning object-specific (specialist) policies for each unique
assembly, which does not require substantial knowledge of
object geometry beyond what can be deduced through robot
proprioceptive information. However, we argue that visual
feedback is necessary if we are to learn a single policy (or
world model) that can manipulate multiple objects, including
objects not seen during training. To this end, we additionally
provide our world model with raw depth information from a
wrist-mounted camera, and design the encoder h to consist of
three modules: (1) a shallow ConvNet for depth observations,
(2) a 2-layer MLP for robot proprioceptive information, and
(3) a 2-layer MLP that fuses the two encoder outputs into a
single latent state z, formally defined as

h(x,q) .
= hfuse

(
hdepth(x)+hprop(q)

)
, (2)

where each of hfuse,hdepth,hprop apply SimNorm [11] nor-
malization to their output. We use multi-modal observations
for both our single-object and multi-object world models. As
our experimental results will reveal, the addition of visual
observations is crucial to the performance of our framework.

Zero-shot generalization. We train both single-object in-
sertion specialists and generalizable multi-object insertion
policies via environment interaction. To fully leverage the
parallelizable nature of our simulation environment, we choose
to train our agents across multiple robotic insertion instances
simulated in parallel. When training specialists, we randomly
initialize the same assembly with different initial scene config-
urations across each environment instance, while we maintain
one environment instance per unique assembly when training
multi-task world models, i.e., we simulate 90 environment
instances each with one of 90 unique assemblies from our
dataset. This guarantees a uniform distribution across assem-
blies. While providing the model with e.g. a one-hot encoding



of object IDs could potentially improve performance on known
objects in a multi-task setting, such a representation cannot
easily be transferred zero-shot to new objects. Thus, we opt
to rely solely on visual information for object disambiguation
in a data-driven manner.

VI. EXPERIMENTS

We validate our approach through rigorous experimental
evaluation in the setup described in Section IV, including both
single-assembly specialist policies as well as multi-assembly
generalist policies, with our key performance metric being the
average insertion success rate across all available assets.

A. Experimental Details

Evaluation. All assemblies introduced in Tang et al. [32]
have uniquely numbered identifiers. We choose to reserve
the last 10 of 100 assemblies (according to their IDs) for
evaluation of out-of-domain generalization (i.e., we maintain
a fixed set of ”unseen” objects), and train generalist world
models on the remaining 90 objects. When training generalists
on only a subset of these objects, we simply select subsets
according to their IDs in ascending order to mitigate any selec-
tion bias. See Appendix C for a numbered list of assemblies.
Generalist success rates are averaged over all assemblies in
the training (in-domain) or test (unseen) sets, respectively, and
across 100 trials per assembly. Specialist policies are trained
independently on each of 100 assemblies, and we report the
mean success rate across 5 independent training runs (random
seeds) as well as 100 trials per run.

Baselines. Our primary point of comparison is AutoMate
[32], the current state-of-the-art method for robotic insertion
with RL. AutoMate trains insertion policies in simulation
with PPO [29], focusing mostly on specialist (single-assembly)
policies with proprioceptive information as input. The trained
specialist policies are blind (i.e., no visual information) and
are not explicitly provided information about object geometry.
In addition to these specialist policies, AutoMate also includes
exploratory experiments on a generalist policy. This generalist
policy is obtained by first training single-assembly specialist
policies, and subsequently distilling them into a single multi-
assembly policy using a combination of supervised behav-
ioral cloning, DAgger [28], and online RL finetuning, while
conditioning the policy on point cloud embeddings obtained
from CAD models of each assembly. This contrasts with
our generalist model that relies solely on raw visual inputs
and is trained purely with online RL. Our approach greatly
simplifies the training pipeline in comparison to AutoMate,
and does not require any knowledge of object geometry (such
as CAD models). All AutoMate results are reproduced using
the official codebase. Additionally, we compare against a
number of variations of our framework, in particular (1)
”blind” world models without visual inputs, (2) world models
with an alternative wrist camera placement, (3) world models
trained with and without a curriculum that adaptively adjusts
initial conditions to be farther or closer to insertion success

depending on current training success rate (following the cur-
riculum setting in AutoMate), and (4) a generalist with access
to 100 expert rollouts (generated by our specialist policies)
per assembly. Naturally, access to such expert rollouts during
training hinges on the availability of pretrained expert policies,
thus severely limiting the scalability of the generalist training
pipeline to larger sets of assemblies. The default formulation
of our framework thus leverages a training curriculum rather
than expert rollouts, and we merely include this additional
baseline for completeness.

Implementation details. All world models considered in
this work have 5M parameters. Observations include raw
depth observations x ∈ R96×96 from a wrist-mounted camera
and robot proprioceptive information q ∈ R24, and actions
are 6 DoF delta end-effector poses normalized to [−1,1].
Specialist world models are trained for 2M steps vs. 50M
steps for AutoMate, and our generalists are trained for 7M
steps. Training a specialist with visual inputs takes 40h on a
NVIDIA RTX 3090 GPU, and training a 90-object generalist
takes 3 days. See Section E for more details.

B. Results
Single-assembly specialists. We evaluate specialist policies

across all 100 assemblies, and report both individual and
aggregate performance metrics for our method and AutoMate
in Figure 8. For visual clarity, we order objects from left to
right along the horizontal axis according to the average success
rate achieved by our approach; see Appendix B for alternative
visualizations. Our approach achieves 79.78% success across
all 100 assemblies vs. 70.31% for AutoMate. While such a
substantial performance improvement is to be celebrated, we
do observe a decrease in success rates across a few assemblies,
e.g. 296 and 726 (visualized in Figure 8). We conjecture
that this may be due to differences in exploration between
PPO (AutoMate) and TD-MPC2 (ours), as well as visual
occlusion. Visual inspection of objects for which there is a
large performance gap between our method and AutoMate
– positive or negative gain – indicates that our approach
tends to struggle with large sockets, presumably due to visual
occlusion, while our method on the other hand performs
significantly better than AutoMate on small, thin sockets.
Regardless, these results clearly demonstrate the efficacy of
our approach even in a single-assembly case.

Multi-assembly generalists. Our generalist results are
shown in Figure 1 (right); we report numbers for both in-
domain evaluations (seen objects; left) and out-of-domain eval-
uations (unseen objects; right), as well as reference AutoMate
numbers obtained from Tang et al. [32]. We note that the
exact training and test splits for AutoMate are not known,
but that our experimental setups are nonetheless comparable
and that the difference in performance cannot be explained
by a difference in training/test splits. It is also worth noting
that the AutoMate generalist assumes access to point cloud
embeddings of ground-truth CAD models for each assembly
(including test assemblies), whereas our method relies solely
on raw visual observations. Our results demonstrate that our
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Fig. 4. Specialist policies. Our method (blue) achieves strong single-assembly performance across 100 diverse objects; 79.78%
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0.00

0.25

0.50

0.75

1.00
1036 1041 1053 1079 1092

0 10k 20k 30k
0.00

0.25

0.50

0.75

1.00
1102

0 10k 20k 30k

1125

0 10k 20k 30k

1129

0 10k 20k 30k

1132

0 10k 20k 30k

1136

From scratch From scratch (@2M) Finetuned

Fig. 5. Finetuning. Success rate vs. environment steps for two variants of our method: (1) specialists learned from scratch, and
(2) our 90-object generalist finetuned on each of 10 held-out assemblies. The unique ID of each assembly is reported above
each subplot. Finetuning greatly improves data-efficiency. Average of 5 random seeds; shaded area denotes 95% CIs.

model-based RL approach achieves considerably better scaling
wrt. number of assemblies, achieving a 55.0% success rate
on 90 seen assemblies compared to just 15.6% for AutoMate
on 80 seen assemblies. Additionally, we find that the zero-
shot generalization to unseen assemblies increases with the
number of training assemblies, achieving a remarkable 56%
zero-shot success rate when trained on 90 assemblies. This
is a significant achievement as zero-shot performance on
out-of-domain assemblies reaches in-domain performance at
this scale. We hypothesize that in-domain and out-of-domain
performances will saturate around this success rate as more
assemblies become available in the future.

Finetuning a generalist on held-out assemblies. One of
the most useful capabilities of a generalist is to serve as a
pretrained model that can be efficiently finetuned on problem-
specific data. This may especially be true in the context of
robotic assembly where assembly-specific data is limited. To
further demonstrate the value of our approach, we finetune
our 90-assembly generalist to each of 10 held-out assemblies;
results are shown in Figure 5. We find that starting from

a generalist model greatly improves data-efficiency on new
assemblies and, in some cases, exceeds the asymptotic perfor-
mance of learning from scratch (objects 1036 and 1041).

Additional experimental results are presented in the appen-
dices, namely Appendix A and Appendix B.

VII. CONCLUSIONS & LIMITATIONS

We present a learning-based system for zero-shot insertion
of unseen objects with unknown geometry that achieves sub-
stantially better scaling than previous work. However, oppor-
tunities for improvement remain: (i) performance degrades on
assemblies with significant visual occlusion, (ii) we observe
a slight decline in in-domain performance with more training
objects, and (iii) there is currently limited availability of object
datasets for training generalists. We believe that future research
in visual perception, further algorithmic improvements, as well
as dataset development has immense potential.
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APPENDIX A
ANALYSIS & ABLATIONS

We conduct a series of ablations in both specialist (trained on each of 100 objects) and generalist (90 training objects) and
report results in Figure 6. First, we investigate the importance of vision by comparing our approach with (i) a ”blind” version
of our method with access to proprioceptive information only, and (ii) an alternative placement of the wrist-mounted camera
which provides a better view of the grasped plug but is more prone to visual occlusion. Our results indicate that vision is
indeed critical to performance, and our ablation on camera placement corroborates our earlier observation that our approach is
prone to failure when the plug is large and (partially) occludes the socket. Our second ablation, shown in Figure 6 (bottom),
quantifies the effect of a curriculum that dynamically adapts initial conditions to the current per-assembly success rate. For
completeness, we evaluate two such curricula: (i) our default curriculum which starts at the easiest initial state distribution
and gradually increases difficulty as success rate increases, and (ii) an inverse curriculum that starts at the hardest setting. Our
results indicate that a curriculum consistently improves specialist and generalist performance when evaluated on the full state
distribution, while the particular curriculum is less important. We also compare to a privileged version of our generalist that
has access to 100 expert rollouts (demonstrations) per assembly; we observe that this improves performance marginally but do
no adopt this approach for our proposed generalist training pipeline as it scales poorly with larger object datasets due to the
assumption of trained experts.
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is the default formulation of our method.



APPENDIX B
ADDITIONAL SPECIALIST RESULTS
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APPENDIX C
ADDITIONAL ENVIRONMENT DETAILS

This section supplements Section IV with additional details about our dataset and simulation setup.

Fig. 9. Objects sorted by unique identifier. Overview of all objects used in our work. The first 9 columns are used for
training, and the last column is used for out-of-domain evaluation.

Assembly dataset. We leverage the assembly asset dataset from Tang et al. [32], which consists of 100 assemblies that
originate from Willis et al. [35], Tian et al. [33] but have been further refined such that their meshes have no interpenetration
when fully assembled, making them compatible with common simulators such as Isaac, as well as real-world 3D printers.
Despite significant progress in simulation tools in recent years, the process of eliminating interpenetration and other simulation
errors remains a tedious human labor-intensive task, and we thus limit ourselves to these 100 object pairs in this work. The
assemblies considered in this work all consist of two parts – one part is to be inserted into the other. Objects are initialized
in the environment such that the part to be inserted can be inserted in an approximately top-down manner, however, insertion
strategy can vary significantly across objects due to their unique and varied geometries. Figure 9 provides an overview of the
100 assemblies that we consider, ordered by their unique identifier consistent with prior work. We reserve 10 (right-most row)
of the 100 assemblies for evaluation of out-of-domain generalization ability, and consider the remaining 90 assemblies as our
available training set (in-domain).

Reward function. We use a reward function

R(s,a) .
= rpenetration(rdist + rimitation + rsuccess) (3)

where rpenetration is a scaling penalty for interpenetration errors in the rare event that such simulation errors occur due to
e.g. very small or thin meshes, rdist is the negative distance between plug and goal, rimitation is an imitation-based reward
that encourages the policy to mimic a small set of demonstrations derived by reversing procedurally-generated disassembly
trajectories [25, 32], and rsuccess is a binary term that rewards task success. We omit constant coefficients that balance each
term for clarity. This reward function was originally proposed by Tang et al. [31] and later adopted by Tang et al. [32]; we use
the reward function without modification and merely provide this description for completeness. Readers are referred to Tang
et al. [31] for a detailed discussion of the reward function.



APPENDIX D
VISUALIZATION OF WRIST CAMERA

Fig. 10. Visualization of wrist-mounted camera. Raw depth observations as provided to our world model for each of the
100 assemblies considered. Observations provide sufficient information for the model to disambiguate objects but is still prone
to occlusion when the plug is large.



APPENDIX E
IMPLEMENTATION DETAILS

AutoMate. All AutoMate [32] specialist results are reproduced using the official codebase available at https://github.com/
isaac-sim/IsaacGymEnvs/tree/automate without modification and using default hyperparameters. We observe a slightly lower
overall success rate than in the original AutoMate work, but remark that we have confirmed the correctness of our results
via direct correspondence with the AutoMate authors. They noted, through our correspondence, that the slight discrepancy
in results might ”possibly stem from a change in controller or changes in underlying physics” between submission of the
AutoMate manuscript and associated code release. However, we would like to remark that irrespective of any low-level changes
that may affect reproducibility, comparison between our world model results and the reproduced AutoMate results remain fair
since they were both run with the same exact simulator and environment. We obtain generalist AutoMate results (both in-
domain and out-of-domain) directly from the authors, which means that baseline generalist numbers are likely to be (slightly)
inflated compared to numbers produced by our method. While these reproducibility issues do not change our conclusions in
any meaningful way, we provide this additional context to maintain absolute transparency with readers.

TD-MPC2. We base our implementation off of the official TD-MPC2 [11] codebase available at https://github.com/
nicklashansen/tdmpc2 and use default hyperparameters throughout our experiments. However, we list all hyperparameters
in Table I for completeness. We summarize our modified architecture (to support multi-modal depth and proprioceptive inputs)
using PyTorch-like notation:
Architecture: WorldModel(
(encoder): ModuleDict(
(depth): Sequential(

(0): ShiftAug(pad=4)
(2): Conv2d(1, 32, kernel_size=(7, 7), stride=(2, 2))
(3): ReLU(inplace=True)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU(inplace=True)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(9): ReLU(inplace=True)
(10): Flatten(start_dim=1, end_dim=-1)
(11): Linear(in_features=512, out_features=Z, bias=True)
(12): SimNorm(dim=8))

(state): Sequential(
(0): NormedLinear(in_features=S, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=Z, bias=True, act=SimNorm))

(fuse): Sequential(
(0): NormedLinear(in_features=Z, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=Z, bias=True, act=SimNorm))

(dynamics): Sequential(
(0): NormedLinear(in_features=Z+A, out_features=Z, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=Z, bias=True))

(reward): Sequential(
(0): NormedLinear(in_features=Z+A, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True))

(pi): Sequential(
(0): NormedLinear(in_features=Z, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=2A, bias=True))

(Qs): Vectorized ModuleList(
(0-4): 5 x Sequential(
(0): NormedLinear(in_features=Z+A, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True))))

where S is the input dimensionality, Z is the latent state dimension (512), and A is the action space dimensionality. The total
number of learnable parameters is 5M for both specialists and generalists.

https://github.com/isaac-sim/IsaacGymEnvs/tree/automate
https://github.com/isaac-sim/IsaacGymEnvs/tree/automate
https://github.com/nicklashansen/tdmpc2
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TABLE I. Hyperparameters. We use the same hyperparameters across all objects, and for both specialists and generalists. Our
hyperparameters are adopted from the official implementation of TD-MPC2 without modification.

Hyperparameter Value

Planning
Horizon (H) 3
Iterations 8
Population size 512
Policy prior samples 24
Number of elites 64
Temperature 0.5

Policy prior
Log std. min. −10
Log std. max. 2

Replay buffer
Capacity 1,000,000
Sampling Uniform

Architecture
Encoder dim 256
MLP dim 512
Latent state dim 512
Activation LayerNorm + Mish
Number of Q-functions 5

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 20
Reward prediction coef. 0.1
Value prediction coef. 0.1
Temporal coef. (λ ) 0.5
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1×10−4

Policy prior loss norm. Moving (5%,95%) percentiles
Optimizer Adam
Learning rate 3×10−4

Encoder learning rate 1×10−4

Gradient clip norm 20
Discount factor 0.9
Seed steps 5,000
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