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Abstract001

Emotional validation - explicitly acknowledg-002
ing that a user’s feelings make sense - has003
proven therapeutic value but has received lit-004
tle computational attention. We introduce005
the first three-stage framework for validation006
in dialogue systems, decomposing the prob-007
lem into (i) validating response identification,008
(ii) validation timing detection, and (iii) val-009
idating response generation. To support re-010
search on all three subtasks we release M-011
EDESConv, a 120k English–Japanese mul-012
tilingual corpus created through hybrid man-013
ual–automatic annotation, and M-TESC, a014
multilingual spoken-dialogue test set. For015
timing detection, we propose MEGUMI, a016
Multilingual Emotion-aware Gated Unit for017
Mutual Integration, that fuses frozen XLM-018
RoBERTa semantics with language-specific019
emotion encoders via cross-modal attention and020
gated fusion. MEGUMI shows superior perfor-021
mance on both the M-EDESConv and M-TESC022
datasets. Finally, we benchmark GPT-4.1 nano023
and Llama-3.1 8B on validating response gen-024
eration; few-shot prompting delivers the best025
balance between semantic fidelity, lexical di-026
versity, and empathy-signal coverage, while027
chain-of-thought prompts increase diversity at028
the cost of precision.1029

1 Introduction030

Empathy is a cornerstone of effective hu-031

man–computer communication because it nurtures032

trust, rapport, and sustained engagement in human-033

robot interaction (HRI) and conversational agents.034

Recent studies show that systems capable of modu-035

lating their empathic behavior in real time are better036

trusted and perceived as more helpful by users, un-037

derscoring the practical value of artificial empathy038

(Leite et al., 2013; Morris et al., 2018; Casas et al.,039

2021).040

1All code, data, and models will be released upon accep-
tance.

I am feeling so sad because 
even though I studied so 
hard, I still failed the test...

I understand how you feel. 
That must be really tough.

I’m sorry to hear that.
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Figure 1: Examples of dialogues with validating re-
sponse and non-validating response.

Research on empathetic dialogue has therefore 041

focused on enriching response generation with a 042

spectrum of socio-cognitive signals. Representa- 043

tive directions include leveraging commonsense 044

reasoning (Sabour et al., 2022; Fu et al., 2023), 045

extracting emotion causes (Gao et al., 2021), sim- 046

ulating users’ emotional states (Majumder et al., 047

2020), and modeling speaker personality to tai- 048

lor empathic style (Zhong et al., 2020; Cai et al., 049

2024; Fu et al., 2024). These techniques, often 050

trained on large-scale resources such as Empathet- 051

icDialogues (Rashkin et al., 2018), have markedly 052

improved automatic and human judgments of em- 053

pathy. Furthermore, the effectiveness of artificial 054

empathy has been demonstrated across diverse ap- 055

plications, including education (Mendolia, 2023; 056

Yusuf et al., 2025), marketing (Liu-Thompkins 057

et al., 2022; Hanni-Vaara, 2022), and counselling 058

(Trappey et al., 2022; Lee et al., 2023). 059

Yet conventional “I’m sorry to hear that” re- 060

sponses can still fall short for people who habit- 061

ually suppress emotions or face chronic stressors. 062

Psychotherapy literature highlights emotional vali- 063

dation - a communication technique to recognize, 064

understand, and acknowledge others’ emotional 065

states, thoughts, and actions - as a deeper interven- 066

tion that de-escalates negative affect and strength- 067
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I am feeling so sad because
even though I studied so hard, I
still failed the test...
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Validation Timing Detection

I understand how you feel.
That must be really tough.
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I went to school yesterday.
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I understand how you feel.
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Validating Response Generation

I am feeling so sad because
even though I studied so hard, I
still failed the test...
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I understand how you feel.
That must be really tough.

ListenerOR

It must be so disheartening 
to feel like your hard work 
didn't pay off.

OR

(Head Nodding)

Listener

Listener
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I understand how you feel.
That must be really tough.

Listener
Validating 
Response

Non-Validating 
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That doesn’t sound so bad. 
At least you worked hard.
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Figure 2: Emotional Validation can be subclassified into three subtasks: (1) Validating Response Identification:
Identify whether a response is validating response. (2) Validation Timing Detection: Determine when should the
user be validated by the system, and (3) Validating Response Generation: What kind of validating response should
be generated by the system to provide emotional support to the user.

ens therapeutic alliance (Linehan, 1997). An exam-068

ple dialogues with validating responses and non-069

validating responses showed in Figure 1. Validating070

statements such as “It makes sense that you feel071

frustrated” reliably lower pain intensity in chronic-072

pain patients (Edlund et al., 2015), foster treatment073

adherence in youth mental-health journeys (Was-074

son Simpson et al., 2022), and predict positive emo-075

tional change in dialectical-behaviour therapy ses-076

sions (Carson-Wong et al., 2018), among other ben-077

efits (Lambie and Lindberg, 2016; Daniel, 2023).078

Despite these evidences, computational work on079

emotional validation remains nascent. Existing080

studies rely on hand-crafted phrase lists, making an-081

notation brittle and language-specific, and have so082

far been evaluated almost exclusively in Japanese083

(Pang et al., 2023, 2024b). They also treat vali-084

dation as a monolithic label, leaving unanswered085

questions about how to identify validation, when to086

validate, and what to generate to express contextu-087

ally appropriate validating responses.088

To address these gaps, in this study, we make089

four key contributions as below:090

1. Task formalisation: We propose a three-stage091

framework that decomposes emotional vali-092

dation into validating response identification,093

validation timing detection, and validating re-094

sponse generation, providing clear sub-tasks095

for future benchmarks.096

2. Multilingual corpus: We release the first097

open-source, semi-automatic verified multilin-098

gual dialogue corpus annotated for validation099

phenomena, enabling cross-lingual evaluation100

beyond prior Japanese-only efforts.101

3. MEGUMI: We introduce Multilingual102

Emotion-aware Gated Unit for Mutual Inte- 103

gration (MEGUMI), which fuses monolingual 104

emotional cues with multilingual semantic 105

representations to detect validation timing 106

more accurately. 107

4. EmoValidBench: We present the first bench- 108

mark for validating response generation, pro- 109

viding evaluation scripts, LLM baselines, and 110

empathy-oriented metrics to enable standard- 111

ized comparisons across future models. 112

2 Task Description 113

In this section, we will describe the task necessity 114

for the emotional validation expression in the spo- 115

ken dialogue system. Even though previous stud- 116

ies have shown that validation can be expressed 117

through response generation, there aren’t any for- 118

mal task descriptions until now. Inspired by the 119

theory of validation (Linehan, 1997), we have de- 120

fined the emotional validation in the spoken dia- 121

logue system into three subtasks, i.e. validating 122

response identification, validation timing detection, 123

and validating response generation. The summary 124

of the task description we defined is summarized 125

in the Figure 2. 126

2.1 validating response Identification 127

The first requirement is to decide whether a system 128

utterance is, in fact, validating. Mis-labeling brings 129

risk: inappropriate reassurance or pseudo-empathy 130

can increase user distress2 or alienation (Breslau 131

et al., 1998). Linguistic studies of dialogue acts 132

provide methodological precedents, showing that 133

2https://www.psychiatrictimes.com/view/when-
validation-is-harmful
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automatic classifiers can distinguish supportive acts134

such as “appreciation” or “agreement” (Welivita135

and Pu, 2020; Chen et al., 2022) from neutral turns,136

but accuracy drops when acts overlap semantically137

(Stolcke et al., 2000; Adiani et al., 2023). Valida-138

tion adds further nuance because the same surface139

pattern (e.g., “I see”) may or may not affirm the140

user’s emotion depending on context. Our corpus141

therefore begins with manual labels and expands142

them semi-automatically via a fine-tuned classifier,143

following successful hybrid annotation pipelines144

in emotion research (Canales et al., 2016; Fonteyn145

et al., 2024)146

2.2 validation timing Detection147

Knowing when to validate is as critical as know-148

ing how. Communication studies warn that over-149

frequent or ill-timed empathic moves can be per-150

ceived as insincere, reducing perceived provider151

empathy and therapeutic alliance (Roscoe-Nelson152

et al., 2024; Kuo et al., 2022). Similar timing ef-153

fects emerge in social-robot experiments, where154

repetitive “I understand” statements without ap-155

propriate pauses diminished user rapport (Johan-156

son et al., 2023). Existing end-to-end generators157

seldom account for discourse-level timing; they158

optimise local next-utterance loss and may insert159

multiple empathic markers in rapid succession. We160

cast timing as a sequence-labeling task over the161

the dialogue context, enabling models such as our162

MEGUMI architecture to decide whether the up-163

coming turn warrants validation.164

2.3 validating response Generation165

Finally, the system must produce a response that166

satisfies validation theory (Linehan, 1997). Generic167

empathetic models often interleave advice, per-168

suasion, or question-asking strategies that con-169

flict with unconditional acknowledgment (Welivita170

et al., 2023; Samad et al., 2022). Moreover, vali-171

dation can be expressed verbally and non-verbally;172

head nods, prosodic alignment, and empathic fa-173

cial displays amplify perceived support in commu-174

nications (Linehan, 1997; Johanson et al., 2023;175

Marcoux et al., 2024). Thus, we release the176

EmoValid Benchmark, the first benchmark for val-177

idating response generation. It pairs each user178

turn that requires validation with evaluation scripts179

that measure semantic fidelity, lexical diversity,180

and empathy-signal coverage (see Subsection 5.2).181

We report strong baselines using instruction-tuned182

large language models (GPT-4.1 nano, Llama-183

3.1 8B) under zero-shot, few-shot, and chain-of- 184

thought prompting, which establishes a common 185

test bed for future modeling efforts. 186

3 Dataset Construction 187

We begin with two publicly available English 188

datasets that emphasize affective support. Empa- 189

theticDialogues (ED) contains 24.8 k two-speaker 190

conversations elicited via crowd workers who imag- 191

ined themselves in specific emotional situations 192

(Rashkin et al., 2018). ESConv complements ED 193

by focusing on longer, counselor-style sessions: 1 194

053 multi-turn dialogues in which trained volun- 195

teers comfort users facing real-life stressors (Liu 196

et al., 2021). To enable cross-lingual evaluation, 197

we also implement Japanese ED (Sugiyama et al., 198

2021), which is a 20k two-speaker pseudo dia- 199

logue written by the crowdworker. Meanwhile, as 200

the ESConv does not have any available Japanese 201

version dataset, we produced one using a GPT- 202

4-based workflow. We prompted GPT-4.1-mini3 203

with professional-translator instructions, then post- 204

edited any literal or culturally awkward renderings. 205

Combining the English and Japanese versions of 206

ED and ESConv, we formed the main dataset used 207

in this study, Multilingual-Empathetic Dialogue 208

Emotional Support Conversation (M-EDESConv) 209

dataset. 210

To further evaluate our task in a spoken dialogue 211

scenario, We add the TUT Emotional Storytelling 212

Corpus (TESC) (Oishi et al., 2021), a Japanese 213

two-party, multi-turn spoken-dialogue dataset in 214

which close friends recount personal experiences 215

under eight Plutchik emotion prompts (Plutchik, 216

2001). TESC comprises 247 sessions (≈ 9.2 h). We 217

translate the whole dialogue into everyday English 218

with the same GPT-4 workflow used for Japanese 219

ESConv, yielding multilingual transcripts suitable 220

for the experiments in this study. We refer the 221

multilingual version of this dataset as M-TESC 222

in this study. The summary of all six datasets in 223

this study is presented in the table in Appendix 224

A, and the translation prompts used are shown in 225

Appendix C.1 and C.2. 226

3.1 Annotation of Emotional Validation 227

Given the impracticality of manually annotating 228

all 120k utterances in our multilingual corpus, we 229

adopted a two-stage, hybrid annotation strategy 230

inspired by large-scale emotion datasets (Yang 231

3https://openai.com/index/gpt-4-1/
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et al., 2012). In the first stage, we manually la-232

beled roughly 3000 utterances per source (≈ 2%233

of EmpatheticDialogue and 3% of ESConv), clas-234

sifying each response as either validating or non-235

validating. This yielded 1204 validating and 1663236

non-validating responses in EmpatheticDialogue,237

and 680 validating versus 2258 non-validating re-238

sponses in ESConv. In the second stage, we trained239

a classifier to automatically label the remaining240

data. We frame this as a binary classification task241

using the response as input and the validation la-242

bel as output. We fine-tune the xlm-roberta-large243

model (Conneau et al., 2019a) with a learning rate244

of 1 × 10−5, a batch size of 64, and train for 20245

epochs. Evaluation is performed every 200 steps,246

using the Adam optimizer with L2 regularization247

(weight decay of 0.01). Early stopping is applied248

with a patience of 5 epochs. To ensure high preci-249

sion for the validation class, we apply a confidence250

threshold of 0.75 during inference. The classifier251

achieves a macro-average F1 score of 85.28 and an252

F1 score of 86.67 for the minority (validation) class253

on the manually annotated test set. As part of our254

ablation study, we compare this model against sev-255

eral baselines, including a random baseline, mul-256

tilingual BERT (mBERT)4, LLaMA 3.1 8B5, and257

GPT-4.1-nano6. The comparative results are pre-258

sented in Table 7 in Appendix B.259

Using the trained classifier, we proceed to anno-260

tate the full dataset. To preserve label distribution261

consistency with the manually annotated subset,262

we analyze the prediction confidence scores across263

each sub-dataset. Based on this analysis, we set264

confidence thresholds of 0.90 for ED and 0.95 for265

ESConv to align the automated annotations with266

the original distribution.267

To further assess our task in a spoken dialogue268

setting, we additionally conduct manual annota-269

tion on the TESC dataset. Implementing the270

train/valid/test split with 8:1:1 ratio, the final distri-271

bution of validating and non-validating responses272

across datasets is summarized in Table 6.273

4 Validation Timing Detection274

We cast validation timing detection as a binary clas-275

sification problem: given the dialogue context up to276

the current user turn, decide whether the next sys-277

4https://huggingface.co/google-bert/bert-base-
multilingual-cased

5https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

6https://openai.com/index/gpt-4-1/

Dataset #Validation #Non-Validaiton
M-EDESConv 46002 80551
-train 36714 64540
-val 4652 7867
-test 4636 8144
M-TESC 1052 2028

Table 1: Distribution of dataset in validation and non-
validation

tem response should generate a validating response. 278

Accurate timing requires two complementary infor- 279

mation streams - what the user is saying (semantic 280

content) and how they are feeling (affective cues). 281

The proposed Multilingual Emotion-aware Gated 282

Unit for Mutual Integration (MEGUMI) architec- 283

ture, shown in Diagram 3, fuses language-agnostic 284

semantics with language-specific emotion repre- 285

sentations through a gated, cross-modal pipeline 286

that can be trained end-to-end from text utterance 287

alone. 288

4.1 Validation Timing Detection Modal 289

Semantic backbone The core encoder of 290

MEGUMI is XLM-RoBERTa-large (1024 h units), 291

chosen for its strong zero-shot transfer across 100+ 292

languages. We freeze its parameters to preserve 293

multilingual lexical knowledge and to curb compu- 294

tational cost, passing only the [CLS] token repre- 295

sentation to downstream modules. 296

Language-specific emotion channels Research 297

shows that emotion taxonomies and lexical cues 298

vary by language; a single encoder therefore 299

risks conflating culture-specific signals (Takenaka, 300

2025). For English utterances, we leverage 301

ModernBERT-large7 fine-tuned on GoEmotions - a 302

58 k-instance Reddit corpus with 27 fine-grained 303

labels (Demszky et al., 2020). Japanese turns are 304

processed by LUKE-Japanese-large adapted to the 305

WRIME writer-emotion dataset8. The emotion 306

[CLS] vector from the relevant channel is concate- 307

nated with the frozen semantic [CLS]. 308

Emotion-enhanced multilingual attention As 309

both English and Japanese cues are present in the 310

training batches, we apply an emotion-enhanced 311

multilingual attention block inspired by the Multi- 312

modal Transformer (Tsai et al., 2019). The module 313

projects one lingual’s concatenated vector as query 314

7https://huggingface.co/cirimus/modernbert-large-go-
emotions

8https://huggingface.co/Mizuiro-sakura/luke-japanese-
large-sentiment-analysis-wrime
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I understand how you feel. 
That must be really tough.
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Multilingual Emotion-aware Gated Unit for Mutual Integration (MEGUMI)

Figure 3: Overall proposed architecture in this study. We proposed a Multilingual Emotion-aware Gated Unit for
Mutual Integration (MEGUMI) for the Validation Timing Detection Task.

and the other as key/value, computes scaled dot-315

product attention, and returns two residual-normed316

streams. With the existence of both Japanese and317

English emotion channels, it allows MEGUMI to318

learn latent alignments between semantic patterns319

(e.g., “I lost my job”) and affective priors (e.g., fear320

vs. anger) from a multilingual perspective.321

Gated Multimodal Unit Simply concatenating322

streams can swamp minority cues; we therefore323

integrate them through a Gated Multimodal Unit,324

which has proven effective in image–text genre325

classification and multimodal emotion recognition326

(Arevalo et al., 2017). A sigmoid gate h decides,327

per sample, how much of the emotion-projected328

vector versus the semantic-projected vector to pass329

forward, producing a 768-d fused representation:330

z = hzsemantic + (1− h)zemotion331

The fused vector is fed to a dropout–linear softmax332

head for the binary labels validate/ non-validate.333

To counter class imbalance we weight the cross-334

entropy loss by inverse-frequency factors computed335

from the training split. Reproducibility is ensured336

via deterministic seeds, and all components except337

the text encoder are fine-tuned.338

4.2 Validation Timing Detection Result339

We fine-tuned all models on the M-EDESConv cor-340

pus with a learning rate of 1×10−5, a batch size of341

64 (with gradient accumulation over 8 steps), and a342

20-epoch cap. To regularise training we combined343

L2 normalization (weight decay rate of 0.01) with344

early stopping after five stagnant validation checks. 345

Validation was run every 250 steps and the best 346

checkpoint was selected by F1. Five random seeds 347

were used throughout to mitigate variance. 348

4.2.1 Baselines 349

We benchmarked against (i) a random classi- 350

fier, (ii) two fine-tuned multilingual language 351

models, mBERT and XLM-RoBERTa (Conneau 352

et al., 2019a), and (iii) instruction-tuned large lan- 353

guage models: Llama-3.1.1 8B-Instruct and GPT- 354

4.1 nano, each in zero-shot and 3-shot prompt- 355

engineering regimes, refer to Appendix C.3. Larger 356

70B Llama variants were excluded owing to real- 357

time memory constraints. 358

4.2.2 Evaluation Metrics 359

In the context of everyday conversation, when a 360

system chooses to validate matters more than how 361

often it does so. Consequently, we treat target- 362

class precision - the proportion of predicted val- 363

idate turns that truly warrant validation - as the 364

principal metric. A model that indiscriminately 365

labels many turns as validating (high recall) risks 366

producing hollow or repetitive acknowledgments 367

that undermine perceived empathy; hence a high F1 368

score alone can be misleading if it masks low pre- 369

cision. We therefore report (i) validation-precision 370

as the primary indicator of conversational appropri- 371

ateness, (ii) validation-F1 to capture the precision- 372

recall trade-off, and (iii) macro averages across 373

both classes to ensure that performance on the ma- 374

jority non-validate class is not neglected. 375
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M-EDESConv M-TESC
Marco Average Target Class Marco Average Target Class

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1
Random Baseline 50.20 50.21 49.23 36.45 50.35 42.30 50.26 50.29 49.03 34.41 50.02 40.77
mBERT 62.07 62.63 59.10 45.16 74.15 56.19 53.28 53.39 53.29 38.29 41.35 39.76
XLM-RoBERTa 62.78 63.13 59.03 45.19 76.96 57.01 55.29 55.74 55.10 40.24 50.00 44.60
Llama 3.1 8b
- Zero-shot 57.33 52.81 37.18 37.72 93.75 53.79 56.84 54.04 40.76 36.31 89.58 51.68
- 3-shot 57.36 52.40 35.69 37.49 94.84 53.73 55.93 51.38 31.53 34.81 96.29 51.13
GPT 4.1 Nano
- Zero-shot 58.42 57.74 51.68 41.43 79.25 54.41 56.71 57.31 54.04 39.95 66.46 49.90
- 3-shot 58.87 56.39 46.75 40.02 87.04 54.83 58.34 57.65 50.14 39.01 80.93 52.65
MEGUMI (Ours) 63.94 65.02 63.71 51.07 66.11 57.62 56.86 57.36 56.89 41.44 48.70 44.78

Table 2: Results of validation timing detection task in multilingual setting [%]

Criteria Macro Average Target Class
EE EEMA GMU Precision Recall F1-Score Precision Recall F1-Score

XLM-RoBERTa - x x 56.78 55.43 47.29 39.60 82.42 53.50
+ Mono-EN EN x x 57.21 57.40 57.27 45.10 48.23 46.61
+ Mono-JP JP x x 57.99 58.63 56.86 43.97 62.88 51.75
+ Multi-Concat Both x x 62.73 63.34 59.80 46.75 73.86 57.26
+ Multi-EEMA Both v x 62.83 63.85 62.48 49.70 65.31 56.45
MEGUMI (Ours) Both v v 63.94 65.02 63.71 51.07 66.11 57.62

Table 3: Ablation results for validation-timing detection, showing the impact of adding Emotion Embedding (EE),
Emotion-Enhanced Multilingual Attention (EEMA), and the Gated Multimodal Unit (GMU) on both macro-average
and target-class precision, recall, and F1-score [%].

4.2.3 Results376

Table 2 shows that our MEGUMI lifts precision377

to 51.07% - a relative improvement of +5.88%378

over the best baseline (45.19% from the XLM-379

RoBERTa) on the target validation class. More-380

over, the MEGUMI model attains a macro-F1 of381

63.71%, exceeding the strongest traditional base-382

line (mBERT) by +4.61 and the XLM-RoBERTa383

by +4.68. While GPT-4.1 nano and Llama 3.1 8B384

exhibit recall above 87% in 3-shot mode, their pre-385

cision collapses to 40%, corroborating evidence386

that zero-shot LLMs over-predict minority classes.387

MEGUMI therefore offers a superior balance, vali-388

dating when appropriate rather than validating al-389

ways. As an additional understanding on the model390

performance, we also reported the result for mono-391

lingual tasks in Appendix D.392

Without additional fine-tuning, the same check-393

points were evaluated on M-TESC, a spontaneous394

spoken-dialogue corpus. All systems suffer do-395

main drift, yet MEGUMI remains top with 56.9%396

macro F1 and the highest validation-precision397

(41.4%). These findings underline the benefit of398

cross-lingual pre-training for speech-text transfer,399

observed previously for XLM-RoBERTa-style en-400

coders (Conneau et al., 2019b).401

4.2.4 Ablation Study 402

To disentangle architectural choices we incre- 403

mentally removed (i) Emotion Embeddings (EE), 404

(ii) the Emotion-Enhanced Multilingual Attention 405

(EEMA), and (iii) the Gated Multimodal Unit 406

(GMU). The overall ablation study result shown in 407

Table 3. 408

From the ablation study, we found that adding 409

either monolingual emotion channel (+Mono-EN, 410

+Mono-JP) raises target Precision by 4-7% over 411

text-only, confirming that language-specific affect 412

encoders inject useful priors. In addition, sim- 413

ple concatenation of both channels adds a further 414

+2.5%, but replacing it with EEMA yields an addi- 415

tional +2.7% precision by aligning semantics and 416

affect bidirectionally. Last but not least, incorporat- 417

ing the GMU lifts precision another +1.4%, show- 418

ing that dynamic gating helps the model suppress 419

noisy or redundant cues. 420

5 Validating Response Generation 421

We position validating response generation as a 422

stand-alone benchmark task, with the introduction 423

of EmoValidBench, that tests whether a system can 424

produce a concise, theory-consistent acknowledg- 425

ment once the dialogue context has been flagged as 426

requiring validation. This section details the bench- 427

mark design, experimental protocol, automatic met- 428
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Languages Models Traits Acc. BA. F1

English RoBERTa
ER 84.76 84.13 84.70
IP 84.12 85.35 84.23
EX 94.81 92.46 94.86

Japanese LUKE Japanese
ER 73.74 72.64 73.52
IP 79.09 79.29 79.22
EX 88.82 77.37 88.27

Both XLM-RoBERTa
ER 77.88 76.66 77.61
IP 81.28 82.13 81.42
EX 91.82 85.08 91.69

Table 4: Evaluation results of the empathetic signal
predictors. Acc., BA., and F1 refer to accuracy, balanced
accuracy, and weighted F1 score, respectively.

rics, and baseline results.429

5.1 Benchmark construction430

From the M-EDESConv corpus we extract every431

user utterance whose gold timing label is validate =432

true. Each of these turns is paired with one or more433

human validating replies that serve as references.434

English inputs are pre-processed with the Moses435

tokenizer9, while Japanese inputs are segmented by436

MeCab + UniDic10 to ensure comparability across437

BLEU and Distinct-n implementations.438

We prompted Llama-3.1 8B and GPT-4.1 nano in439

Zero-shot (only the task definition), 3-shot (three la-440

belled dialogue exemplars per language), and Zero-441

shot CoT (“Let’s think step by step” preamble)442

(Kojima et al., 2022), see Appendix C.4. No model443

parameters were updated.444

445

5.2 Evaluation metrics446

To comprehensively assess validating response gen-447

eration, we employ a suite of complementary met-448

rics that capture semantic fidelity, lexical diversity,449

and empathetic signal presence.450

Semantic Fidelity. We utilize BLEU (Papineni451

et al., 2002) and BERTScore (Zhang et al., 2019) to452

evaluate the semantic alignment between generated453

responses and reference texts. BLEU measures n-454

gram overlap, providing insights into surface-level455

similarity, while BERTScore leverages contextual456

embeddings to assess deeper semantic correspon-457

dence, reporting precision, recall, and F1 scores.458

Lexical Diversity. To quantify the diversity of459

generated language, we calculate Distinct-1 (D1)460

and Distinct-2 (D2) (Li et al., 2015) , which repre-461

sent the ratios of unique unigrams and bigrams to462

9https://github.com/luismsgomes/mosestokenizer
10https://taku910.github.io/mecab/

the total number of tokens. Higher values indicate 463

a broader range of lexical choices, reflecting more 464

varied and potentially more engaging responses. 465

Empathetic Signal Coverage. Inspired by prior 466

work on empathetic communication (Lee et al., 467

2022; Fu et al., 2024), we incorporate three cate- 468

gories of empathetic signals: IP (interpretations), 469

EX (explorations), and ER (emotional reactions). 470

Specifically, IP represents expressions of acknowl- 471

edgments or understanding of the interlocutor’s 472

emotion or situation. EX represents expressions 473

of active interest in the interlocutor’s situation; ER 474

represents expressions of explicit emotions. For 475

the English version, we follow the official anno- 476

tation schema11 and apply three RoBERTa (Liu 477

et al., 2019) based classifiers to identify whether 478

a response implies a certain signal individually. 479

For Japanese, we translate the English corpus us- 480

ing the NLLB-200-3.3B model (Costa-Jussà et al., 481

2022)12, followed by classification with LUKE13 482

based models. For the multilingual setting, we use 483

XLM-RoBERTa (Conneau et al., 2019a) followed 484

by two linear layers as a unified classifier across 485

languages. Evaluations results of the empathetic 486

signal predictors is summarized in the Table 4. 487

5.3 Results 488

Table 5 presents scores averaged over five seeds. 489

Semantic fidelity: 3-shot GPT-4.1 leads on 490

BLEU for both languages (13.31 in English, 22.9 491

in Japanese, 17.8 in Multilingual) and attains the 492

top BERT-F across splits, suggesting that minimal 493

in-context examples suffice to anchor the model to 494

reference phrasing. 495

Lexical diversity: CoT increases Distinct-2 by 496

+2–3% relative to 3-shot in every language, corrob- 497

orating prior reports that reasoning traces encour- 498

age richer wording (Wei et al., 2022). However, 499

BLEU falls by ≈ 3%, indicating a diversity–fidelity 500

tension. 501

Empathy coverage: Few-shot prompts yield the 502

best balanced profile: GPT-4.1 3-shot scores 77.6 503

IP and 60.8 ER in Japanese, outperforming zero- 504

shot recall without the over-generation seen in CoT. 505

Llama-3.1 trails by 2% in ER but matches IP on 506

English. 507

11https://github.com/behavioral-data/Empathy-Mental-
Health

12https://huggingface.co/facebook/nllb-200-3.3B
13https://huggingface.co/studio-ousia/luke-japanese-base
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Semantics Diversity Empathy
BLEU BERTPre BERTRec BERTF1 D1 D2 ER IP EX

English
Llama 3.1 8b
- Zero-shot 13.20 87.74 89.04 88.36 4.35 23.94 62.37 76.11 68.73
- 3-shot 13.18 87.86 89.11 88.45 4.51 24.93 62.01 76.73 67.59
GPT 4.1 Nano
- Zero-shot 12.72 87.78 88.92 88.33 5.02 25.60 62.73 75.65 69.10
- 3-shot 13.32 87.89 89.22 88.53 4.59 22.88 60.71 75.52 67.75
- CoT 12.70 87.34 88.96 88.13 4.77 27.01 62.37 75.79 67.86
Japanese
Llama 3.1 8b
- Zero-shot 18.22 88.17 90.24 89.15 5.23 23.67 54.73 72.07 61.38
- 3-shot 19.76 89.22 89.98 89.55 5.79 24.97 54.67 74.27 61.10
GPT 4.1 Nano
- Zero-shot 19.84 88.52 90.66 89.54 4.56 18.40 53.34 76.77 61.62
- 3-shot 22.92 89.82 90.60 90.16 5.00 20.33 57.70 77.60 60.83
- CoT 13.91 86.90 89.47 88.14 7.00 27.74 49.90 78.09 61.35
Multlingual
Llama 3.1 8b
- Zero-shot 15.56 87.82 89.60 88.67 4.88 23.96 52.90 70.94 67.14
- 3-shot 15.80 89.11 89.03 89.03 5.52 25.97 54.66 71.54 69.59
GPT 4.1 Nano
- Zero-shot 16.14 88.06 89.75 88.87 4.80 22.37 51.95 73.17 69.97
- 3-shot 17.77 88.61 89.97 89.26 4.58 21.42 52.32 72.29 68.76
- CoT 13.44 87.15 89.19 88.13 4.83 24.53 50.72 73.30 71.21

Table 5: Validating response generation results across English, Japanese, and multilingual settings [%]

6 Conclusions508

In this work, we have presented the first compre-509

hensive treatment of emotional validation within di-510

alogue systems, spanning task formalisation, data,511

models, and evaluation. We defined three clear sub-512

tasks - validating response identification, validation513

timing detection, and validating response genera-514

tion - and introduced M-EDESConv and M-TESC,515

the first large-scale multilingual corpora annotated516

for validation phenomena in both text-based and517

spoken settings. Our proposed MEGUMI architec-518

ture leverages cross-lingual pretrained semantics519

together with language-specific emotion encoders,520

unified by cross-modal attention and a gated fusion521

mechanism, to accurately determine when a sys-522

tem should validate a user’s feelings. This model523

achieves substantial gains in precision and macro524

F1 over strong baselines, and generalises effectively525

from written chat to spontaneous speech.526

We further explored the capabilities of off-the-527

shelf LLMs in generating validating responses,528

showing that careful prompt design - particularly529

few-shot exemplars - yields the best trade-off530

between surface overlap, lexical diversity, and531

empathy-signal coverage. Our findings underline532

that while LLMs can produce plausible validating533

utterances, the balance between creative expression534

and clear acknowledgment of emotion remains sen-535

sitive to the choice of prompting strategy.536

Looking ahead, our work opens multiple direc- 537

tions for future research. First, extending emo- 538

tional validation to a broader range of languages 539

- including dialectal and culturally nuanced vari- 540

ants - would enhance the applicability of validation- 541

aware systems across diverse global populations. 542

Second, incorporating non-verbal modalities such 543

as prosody, gesture, and facial expression, along- 544

side multimodal pretraining, could enable more 545

naturalistic and contextually appropriate validation 546

behaviours (Linehan, 1997). Finally, deploying 547

validation-capable agents in real-world interactive 548

settings through embodied conversational agents 549

or robots. Such deployments would enable the 550

assessment of perceived authenticity, trustworthi- 551

ness, and therapeutic benefit across a variety of 552

scenarios, including emotional support (Erel et al., 553

2022), interviews (Pang et al., 2024a), and attentive 554

listening tasks (Lala et al., 2017). Further, agent 555

embodiment and appearance - ranging from screen- 556

based virtual characters (Lee, 2023) to physically 557

humanoid androids (Kawahara, 2019; Pang et al., 558

2025) - may modulate user perceptions of valida- 559

tion and should be systematically explored. 560

Limitations 561

Despite these contributions, our study has several 562

limitations. First, the scope of our curated data is 563

confined to English and Japanese; other languages 564
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and cultural norms around emotional validation565

may exhibit different linguistic cues and pragmatic566

conventions that our current models cannot cap-567

ture. Second, although we bootstrap annotation568

with a semi-automatic classifier to scale to 120 k569

turns, the reliance on confidence-filtered pseudo-570

labels carries the risk of residual errors and bias-571

ing downstream models, especially in low-resource572

or edge-case contexts. Third, our validating re-573

sponse generation experiments rely exclusively on574

automatic metrics and empathy-signal classifiers;575

without human judgements of perceived empathy,576

naturalness, and user satisfaction, we cannot fully577

gauge the real-world effectiveness or potential un-578

intended effects of generated replies.579

Moreover, our timing-detection model operates580

solely on text transcripts and omits prosodic, acous-581

tic, and visual cues known to inform validation in582

face-to-face interaction. The freeze of the XLM-583

RoBERTa backbone for computational tractabil-584

ity also precludes domain-specific fine-tuning that585

might further improve performance, and hardware586

constraints prevented exploration of larger lan-587

guage models beyond 8b parameters. Finally, while588

our experiments show promising performance in589

non-clinical dialogue, deploying emotional vali-590

dation in sensitive domains such as mental-health591

support will require rigorous safety protocols, ex-592

pert oversight, and continuous monitoring to avoid593

harm or overreliance on automated empathy.594
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Appendix907

A Base Corpora908

Table 6 summarises the size, modality and inter-909

actional profile of the three corpora that consti-910

tute our base dataset. EmpatheticDialogues (ED)911

offers the broadest coverage with 24.8 k English912

and 20 k Japanese text conversations; yet these913

crowdsourced exchanges are succinct - just 4.3 and914

2.0 turns on average, with roughly 15–25 tokens915

per utterance - because speakers were asked to re-916

count short personal stories to a listener who re-917

sponds empathetically. ESConv contributes 1.3 k918

expert-annotated emotional-support dialogues per919

language. Although an order of magnitude smaller920

than ED, each session resembles real counselling,921

spanning ≈ 14 turns; Japanese utterances are no-922

tably longer (≈ 22 tokens) than English (≈ 15),923

matching prior observations on script complexity924

in bilingual corpora. Finally, the TUT Emotional925

Storytelling Corpus (TESC) introduces the spo-926

ken modality with 247 transcribed sessions per lan-927

guage. The oral setting yields markedly longer928

utterances (≈ 35 tokens in English, 41 in Japanese)929

while keeping the turn budget concise at eight per930

dialogue.931

B Validating Response Identification932

Table 7 reports the performance of several auto-933

matic classifiers that were used to propagate validat-934

ing response labels from a manually annotated seed935

set to the full M-EDESConv corpus. All scores936

are averaged over five random initialisations; we937

present both macro-averaged metrics (capturing938

overall label balance) and scores for the minority939

validate class, which is the critical signal for down- 940

stream tasks. 941

The fine-tuned XLM-RoBERTa model clearly 942

emerges as the most reliable annotator. It achieves 943

85.3% macro F1 and 86.7% target-class F1, out- 944

performing the next-best baseline (mBERT) by 945

roughly eleven points on each metric. Precision 946

gains (+10.4 pp over mBERT) indicate fewer false 947

positives, while the high recall of 93.6% demon- 948

strates that the model rarely misses genuine validat- 949

ing utterances - essential for minimising label noise. 950

Instruction-tuned LLMs require careful prompting 951

to approach Pre-trained Language Model (PLM) 952

performance. In zero-shot mode, GPT-4.1 nano 953

delivers respectable macro F1 (58.0%) but suffers 954

from low precision (42.7%) on the validation class, 955

leading to many spurious positives. Providing three 956

in-context examples narrows the gap (macro F1 = 957

66.6%), yet precision (50.4%) still trails far behind 958

XLM-RoBERTa. Llama-3.1 8B exhibits a comple- 959

mentary error profile: three-shot prompting attains 960

the highest recall in the table (97.9%) but collapses 961

precision to 33.8%, effectively labelling almost ev- 962

ery response as validating and therefore offering 963

little discriminative value. 964

These results motivated our choice of the 965

XLM-RoBERTa classifier for corpus-wide pseudo- 966

labelling. To mitigate residual noise we retained 967

only predictions with confidence 0.90, yielding 968

a class distribution that closely mirrors the manu- 969

ally annotated subset (described in 3.1). Although 970

LLMs currently lag behind supervised PLMs for 971

this task, their high recall could still prove useful in 972

an ensemble or active-learning setting - an avenue 973

we leave for future work. 974

C Prompts 975

C.1 English-Japanese translation 976

You are a professional Japanese translator. For the 977

following English utterance, please translate into 978

natural, spoken-style daily Japanese as a native 979

speaker would say. You should avoid literal word- 980

for-word renderings. 981

C.2 Japanese-English translation 982

You are a professional English translator. For 983

the following Japanese utterance, please translate 984

into natural, spoken-style daily English as a na- 985

tive speaker would say. You should avoid literal 986

word-for-word renderings. 987
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Dataset Modality #dialogue #utterance Average #word Average #turns
EmpatheticDialogues
-English Text 24.8k 82k 15.2 4.31
-Japanese Text 20k 80k 25 2
ESConv
-English Text 1.3 k 17.6k 15.19 13.62
-Japanese Text 1.3 k 17.6k 21.84 13.62
TESC
-English Speech 247 3080 34.85 8
-Japanese Speech 247 3080 41 8

Table 6: Statistics of the English and Japanese splits of the three base corpora employed in this study

Macro Average Target Class
Precision Recall F1-Score Precision Recall F1-Score

Random Baseline 50.00 50.00 48.38 32.45 50.13 39.40
mBERT 74.33 74.51 74.30 70.24 76.32 73.15
Llama 3.1 8b
- Zero-shot 54.85 53.39 41.04 34.37 85.61 49.04
- 3-shot 61.03 52.77 32.18 33.82 97.88 50.27
GPT 4.1 Nano
- Zero-shot 64.49 65.04 57.98 42.71 85.19 56.89
- 3-shot 67.21 69.57 66.57 50.36 74.60 60.13
XLM-RoBERTa 86.42 85.30 85.28 80.66 93.64 86.67

Table 7: Results of validating response identification task (automatic annotation) [%]

C.3 Validation Timing Detection988

Definition of validation: Validation is a com-989

munication technique, where we recognize,990

understand, and acknowledge others’ emotional991

states, thoughts, and actions.992

993

Please classify each utterance into whether a994

validating response should be generated. Return995

validate if needed to generate a validating response996

and non-validate if not necessary to generate997

(meaning that it will generate a non-validating998

response)999

1000

Followed by the three examples dialogues with1001

validating response, and another three examples1002

dialogues with non-validating response in each lan-1003

guage, respectively.1004

C.4 Validating Response Generation1005

Definition of validation: Validation is a com-1006

munication technique, where we recognize,1007

understand, and acknowledge others’ emotional1008

states, thoughts, and actions.1009

1010

You should act as a listener, in speech conversa-1011

tions. Please generate a validating response for the1012

given utterances from the speaker. The generated1013

response should be a validating response. You1014

should only respond with a validating response,1015

excluding other information (without Listener:).1016

1017

Followed by three examples dialogues with validat- 1018

ing response in each language, respectively. Let’s 1019

think step by step. 1020

D Monolingual validation timing 1021

Detection Results 1022

Table 8 compares English-only and Japanese-only 1023

models on the M-EDESConv test split as well as on 1024

the out-of-domain spoken M-TESC corpus. Three 1025

observations stand out. 1026

Supervised PLMs outperform prompted LLMs 1027

on written chat. For both languages, fine-tuned 1028

XLM-RoBERTa offers the best macro F1 on M- 1029

EDESConv (62.2% EN, 60.8% JA) and achieves 1030

the highest validation-class F1 among the baseline 1031

encoders. The gains come mainly from higher pre- 1032

cision: 47–48%, compared with 42–45% for BERT 1033

variants. This confirms that domain-specific fine- 1034

tuning is still advantageous when timing accuracy 1035

is critical. 1036

Prompted LLMs trade precision for recall. 1037

Instruction-tuned models such as GPT-4.1 nano 1038

and Llama-3 8 B show markedly different error pro- 1039

files. With three in-context examples, both LLMs 1040

boost recall beyond 95% in English and Japanese, 1041

but precision drops to the mid-30% range, driving 1042

overall F1 well below that of supervised PLMs. 1043

Zero-shot prompting moderates this effect, yet pre- 1044
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M-EDESConv M-TESC
Marco Average Target Class Marco Average Target Class

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1
English
Random Baseline 50.47 50.51 49.40 35.83 50.59 41.95 50.14 50.15 48.84 34.29 50.27 40.76
BERT 62.75 63.54 59.74 45.16 74.15 56.19 53.28 53.39 53.29 38.29 41.35 39.76
ModernBERT 62.07 62.63 59.10 44.94 75.02 56.27 53.05 53.31 52.80 37.67 46.77 41.73
XLM-RoBERTa 63.51 64.74 62.22 47.24 70.38 56.57 55.22 55.73 54.83 39.94 52.09 45.21
Llama 3.1 8b
- Zero-shot 57.43 54.09 40.90 37.55 90.54 53.08 57.95 57.07 49.07 38.55 81.64 52.37
- 3-shot 58.52 52.24 33.75 36.45 96.47 52.91 58.40 52.58 34.15 35.41 95.93 51.73
GPT 4.1 Nano
- Zero-shot 59.41 59.71 55.36 42.53 74.43 54.13 55.44 56.03 53.74 39.29 60.80 47.73
- 3-shot 58.92 59.61 56.69 43.19 68.49 52.98 55.37 55.96 53.70 39.24 60.57 47.62
MEGUMI (Ours) 61.76 62.71 61.67 48.40 60.99 53.97 58.65 58.28 58.41 45.07 41.56 43.24
Japanese
Random Baseline 49.86 49.85 49.01 37.23 50.09 42.71 50.38 50.42 49.22 34.54 49.77 40.77
BERT 61.51 61.43 57.35 44.83 76.57 56.61 56.60 57.33 55.67 40.90 58.56 48.16
ModernBERT 61.77 59.17 51.15 42.02 86.48 56.67 55.01 55.35 51.51 38.18 66.92 48.62
XLM-RoBERTa 62.25 62.98 60.76 47.52 69.73 56.56 54.60 55.00 54.39 39.45 49.05 43.73
Llama 3.1 8b
- Zero-shot 56.43 50.87 30.98 37.79 97.82 54.51 58.48 51.26 29.75 34.74 98.21 51.33
- 3-shot 61.51 50.69 29.22 37.69 99.44 54.67 64.74 50.66 27.07 34.46 99.85 51.23
GPT 4.1 Nano
- Zero-shot 55.97 54.70 47.03 40.28 81.51 53.91 57.68 57.83 52.48 39.63 74.68 51.78
- 3-shot 58.25 53.61 39.67 39.28 99.94 55.22 60.02 56.24 43.38 37.53 91.41 53.21
MEGUMI (Ours) 63.67 64.22 61.20 48.83 75.87 59.42 57.49 58.37 57.09 41.35 55.84 47.51

Table 8: Results of validation timing detection task in monolingual setting [%]

cision remains 8–10 pp lower than XLM-R. Thus,1045

without additional control signals, LLMs tend to1046

“over-validate,” echoing the multilingual findings1047

in the main paper.1048

MEGUMI narrows the domain gap. When re-1049

stricted to a single language, our MEGUMI detec-1050

tor retains its advantage on spontaneous speech.1051

On M-TESC it delivers the highest macro F1 in1052

both English (58.4%) and Japanese (57.1%), out-1053

performing all monolingual baselines by 2–3 pp1054

despite only moderate gains on M-EDESConv. The1055

improvement stems primarily from better precision1056

in the noisier spoken setting (45.1% EN, 41.4%1057

JA), suggesting that MEGUMI’s gated fusion of1058

semantic and affective cues remains beneficial even1059

without cross-lingual context.1060
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