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Abstract

This paper presents an exploration of preference learn-001
ing in text-to-motion generation. We find that current002
improvements in text-to-motion generation still rely on003
datasets requiring expert labelers with motion capture sys-004
tems. Instead, learning from human preference data does005
not require motion capture systems; a labeler with no ex-006
pertise simply compares two generated motions. This is007
particularly efficient because evaluating the model’s out-008
put is easier than gathering the motion that performs a de-009
sired task (e.g. backflip). To pioneer the exploration of this010
paradigm, we annotate 3,528 preference pairs generated by011
MotionGPT, marking the first effort to investigate various012
algorithms for learning from preference data. In partic-013
ular, our exploration highlights important design choices014
when using preference data. Additionally, our experimental015
results show that preference learning has the potential to016
greatly improve current text-to-motion generative models.017
Our code and dataset will be publicly available to further018
facilitate research in this area.019

1. Introduction020

Human motion generation [2, 6, 12, 15, 19, 27, 30, 33, 44,021
47–51] is a profoundly pertinent task with extensive appli-022
cability in computer animation, movie production, gaming,023
and robotics. However, current motion generation research024
relies on relatively modest datasets compared to language025
tasks, as expert labelers with specialized motion capture026
systems are costly and labor-intensive. Due to the lack of027
large-scale data, these models are poorly aligned with the028
text prompt [19, 47, 51].029

Learning from preference data [26, 32, 54] has emerged030
as a powerful novel training paradigm in cases where eval-031
uation proves simpler than generation. With a simple data032
collection pipeline where layman labelers compare two mo-033
tion sequences, preference data gives us extremely cost-034
effective labels to improve motion generation models with-035
out expert labelers.036

While learning from preference data has excelled in do-037

mains abundant with datasets, particularly in language tasks 038
benefiting from ample and high-quality data, its application 039
in fields constrained by limited, multi-modal data presents 040
a unique challenge. The current landscape of learning from 041
preference data is rife with intricate engineering details and 042
subtle design choices, often concealed within implementa- 043
tions and validated solely through empirical experimenta- 044
tion [26, 36, 40, 53]. Yet, there are currently no existing mo- 045
tion datasets tailored for exploring preference learning tech- 046
niques. As a result, initiatives to extend preference learn- 047
ing to these low-data, multi-modal setups remain absent, 048
for they lack empirical evidence to substantiate the intricate 049
design decisions pivotal for applying preference learning in 050
motion generation. This absence underscores an intriguing 051
gap in our understanding and presents an exciting oppor- 052
tunity to investigate how preference learning performs in 053
motion generation tasks where data is scarce. 054

Previous endeavors address data scarcity by aligning to 055
large language models’ (LLMs) rich representation [19, 51]. 056
While this approach transfers some of the compositional 057
structure of language, it nonetheless requires a large dataset 058
of text and motion pairs, failing to circumvent the data issue. 059
Other methods resort to pseudo-labeled data [21] to off- 060
set the dearth of large-scale datasets in motion generation. 061
However, such approaches often introduce noisy learning 062
signals that may amplify problems, such as perceptually un- 063
realistic motions. Alternatives involve injecting noise into 064
existing labels and learning from the resulting ranked gen- 065
erations [41]. Nonetheless, this approach neglects training 066
on the actual policy distribution, leading to a distributional 067
gap wherein the reward model is not trained to supervise the 068
actual policy. 069

We classify existing methodologies according to the ap- 070
proximations employed to represent the preference distribu- 071
tion. In particular, current methods make one or both of the 072
following approximations. First, they assume that pairwise 073
preferences can be substituted by a scalar reward. In par- 074
ticular, they employ the Bradley-Terry probabilistic model 075
[5] to connect scalar rewards to preferences. Second, they 076
assume that a reward model trained with the Bradley-Terry 077
model generalizes so that it can accurately evaluate sam- 078
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Figure 1. Text-to-Motion Generation with Human Preference. We gather preferences over generated completion (i.e., motion) pairs
and use them to finetune MotionGPT. In preference learning, the likelihood of preferred completion is increased while that of dispreferred
completion is decreased. We explore two types of practical algorithms for preference learning. First, RLHF trains in an online manner;
it trains a reward model on the data and uses it to perform RL on MotionGPT. Second, DPO trains in an offline manner with supervised
learning; it directly performs MLE on the data. The online/offline aspect is related to whether or not the policy performs exploration, i.e.,
training on completions outside of the preference dataset.

ples from the policy. Notably, it uses reinforcement learn-079
ing (RL) to finetune against the reward model. While re-080
inforcement learning from human feedback (RLHF) makes081
both assumptions, direct preference optimization (DPO) by-082
passes the RL step. RLHF [26] trains a reward model in a083
supervised way on the preference data, then finetunes the084
policy by optimizing against that reward model using rein-085
forcement learning. In contrast, DPO [28] directly finetunes086
the preference data in a supervised manner using cross-087
entropy. DPO is a simpler algorithm, yet it lacks a crucial088
element found in online RL-based algorithms: exploration.089
By training a reward model, we can generalize to unseen090
samples. Accordingly, our policy can generate samples out-091
side of the preference dataset (i.e., exploration). In other092
words, RLHF allows us to get a training signal where the093
reward model generalizes via trial and error, thereby acquir-094
ing more information. Conversely, DPO is limited to two095
points within the data, optimizing to maximize one while096
minimizing the other.097

We explore the aforementioned methods along their vari-098
ants, and summarize our contribution as follows:099

1. We annotate 3, 528 preference pairs generated by Mo-100
tionGPT [19]. Additionally, we provide a degree of pref-101
erence for each choice.102

2. We are the first to demonstrate effective implementa-103
tion of preference learning on motion generation models.104
Our results show that labelers exhibit a significant pref-105

erence for outputs from MotionGPT when trained with 106
preference data, a trend that persists across temperatures 107
ranging from 1.0 to 2.0. 108

3. Our findings indicate that the scarcity of large-scale text- 109
motion pairs leads to a propensity for the reward model 110
to overfit. Consequently, this overfitting hampers its 111
ability to accurately assess outputs generated by Mo- 112
tionGPT. In light of this, we propose the adoption of 113
DPO, a method that circumvents the optimization over 114
a reward model, thereby avoiding reward hacking. 115

4. We find that labels characterized by a pronounced degree 116
of preference significantly contribute to the observed en- 117
hancement in R-precision. This suggests that the differ- 118
ential quality of preference annotations plays a pivotal 119
role in driving the efficacy of the model. 120

We organize this paper as follows. We present related works 121
in Sec. 2. Our work finetunes upon MotionGPT [19], which 122
we present in Sec. 3. We detail the implementation of our 123
data collection pipeline alongside specific design details for 124
RLHF and DPO in Sec. 4. Experimental results in Sec. 5 125
illustrate our key design choices. Finally, Sec. 6 contains a 126
summary of our findings and discusses future work. 127
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2. Related Works128

2.1. Autoregressive Motion Generation129

Numerous motion generation methods leverage diffusion130
models to generate motion sequences [2, 6, 27, 30, 33, 44,131
48–50]. However, human motion inherently exhibits se-132
mantic connections and is frequently interpreted as a form133
of body language, conveying meaning and intent. Follow-134
ing this observation, several works have explored treating135
motion as a form of language and using the generative trans-136
former framework to model human motion, akin to the cur-137
rent methods for modeling language [19, 51]. This ap-138
proach involves converting motions into discrete tokens us-139
ing vector quantization (VQ) [37] and inputting them into140
an autoregressive model to generate a sequence of motion141
tokens in a unidirectional manner [12, 15, 47]. Subsequent142
works also leverage pretrained LLMs such as T5 [29] and143
LLaMA [35] to conduct comprehensive language model-144
ing on both textual and motion inputs by expanding the145
existing LLM vocabulary with motion tokens [19, 51]. In146
this work, we build upon autoregressive Transformers [38],147
which have tractable log-likelihood, an essential element for148
preference learning methods.149

2.2. Learning from Human Preferences150

The initial exploration of learning from human preferences151
begins in the RL community with training agents to play152
Atari [8, 17]. Further exploration occurs in the domain of153
language modeling, where human feedback is incorporated154
to improve specific tasks like summarization [32, 54] and155
using external information to increase accuracy [23, 24, 34].156

Building upon the aforementioned works, Ouyang et al.157
[26] shows that a blend of instruction fine-tuning and RLHF158
effectively addresses issues related to factuality, toxicity,159
and helpfulness, which cannot be resolved solely by in-160
creasing the scale of LLMs. Leveraging the proposed161
RLHF framework, numerous LLMs [11, 25, 36] incorpo-162
rate the RLHF phase into their training process to mitigate163
potential model-related harm. The research community is164
also increasingly exploring other human preference learn-165
ing methods [4, 7, 10, 13, 28, 31, 43, 52] that mitigate cer-166
tain issues associated with RLHF, such as reward hacking167
[28], requirements for preference pairs [10], and complex168
hyperparameter tuning [43].169

Motivated by the very successful application of prefer-170
ence learning in language modeling, preference learning is171
now increasingly being applied to other domains. For ex-172
ample, Lee et al. [20] and Wu et al. [42] apply RLHF to173
text-to-image synthesis models, and Cideron et al. [9] uti-174
lizes RLHF for music generation. Despite its promising po-175
tential, the research community has yet to witness its appli-176
cation in motion generation or scenarios with limited data177
resources. This untapped area of exploration represents178

a significant opportunity to advance our understanding of 179
how these methods can be leveraged effectively in contexts 180
where data availability is constrained, thereby opening new 181
avenues for research and innovation in motion generation 182
and related disciplines. Its application is particularly rele- 183
vant to motion generation, where evaluating two motions is 184
considerably easier than collecting motion data with costly 185
motion capture systems. 186

3. Preliminary 187

This section reviews MotionGPT [19], the supervised base- 188
line upon which we use preference learning to finetune. Ad- 189
ditionally, we present our data collection pipeline that uses 190
sample pairs generated by MotionGPT. 191

MotionGPT. Formulating text-to-motion generation as 192
a sequence modeling problem allows building upon LLMs. 193
This holds the premise of transferring language’s com- 194
positional semantic structure to other modalities, thereby 195
achieving off-the-shelf, out-of-distribution generalization. 196
Casting motion generation as a sequence modeling prob- 197
lem requires discretizing the motion modality into tokens, 198
as done by MotionGPT. The discretization process is akin to 199
the tokenization of strings to tokens in language processing. 200
In particular, they first map the motion dataset into a set of 201
discrete tokens using a vector quantized variational autoen- 202
coder [37]. Then, a pretrained LLM is finetuned to gener- 203
ate corresponding motion tokens from the textual prompt. 204
Thus, MotionGPT is an autoregressive model where the 205
completions are motion tokens instead of word tokens. 206

Collecting preference data. As shown in Fig. 2, we 207
build a labeling platform with Gradio [1], where labelers 208
are presented with two different completions from a prompt. 209
The labelers are tasked to read each prompt and choose the 210
motion that corresponds best to the prompt. Additionally, 211
the labelers provide a degree of preference for their choice, 212
choosing from “Negligibly better/unsure,” “Slightly better,” 213
“Better,” and “Much better.” We find that MotionGPT pro- 214
duces samples that are hard to distinguish when given a 215
prompt from the training dataset, thus indicating signs of 216
overfitting. Accordingly, we prompt gpt-3.5-turbo-0125 217
[25] to generate a new set of prompts similar to those in 218
the training set. For each prompt, we sample two com- 219
pletions from MotionGPT by using different seeds and a 220
temperature of 1.2 to promote diversity. Our labelers are 221
graduate student in computer science. We find that it is im- 222
portant to recruit labelers with prior exposure to generative 223
models. Our initial exploration indicates that labelers with 224
similar prior experience is crucial for achieving a high level 225
of agreement. Quantitatively, we obtain an agreement of 226
84% on average (42 samples out of 50 samples). Note that 227
in some cases, the model completely fails to generate per- 228
ceptually realistic motion for both seeds. Accordingly, the 229
labelers mark them as “Skipped.” Upon inspection, we find 230
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Figure 2. Screenshot of the Gradio interface for data labeling.

that two cases often occur: (1) one generation is “Much231
better,” with one seed failing to generate reasonable motion232
while the other seed partially achieving the motion, (2) the233
motion pair is “Skipped,” with both seeds failing to generate234
reasonable motions. The resulting dataset contains 3, 528235
annotated pairs, with 996 pairs labeled as “Much better,”236
607 pairs labeled as “Better,” 497 pairs labeled as “Slightly237
better,” and 116 pairs labeled as “Negligibly better/unsure.”238
Additionally, there are 1312 examples labeled as ”Skipped.”239
We randomly select 10% of the total dataset to be the test240
dataset, with the remaining data designated for training.241

4. Method242

We organize this section as follows. Sec. 4.1 presents the243
objective function in preference learning. Then, we present244
practical algorithms for optimizing this objective: RLHF245
based on reinforcement learning in Sec. 4.2 and DPO based246
on supervised learning in Sec. 4.3.247

Notations. Denote sequences of tokens in bold where248
x = (x1, x2, ...) is a textual prompt and y = (y1, y2, ...) is249
a completion, i.e. a generated motion sequence.250

4.1. Preference Learning251

We formulate the objective function for learning from hu-252
man preference data as in Azar et al. [3]. Intuitively, given253
prompts x ∼ ρ, it involves maximizing the probability that254
our policy generates completion y ∼ πθ(· | x) preferred255
over the original model y′ ∼ µ(· | x), under the constraint256
that our distribution stays close to that of some reference257

policy πref to prevent over-optimization. In most cases, µ 258
and πref are the same model, but it is not uncommon to ini- 259
tialize them differently. In formulae, we maximize the fol- 260
lowing objective in preference learning: 261

J(θ) = E
x∼ρ

y∼πθ(·|x)
y′∼µ(·|x)

[
Ψ(p⋆(y ≻ y′ | x))

]
− βKL(πθ∥πref),

(1) 262
where p⋆(y ≻ y′ | x) is the probability of y being pre- 263
ferred to y′ knowing the prompt x. First, Ψ : [0, 1] → R 264
is a non-decreasing function that maps probabilities to real 265
scalars. Intuitively, such mapping allows a non-linear map- 266
ping of preference probabilities to scores, yielding a reward 267
maximization objective. Second, the KL term is a per-token 268
KL that regularizes training in two ways. In formulae, the 269
KL term can be rewritten as 270

KL(πθ∥πref) = H[πθ, πref]︸ ︷︷ ︸
cross entropy

−H[πθ]︸ ︷︷ ︸
entropy

. (2) 271

The cross-entropy term acts as a regularizer that prevents 272
deviating too far from the reference model. It helps against 273
hacking the objective function. The entropy term promotes 274
exploration. It prevents the model from mode collapse, 275
where the policy outputs sequences with high scores but low 276
diversity. We want to maximize the score while maintaining 277
a low KL divergence with high entropy. 278

As illustrated in Fig. 1, there are two types of algorithms 279
for solving the optimization problem in Eq. 1. In both al- 280
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gorithms, the underlying assumption is that the probabil-281
ity p⋆(y ≻ y′ | x) is implemented as the Bradley-Terry282
probabilistic model [5]. Accordingly, we have Ψ(q) =283
log(q/(1− q)). In practice, the Bradley-Terry model is im-284
plemented as a sigmoid function σ:285

p⋆(y ≻ y′ | x) = σ(r(x,y)− r(x,y′)), (3)286

thus the probability of preferring a completion depends ex-287
ponentially on the value of a latent scalar.288

Next, to understand the difficulties induced by the289
Bradley-Terry model in Eq. 3, we turn to the analytical op-290
timal solution to the objective in Eq. 1:291

πθ⋆(y | x) = 1

Z(x)
πref(y | x) exp

(
β−1r(x,y)

)
. (4)292

As detailed in Eq. 4, the probability we assign to a particular293
response is the product of the probability that our reference294
model assigns to that response and the exponentiated latent295
scalar. The problem is that if p⋆(y ≻ y′ | x) = 1, it296
means that r(x,y) → ∞. As a result, the strength of the KL297
divergence β vanishes, and the model is prone to overfitting.298

We just observed that the current implementation of Ψ299
assumes that pairwise preferences can be substituted with300
pointwise rewards. Next, we present RLHF in Sec. 4.2301
and DPO in Sec. 4.3, the two most commonly taken ap-302
proaches in LLM alignment. Notably, these two algorithms303
differ in being online or offline. RLHF is online because it304
trains with RL, i.e. there is exploration. At each step, a pol-305
icy generates samples and receives feedback from a reward306
model. In particular, it assumes that a reward model trained307
on pointwise rewards generalizes so that it can accurately308
evaluate samples from the policy. DPO, on the other hand,309
is offline because it operates without the continuous inter-310
action with the environment; instead, it optimizes based on311
predetermined data points.312

4.2. RL with Human Feedback313

RLHF is a bi-level optimization problem involving learn-314
ing a reward model rψ(x,y) in a supervised manner, with315
a cross-entropy loss between the distribution of preference316
and the Bradley-Terry model. Given a dataset of prefer-317
ences D = {x,yw,yl}, where yw is the chosen sample, yl318
is the rejected sample, and x is the input prompt, we mini-319
mize the following cross-entropy loss:320

−E(x,yw,yl)∼D[log σ(rψ(x,yw)− rψ(x,yl))]. (5)321

Then, we define Eq. 1 in terms of the trained reward model322
rψ(x,y) as an approximation of Ψ(·):323

J(θ) = Ex∼ρ,y∼πθ

[
rψ(x,y)

]
− βKL(πθ∥πref), (6)324

and optimize our policy πθ against that reward model. The325
objective requires maximizing a reward function based on a326

distribution induced by the policy πθ. Thus, evaluating this 327
expected value requires sampling from our policy. We use 328
policy gradient to backpropagate through random samples 329
from our policy. 330

The objective in Eq. 6 is implemented with the Bradley- 331
Terry model, thus is prone to overfitting. Accordingly, we 332
want to regularize the reward model to avoid rψ(x,y) → ∞ 333
when p⋆(y ≻ y′ | x) = {0, 1}. As mentioned in Sec. 4.1, 334
when rψ(x,y) → ∞, the KL regularization β vanishes. In 335
particular, we find that the scarce dataset in text-to-motion 336
generation leads to overfitting: the reward model’s training 337
loss converges to 0 while the validation loss increases. 338

During policy optimization, due to the overfitted reward, 339
the policy tries to hack the reward function and selects to- 340
kens that are very improbable under the reference model. 341
As a result, the KL divergence explodes, and so does the 342
reward. Accordingly, the value network is also affected by 343
these sudden spikes. We experimentally find it hard to pre- 344
vent these spikes. In particular, we found that removing 345
dropout is essential to diminishing the spikes. Surprisingly, 346
we observe that preventing these spikes is not related to bet- 347
ter performance as evaluated by FID and R-precision. Over- 348
all, we find RLHF particularly difficult to tune in our setup, 349
owing to the instabilities resulting from a reward model’s 350
inability to evaluate samples accurately. Instead, we recom- 351
mend using DPO, which we present next. 352

4.3. Direct Preference Optimization 353

In DPO, we skip the step of learning a reward model and di- 354
rectly train our policy on the preference data. In particular, 355
we rewrite Eq. 4 the reward function as a function of the 356
optimal policy πθ⋆ to Eq. 1: 357

r(x,y) = β log
πθ⋆(y | x)
πref(y | x)

+ β logZ(x). (7) 358

Originally in RLHF, we had a loss function on the reward 359
functions to turn our preference data into a reward function. 360
We use Eq. 7 to turn the loss function over reward functions 361
in Eq. 5 into a loss function on policies. In particular, we 362
write Eq. 7 in terms of our current policy πθ instead of the 363
optimal policy πθ⋆ , which we denote as r̂θ(x,y): 364

r̂θ(x,y) = β log
πθ(y | x)
πref(y | x)

+ β logZ(x). (8) 365

Intuitively, the logarithmic ratio yields a positive value 366
when the policy assigns a higher probability to the response 367
compared to the reference model, indicating a preference. 368
Conversely, it results in a negative value when the policy 369
deems the response less probable than what the reference 370
model suggests, signifying a lesser preference. Then, the 371
objective for DPO is: 372

−E(x,yw,yl)∼D [log σ (r̂θ(x,yw)− r̂θ(x,yl))] . (9) 373
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Alignment Quality
Method Top-1↑ Top-2↑ Top-3↑ MM Dist↓ MModality↑ FID↓ Diversity→
Real motion 0.494±0.002 0.677±0.002 0.769±0.002 3.224±0.008 - 0.002±0.000 9.463±0.073
MotionGPT [19] 0.405±0.002 0.567±0.002 0.658±0.002 4.027±0.011 3.495±0.162 0.178±0.008 9.393±0.086
RLHF [26] 0.415±0.002 0.581±0.003 0.673±0.002 3.908±0.016 3.196±0.123 0.217±0.009 9.303±0.089
DPO [28] 0.426±0.002 0.595±0.002 0.689±0.002 3.782±0.014 2.523±0.091 0.219±0.007 9.356±0.077

Table 1. Preference data improves alignment. We find that DPO performs better than RLHF. It is important to note that the FID metric
is an inaccurate measure of the quality of the motion. In particular, our labelers prefer outputs from DPO over MotionGPT.

We directly train our policy with Eq. 9 on the preference374
dataset. Its gradient formula yields a very intuitive under-375
standing of the optimized objective: it increases the likeli-376
hood of the preferred sample and decreases the likelihood377
of dispreferred samples. In formulae, each gradient step is:378

−βED

[
w(x,yw,yl)

[
∇θ log π(yw | x)−∇θ log π(yl | x)

])]
,

(10)379
where380

w(x,yw,yl) = σ(r̂θ(x,yl)− r̂θ(x,yw)), (11)381

is a per-sample weight [45, 46] that gives a higher weight382
when the reward model is wrong.383

However, it is important to remember that DPO is still384
prone to overfitting as it also relies on the Bradley-Terry385
model. Moreover, DPO is limited to two points within386
the data, optimizing to maximize one while minimizing the387
other. In contrast, RLHF provides a training signal where388
the reward model generalizes via trial and error, thereby ac-389
quiring more information. We alleviate overfitting with a390
variant of DPO: Identity Preference Optimization (IPO) [3].391
Specifically, IPO does not rely on the Bradly-Terry model392
by setting Ψ as the identity function.393

5. Experiments394

We organize this section as follows. First, we present de-395
tails of our implementation of both methods: RLHF and396
DPO. Second, we present the evaluation metrics that follow397
standard practice in text-to-motion generation. Then, our398
main results show an improvement in alignment with text,399
compared with MotionGPT. Finally, we present ablations400
to understand key design choices in DPO. In particular, we401
find that proper regularization is important in DPO.402

During all training runs, we train for 20 epochs in total403
and take the epoch with the best validation set performance404
on HumanML3D [14]. We evaluate quantitatively on the405
HumanML3D test set and qualitatively on our human pref-406
erence test set.407

Implementation Details. Our implementations of408
RLHF and DPO build upon TRL [39]. We implemented409
RLHF with separate value and policy networks because em-410
pirically, we observed greater training stability. The value411

Figure 3. Humans prefer DPO outputs over outputs from Mo-
tionGPT. MotionGPT trained on motion data with DPO (in green)
has a higher win rate. The win rate is computed on prompts never
seen by the model.

network is initialized to the reward model with an additional 412
scalar head that predicts a scalar per token (initialized with 413
Gaussian mean 0.0 and standard deviation 0.2, bias initial- 414
ized to 0.0). The policy network is initialized to the fine- 415
tuned MotionGPT checkpoint1. We remove all dropouts 416
in the value and policy models because when dropouts are 417
present, they cause the KL reward to be stochastic since the 418
SFT model is stochastic. For better performance, we add 419
reward margin (3 for “Much better,” 2 for “Better,” 1 for 420
“Slightly better”) [36], reward whitening, and score scaling 421
[53]. We performed a hyperparameter sweep and found that 422
the best hyperparameters are batch size 32, learning rate 1e- 423
5, NEFTune noise alpha 0.1 [18], fixed KL with no adaptive 424
KL controllers, and initial KL coefficient 0.05. 425

For the DPO model, we initialize it to the finetuned 426
MotionGPT checkpoint1. We performed a hyperparame- 427
ter sweep and found that the best hyperparameters are batch 428
size 64, learning rate 1e-3, no label smoothing, PEFT [22] 429
with LoRA [16] (rank 8, alpha 16, dropout 0.05), Beta 0.1, 430
no dropouts in the model, and IPO loss [4]. 431

Evaluation. We categorize popular metrics [14] in text- 432
to-motion generation into alignment and quality. In par- 433
ticular, alignment is related to the alignment of the text 434

1https://huggingface.co/OpenMotionLab/MotionGPT-base
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Alignment Quality
Percent Data Top-1↑ Top-2↑ Top-3↑ MM Dist↓ MModality↑ FID↓ Diversity→
100% 0.426±0.002 0.595±0.002 0.689±0.002 3.782±0.014 2.523±0.091 0.219±0.007 9.356±0.077
80% 0.421±0.002 0.590±0.002 0.682±0.003 3.835±0.014 2.760±0.118 0.204±0.007 9.368±0.059
60% 0.417±0.002 0.585±0.002 0.677±0.002 3.872±0.011 2.594±0.100 0.233±0.008 9.334±0.070
40% 0.420±0.002 0.587±0.002 0.680±0.002 3.845±0.012 2.731±0.104 0.212±0.006 9.340±0.072
20% 0.422±0.002 0.591±0.002 0.685±0.002 3.775±0.015 2.236±0.086 0.252±0.007 9.356±0.068

Table 2. More preference data helps. Our analysis reveals that an increased volume of preference data enhances performance in both
alignment and quality metrics, although the impact diminishes with more data. Our results demonstrate that DPO does not need a significant
amount of data to exhibit performance gains.

Alignment Quality
Loss Type Top-1↑ Top-2↑ Top-3↑ MM Dist↓ MModality↑ FID↓ Diversity→
IPO [4] 0.426±0.002 0.595±0.002 0.689±0.002 3.782±0.014 2.523±0.091 0.219±0.007 9.356±0.077
KTO [10] 0.416±0.003 0.585±0.002 0.678±0.002 3.867±0.011 3.099±0.104 0.241±0.008 9.315±0.068
Hinge [28] 0.418±0.002 0.588±0.002 0.682±0.003 3.828±0.010 2.843±0.116 0.252±0.008 9.362±0.052
Sigmoid [28] 0.418±0.003 0.586±0.002 0.679±0.003 3.847±0.012 2.831±0.100 0.254±0.008 9.354±0.076

Table 3. IPO loss performs best. The IPO [3] variant of DPO is designed to alleviate overfitting due to the Bradley-Terry model.

prompt with the generated motion. In contrast, quality is435
independent of the text prompt and measures the quality of436
the motion. R-Precision evaluates motion-to-text retrieval437
accuracy based on Euclidean distances between motion se-438
quences and text descriptions, reporting Top-1, Top-2, and439
Top-3 accuracies. FID measures the distribution disparity440
between generated and real motion using extracted motion441
features. MM-Dist calculates average Euclidean distances442
between text and generated motion features. Diversity ana-443
lyzes motion variety via average Euclidean distances among444
randomly sampled pairs of motion. MModality generates445
multiple motion sequences per text description, forms pairs,446
and computes their average Euclidean distances.447

Metrics w/ PEFT w/o PEFT
Top-1↑ 0.426±0.002 0.394±0.001
Top-2↑ 0.595±0.002 0.555±0.002
Top-3↑ 0.689±0.002 0.646±0.002
MM Dist↓ 3.782±0.014 4.097±0.016
MModality↑ 2.523±0.091 3.285±0.114
FID↓ 0.219±0.007 0.276±0.006
Diversity→ 9.356±0.077 9.266±0.063

Table 4. PEFT is an important component for preference
learning. We find that PEFT significantly contributes to the suc-
cess of DPO by regularizing the model’s training.

Main results. In Tab. 1, we show our RLHF and448
DPO results compared to the reproduced MotionGPT base-449
line2. Our results reveal that both RLHF and DPO out-450
perform MotionGPT across all alignment metrics, suggest-451
ing greater alignment with text compared to the baseline.452
Furthermore, when considering quality metrics, RLHF and453

2https://github.com/OpenMotionLab/MotionGPT/tree/main

DPO demonstrate comparable performance to MotionGPT, 454
suggesting their efficacy in producing high-quality out- 455
puts. Notably, our findings highlight DPO’s superiority 456
over RLHF in alignment metrics, underscoring its poten- 457
tial as a more effective approach for learning from prefer- 458
ences in motion generation tasks. Since the FID metric is 459
not an accurate measure of the actual quality of the motion, 460
we perform human evaluation of MotionGPT generation 461
against DPO. We compare MotionGPT baseline generations 462
and DPO generations at different temperatures. Given 50 463
random prompts taken from the test set of our preference 464
dataset, we ask labelers to pick which generation is the 465
best or mark a tie if they cannot make a choice. In Fig. 466
3, we show the DPO win rate, MotionGPT win rate, and 467
tie rate. On average, DPO generations perform better than 468
MotionGPT generations at all temperature levels, indicating 469
not only that humans prefer DPO outputs over MotionGPT 470
outputs, but also that its good performance is sustained at 471
different temperature levels. 472

Ablation. As we have seen in Sec. 4, an important as- 473
pect of preference learning is the trade-off between optimiz- 474
ing the reward model and the KL regularization. Addition- 475
ally, since DPO does not suffer from reward hacking and 476
performs better than RLHF, we perform our ablation stud- 477
ies on our DPO baseline. First, we try different parameters 478
that directly or indirectly improve the regularization of the 479
reference model during training. In Fig. 5, we find that a 480
β around 0.10 performs the best; overall, the model is ro- 481
bust to different choices of β, underscoring the robustness 482
of DPO. Second, we find that IPO [3] performs best com- 483
pared to other variants of the DPO loss (where sigmoid is 484
the standard Bradley-Terry model used in the original DPO 485
method). As mentioned in Sec. 4, IPO was specifically 486

7



CVPR

#7
CVPR

#7
CVPR 2024 Submission #7. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Samples with preference degrees “Much better” and “Better” provide most of the performance gains. Adding in “Slightly
better” and “Negligibly better/unsure” samples slightly improves alignment but decreases quality.

Figure 5. Model is robust to choices of β. Values of β increasing
from 0.05 to 0.20 generally do not impact alignment.

designed to alleviate overfitting due to the Bradley-Terry487
model. Third, while LoRA was designed to reduce the cost488
of training, we observe that it plays an important role in489
regularizing the model. Tab. 4 shows significant gains from490
using LoRA. Finally, we study how the scale of the dataset491
affects training, both in terms of the quantity and the degree492
of preference. Tab. 2 shows that more data helps. However,493
we find the gains are not significant, showing that current494
text-to-motion generative methods do not require a signif-495
icant amount of preference data to observe improvements.496
Additionally, in Fig. 4, we train our models on the different497
preference splits. We find that samples labeled as ”Much498
better” provide most of the performance gains. Our results499
suggest that labelers should focus on labeling samples with500

a considerable visual difference. 501

6. Discussion 502

This paper is the first work that explores preference learn- 503
ing for text-to-human generation, i.e., a cheaper supervision 504
from human labelers for text-to-human generation. By an- 505
notating 3,528 preference pairs and introducing a degree of 506
preference for each choice, we have laid the groundwork for 507
more nuanced and human-like motion generation capabili- 508
ties. Our pioneering efforts have shown that labelers signif- 509
icantly favor the outputs generated by MotionGPT when it 510
is trained with preference data, highlighting the potential of 511
preference learning in enhancing the alignment of generated 512
motions across various settings. 513

This paper is limited to exploring preference data on Mo- 514
tionGPT. It would be valuable to analyze the transferabil- 515
ity of such a dataset to other models. Additionally, we did 516
not use the skipped samples as both samples did not gener- 517
ate perceptually realistic motion, while the unsure samples 518
generated at least realistic motion. It would be interesting 519
to see how these samples can be leveraged, for instance, 520
with unlikelihood learning on these samples. One can also 521
extend the annotation at the temporal or spatial level for 522
fine-grained supervision. Prior work in image generation 523
used a reward model trained on preference data as a metric 524
for evaluating generation. Similarly, it would be a valuable 525
metric for text-to-motion generation as R-precision and FID 526
correlate poorly with human evaluation. Moreover, it would 527
interesting to study preference learning on bigger datasets 528
such as Motion-X [21]. 529
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