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ABSTRACT

Imitation Learning (IL) has achieved remarkable success across various domains,
including robotics, autonomous driving, and healthcare, by enabling agents to
learn complex behaviors from expert demonstrations. However, existing IL meth-
ods often face instability challenges, particularly when relying on adversarial re-
ward or value formulations in world model frameworks. In this work, we pro-
pose a novel approach to online imitation learning that addresses these limitations
through a reward model based on random network distillation (RND) for density
estimation. Our reward model is built on the joint estimation of expert and be-
havioral distributions within the latent space of the world model. We evaluate our
method across diverse benchmarks, including DMControl, Meta-World, and Man-
iSkill2, showcasing its ability to deliver stable performance and achieve expert-
level results in both locomotion and manipulation tasks. Our approach demon-
strates improved stability over adversarial methods while maintaining expert-level
performance.

1 INTRODUCTION

Imitation Learning (IL) has recently shown remarkable effectiveness across a wide range of domains,
particularly in addressing complex real-world challenges. In robotics, IL has significantly advanced
the state of the art in manipulation (Zhu et al., 2022; Wan et al., 2024; Stepputtis et al., 2020; Chi
et al., 2023) and locomotion tasks (Chiu et al., 2024; Seo et al., 2023; Huang et al., 2024), where it
has facilitated the development of robust controllers for various robotic platforms. Beyond robotics,
IL has also demonstrated its versatility in domains such as autonomous driving (Pan et al., 2017;
Bronstein et al., 2022; Cheng et al., 2024), where it is used to model complex decision-making pro-
cesses and ensure safe and efficient vehicle navigation. Moreover, IL has started making meaningful
contributions to healthcare (Deuschel et al., 2023), providing support in medical decision-making
and enhancing the interpretability of complex diagnostic processes. These achievements highlight
the broad applicability of IL and its potential to drive transformative progress across diverse fields.

The simplest approach to imitation learning is to apply behavioral cloning directly to the provided
expert dataset, as demonstrated in prior works like IBC (Florence et al., 2022) and Diffusion Policy
(Chi et al., 2023). However, this approach is not dynamics aware and may result in lack of gen-
eralization when encountering out-of-distribution states. To address these shortcomings, methods
like GAIL (Ho & Ermon, 2016), SQIL (Reddy et al., 2019), IQ-Learn (Garg et al., 2021), MAIL
(Baram et al., 2016) and CFIL (Freund et al., 2023) have introduced value or reward estimation to
facilitate a deeper understanding of the environment, while leveraging online interactions to enhance
exploration. Specifically, GAIL, MAIL, and IQ-Learn frame the imitation learning problem as an
adversarial training process, distinguishing between the state-action distributions of the expert and
the learner.

Recent advancements in latent world models for imitation learning have made significant progress.
Several prior works, including V-MAIL (Rafailov et al., 2021), CMIL (Kolev et al., 2024), Ditto
(DeMoss et al., 2023), EfficientImitate (Yin et al., 2022), and IQ-MPC (Li et al., 2024), have inte-
grated adversarial imitation learning frameworks with world models to address imitation learning
tasks. However, as discussed in the experiment section, we found that even with world models, the
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Figure 1: Toy Example for Coupled Distribution Estimation We present a toy experiment on a
32× 32 GridWorld environment, comparing learning outcomes with and without a coupled reward
estimator. Using only a single expert trajectory, we estimate rewards and perform Q-learning, as
the environment has discrete state and action spaces. The empirical results show that incorporating
coupled reward estimation significantly increases the state coverage, compared to estimating rewards
solely from the expert trajectory. This highlights the coupled reward model’s ability to encourage
broader exploration.

adversarial objectives can still suffer from instability in certain scenarios. To overcome this issue,
we propose replacing the adversarial reward or value formulation with a novel density estimation
approach based on random network distillation (RND) (Burda et al., 2018), which mitigates the
instability. Specifically, we perform density estimation in the latent space of the world model, lever-
aging the superior properties of latent representations and their enhanced dynamics-awareness, as
the latent dynamics model is trained directly within this space. Unlike existing methods that use
RND for imitation learning (Wang et al., 2019), our approach jointly learns the reward model and
other components of the world model, estimating both the expert and behavioral distributions simul-
taneously in the latent space of the world model. In contrast, the existing Random Expert Distillation
(Wang et al., 2019) estimates distributions in the original observation and action spaces, decouples
the reward model learning from the downstream RL process, and does not include a coupled es-
timation on both expert and behavioral distributions, making it hard to solve complex tasks with
high dimensional observation and action spaces. To demonstrate the effectiveness of our approach,
we conduct evaluation across a range of tasks in DMControl (Tassa et al., 2018), Meta-World (Yu
et al., 2020a), and ManiSkill2 (Gu et al., 2023), demonstrating stable performance and achieving
expert-level results.

In conclusion, the contributions of our work are summarized as follows:

• We propose a novel reward model formulation for world model online imitation learning
based on a coupled density estimation in the latent space of the world model.

• We demonstrate that our approach exhibits superior stability compared to previous ap-
proaches with adversarial formulations and achieves expert-level performance across a
range of imitation learning tasks, including both locomotion and manipulation.

2 PRELIMINARY

We formulate our decision-making problem as Markov Decision Processes (MDPs). MDPs can be
defined via a tuple ⟨S,A, p0,P, r, γ⟩. In details, S andA represent the state and action spaces, p0 is
the initial state distribution, P : S×A → ∆S depicts the transition probability, r(s,a) is the reward
function, and γ ∈ (0, 1) is the discount factor. Let Z denote the latent state space of the world
model. The expert latent state-action distribution and the behavioral latent state-action distribution
(induced by the behavioral policy π) over Z ×A are denoted by ρE and ρπ , respectively.
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Figure 2: Coupled Distributional Random Expert Distillation We present the architecture of our
CDRED reward model. During training, the behavioral and expert predictors are trained using la-
tent representations encoded from observations and actions sampled from the behavioral and expert
buffers. The dotted blue lines indicate the gradient backpropagation paths. During inference, re-
wards are estimated by the outputs of the behavioral and expert predictors, along with the mean and
second-order moments of the target network’s output, for an unseen latent state-action pair.

2.1 RANDOM NETWORK DISTILLATION FOR IMITATION LEARNING

Random Network Distillation (RND) (Burda et al., 2018) is a technique for promoting exploration.
In details, it leverages a fixed randomly parameterized network fθ̄(x) and a learnable predictor
network fθ(x). During training, RND minimizes the following MSE loss for dataset D for certain
data distribution ρ:

LRND(θ) = Ex∼D∥fθ̄(x)− fθ(x)∥22 (1)

During the evaluation, we obtain a data point x′ for unknown data distribution ρ′. By computing
the L2 norm ∥fθ̄(x′) − fθ(x

′)∥22, we can estimate the difference between distribution ρ and ρ′.
This can also be interpreted as performing density estimation for the new data point x′ within the
original distribution ρ. A similar methodology has been used in imitation learning and inverse rein-
forcement learning, called Random Expert Distillation (Wang et al., 2019). In details, this approach
performs imitation learning by estimating the support of expert policy distribution. During training,
it minimizes K pairs of predictors and fixed random targets in expert dataset with N data points
DE = {si,ai}0:N :

θ̂k = argmin
θ

1

N

N−1∑
i=0

(fθ(si,ai)− fθ̄k(si,ai))
2 (2)

In order to determine if a state-action pair is within the support of expert policy, it computes the L2
norm deviation for an unknown state-action pair (s,a) using K pairs of predictors and targets:

LRED(s,a) =
1

K

K−1∑
k=0

(fθ̂k(s,a)− fθ̄k(s,a))
2 (3)

By leveraging a reward in the shape of r(s,a) = exp(−σ LRED(s,a)), the approach effectively
guides the downstream RL policy towards the expert distribution. However, this method may en-
counter challenges when the initial behavioral policy distribution is far from the expert distribution
or when RED is applied naively on large latent spaces in world models.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Faster convergence Better performance in complex settings

Figure 3: Advantages of Coupled Density Estimation We demonstrate the empirical performance
boost of our coupled density estimation in terms of leveraging random network distillations for
reward modeling based on state-action distribution estimation. With coupled estimation, we observe
faster convergence to optimal in many simple cases (Left) and better performance in complex tasks
(Right).

2.2 WORLD MODELS

Recent world models in the context of robotics control and reinforcement learning often represent
a model-based RL method with latent spaces. The model learns a latent state transition model
z′ = dθ(z,a), along with a encoder z = hθ(z) and a policy model a = πθ(z). The decision-making
process often includes planning with latent unrolling. For models based on the Recurrent State-
space Model (RSSM) (Hafner et al., 2019b), the latent states often are split into a deterministic part
and a stochastic part. PlaNet (Hafner et al., 2019a) and Dreamer series (Hafner et al., 2019b; 2020;
2023) leverage decoders for observation reconstruction, while TD-MPC series (Hansen et al., 2022;
2023) leverages a decoder-free architecture and conducts planning solely in the latent space.

3 METHODOLOGY

In this section, we will go over the motivation and detailed methodology of our method, Coupled
Distributional Random Expert Distillation, or CDRED as an abbreviation. We show that our method
is stabler and more reasonable compared to naively apply Random Expert Distillation (RED) (Wang
et al., 2019) on imitation learning with world models. To address the difficulties posed in RED as
discussed in Section 2.1, we introduce a coupled distribution estimation approach in the latent space.
This approach jointly estimates both the expert distribution and the behavioral distribution; it encour-
ages policy exploration during the early stages of training. We present a toy example in Figure 1
to illustrate how coupled estimation promotes exploration, and provide the detailed methodology
in Section 3.2. In this coupled approach, we need to estimate the behavioral distribution during
online training, which naturally raises the problem of inconsistent final rewards, as noted by Yang
et al. (2024). Thus, we adopt their method for tracking the frequency of data occurrence, which we
describe in Section 3.1.

3.1 MITIGATING INCONSISTENT REWARD ESTIMATION

Inconsistencies can arise at various stages of RND model training (Yang et al., 2024). During the
initial stage, these inconsistencies stem from extreme values in one network, which can be mitigated
by using multiple target networks (denoted as K target networks). In the final stage, inconsistencies
occur when the resulting reward distribution does not align with the actual state-action distribution.
To address this, an unbiased estimator for the state-action occurrence count n is necessary. We
should track state-action occurrence frequencies in order to maintain consistency when the distribu-
tional RND model is trained online. In this section, we replace the original state st with the latent
representation zt for the input of the RND model. Following Yang et al. (2024), we denote the ran-
dom variable c(zt,at) as the output of a target network fθ̄k , where k is sampled uniformly from the
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interval [0,K). For a predictor f estimating a distribution ρ (which can be either the expert distribu-
tion ρE or the behavioral distribution ρπ), by minimizing the L2-norm loss ∥f(zt,at)− c(zt,at)∥22,
the optimal predictor f∗(zt,at) is given by:

f∗(zt,at) =
1

n

n∑
i=1

ci(zt,at) (4)

where ci(zt,at) is representing the c(zt,at) for the i-th occurrence for state-action pair (zt,at) in
distribution ρ. In order to track the occurrence count n, we adopt a lemma proposed by Yang et al.
(2024):

Lemma 1 (Unbiased Estimator). For a state-action distribution ρ, f∗ is the optimal predictor on this
distribution defined in Eq. 4, the following statistic is an unbiased estimator of 1/n with consistency
for this distribution:

y(zt,at) =
[f∗(zt,at)]

2 − [µθ̄(zt,at)]
2

B2(zt,at)− [µθ̄(zt,at)]
2

where the second-order moment is:

B2(zt,at) =
1

K

K−1∑
k=0

[fθ̄k(zt,at)]
2

Proof. See Appendix F or prior work (Yang et al., 2024).

In this way, we are able to estimate the data distribution with higher consistency as the training pro-
ceeds. Following Yang et al. (2024), we construct the following estimator for

√
1/n as an additional

bonus correction term:

ϵ(zt,at, f) =

√
[f(zt,at)]2 − [µθ̄(zt,at)]

2

B2(zt,at)− [µθ̄(zt,at)]
2

(5)

This bonus correction is incorporated into the reward model construction discussed in Section 3.2.

3.2 COUPLED DISTRIBUTIONAL RANDOM EXPERT DISTILLATION

We construct a reward model with two predictor networks that share the same random target en-
semble on the latent space of a world model. The distributional random target ensemble consists
of K random networks {fθ̄k}0:K with fixed parameters. Regarding the predictors, one of them is
the expert predictor fϕ while the other is the behavioral predictor fψ . A predictor f is defined by
f : Z × A → Rp, while p is the dimension of the low-dimensional embedding space for L2 norm
distance computation. Following Yang et al. (2024), we ask these two predictors to learn the random
targets sampled. This is different to RED which learn K predictors for K targets. Given an expert
buffer BE and a behavioral buffer Bπ , we aim to optimize through the following objective:

Lr(ϕ, ψ) =
H∑
t=0

λt Ek∼Uniform(0,K)

[
E(st,at)∼BE

[
∥fϕ(zt,at)− fθ̄k(zt,at)∥

2
2

]
+ E(st,at)∼Bπ

[
∥fψ(zt,at)− fθ̄k(zt,at)∥

2
2

]] (6)

We sample short trajectories with horizon H from the replay buffers and sum up the loss for every
step with a discounting factor λ. Note that this factor is different from the environment discount
factor γ. We update every time with one target network fθ̄k , where index k is sampled from a
uniform distribution over integers ranging [0,K). zt is the latent representation of st with an encoder
mapping zt = h(st). In this way, we can obtain the estimation for expert distribution ρE and
behavioral distribution ρπ . Furthermore, it enables us to construct a reward model based on the
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distribution estimations. Incorporating the bias correction term introduced in Eq. 5, we are able to
compute the reward via:

R(zt,at) = ζ g(−σ b(zt,at, fϕ))− (1− ζ) g(−σ b(zt,at, fψ)) (7)
where

b(zt,at, f) = α ∥f(zt,at)− µθ̄(zt,at)∥22 + (1− α) ϵ(zt,at, f) (8)

µθ̄(zt,at) =
1

K

K−1∑
k=0

fθ̄k(zt,at) (9)

The first term in Eq. 7 measures the distance between the current and expert distributions, while
the second term encourages exploration by penalizing exploitation. A scaling factor ζ balances
these terms, with the second term dominating during early training when the policy is sub-optimal,
promoting exploration. As the policy approaches optimality, the first term takes over, stabilizing the
policy near the expert distribution. Typically, ζ is close to 1, allowing the first term to dominate
after initial exploration. The coefficient σ controls the decay rate of the reward function, which is
based on the expert distribution for the first term and the behavioral distribution for the second. To
ensure stability, the reward is computed using the mean output of K random target networks. The
function g(x) is monotonically increasing, and both g(x) = exp(x) and g(x) = x work, with slight
differences in behavior, as discussed in Appendix E.2. The scalar coefficient α in Eq. 8 balances
the contributions of the first term (the L2-norm) and the second term (an estimator for

√
1/n).

Following Yang et al. (2024), we let the first term dominate initially, switching to the second term
as training progresses. This can be achieved with a fixed α, rather than a dynamic coefficient. This
modification enables consistent online estimation of the state-action distribution, directly supporting
reward modeling for online imitation learning.

3.3 INTEGRATING INTO WORLD MODELS FOR IMITATION LEARNING

World models learn the policy and underlying environment dynamics by encoding the observations
into a latent space and learning the transition model in the latent space. Decoder-free world models
such as TD-MPC series (Hansen et al., 2022; 2023) has proved to be a powerful tool for complex
reinforcement learning tasks. We leverage a decoder-free world model containing the following
components:

Encoder: zt = h(st) (10)

Latent dynamics: z′t = d(zt,at) (11)
Value function: q̂t = Q(zt,at) (12)

Policy prior: ât = π(zt) (13)
CDRED model: r̂t = R(zt,at) (14)

The reward model, i.e., the CDRED model, consists of two predictors and K target networks, esti-
mating the expert and behavioral distributions for reward approximation. The encoder h : S → Z
maps the observation (state-based or vision based) to latent representation. The latent dynamics
model d : Z × A → Z learns the transition dynamics over the latent representations, implicitly
modeling the environment dynamics. The value function learns to estimate the future return by
training on temporal difference objective with the assist of the estimated rewards from the CDRED
model. The policy prior learns a stochastic policy which guides the planning process of the world
model. The training procedure is outlined in Algorithm 1, while the planning process is detailed in
Algorithm 2.

Model Training The learnable parameters of the world model are denoted as three parts. While
ϕ and ψ denote the parameterization of expert predictor and behavioral predictor in the CDRED
reward model, the rest of the parameters related to the encoder, latent dynamics, value model and
policy prior are represented as ξ. Note that the parameters of the target networks θ̄k are not learnable.
We train the encoder, dynamics model, value model, and reward model jointly with the following
objective:

L(ϕ, ψ, ξ) =
H∑
t=0

E(st,at,s′t)∼BE∪Bπ

[
λt
(
∥z′t − sg(h(s′t))∥22 + CE(q̂t, qt)

)]
︸ ︷︷ ︸

Consistency and TD Loss

+ Lr(ϕ, ψ)︸ ︷︷ ︸
CDRED Loss

(15)
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The first term contains consistency loss and temporal difference loss to ensure the prediction consis-
tency of the dynamics model and the accuracy for value function estimation. the temporal difference
target is computed by qt = R(zt,at) + γQ(z′t, π(z

′
t)) where R(zt,at) is the output of the reward

model. We convert the regression TD objective into a classification problem for stabler value es-
timation, which is also used by the TD-MPC series and mentioned by Farebrother et al. (2024).
CE(q̂t, qt) is the cross entropy loss between target Q value and current predicted value. The second
term is the reward loss, which is shown in Eq.6. Similar to the computation of reward loss, we also
sum up the consistency and TD loss with factor λ over a horizon H .

Policy Prior Learning Regarding the policy prior update, we adopt maximum entropy objective
(Haarnoja et al., 2018) to train a stochastic policy:

Lπ(ξ) =
H∑
t=0

λt

[
E(st,at)∼BE∪Bπ

[
−Q(zt, π(zt)) + β log(π(·|zt))

]]
(16)

We use short trajectories with horizonH sampled from both expert and behavioral buffers for policy
updates. We sum up the policy loss over the horizon with the same discount factor λ. β is a fixed
scalar coefficient to balance the entropy term and the Q value.

Planning Following TD-MPC series (Hansen et al., 2022; 2023), we also leverage model predic-
tive path integral (MPPI) (Williams et al., 2015) for planning. We optimize using the sampled action
sequences (at,at+1, ...,at+H) in a derivative-free style, maximizing the estimated return for the la-
tent trajectories that have been rolled out using our dynamics model. Mathematically, our objective
can be describe as a return maximizing process (Hansen et al., 2023):

µ∗, σ∗ = argmax
(µ,σ)

E
(at,at+1,...,at+H)∼N (µ,σ2)

[
γHQ(zt+H ,at+H) +

H−1∑
h=t

γhR(zh,ah)

]
(17)

After planning, the agent interacts with the environment using the first action at ∼ N (µ∗, (σ∗)2) to
obtain new observations. New trajectories are stored in behavioral buffer Bπ for following training.

4 EXPERIMENTS

We conduct experiments across a diverse range of tasks, including locomotion, manipulation, and
tasks with both visual and state-based observations. We evaluate our approach using the DMControl
(Tassa et al., 2018), Meta-World (Yu et al., 2020a) and ManiSkill2 (Gu et al., 2023) environments.
As for the baselines, we compare our approach with IQ-MPC (Li et al., 2024), which integrates
a world model architecture, as well as with model-free approaches, specifically IQ-Learn+SAC
(Garg et al., 2021) (referred to as IQL+SAC in the plots), CFIL+SAC (Freund et al., 2023), HyPE
(Ren et al., 2024) (In Appendix E.4), SAIL (Wang et al., 2020) (In Appendix E.5), and a fully
offline baseline behavioral cloning (BC). Beyond standard comparisons with existing baselines, we
further conduct additional experiments to provide a deeper understanding of our approach along the
following aspects: (i): We conduct ablation studies on the number of expert trajectories, the choice
of function g, the usage of world models and the usage of model predictive control, as detailed in
Appendix E.2. (ii): We evaluate the exploration ability of our proposed approach (Appendix E.3),
the robustness of our algorithm in noisy environment dynamics (Appendix E.6), examine the benefits
of constructing the reward model in the latent space (Appendix E.9), and highlight its advantages
over existing adversarial training methods (Appendix E.8). (iii): We provide the quantitative results
measuring the training stability in Appendix E.7. For all experiments, we sample expert trajectories
from a trained TD-MPC2 (Hansen et al., 2023). All of the experiments are conducted on a single
RTX3090 graphic card.

4.1 META-WORLD EXPERIMENTS

We conduct experiments on 6 tasks in Meta-World environments. We use 100 expert trajectories for
each task, ensuring that the expert data remains consistent across all algorithms for fair comparison
within each task. IQ-MPC suffers from overly powerful discriminators in these tasks, even with
gradient penalty applied, due to the adversarial training methodology. CFIL+SAC (Freund et al.,

7
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Figure 4: Meta-World Results We evaluate our CDRED method (red lines) on 6 tasks in Meta-
World environments. We show stabler performance on these tasks, outperforming the baselines.
IQ-MPC (orange lines) suffers from overly powerful discriminator problem mentioned in Section
E.8. We conduct the experiments on 3 random seeds.

2023) encounters instability in the training process due to the challenges inherent in training flow
models. We show stable and expert-level performance, outperforming these baselines in these tasks.
We show the episode reward results in Figure 4 and success rate results in Table 1.

Method BC IQL+SAC CFIL+SAC IQ-MPC CDRED(Ours)
Box Close 0.58±0.12 0.61±0.09 0.00±0.00 0.53±0.18 0.96±0.03

Bin Picking 0.43±0.18 0.75 ± 0.11 0.01±0.01 0.79±0.05 0.99±0.01
Reach Wall 0.10±0.08 0.90±0.04 0.01±0.01 0.31±0.14 0.98±0.01
Stick Pull 0.02±0.02 0.34±0.11 0.00±0.00 0.13±0.08 0.92±0.05
Stick Push 0.42±0.14 0.76±0.14 0.00±0.00 0.23±0.10 0.94±0.03

Soccer 0.04±0.03 0.73±0.09 0.01±0.01 0.12±0.07 0.81±0.05

Table 1: Manipulation Success Rate Results in Meta-World We show the success rate comparison
on 6 tasks in Meta-World. Our CDRED model demonstrates outperforming results compared to
existing methods. We compute the success rates over 100 episodes. We evaluate our model and
other baselines on 3 random seeds.

4.2 DMCONTROL EXPERIMENTS

We conduct experiments on 6 tasks in DMControl (Tassa et al., 2018) environments. For low-
dimensional tasks, we utilize 100 expert trajectories, while for high-dimensional tasks, we use
500 expert trajectories. Details on environment dimensionality can be found in Appendix D. Our
CDRED model performs comparably to IQ-MPC on the Hopper Hop, Walker Run, and Humanoid
Walk tasks. However, in Cheetah Run and Dog Stand, IQ-MPC experiences long-term instability,
causing the agent to fail after extensive online training. On the Reacher Hard task, IQ-MPC strug-
gles with an overly powerful discriminator, which prevents it from learning an expert-level policy.
The model-free methods in baseline algorithms fail to achieve stable, expert-level performance on
these tasks. The episode reward results are shown in Figure 5.

4.3 VISION-BASED EXPERIMENTS

In addition to experiments using state-based observations, we also benchmark our method on tasks
with visual observations. Specifically, we select three tasks from DMControl (Tassa et al., 2018)

8
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Figure 5: DMControl Results We evaluate our CDRED method (red lines) on 6 tasks in DMControl
environments. Our approach achieves results comparable to IQ-MPC (orange lines) in Hopper Hop,
Walker Run, and Humanoid Walk, while demonstrating greater stability across the remaining tasks.
We conduct the experiments on 3 random seeds.

Figure 6: Visual Experiment Results We compare the results of our model with IQ-MPC on tasks
with visual observations. Our approach outperforms IQ-MPC in Cheetah Run and Reacher Hard
tasks, while obtains comparable performance on Walker Run task. We conduct the experiments on
3 random seeds.

with visual observations. To create these visual datasets, we render visual observations based on
state-based expert trajectories, replacing the original state-based observations in the expert data. For
each task, we use 100 expert trajectories generated by a trained TD-MPC2 model (Hansen et al.,
2023). We show our results in Figure 6. Interestingly, we observe that visual IQ-MPC encounters
an issue with an overly powerful discriminator in the Cheetah Run task when using trajectories
generated by a trained state-based TD-MPC2 policy, where state observations are replaced by RGB
images rendered from those states. However, IQ-MPC performs well when using expert trajectories
generated by a TD-MPC2 policy trained directly on visual observations.

5 CONCLUSION

We propose a novel approach for world model-based online imitation learning, featuring an in-
novative reward model formulation. Unlike traditional adversarial approaches that may introduce
instability during training, our reward model is grounded in density estimation for both expert and
behavioral state-action distributions. This formulation enhances stability while maintaining high
performance. Our model demonstrates expert-level proficiency across various tasks in multiple
benchmarks, including DMControl, Meta-World, and ManiSkill2. Furthermore, it consistently re-
tains stable performance throughout long-term online training. With its robust reward modeling and
stability, our approach has the potential to tackle complex real-world robotics control tasks, where
reliability and adaptability are crucial.

9
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. The hyperparameter
settings and architectural details are documented in Appendix B, while the training and planning
algorithms are described in Appendix C. Finally, our source code is provided to facilitate faithful
reproduction of our experiments in the supplementary materials.

ETHICS STATEMENT

We have carefully reviewed the Code of Ethics and find that our work does not raise any significant
ethical concerns. Our research does not involve human subjects, sensitive data, or potentially harm-
ful applications. We believe our methodology and contributions align with principles of fairness,
transparency, and research integrity.
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A RELATED WORKS

Our work builds on previous advancements in imitation learning and model-based reinforcement
learning.

Imitation Learning Recent advancements in imitation learning (IL) have leveraged deep neu-
ral networks and diverse methodologies to enhance performance. Generative Adversarial Imitation
Learning (GAIL) (Ho & Ermon, 2016) laid the foundation for adversarial reward learning by formu-
lating it as a min-max optimization problem inspired by Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014). Several approaches have built on GAIL. Model-based Adversarial Im-
itation Learning (MAIL) (Baram et al., 2016) extended GAIL with a forward model trained via
data-driven methods. ValueDICE (Kostrikov et al., 2019) transformed the adversarial framework by
focusing on off-policy learning through distribution ratio estimation.

Offline imitation learning has seen significant advancements through approaches like Diffusion Pol-
icy (Chi et al., 2023), which applied diffusion models for behavioral cloning, and Ditto (DeMoss
et al., 2023), which combined Dreamer V2 (Hafner et al., 2020) with adversarial techniques. Implicit
BC (Florence et al., 2022) demonstrated that supervised policy learning with implicit models im-
proves empirical performance in robotic tasks. DMIL (Zhang et al., 2023) leveraged a discriminator
to assess dynamics accuracy and the suboptimality of model rollouts against expert demonstrations
in offline IL.

Other innovations focused on integrating advanced reinforcement learning techniques. Inverse Soft
Q-Learning (IQ-Learn) (Garg et al., 2021) reformulated GAIL’s learning objectives, applying them
to soft actor-critic (Haarnoja et al., 2018) and soft Q-learning agents. SQIL (Reddy et al., 2019)
contributed an online imitation learning algorithm utilizing soft Q-functions. CFIL (Freund et al.,
2023) introduced a coupled flow method for simultaneous reward generation and policy learning
from expert demonstrations. Random Expert Distillation (RED) (Wang et al., 2019) proposed an
alternative method for constructing reward models by estimating the support of the expert policy
distribution.

Model-based methods have also played a pivotal role in advancing IL. V-MAIL (Rafailov et al.,
2021) employed variational models to facilitate imitation learning, while CMIL (Kolev et al., 2024)
utilized conservative world models for image-based manipulation tasks. Prior works (Englert et al.,
2013; Hu et al., 2022; Igl et al., 2022) highlighted the potential of model-based imitation learning in
real-world robotics control and autonomous driving. A model-based inverse reinforcement learning
approach by Das et al. (2021) explored key-point prediction to improve performance in imitation
tasks. Hybrid Inverse Reinforcement Learning (Ren et al., 2024) offered a novel strategy blending
online and expert demonstrations, enhancing agent robustness in stochastic settings. EfficientImitate
(Yin et al., 2022) fused EfficientZero (Ye et al., 2021) with adversarial imitation learning, achieving
impressive performance on DMControl tasks (Tassa et al., 2018).

Model-based Reinforcement Learning Recent advancements in model-based reinforcement
learning (MBRL) utilize learned dynamics models, constructed via data-driven methodologies, to
enhance agent learning and decision-making. MBPO (Janner et al., 2019) introduced a model-based
policy optimization algorithm that ensures stepwise monotonic improvement. Extending this to of-
fline RL, MOPO (Yu et al., 2020b) incorporated a penalty term in the reward function based on
the uncertainty of the dynamics model to manage distributional shifts effectively. MBVE (Feinberg
et al., 2018) augmented model-free agents with model-based rollouts to improve value estimation.

Many approaches focus on constructing dynamics models in latent spaces. PlaNet (Hafner et al.,
2019b) pioneered this direction by proposing a recurrent state-space model (RSSM) with an evi-
dence lower bound (ELBO) training objective, addressing challenges in partially observed Markov
decision processes (POMDPs). Building on PlaNet, the Dreamer algorithms (Hafner et al., 2019a;
2020; 2023) leveraged learned world models to simulate future trajectories in a latent space, enabling
efficient learning and planning. The TD-MPC series (Hansen et al., 2022; 2023) further refined
latent-space modeling by developing a scalable world model for model predictive control, utilizing
a temporal-difference learning objective to improve performance. Similarly, MuZero (Schrittwieser
et al., 2020) combined a latent dynamics model with tree-based search to achieve strong performance
in discrete control tasks, blending planning and policy learning seamlessly. The EfficientZero series
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(Ye et al., 2021; Wang et al., 2024) enhances MuZero, achieving superior sampling efficiency in
visual reinforcement learning tasks.

B HYPERPARAMETERS AND ARCHITECTURAL DETAILS

B.1 ARCHITECTURAL DETAILS

We show the overall model architecture via a Pytorch style notation. We leverage layernorm (Ba,
2016) and Mish activations (Misra, 2019) for our model. The detialed architecture is displayed as
following:

WorldModel(
(_encoder): ModuleDict(

(state): Sequential(
(0): NormedLinear(in_features=state_dim, out_features=256,

bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=512, bias=

True, act=SimNorm)
)

)
(_dynamics): Sequential(

(0): NormedLinear(in_features=512+action_dim, out_features=512,
bias=True, act=Mish)

(1): NormedLinear(in_features=512, out_features=512, bias=True,
act=Mish)

(2): NormedLinear(in_features=512, out_features=512, bias=True,
act=SimNorm)

)
(_reward): CDRED_Reward(

(behavioral_predictor): Sequential(
(0): NormedLinear(in_features=512+action_dim, out_features

=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=

True, act=Mish)
(2): Linear(in_features=512, out_features=64, bias=True)

)
(expert_predictor): Sequential(

(0): NormedLinear(in_features=512+action_dim, out_features
=512, bias=True, act=Mish)

(1): NormedLinear(in_features=512, out_features=512, bias=
True, act=Mish)

(2): Linear(in_features=512, out_features=64, bias=True)
)
(target_networks)[not learnable]: Vectorized ModuleList(

(0-4): 5 x Sequential(
(0): NormedLinear(in_features=512+action_dim,

out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias

=True, act=Mish)
(2): Linear(in_features=512, out_features=64, bias=True)

)
)

)
(_pi): Sequential(

(0): NormedLinear(in_features=512, out_features=512, bias=True,
act=Mish)

(1): NormedLinear(in_features=512, out_features=512, bias=True,
act=Mish)

(2): Linear(in_features=512, out_features=2*action_dim, bias=True
)

)
(_Qs): Vectorized ModuleList(

(0-4): 5 x Sequential(
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(0): NormedLinear(in_features=512+action_dim, out_features
=512, bias=True, dropout=0.01, act=Mish)

(1): NormedLinear(in_features=512, out_features=512, bias=
True, act=Mish)

(2): Linear(in_features=512, out_features=101, bias=True)
)

)
(_target_Qs): Vectorized ModuleList(

(0-4): 5 x Sequential(
(0): NormedLinear(in_features=512+action_dim, out_features

=512, bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=

True, act=Mish)
(2): Linear(in_features=512, out_features=num_bins, bias=True

)
)

)
)

B.2 HYPERPARAMETER DETAILS

The specific hyperparameters used in the CDRED reward model are as follows:

• The predictors and target networks project latent state-action pairs to an embedding space
with dimension p = 64.

• We use an ensemble of 5 target networks for the CDRED reward model.
• The function g(x) = x is used in all experiments.
• The value of ζ = 0.8 is used across all experiments.
• We adopt α = 0.9 for all experiments.
• A StepLR learning rate scheduler is employed with γlr = 0.1, with a scheduler step of
500K for Meta-World and ManiSkill2 experiments, and 2M for DMControl experiments.

The remaining hyperparameters are consistent with those used in TD-MPC2 (Hansen et al., 2023).
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C TRAINING AND PLANNING ALGORITHMS

C.1 TRAINING ALGORITHM

In this section, we present the detailed training algorithm for the CDRED world model, as shown in
Algorithm 1. For clarity, let θ = {ϕ, ψ, ξ} represent all learnable parameters of the world model,
and θ− denote a fixed copy of θ.

Algorithm 1 CDRED World Model (training)
Require: θ, θ−: randomly initialized network parameters

η, τ, λ,Bπ,BE : learning rate, soft update coefficient, horizon discount coefficient, behavioral
buffer, expert buffer
for training steps do

// Collect episode with CDRED world model from s0 ∼ p0:
for step t = 0...T do

Compute at with πθ(·|hθ(st)) using Algorithm 2 ◁ Planning with MPPI
(s′t, rt) ∼ env.step(at)
Bπ ← Bπ ∪ (st,at, rt, s

′
t) ◁ Add to behavioral buffer

st+1 ← s′t
end for
// Update reward-free world model using collected data in Bπ and BE:
for num updates per step do

(st,at, s
′
t)0:H ∼ Bπ ∪ BE ◁ Combine behavioral and expert batch

z0 = hθ(s0) ◁ Encode first observation
// Unroll for horizon H
for t = 0...H do

zt+1 = dθ(zt,at) ◁ Unrolling using the latent dynamics model
q̂t = Q(zt,at) ◁ Estimate the Q value
z′t = h(s′t) ◁ Encode the ground-truth next state
r̂t = R(zt,at) ◁ Estimate Reward using the CDRED reward model
qt = r̂t + γQ(z′t, π(z

′
t)) ◁ Compute the TD target using the estimated reward

end for
Compute model loss L ◁ Equation 15
Compute policy prior loss Lπ ◁ Equation 16
θ ← θ − 1

H η∇θ(L+ Lπ) ◁ Update online network
θ− ← (1− τ)θ− + τθ ◁ Soft update

end for
end for
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C.2 PLANNING ALGORITHM

In this section, we present the detailed MPPI planning algorithm for the CDRED world model, as
shown in Algorithm 2. For simplicity, let θ = {ϕ, ψ, ξ} represent all learnable parameters of the
world model.

Algorithm 2 CDRED World Model (inference)
Require: θ : learned network parameters

µ0, σ0: initial parameters for N
N,Nπ: number of sample/policy trajectories
st, H: current state, rollout horizon

1: Encode state zt ← hθ(st)
2: for each iteration j = 1..J do
3: Sample N trajectories of length H from N (µj−1, (σj−1)2I)
4: Sample Nπ trajectories of length H using πθ, dθ

// Estimate trajectory returns ϕΓ using dθ, Qθ, πθ, Rθ starting from zt and initialize ϕΓ = 0:

5: for all N +Nπ trajectories (at,at+1, . . . ,at+H) do
6: for step t = 0..H − 1 do
7: zt+1 ← dθ(zt,at) ◁ Latent transition
8: ât+1 ∼ πθ(·|zt+1)
9: ϕΓ = ϕΓ + γtRθ(zt,at) ◁ Estimate reward with CDRED reward model

10: end for
11: ϕΓ = ϕΓ + γHQθ(zH ,aH) ◁ Terminal Q value
12: end for
13: // Update parameters µ, σ for next iteration:
14: µj , σj ←MPPI update with ϕΓ.
15: end for
16: return a ∼ N (µJ , (σJ)2I)

D TASK DETAILS AND ENVIRONMENT SPECIFICATIONS

We consider 12 continuous control tasks in locomotion control and robot manipulation. We leverage
6 manipulation tasks in Meta-World (Yu et al., 2020a), 6 locomotion tasks in DMControl (Tassa
et al., 2018) and 3 tasks in ManiSKill2 (Gu et al., 2023). In this section, we list the environment
specifications for completeness in Table 2, Table 3 and Table 4.

Task Observation Dimension Action Dimension
Box Close 39 4

Bin Picking 39 4
Reach Wall 39 4
Stick Pull 39 4
Stick Push 39 4

Soccer 39 4

Table 2: Meta-World Tasks We evaluate on 6 tasks in Meta-World. The Meta-World benchmark is
specifically constructed to facilitate research in multitask and meta-learning, ensuring a consistent
embodiment, observation space, and action space across all tasks.
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Task Observation Dimension Action Dimension High-dimensional?
Reacher Hard 6 2 No
Hopper Hop 15 4 No
Cheetah Run 17 6 No
Walker Run 24 6 No

Humanoid Walk 67 24 Yes
Dog Stand 223 38 Yes

Table 3: DMControl Tasks We evaluate on 6 tasks in DMControl. DMControl is a benchmark for
reinforcement learning, offering a range of continuous control tasks built on the MuJoCo physics
engine. It provides diverse environments for testing algorithms on tasks from basic motions to
complex behaviors, supporting standardized evaluation in control and planning research.

Task Observation Dimension Action Dimension
Lift Cube 42 4
Pick Cube 51 4

Turn Faucet 40 7

Table 4: ManiSkill2 Tasks We evaluate on 3 tasks in ManiSkill2. The ManiSkill2 benchmark
represents a sophisticated platform designed to advance large-scale robot learning capabilities. It
distinguishes itself through comprehensive task randomization and an extensive array of task varia-
tions, enabling more robust and generalized robotic skill development.

E ADDITIONAL EXPERIMENTS

E.1 EXPERIMENTS ON MANISKILL2

We further evaluate our method on additional manipulation tasks in ManiSkill2 (Gu et al., 2023),
achieving stable and competitive results on the pick cube, lift cube, and turn faucet tasks. Notably,
IQL+SAC (Garg et al., 2021) and IQ-MPC (Li et al., 2024) also perform relatively well in these
scenarios. Table 5 summarizes the success rates of each method across the ManiSkill2 tasks.

Method IQL+SAC CFIL+SAC IQ-MPC CDRED(Ours)
Pick Cube 0.61±0.13 0.00±0.00 0.79±0.05 0.87±0.04
Lift Cube 0.85 ± 0.04 0.01±0.01 0.89±0.02 0.93±0.03

Turn Faucet 0.82±0.04 0.00±0.00 0.73±0.08 0.84±0.08

Table 5: Manipulation Success Rate Results in ManiSkill2 We evaluate the success rate of
CDRED across three tasks in the ManiSkill2 environment. CDRED demonstrates superior per-
formance compared to IQL+SAC, CFIL+SAC, and IQ-MPC on the Pick Cube and Lift Cube tasks,
while achieving comparable results on Turn Faucet. The reported results are averaged over 100 tra-
jectories and evaluated across three random seeds.

E.2 ABLATION STUDIES

To evaluate the influence of different architecture choices and expert data amounts, we ablate over
the expert trajectories number, the g function choice, and the usage of coupling. We show that our
approach is still robust under a small number of expert demonstrations.

Ablation on Expert Trajectories Number We evaluate the impact of the number of expert trajec-
tories on model performance and find that our model can learn effectively with a limited number of
expert trajectories. We conduct this ablation on the Bin Picking task in Meta-World and the Cheetah
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Run task in DMControl, observing that our model achieves expert-level performance with only five
demonstrations. The results are presented in Figure 7. Our model can effectively learn with only 5
expert demonstrations for Cheetah Run and Bin Picking tasks.

Figure 7: Ablation Study on Expert Trajectories Number We conduct an ablation study on the
number of expert trajectories for the Cheetah Run task in DMControl and the Bin Picking task in
Meta-World. Our results demonstrate that our model can achieve expert-level performance using
only 5 expert demonstrations for both tasks.

Ablation on the g Function Choice Function g maps the neural network output bonus to the
actual reward space. In order to keep the optimal point for the reward function unchanged, we need
to leverage a monotonically increasing function. Empirically, we find g(x) = x and g(x) = exp(x)
can both work, but they have different performances in high-dimensional settings. We find g(x) = x
tends to provide a faster convergence in high-dimensional tasks such as Dog Stand compared to
g(x) = exp(x). While we haven’t observed any significant difference on low-dimensional tasks.
We show the ablation in Figure 8.

Low-dimensional task High-dimensional task

Figure 8: Ablation on g function choice For low-dimensional task (left), both forms of g(x) demon-
strate comparable performance. However, in high-dimensional task (right), g(x) = exp(x) exhibits
instability and suboptimal behavior, whereas g(x) = x maintains stability. The task dimensionality
information is shown in Appendix D.

Ablation on the Hyperparameter Choice We conduct ablation studies on two hyperparameters,
α and ζ, introduced in Section 3.2, which are related to the construction of the reward model. Our
experiments demonstrate that these parameters influence the model’s convergence during the initial
training phase, which is closely tied to the policy’s exploration capability. For the hyperparameter ζ,
we find that smaller values may encourage exploration, leading to faster convergence. However, if
ζ is too small, the model may fail to learn effectively. For the hyperparameter α, larger values may
enhance exploration, potentially promoting convergence. The results are aligned with our intuition
given in Section 3.2. We perform the ablation study on the state-based Humanoid Walk task in the
DMControl environment, and the results are presented in Figure 9.
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Ablation on ζ Ablation on α

Figure 9: Ablation Study on Hyperparameters We conduct an ablation study on hyperparameter
ζ and α. The ablation study is conducted on Humanoid Walk task.

Ablation on World Models To assess the impact of model-based learning, we conduct an abla-
tion study comparing performance with and without the world model. In the ablated setting, we
train SAC (Haarnoja et al., 2018) directly in the latent space using only the CDRED reward model,
without leveraging the world model. The results, including sampling complexity, episode rewards,
and success rate are presented in Table 6.

Sampling Complexity Success rate / Reward
Task w/ world model w/o world model w/ world model w/o world model
Walker Run ∼150k ∼1.2M 856.3 ± 5.5 741.9± 14.8
Bin Picking ∼500k ∼1M 0.99 ± 0.01 0.83± 0.06

Table 6: Ablation on World Models Our ablation study demonstrates that using a world model
significantly improves performance and reduces sampling complexity. We evaluated success rate
(Bin Picking) and episode rewards (Walker Run), averaging all results across 3 random seeds.

Ablation on Model Predictive Control Our ablation study of the Model Predictive Control
(MPC) component (Algorithm 2), summarized in Table 7, reveals consistent performance improve-
ments across all tasks, with the most significant gains in high-dimensional environments like Dog
Stand.

Task w/ MPC w/o MPC
Bin Picking 0.99± 0.01 0.95± 0.02
Stick Push 0.94± 0.03 0.91± 0.05
Walker Run 856.3± 5.5 837.1± 4.8
Dog Stand 915.6± 12.3 687.2± 33.9

Table 7: Ablation Study on Model Predictive Control Our ablation study on Model Predictive
Control (MPC) reveals consistent performance improvements across all tasks. While all environ-
ments benefit, the high-dimensional Dog Stand task shows the most significant gains. These results,
which measure success rates (Bin Picking, Stick Push) and episode rewards (Walker Run, Dog
Stand), are averaged across 3 random seeds.

E.3 ADDITIONAL EXPERIMENT ON EXPLORATION ABILITY

To verify the exploration improvements from using coupled estimators and to validate our initial toy
experiment (Figure 1), we evaluated our method on the AntMaze tasks in the D4RL benchmark (Fu
et al., 2020).
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We performed an ablation study comparing performance with and without coupled estimators on the
Umaze-diverse, Medium-diverse, and Large-diverse environments. The results, shown in Table 8,
demonstrate that using a coupled estimator leads to significantly higher success rates, especially
in the larger and more complex mazes that demand stronger exploration. This confirms that our
approach enhances exploration capabilities.

Task w/ Coupling w/o Coupling
Antmaze-Umaze-Diverse 0.87± 0.06 0.82± 0.04
Antmaze-Medium-Diverse 0.67± 0.04 0.45± 0.09
Antmaze-Large-Diverse 0.52± 0.08 0.17± 0.05

Table 8: Analysis on Exploration Ability with Coupled Estimator We performed an ablation
study on the AntMaze environments using 50 expert trajectories. The results, averaged across 3
random seeds, show that our coupled estimator yields the most significant improvements in larger
mazes, where stronger exploration capabilities are critical.

E.4 ADDITIONAL COMPARISON WITH HYPE

Hybrid IRL (Ren et al., 2024) is a recently proposed method for performing inverse reinforcement
learning and imitation learning using hybrid data. In this section, we compare our approach with
the model-free method (HyPE) introduced in their work. Our method achieves superior empirical
performance on three DMControl locomotion tasks, including the high-dimensional Humanoid Walk
task. The results are presented in Figure 10.

Figure 10: Comparison with HyPE We compare our CDRED approach with the HyPE method
(Ren et al., 2024) on the Hopper Hop, Cheetah Run, and Humanoid Walk tasks. Among these,
the Humanoid Walk task is high-dimensional, while the others are low-dimensional. Our approach
demonstrates superior empirical performance and improved sampling efficiency on these tasks.

E.5 ADDITIONAL COMPARISON WITH SAIL

Support-weighted Adversarial Imitation Learning (SAIL) (Wang et al., 2020) is an extension of
Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) that enhances performance
by integrating Random Expert Distillation (RED) rewards (Wang et al., 2019). In this section, we
present an additional comparative analysis between our proposed CDRED method and SAIL. The
experimental results are illustrated in Figure 11.

E.6 ROBUSTNESS ANALYSIS UNDER NOISY DYNAMICS

We conduct an additional analysis to evaluate the robustness of our model under noisy environment
dynamics. Following the evaluation protocol of Hybrid IRL (Ren et al., 2024), we introduce noise
by adding a trembling probability, ptremble. During interactions with the environment, the agent
executes a random action with probability ptremble and follows the action generated by the policy
for the remaining time. Our empirical results demonstrate that our model exhibits robustness to
noisy dynamics, as its performance only slightly deteriorates from the expert level when noise is
introduced. The results for the Cheetah Run and Walker Run tasks are presented in Figure 12.
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Figure 11: Comparison with SAIL We compare our CDRED approach with the SAIL method
(Wang et al., 2020) on the Walker Run, Cheetah Run, and Humanoid Walk tasks. Among these,
the Humanoid Walk task is high-dimensional, while the others are low-dimensional. SAIL fails to
learn in the high-dimensional Humanoid Walk task while our approach achieves nearly expert-level
performance. Overall, our approach demonstrates superior empirical performance and improved
sampling efficiency on these tasks.

Figure 12: Robustness Analysis under Noisy Environment Dynamics We analyze the perfor-
mance of our model on the Cheetah Run and Walker Run tasks under stochastic environment dy-
namics. Our results demonstrate that the model shows notable robustness to noise in the environment
dynamics.

E.7 QUANTITATIVE ANALYSIS OF TRAINING STABILITY

To assess the training stability of our algorithm, we examine the mean and maximum gradient norms
throughout the training process. This approach is similar to the analysis conducted in TD-MPC2
(Hansen et al., 2023). We compare the gradient norms of our method with those of IQ-MPC (Li et al.,
2024), a world model online imitation learning approach that employs an adversarial formulation,
on DMControl tasks. Our results indicate that the gradient norms of our approach are significantly
smaller than those of IQ-MPC, suggesting superior training stability. The detailed comparison is
presented in Table 9.

Gradient Norm IQ-MPC (mean) CDRED (mean) IQ-MPC (max) CDRED (max)
Humanoid Walk 12.6 0.073 198.3 0.32
Hopper Hop 324.8 1.3 8538.6 4.6
Cheetah Run 131.7 0.34 2342.6 3.1
Walker Run 344.6 0.26 1534.7 1.8
Reacher Hard 11.3 0.012 65.8 0.083
Dog Walk 989.7 0.059 6824.3 0.13

Table 9: Training Stability Analysis Comparison of gradient norms between our CDRED approach
and the IQ-MPC method. The significantly smaller gradient norms of our approach indicate en-
hanced training stability.
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E.8 ADVANTAGES COMPARED TO CURRENT METHODS INVOLVING ADVERSARIAL
TRAINING

The current existing methods (Li et al., 2024; Kolev et al., 2024; Rafailov et al., 2021; Yin et al.,
2022) for world model online imitation learning often involve adversarial training, following the
similar problem formulation as GAIL (Ho & Ermon, 2016) or IQ-Learn (Garg et al., 2021). IQ-
MPC (Li et al., 2024) adopted inverse soft-Q objective for critic learning while CMIL (Kolev et al.,
2024), V-MAIL (Rafailov et al., 2021) and EfficientImitate (Yin et al., 2022) leveraged GAIL style
reward modeling. In terms of IQ-Learn, an improved version of GAIL, although its policy can be
computed by applying a softmax to the Q-value in discrete control, effectively converting a min-
max problem into a single maximization (Garg et al., 2021), it still requires the maximum entropy
RL objective for policy updates in continuous control settings. In such cases, IQ-Learn performs
adversarial training between the policy and the critic, which leads to stability issues similar to those
encountered in GAIL. IQ-MPC, while performing well in various complex scenarios such as high-
dimensional locomotion control and dexterous hand manipulation, still encounters challenges in
some cases. These challenges include an imbalance between the discriminator and the policy, as
well as long-term instability. These issues stem from using an adversarially trained Q-function as
the critic. While IQ-MPC attempts to mitigate them by incorporating regularization terms during
the training process, it doesn’t fully resolve the problem. Figure 13 illustrates the drawbacks of
IQ-MPC in some cases, namely an overly powerful discriminator and long-term instability. We also
demonstrate the quantitative results for training stability analysis in Appendix E.7.

Overly powerful discriminator Long-term instability

Figure 13: Drawbacks of Methods Including Adversarial Training We demonstrate the draw-
backs of IQ-MPC (Li et al., 2024) in some tasks, which employs adversarial training for online imi-
tation learning. An overly powerful discriminator (Left) leads to sub-optimal policy learning, while
long-term instability (Right) of adversarial training prevents IQ-MPC from maintaining expert-level
performance during extended online training. Our CDRED method, which replaces adversarial
training with density estimation, is immune to these issues.

Overly Powerful Discriminator The generative adversarial training process is often prone to in-
stability (Gulrajani et al., 2017). IQ-MPC employs generative adversarial training between the pol-
icy and the critic, and it also encounters this challenge. To mitigate this issue, IQ-MPC leverages
gradient penalty from Gulrajani et al. (2017) to enforce Lipschitz condition of the gradients in a
form of:

Lpen =

H∑
t=0

λt

[
E(̂st,ât)∼B

(
∥∇Q(ẑt, ât)∥2 − 1

)2]
(18)

In the gradient penalty, (̂st, ât) are data points on straight lines between expert and behavioral dis-
tributions, which are generated by linear interpolation. Although it counters the problem to some
extent, the performance of IQ-MPC is still not satisfactory in some tasks such as Reacher in DM-
Control and Meta-World robotics manipulation tasks, for which we will refer to our experimental
results in Section 4. An overly powerful discriminator often causes the Q-value difference be-
tween the policy and expert distributions to diverge, as noted by Li et al. (2024). Specifically,
this divergence is reflected in the gap between the expected Q-values under the expert distribution,

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 14: IQ-MPC Q Value Difference Visualization We present the Q-difference plot for IQ-
MPC in a problematic scenario (Reacher Hard task in DMControl) where it is affected by an overly
powerful discriminator. Although applying a gradient penalty prevents the Q-difference from di-
verging, it still fails to converge to a value near zero, resulting in a persistently large Q-difference
throughout training.

E(s,a)(0:H)∼BE
Q(zt,at), and the policy distribution, E(s,a)(0:H)∼Bπ

Q(zt,at). While IQ-MPC can
mitigate this divergence to some extent through gradient penalty, it does not eliminate the differ-
ence entirely, indicating that the policy does not achieve expert-level performance. We show the Q
difference plot in a problematic case in Figure 14.

Long-term Instability Since we’re conducting online imitation learning, we prefer to train a pol-
icy that can reach expert-level and maintain stable expert-level performance during further training,
which is the long-term training stability. Due to the use of adversarial training, we find it hard for
IQ-MPC to maintain stable expert-level performance during extensive long-term online training.

E.9 IMPROVEMENT OF CONSTRUCTING THE REWARD MODEL ON THE LATENT SPACE

Original RND (Burda et al., 2018) and Random Expert Distillation (Wang et al., 2019) train their
reward or bonus models directly on the original observation space. In contrast, we found that con-
structing the CDRED reward model using the latent representations from a world model yields better
empirical performance. This highlights the superior properties of latent representations, which en-
able more accurate reward estimation. Furthermore, by training a latent dynamics model within this
space, the representations become more dynamics-aware, facilitating the construction of a reward
model that effectively captures the underlying dynamics.

To validate this, we compared training the CDRED reward model on the original observation space
versus the latent space. Our results indicate that while training on the observation space may exhibit
slightly suboptimal behavior in low-dimensional settings, it fails entirely in high-dimensional cases
due to the challenges of density estimation on raw observations. These findings are illustrated in
Figure 15.

F PROOF OF LEMMA 1

For completeness, we adapt the proof from Yang et al. (2024) to construct the proof of Lemma 1.
For a latent state-action pair (z,a) sampled from a latent state-action distribution ρ. We denote the
moments of the distribution of random variable c(z,a) as:

µθ̄(z,a) = E
[
fθ̄k(z,a)

]
=

1

K

K−1∑
k=0

fθ̄k(z,a), B2(z,a) = E
[
(fθ̄k(z,a))

2
]
=

1

K

K−1∑
k=0

(fθ̄k(z,a))
2,

B3(z,a) = E
[
(fθ̄k(z,a))

3
]
=

1

K

K−1∑
k=0

(fθ̄k(z,a))
3, B4(z,a) = E

[
(fθ̄k(z,a))

4
]
=

1

K

K−1∑
k=0

(fθ̄k(z,a))
4.
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Figure 15: Effectiveness of the latent space CDRED reward model We conduct comparative
experiments to evaluate the performance of the CDRED reward model when trained on the latent
space of the world model versus the original observation space. Our results show that training the
CDRED reward model on the latent space yields superior empirical performance.

The calculation for the moments of f∗(z,a) is as follows:

E[f∗(z,a)] = E[
1

n

n∑
i=1

ci(z,a)] =
1

n
E[

n∑
i=1

ci(z,a)] = µθ̄(z,a).

E[f2∗ (z,a)] = E[(
1

n

n∑
i=1

ci(z,a))
2]

=
1

n2
E[(

n∑
i=1

c2i (z,a) +

n∑
i=1

n∑
j ̸=i

ci(z,a)cj(z,a))]
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n2
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=
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(n− i)!
)

The statistic y(z,a) is defined as follows in Lemma 1:

y(z,a) =
f2∗ (z,a)− µ2

θ̄
(z,a)

B2(z,a)− µ2
θ̄
(z,a)

,

and its expectation is:

E[y(z,a)] =
E[f2∗ (z,a)]− µ2

θ̄
(z,a)

B2(z,a)− µ2
θ̄
(z,a)

=
1

n
.
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This implies that the statistic y(z,a) serves as an unbiased estimator for the reciprocal of the fre-
quency of (z,a). The variance of y(z,a) is given by:

V ar[y(z,a)] =
V ar[f2∗ (z,a)]

(B2(z,a)− µ2
θ̄
(z,a))2

=
E[f4∗ (z,a)]− E2[f2∗ (z,a)]

(B2(z,a)− µ2
θ̄
(z,a))2

=
K1B4(z,a) +K2µθ̄(z,a)B3(z,a) +K3B

2
2(z,a) +K4µ

2
θ̄
(z,a)B2(z,a) +K5µ

4
θ̄
(z,a)

n3(B2(z,a)− µ2
θ̄
(z,a))2

where

K1 = 1, K2 = 4n− 4, K3 = 2n− 3,

K4 = 4n2 − 16n+ 12, K5 = −5n2 + 10n− 6.

so we have:
lim
n→∞

V ar[y(z,a)] = 0.

As n approaches infinity, the variance of the statistic approaches zero, indicating the stability and
consistency of y(z,a).

USE OF LARGE LANGUAGE MODELS

We used LLMs solely as a writing assistant for minor grammar and phrasing corrections during
manuscript preparation. LLMs were not involved in research ideation, experiment design, data
analysis, or result interpretation.
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