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Abstract

Vision-language models (VLMs) are increasingly used to evaluate multimodal content, including1

presentation slides, yet their slide-specific understanding remains underexplored despite their2

growing role as critics in agentic, model-forward pipelines. We introduce VLM-SlideEval, an3

evaluation framework that probes VLMs along three axes: (1) element-level extraction from4

slide images aligned to ground truth; (2) robustness to controlled perturbations in geometry,5

style, and text; and (3) higher-level comprehension, such as recovering a deck’s narrative order6

from shuffled slides. Using publicly available decks from Zenodo1, we standardize ground-truth7

element metadata from PowerPoint XML and live renderings into a unified, verifiable schema.8

Empirically, VLMs underperform on pixel-accurate extraction and show non-trivial agreement,9

fidelity and consistency under controlled perturbations, while performing better on single-slide10

content understanding; however, they do not reliably capture narrative structure across slides.11

These results highlight the limits of current VLMs for slide evaluation and motivate calibrated,12

critic-in-the-loop evaluators that drive iterative refinement and selection in agentic pipelines.13

1 Introduction14

Presentation slides are a primary vehicle for conveying structured ideas across domains ranging15

from education to scientific communication to corporate decision-making. Automatic evaluation of16

slide quality and content understanding is an emerging and pronounced need, particularly in light17

of advances in agentic, model-forward slide generation Ge et al. [2025a], Fu et al. [2022]. While18

prior work on document analysis has focused on optical character recognition (OCR) [Xu et al., 2021,19

Wang et al., 2024, Smith, 2007] and XML-based parsing [Canny, 2025], these approaches are brittle20

when slides are only available as rendered images, and are limited to low-level layout information21

without reasoning about higher-level semantics. In contrast, vision-language models (VLMs) promise22

a unified mechanism for parsing slide content directly from images while also supporting tasks that23

require semantic or narrative comprehension.24

Despite the promise, it remains unclear to what extent current VLMs truly comprehend presentation25

slides. On one hand, VLMs may struggle with precise pixel-level tasks such as identifying bounding26

boxes, font attributes, or alignment, since they may not have been directly trained on raw presentation27

rendering pipelines or large scale OCR data of slide presentations. On the other hand, VLMs may28

excel at higher-level understanding, such as identifying the role of slide elements (e.g., title, subtitle,29

body text), inferring content hierarchy, or reasoning over narrative flow across a deck. Understanding30

these trade-offs is crucial for designing reliable and scalable evaluation pipelines that utilize VLMs.31

We introduce VLM-SlideEval as a first-class critic in agentic, model-forward pipelines and sys-32

tematically probe VLM slide comprehension. Our contributions are threefold. First, we curate a33

diverse dataset of PowerPoint decks and extract ground-truth geometry, style, and text via a pipeline34

combining PowerPoint XML with rasterized renders. Second, we design protocols for low-level35

1https://zenodo.org; HF viewer: https://huggingface.co/datasets/Forceless/Zenodo10K/viewer/default/pptx
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Figure 1: Evaluation Task Examples: Top: From an original slide (A), we parse a simplified schema JSON
(Table 1) (B), reconstruct a normalized slide (C; blue dashed boxes show theme-embedded content omitted
by the schema). A VLM predicts the schema from the re-rendered slide (D), and we score accuracy. Bottom:
We subsample 100 decks, retain slides with ≥3 visible elements (234 slides total), and apply perturbations to
geometry, text, and style with severity s ∈ [0, 1] (larger s means stronger changes; details in §3). Perturbed
slides are then used for VLM quality evaluation and sensitivity analyses (§4).

fidelity and structured comprehension, including element-wise Hungarian alignment and refinement-36

relevant probes of judge reliability (variance, sensitivity) and robustness via controlled perturbations37

to geometry, style, and text. Third, we extend evaluation to deck-level narrative by asking VLMs to38

reorder shuffled slides, assessing coherence.39

Applying VLM-SlideEval, we surface clear limits and strengths. VLMs struggle with pixel-accurate40

extraction and show behavioral divergence under controlled perturbations, yet they competently41

extract structured content on single slides while remaining unreliable for deck-level narrative. These42

findings caution against over-reliance on current VLMs for fine-grained slide evaluation and motivate43

more calibrated critic-in-the-loop refinement and selection gates for agentic pipelines.44

2 Related Work45

Calibrated VLM evaluators are increasingly critical in agentic, model-forward pipelines: they guide46

candidate selection, drive iterative refinement at inference time, and even supply reward/preference47

signals for training. Recent work shows verifier-guided decoding that improves performance without48

weight updates Chakraborty et al. [2025], generalist multimodal judges used both as LMM-as-a-Judge49

and as reward models Xiong et al. [2025], actor-critic loops that critique and correct reasoning Liu50

et al. [2025], and refinement-centric benchmarks plus standardization frameworks that emphasize51

granular, non-saturated measurement Paik et al. [2025], Balachandran et al. [2024]. This motivates a52

slide-native, verifiable evaluator that produces actionable signals at pixel, element, and deck levels.53

Yet VLM evaluation remains challenging. Open-ended judging often relies on incomplete visual54

context and fuzzy rubrics, yielding inconsistent scores Prabhu et al. [2024], while models hallucinate55

and make perceptual errors in visually grounded reasoning Ma et al. [2024]. Under controlled56

manipulations and counterfactuals, VLMs may inject priors unsupported by pixels and show limited57

sensitivity to fine-grained changes Guan et al. [2024], Vo et al. [2025]. Robustness studies further find58

text corruptions especially damaging, lightweight adapters sometimes rivaling full fine-tuning, and59

broader axes (fairness, toxicity, multilinguality) underexplored Chen et al. [2023], Lee et al. [2024].60

Slide presentations sit within multimodal document understanding, where structured parsing un-61

derpins both comprehension and authoring. Prior work has explored language-driven manipulation62

of slide objects (not pixels) for faster, faithful editing Jung et al. [2025], OCR-free pretraining for63

screenshots and UI/text layouts that improves element-level parsing Lee et al. [2023], and automatic64

extraction of deck structure for role identification and accessibility Peng et al. [2023]. In parallel,65

systems that generate slides from long-form documents highlight the need for scalable, slide-specific66

evaluation under diverse styles and limited metadata Fu et al. [2022], Ge et al. [2025b].67

Unlike work that omits a slide-native evaluator, relies on QA proxies, or focuses robustness on68

charts/UIs, VLM-SlideEval provides a slide-specific framework that couples pixel-accurate alignment69

to PPT-native ground truth with slide-relevant perturbations and deck ordering, positioning the70

evaluator as a critic for agentic pipelines.71

2



Figure 2: Parsed-only (solid) vs. e2e (hatched) with coverage (i.e., fraction of ground truth instances evaluated
for the metric; lines). o3/gpt-5 lead on Matching F1 (0.71–0.72) and Text Content F1 (0.76–0.78); o3 best in
geometry (1–IoU 0.55). Font Family Accuracy is low overall (max 0.42). More results in Fig. 7, Appendix F.

3 Method72

Data Source. We sample 100 English-dominant (≥70% by langid) .pptx decks from Zenodo10K73

(legacy .ppt excluded), totaling 1,948 slides, with CC-BY 4.0 license. Summary statistics are in74

Appendix A, Table 2.75

Ground Truth Element geometry, content, and style are extracted from PowerPoint XML and post-76

layout rendering. We parse static XML and then query the COM API after a layout pass to recover77

effective font metrics and tight text bounds (mitigating AutoFit and container/tight-box discrepancies).78

Elements are stored in a standardized schema with explicit units (Appendix A, Table 1).79

VLM Parsing & GT Matching. Slides are rasterized to PNG and sent with a fixed 960×54080

coordinate frame; we test five VLMs (via Azure) to return JSON validated against our schema81

(invalid JSON counts as a parse failure). Each slide is run N=3 times (low temperature), and metrics82

are reported per-run and pooled. Predictions are aligned to GT via Hungarian matching (cf. [Kuhn,83

1955, Stewart et al., 2016, Carion et al., 2020, Dong et al., 2025, Wang et al., 2025]) with a blended84

cost (IoU, center/size; text adds content similarity) and an acceptance gate; details in Appendix C.85

Perturbation Synthesis. Seeds. From the same 100 decks we manually select slides well-preserved86

by the schema and with at least a minimal complexity, ≥ 3 visible text elements, yielding 23487

seeds; the reconstructed slide serves as the clean baseline. Severity knobs. We generate controlled88

degradations along geometry, text, and style, parameterized by a single severity s ∈ {0, 0.1, . . . , 1.0}.89

Magnitudes (e.g., pixel offsets, font-size factors) and event probabilities (e.g., drop/insert text90

boxes) increase monotonically with s; randomness is seeded per (slide, axis, s). Exports use a91

Node.js-based PPTX builder and headless rendering. From the 7,722 original+perturbed slides in92

total (hyperparameters in App. D), we subsample up to 50 slides per severity per axis for evaluation.93

Manipulation Check. We assess whether increasing severity s ∈ [0, 1] yields orderly and pro-94

portional degradation using (i) adjacent POA - the fraction of consecutive severity steps where y∗95

does not decrease - and (ii) the mean absolute calibration error (MACE) to the identity y∗ = s, on96

the normalized [0, 1] scale. Empirically, POA is high (5-pt ≈ 0.95; 100-pt ≈ 0.80) with moderate97

calibration (overall MACE ≈ 0.34).98

Analysis & Measures We evaluate: (i) parseability (schema-valid JSON rate); (ii) extraction quality99

on matched elements (geometry, content, style); (iii) narrative ordering (deck reordering; Kendall’s τ ,100

Spearman’s ρ); and (iv) perturbation sensitivity - R2, POA and Spearman(severity, y∗) - comparing101

different evaluator scales and models. We report bootstrap 95% CIs and isotonic summaries where102

appropriate. Full metric definitions and evaluator prompts appear in Appendix E.103

4 Results104

We benchmark five VLMs (Azure API) three main tasks: 1) element-level extraction from single105

slides, 2) robustness to controlled perturbations, and 3) narrative understanding via slide re-ordering.106

Slide Parseability. Parse success declines with slide complexity for gpt-4.1 (about 93% for simple107

slides with ≤ 8 elements, 72.1% for (8-16], 32.8% for (16-32], and 18.2% for ≥ 32 elements).108

gpt-4o follows a similar trend but with an earlier decline: about 88.0% for ≤ 8, 57.6% for (8-16],109

45.8% for (16-32], with a small (noisy) uptick to 66.7% at ≥ 32 (N=66). In contrast, o3 and the110

gpt-5 variants remain effectively at ceiling across all bins (99.5%+). See Fig. 6.111

Element Prediction Accuracy. Across headline metrics (Fig. 2), o3 and the gpt-5 variants lead112

under e2e. Matching F1: Parsed→e2e performance drops (∆ ≈ 0.12 for gpt-4.1 and gpt-4o),113

with o3 achieving the highest e2e F1 score (0.72), followed by gpt-5 0.71–0.72, vs. gpt-4.1114
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(a) Consistency-fidelity frontier per dimension.
Consistency := POAadj and fidelity := Spearman
(severity, y∗) (higher better). Geometry/style show no
fidelity gain but lower consistency when moving from
5 to 100-pt scale; text trades fidelity with consistency.

(b) Cross-model agreement vs. severity. Spearman
agreement across model pairs by severity buckets. Ge-
ometry/style pairs often exceed 0.80-0.90; text is low-
est (best text pair ρ ≈ 0.55), indicating limited inter-
changeability on text.

Figure 3: Evaluation results of model behavior under controlled perturbations.

0.59 and gpt-4o 0.44. Text Content F1: o3 0.78 (best), gpt-5 0.76, gpt-4.1/gpt-4o 0.69/0.63.115

Geometry (1–IoU; lower better): o3 0.55 (best), gpt-5 0.56, gpt-4.1 0.57, gpt-4o 0.65 (worst).116

E2e coverage is limited, especially for gpt-4o (0.33) and gpt-4.1 (0.54) vs the rest (0.74-0.78)117

Styling (Font Family Acc.): overall low (0.17–0.42), with gpt-5-high highest (0.42) and gpt-4o118

lowest (0.17). Detailed metrics and parsed-only comparisons appear in Table 4 and App. Fig. 7.119

Behavior Under Controlled Perturbations - Scale correspondence. Within each model, an isotonic120

link maps 5-point scores to 100-point scores with high fidelity: R2 ∈ [0.85, 0.89] across models121

(p = 0.001), with GPT-4.1 the tightest (RMSE = 0.075) and others close (e.g., GPT-5-high 0.083),122

on the normalized degradation scale y∗ ∈ [0, 1]. This establishes that the two scales are largely123

monotone reparameterizations. However, a monotone mapping does not imply identical behavior124

under controlled severity shifts: coarse 5-point scores reduce quantization jitter and often improve125

within-slide ordering, whereas 100-point scores expose finer variation that can either reflect genuine126

sensitivity or add noise. We therefore examine explicit scale×dimension trade-offs below.127

Scale×dimension trade-offs. We quantify internal consistency as POAadj and fidelity as128

Spearman(severity, y∗). We find that for geometry and style, moving from 5-pt to 100-pt yields129

no material fidelity gain (bootstrap CIs overlap across models) but reduces POA, as implied by130

the flat frontiers (e.g., geometry POA drops from 0.87–0.95 to 0.62–0.73; style from 0.88–0.98 to131

0.63–0.81) (Fig. 3a). Thus a coarser scale is preferable for stability in these dimensions. In con-132

trast, for text, 100-pt increases fidelity substantially (e.g., GPT-5-high 0.51→0.75; GPT-5-minimal133

0.52→0.76) while lowering POA (often 1.00→0.88–0.92), revealing a consistency–fidelity trade-off.134

Model interchangeability. Models diverge most on text (Fig. 3b). Even the most convergent135

text pair (GPT-5-high vs. GPT-5-minimal) attains only ρ≈0.55 (mean of per-severity Spearman),136

whereas geometry/style pairs frequently exceed 0.80–0.90. Notably, the most divergent geometry137

pair (e.g., GPT-4o vs. o3) still shows higher agreement (ρ≈0.78) than the most convergent text pair,138

underscoring that text quality is the hardest axis for cross-model agreement.139

Narrative in Slide Deck. Overall (Figure 8), the models exhibit difficulty in accurately predicting140

slide order, with Kendall’s τ (0.04-0.12), Spearman’s ρ (0.05-0.13), and Exact Match scores (0.10-141

0.17) only marginally outperforming random guessing, yet remaining below the theoretical upper142

bound of 1.0. This suggests that the models may struggle to comprehend and reason through the143

narrative flow of a presentation. Among them, gpt-4.1 delivered the strongest performance (0.04-0.07144

point of improvement) over gpt-5 with minimal reasoning (Details in Appendix F.3).145

5 Conclusion146

We present VLM-SlideEval, a framework for evaluating slide element extraction, robustness to147

controlled perturbations, and narrative reordering on a curated PPTX corpus with ground truth.148

Newer VLMs (o3, gpt-5) outperform gpt-4.1/gpt-4o, yet all struggle with pixel-accurate style (e.g.,149

fonts) and cross-slide narrative coherence, and under perturbations exhibit a fidelity-consistency150

trade-off: geometry/style are comparatively stable, while finer text scales raise sensitivity but reduce151

internal score consistency. These findings argue for calibrated, slide-native evaluators as first-class152

critics in agentic/model-forward pipelines, using verifiable signals to gate selection and steer iterative153

refinement. Limitations include public PPTX, seeded perturbations, and our pipeline; future work154

spans broader corpora, richer narrative probes, stronger verifiable checks, and judge calibration.155
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A Ground Truth Extraction Details156

Ground truth elements are obtained by parsing the PowerPoint XML specification and cross-checking157

against a PNG export of the same slides. Each element type (text, rect, line, image, table) is158

represented in a unified schema with pixel-based geometry and absolute units for fonts and strokes159

(the full extraction schema is shown in Table 1 below).160

Field(s) Applies to Unit / Notes

w, h slide px; fixed at 960×540
x, y, w, h rect, text, image, table px; top-left anchor
x1, y1, x2, y2 line px; line endpoints
rx rect px; corner radius
strokeWidth rect, line points (pt); absolute width
font.size text pt; absolute font size
font.style text categorical; bold, italic, underscore
color fields text, slide, line, rect normalized hex (#RRGGBB)
align text categorical; left/center/right/justify/distributed

Table 1: Schema of extracted ground truth fields (excerpt). See Appendix A for full details.

We normalized the coordinates to the fixed slide size 960 × 540px, with its origin at the top-left161

corner. For styling information, font sizes are reported in points, while color values are normalized162

into #RRGGBB format. This enables precise cross-comparison between extracted ground truth and163

predictions returned by vision-language models (see Sec. 3). The summary statistics of ground truth164

element extraction can be found in Table 2165

B Predicted Extraction Prompt166

[System Message]
Analyze the location, size, and styling information of elements in the slide.
The size of the slide is: {TARGET_W} (w) x {TARGET_H} (h) pixels. The screenshot of the slide

was taken at DPI = 72.
Top-left of the slide is (0,0), +x rightward, +y downward.
All geometry fields are integers in pixels, unless noted otherwise.

Return a JSON object with the following top-level fields for the single slide:
{ size, background, texts:[], rects:[], lines:[], images:[], tables:[] }.
Include every required field exactly as specified.

{Extraction Specification Information: Table 1 Content Here}

[User Message]
{"type": "image_url", "image_url": {"url": "<base64_thumbnail>", "detail": "auto"}}

Figure 4: Prompt used for structured extractions from VLMs for a single slide image.

We use a single-slide prompt that (i) fixes the slide coordinate frame at 960×540 px with origin at167

the top-left; (ii) specifies units per field (pixels for geometry, points for fonts and strokes, hex for168

colors); and (iii) enumerates the required output schema (size, background, texts, rects, lines, images,169

tables) with field-level guidance (e.g., x,y are the top-left of the element bbox; lines use x1,y1,x2,y2;170

rectangle corner radius is rx). The system message instructs the VLM to return a strict JSON object171

for the single image provided. A compact reference table in the prompt reiterates allowed values172

(e.g., text align ∈ left, center, right, justify, distributed) and clarifies that font and stroke widths are in173

points (absolute), while all positions and sizes are in pixels. The slide image is passed inline as a174
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Per deck Per slide Total

Category Mean SD Min Med Max Mean SD Min Med Max Sum

Num. of slides 19.48 11.54 1 18.0 46 — — — — — 1948

All elements 119.01 142.07 1 93.0 1183 6.11 9.03 0 4.0 153 11901

By type
Text 63.40 58.40 0 49.0 314 3.25 3.34 0 3.0 69 6340
Rect 15.44 63.66 0 2.5 622 0.79 5.28 0 0.0 93 1544
Line 5.64 18.74 0 0.0 167 0.29 2.12 0 0.0 49 564
Image 33.71 33.50 0 28.0 172 1.73 2.54 0 1.0 44 3371
Table 0.82 4.09 0 0.0 40 0.04 0.35 0 0.0 11 82

Table 2: Ground-truth extraction summary across 100 decks and 1,948 slides. Per-deck statistics are
computed across decks; per-slide statistics across slides.

base64 PNG. We enforce structured output via the API’s JSON schema mode and validate responses175

with Pydantic; invalid JSON or schema mismatches are marked as parse failures.176

Algorithm 1 Hungarian Matching with Blended Geometry+Content Cost and Threshold Gate

1: Input: G = {gi}mi=1, P = {pj}nj=1

2: Params: slide size (W,H); weights (α, β, γ, δ); blended acceptance threshold τ ∈ [0, 1]
3: Accessors: box(e)→(x, y, w, h); sim(g, p) ∈ [0, 1] if available (else set δ=0)
4: Defs:
5: IoU(a, b) = area(a∩b)

area(a)+area(b)−area(a∩b)

6: dcenter(a, b) =
∥c(a)−c(b)∥2√

W 2+H2
where c(·) is box center

7: size_rel(a, b) = 1
2

(
|wa−wb|
max(ε,wa)

+ |ha−hb|
max(ε,ha)

)
8: Construct C ∈ Rm×n

9: for i = 1 to m do
10: for j = 1 to n do
11: a←box(gi), b←box(pj)
12: ciou←1− IoU(a, b); ccenter←dcenter(a, b); csize←size_rel(a, b)
13: ccont←1− sim(gi, pj) if content available else 0
14: Cij←αciou + βccenter + γcsize + δccont
15: end for
16: end for
17: Compute optimal assignment A ⊆ {1..m}×{1..n} by Hungarian on C

18: Threshold gate and bookkeeping
19: M←∅; matchedG←∅; matchedP←∅
20: for each (i, j) ∈ A do
21: if Cij ≤ τ then
22: M←M∪ {(i, j)}; matchedG←matchedG ∪ {i}; matchedP←matchedP ∪ {j}
23: end if
24: end for
25: Output: matches ‘M’, false positives ‘P \matchedP’, false negatives ‘G \matchedG’

C Prediction-to-Ground Truth Matching Algorithm177

Let G = {gi} denote the set of ground truth elements and P = {pj} the predicted elements. Each178

candidate match (gi, pj) (cij ∈ C ∈ R|G|×|P |) we define a blended cost cij = α
(
1− IoU(gi, pj)

)
+179

β dcenter(gi, pj) + γ size_rel(gi, pj) + δ
(
1 − sim(gi, pj)

)
, where IoU is the box overlap, dcenter is180

normalized Euclidean center distance, size_rel is relative size drift, and sim is a content similarity181

score (e.g., normalized text similarity). We solve a minimum-cost bipartite matching with the182
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Hungarian algorithm Kuhn [1955], Carion et al. [2020] on C = [cij ]. Finally, we apply a lightweight183

sanity check: a matched pair (i, j) is accepted iff its blended cost is below a threshold τ (i.e., cij ≤ τ );184

otherwise it is discarded, yielding an unmatched ground-truth (FN) and prediction (FP). Pseudo code185

of this procedure can be found in Algorithm 1.186

This formulation generalizes naturally to other modalities; only the similarity term sim(·) is type-187

dependent. For example, table elements may use cell-value overlap, and images may use caption,188

color histogram, and object-scene similarity.189

D Perturbation Operators and Hyperparameters190

Notation. We perturb a slide’s element list E with a single strength knob s ∈ [0, 1]. When s = 0 the191

transform is a no-op (we return a deep copy). All probabilities and noise scales below are monotone192

in s, and all randomness is seeded for reproducibility.193

Geometry (layout/alignment). We act on “box-like” elements with geometry (x, y, w, h) (text,194

image, table, rect, chart). For each eligible element (sampled with per-element probability πgeo;195

default = 1.0):196

• Translation: (x′, y′) = (x+∆x, y +∆y) with ∆x ∼ N (0, σ2
x), ∆y ∼ N (0, σ2

y),197

σx(s) = (0.04 + 0.16 s) ·W, σy(s) = (0.04 + 0.16 s) ·H,

where (W,H) is slide size (960×540px).198

• Scaling: (w′, h′) = (w · ηw, h · ηh), with η{·} ∼ exp(N (0, σ2
log)) and σlog(s) = 0.12 + 0.55 s.199

• Extreme size (optional): with probability pext(s) = 0.20 s, additionally multiply (w′, h′) by200

r ∼ Uniform(0.15, 0.50) or Uniform(1.5, 10).

• Reposition (optional): with probability prep(s) = 0.10 s, sample a fresh (x′, y′) uniformly over201

valid canvas positions (respecting current size).202

• Collapse (optional): with probability pcol(s) = 0.08 s, set one dimension to Uniform(1, 3) px203

(skinny or flat).204

• Bounds: clamp to [0,W − w′]× [0, H − h′] unless allow_clipping.205

Text Content. We operate on text elements; non-text are passed through. For each text box (sampled206

with per-element probability πtxt; default = 1.0):207

• Character-level noise with per-character rate pchar(s) = pmin + (pmax − pmin) s, where pmin =208

0.02, pmax = 0.25. For each affected character, apply one of {substitute, delete, insert, adjacent-209

swap} with weights (0.50, 0.20, 0.15, 0.15). Substitutions/insertions prefer keyboard-neighbor210

letters; case preserved.211

• Numeric preservation (optional): after noise, restore the original numeric runs (\d+(\.\d+)?)212

in textual order to limit semantic drift on quantities.213

• Drop boxes (optional): with probability pdrop(s) = 0.18 s, remove the entire text box.214

• Insert boxes (optional): with probability pins(s) = 0.35 s, insert n ∈215

{1, . . . ,min(max_inserts, 1 + ⌊3s⌋)} irrelevant text boxes. Each insertion samples ge-216

ometry fractions w/W ∼ U(0.15, 0.35 + 0.35s), h/H ∼ U(0.08, 0.22 + 0.28s), with uniform217

valid (x, y). Text is drawn from a small pool (e.g., “lorem ipsum”, “TODO: revise”), and default218

font attributes are assigned (size scales with s; emphasis toggles with small s-scaled probabilities).219

Style (typography & color). We act on text elements (per-element probability πsty; default = 1.0).220

Let f denote a font object with fields {name, size, bold, italic, underline, color}.221

• Family switch: with probability pfam(s) = 0.20 + 0.60 s, replace name by a random choice from222

a fixed pool excluding the current family.223

• Size jitter: size′ = clip[6,120]
(
size · exp(N (0, σ2

sz))
)

with σsz(s) = 0.45 s. With probability224

pszext(s) = 0.25 s, additionally multiply by U(0.12, 3.8) to produce tiny/huge outliers.225

• Emphasis toggles: independently flip {bold, italic, underline} with probability ptog(s) =226

0.20 s.227

• Color: with probability pinj(s) = 0.30 s, inject an incongruent palette color (e.g., #FF0000,228

#FFFF00, #00FFFF, . . . ). Otherwise jitter the current color in HLS: ∆h ∼ U(−30◦, 30◦) s,229
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∆ℓ ∼ U(−0.25, 0.25) s, ∆s ∼ U(−0.20, 0.20) s. With probability plowc(s) = 0.25 s, move230

toward the background color by c′ = (1− α)c+ α cbg with α = 0.25 + 0.65 s.231

• Background: with probability pbg(s) = 0.20 s, jitter the slide background color as above.232

E Additional Details for Analysis & Measures233

E.1 Slide Parseability234

Definition. A slide is counted as parsed if the model returns a JSON object that validates against our235

strict schema (fields, types, units) using Pydantic. Responses that are not valid JSON or violate the236

schema are marked as failures. Parseability is independent of matching quality (later we report on237

both the end-to-end - including parse failure cases where they would count towards the denominators238

of the downstream performance metrics - as well as the parsed-only - excluding parse failure cases239

from analysis; see Fig. 2 and Fig. 7 for the relevant results).240

Complexity. We use GT scene complexity c as the total number of ground truth elements on a slide241

(sum over text, image, table, line, rect, table).242

Reliability curve by complexity. Let {Bk} be K quantile bins of c. For each bin Bk we report243

P̂r(success | c∈Bk) =
1

|Bk|
∑
i∈Bk

⊮{parsedi},

with a 95% bootstrap confidence interval via percentile or BCa intervals.244

E.2 Metric Definitions245

To investigate the VLM slide comprehension accuracy, we measure a suite of metrics encompassing246

a diverse set of elements for the three dimensions of quality, as detailed below.247

Matching counts & PRF1. For each family and overall (micro), precision P = TP
TP+FP , recall248

R = TP
TP+FN , and F1 = 2PR

P+R .249

Geometry terms (interpretable). For boxes we report: 1− IoU; center distance dcenter; relative250

size rsize; for images, aspect-ratio error rar; for rectangles, radius error rrx; for lines, relative length251

error rlen and angular error rang. All terms are in [0, 1] after normalization. Lower is better.252

Content similarity. Text strings are normalized by lowercasing, replacing “&→and”, stripping253

punctuation, and collapsing whitespace. We compute scontent = SequenceMatcher(t̃pred, t̃gt) ∈254

[0, 1] and also report 1 − scontent where an error term is desired. (Embedding-based similarity is255

possible but not used in our primary results.)256

Style. We measure color differences using CIEDE2000 (∆E00) computed in CIE L∗a∗b∗ space257

after sRGB→Lab conversion (D65; kL = kC = kH = 1). Lower is better. Rule-of-thumb:258

∆E00≲0.5 imperceptible, 0.5−1 barely perceptible, 1−2 small but visible, 2−3.5 clearly noticeable259

under typical viewing. We evaluate: (i) slide background vs. GT; (ii) per element type—font color260

(text), fill and stroke (rect), and stroke (line). For numeric style fields we report absolute errors261

in native units: font size (pt) and stroke width (pt). For booleans we report mismatch rates (0/1): bold,262

italic, underline (for text). All statistics are summarized overall and per type using means, standard263

deviations, and counts; micro-averaged PRF1 is computed from summed TP/FP/FN.264

Aggregation. We micro-average PRF1 by summing TP/FP/FN over all slides and runs. For scalar265

errors we report {mean, stdev, n} over all matched pairs (overall and by type). Where noted, we266

compute bootstrap 95% CIs (2,000 resamples). Deck-level summaries aggregate per slide, then pool267

across decks (pooled mean/stdev with sample-size weights).268

Units & coordinate frame. All geometry is in pixels in a fixed 960× 540 slide frame; stroke width269

and font size are in points. The rasterization is for screenshots only and does not alter the target270

coordinate system.271
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[System Message]
[Role]
You score the {DIMENSION} of a PowerPoint slide.

[Scale]
Return ONE integer on the scale {SCALE_MIN}..{SCALE_MAX} (inclusive).
Anchors:
- Min ({SCALE_MIN}): "{LOW_LABEL}".
{OPTIONAL_MID}- Mid ({SCALE_MID}): "{MID_LABEL}".
- Max ({SCALE_MAX}): "{HIGH_LABEL}".

[How to judge]
Consider only:
{CRITERIA_BULLETS}

[User Message]
{"type": "image_url", "image_url": {"url": "<base64_thumbnail>", "detail": "auto"}}

Figure 5: Prompt template used by VLM evaluators on perturbed slides.

E.3 Evaluator Prompts272

The prompts used by VLM evaluators for assessing the quality of perturbed slides along text, geometry,273

and style dimensions are instantiated using a common prompt template (Fig. 5) and supplying the274

information. For dimension, we use {“text quality”, “layout geometry”, “style”}; we provide two275

scale set points {(1,5), (1,100)} and corresponding mid-point as the mean of the end-points, and276

labels as {“very poor”, “acceptable”, “excellent”}. The how to judge constraints are shown in Table 3277

below:

Text quality Layout geometry Style

• Clarity and plain language
• Grammar/spelling
• Bullet length (prefer one line)
• Concision (avoid fluff)

• Alignment to grid/edges/base-
lines

• Consistent spacing and mar-
gins

• Balance and visual hierarchy
• Element sizing matches im-

portance

• Font family consistency and
readability

• Font size appropriate for
viewing distance

• Contrast and color harmony
• Consistent emphasis (bold/i-

talic/underline sparingly)
Table 3: How to judge constraints used by evaluators.

278

F Detailed Results279

F.1 Slide Parsing Success Rate Conditioned on Scene Complexity280

Parseability vs. complexity. Figure 6 visualizes these trends across complexity bins; the per-bin281

summaries are:282

• gpt-5-high is essentially at ceiling across all complexity bins: five bins are at 100% and the283

remaining two are 99.8%–99.9%.284

• gpt-5-minimal is likewise near-ceiling: 99.7%–100% in all but one bin; the lowest bin is 99.5%285

(16–32).286

• o3 remains at or near ceiling throughout, with 99.7%–100% across all bins.287

• gpt-4.1 shows clear sensitivity to complexity: 95.5% (0–1), 93.7% (1–2), 92.8% (2–4), 91.6%288

(4–8), then drops to 72.1% (8–16), 32.8% (16–32), and 18.2% (32–∞).289
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Figure 6: Parse success versus scene complexity (elements per slide) across VLMs. Complexity bins: (0–1],
(1–2], (2–4], (4–8], (8–16], (16–32], (32–∞]. GPT-5 and o3 remain near ceiling across bins, while GPT-4 series
degrades with complexity. Estimates in the rightmost bin use small samples (n=66 per model).

• gpt-4o underperforms gpt-4.1 in most bins as complexity grows: 92.7% (0–1), 95.4% (1–2),290

89.1% (2–4), 81.4% (4–8), 57.6% (8–16), 45.8% (16–32); the uptick to 66.7% in 32–∞ reflects291

small-sample volatility (n=66).292

Small sample sizes in the extreme tail (32–∞, n=66 per model) limit certainty there; the overall293

pattern is near-perfect parseability for the GPT-5 and o3 models, with sharp degradation for the294

GPT-4 series as complexity increases.295

F.2 Extraction Performance296

Fig. 7 summarizes extraction accuracy and geometry error with Parsed Only vs. End-to-end bars297

and coverage lines; Table 4 lists per-model metrics, showing e2e (parsed-only) in each cell with best298

e2e bolded. Overall, o3 and gpt-5-{minimal,high} lead across F1/accuracy and geometry, while299

gpt-4.1/gpt-4o degrade more under e2e, consistent with lower coverage.

Figure 7: Bars show Parsed Only (solid) vs. End-to-end (hatched); lines (right axis) show coverage (fraction of
ground-truth instances evaluated per metric). Styling (higher is better): Any-style F1 is moderate overall, with
gpt-4.1 at 0.77 (best) and gpt-4o at 0.55 (worst); parsed-only boosts are pronounced for the 4-series (e.g.,
0.89 for gpt-4.1, 0.67 for gpt-4o). Fonts: font group accuracy is near-perfect for gpt-5-{minimal,high}
and o3 (≥ 0.98) but lower for gpt-4.1/gpt-4o (≈ 0.72/0.59); font family accuracy is substantially lower
across models (0.17–0.42). Font size: MAE (pt; lower is better) ranges 5.93–10.18 with gpt-4o best. Color
(lower is better): text ∆E00 spans 1.46–3.37 (o3 best, gpt-4.1 worst) and contrast |∆| shift spans 0.26–2.47
(o3 best, gpt-4.1 worst). Geometry (lower is better): 1−IoU is best for o3 (0.55) and worst for gpt-4o (0.65);
center error is 0.04–0.09, size error 0.27–0.37, and image aspect-ratio error 0.15–0.20. End-to-end coverage is
substantially lower for the 4-series than for o3/gpt-5.

300
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Metric gpt-4o gpt-4.1 o3 gpt-5-minimal gpt-5-high

Element Matching F1 0.44 (0.54) 0.59 (0.71) 0.72 (0.72) 0.71 (0.71) 0.72 (0.72)

Geometry (micro; lower is better)

1− IoU 0.65 0.57 0.55 0.56 0.56
Center error (% diag) 0.09 0.04 0.04 0.04 0.04
Size error (relative) 0.37 0.27 0.31 0.32 0.32
Image AR error 0.20 0.18 0.18 0.15 0.15

Content (micro; higher is better)

Text Content F1 0.63 (0.69) 0.69 (0.73) 0.78 (0.78) 0.76 (0.76) 0.76 (0.76)

Style (micro; higher is better for style F1 and font accuracies; lower is better for color shifts)

Any-style F1 0.55 (0.67) 0.77 (0.89) 0.74 (0.74) 0.73 (0.73) 0.73 (0.73)
Font Family Acc (micro) 0.17 (0.27) 0.33 (0.45) 0.32 (0.32) 0.41 (0.41) 0.42 (0.42)
Font Group Acc (micro) 0.59 (0.95) 0.72 (0.98) 0.98 (0.98) 0.98 (0.98) 0.98 (0.98)
Font size MAE (pt) 5.93 10.18 6.22 8.92 8.97
Text color ∆E00 2.27 3.37 1.46 2.57 2.55
Contrast |∆| shift 0.63 2.47 0.26 0.75 0.77

Table 4: Extraction accuracy and geometry quality by model. Each cell shows end-to-end and (parsed-only)
values, when applicable. Higher is better for F1/accuracy; lower is better for error metrics. Best model metric is
boldfaced.

F.3 Slide Deck Narrative Order Performance301

To assess narrative comprehension, we examine how effectively the VLM reconstructs the original302

sequence of slides from a randomly shuffled deck (Figure 8). Each deck is segmented into individual303

slide representations, which are then randomly reordered and input into the model along with a304

prompt instructing it to restore the correct order. The model’s predicted sequence is evaluated against305

the ground truth using Kendall’s τ , Spearman’s ρ, and normalized exact match metrics. We report the306

mean and standard deviation across all decks.307

As a preliminary step, we verify whether the models can generate output sequences that match the308

full length of the original presentations. For instance, if a presentation contains 23 slides, the model309

should produce an ordered list of 23 elements. According to Figure 6 (left), GPT-5 high and o3310

successfully generate nearly complete sequences, whereas other models struggle to even identify the311

correct number of slides present in the input.312

Focusing on presentations with correctly predicted lengths, GPT-5 minimal and GPT-4.1 demon-313

strate relatively strong performance in ordering accuracy, as measured by Kendall’s τ and Spearman’s314

ρ, particularly outperforming o3. However, across the board, all models exhibit limited capability in315

narrative ordering, with scores below 0.15. This indicates substantial room for improvement before316

approaching the theoretical upper bound of 1.0 across all metrics. While the models appear capable317

of interpreting slide content and multimodal layout, they still face significant challenges in reasoning318

through the narrative structure.319

G Fonts and Font Groups Used in the Analysis320

G.1 Canonicalized Font Names and Counts in the Dataset321

Table 5 shows the count statistics of different fonts in text elements present in the ground truth slides.322

G.2 Font→ Font Group Mapping323

324
# Sans325
"arial":"sans","calibri":"sans","helvetica":"sans","helvetica neue":"sans","segoe ui":"sans","verdana":"sans",326
"tahoma":"sans","gill sans":"sans","inter":"sans","roboto":"sans","open sans":"sans","lato":"sans",327
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Figure 8: Slide Deck Ordering Prediction: 1) Output Length Ratio: GPT-5 high and o3 successfully
generate nearly complete sequences 2) Kendall’s τ and 3) Spearman’s ρ: despite overlapping confidence
integrals, GPT-5 minimal and GPT-4.1 show a consistent upward trend among these two measure, indicating
potential robustness that warrants further investigation 4) Exact Match: models exhibit similar performance
around 0.14 with GPT-4o being the lowest.

Font Count Font Count Font Count
calibri 2183 arial 1692 unknown 460
lato 260 montserrat 203 roboto 159
open sans 132 century gothic 105 oswald 105
helvetica neue 98 avenir next 97 garamond 70
verdana 66 ibm plex sans 65 corbel 64
georgia 61 source sans pro 53 libre franklin 43
tahoma 41 patrick hand 33 raleway 32
soehne 31 dosis 30 inter 22
times new roman 22 quattrocento sans 20 titillium web 20
bahnschrift 16 barlow 16 cambria 16
elephant 15 franklin gothic 14 nunito 14
gill sans 12 amatic sc 10 american typewriter 10
source code pro 10 ubuntu 9 ibm plex mono 5
palatino linotype 4 aptos 3 handwriting 3
segoe script 3 bookman old style 2 menlo 2
playfair display 2 tenorite 2 bodoni 1
inconsolata 1 pacifico 1 proxima nova 1
segoe ui 1 Total 6340

Table 5: Frequency of different font families in the ground truth data (sorted descending, row-major)

"montserrat":"sans","source sans pro":"sans","libre franklin":"sans","quattrocento sans":"sans",328
"ubuntu":"sans","barlow":"sans","bahnschrift":"sans","ibm plex sans":"sans","soehne":"sans","dosis":"sans",329
"poppins":"sans","raleway":"sans","titillium web":"sans","nunito":"sans","corbel":"sans","candara":"sans",330
"century gothic":"sans","avenir":"sans","avenir next":"sans","franklin gothic":"sans","arial rounded mt":"sans",331
# Serif332
"times new roman":"serif","georgia":"serif","garamond":"serif","cambria":"serif","palatino linotype":"serif",333
"bookman old style":"serif","elephant":"serif","merriweather":"serif","playfair display":"serif",334
"bodoni":"serif","bodoni mt":"serif","didot":"serif","tinos":"serif","cmr10":"serif","american typewriter":"serif",335
# Mono336
"courier new":"mono","courier":"mono","consolas":"mono","menlo":"mono","monaco":"mono","inconsolata":"mono",337
"fira mono":"mono","source code pro":"mono","roboto mono":"mono","ibm plex mono":"mono",338
# Script / Hand / Display339
"comic sans ms":"script","brush script mt":"script","brush script":"script","amatic sc":"script",340
"patrick hand":"script","architects daughter":"script","caveat":"script","pacifico":"script","lobster":"script",341
"impact":"display","bebas":"display",342
# Others343
"roboto slab":"serif","carlito":"sans","asana":"serif","tenorite":"sans","aptos":"sans",344
"segoe ui emoji":"sans","segoe ui symbol":"sans",345346
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G.3 Font Group Frequencies347

Table 6 shows the count statistics of different fonts in text elements present in the ground truth slides.
Font Count Font Count Font Count
sans 5503 other 569 serif 203
script 47 mono 18 Total 6340

Table 6: Frequency of different font groups in the ground truth data (sorted descending, row-major)

348

H Reproducibility and Safety Checks for Slide Perturbation349

• Seeding: All RNG draws use a fixed base seed; per-slide streams can be derived via a deterministic350

hash of the slide ID.351

• Validity: Geometry is clamped to the canvas (unless explicitly allowed); sizes are lower-bounded352

by 1 px. Colors are validated to normalized hex (#RRGGBB) before export.353

• No-op at s = 0: We return an unchanged copy when s ≤ 10−12.354

• On Monotonicity: Because operations are stochastic, a single draw at s=1.0 need not strictly355

dominate a draw at s<1, but it does so at expectation (all scales/probabilities are monotone in s).356

I Declaration of LLM Usage357

We used large language model (LLM) assistants solely for writing and tooling support, including358

(i) manuscript/LaTeX editing, phrasing, and formatting, and (ii) non-substantive code assistance in359

VS Code (e.g., refactoring, bug fixing, style cleanups, and commenting). All algorithms, evaluation360

designs, datasets, metrics, and reported results were specified by the authors; LLM-suggested361

text/code was reviewed, verified, and tested by the authors before inclusion. This usage does not362

impact the core methodology or conclusions.363
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J Technical Appendices and Supplementary Material450

Technical appendices with additional results, figures, graphs and proofs may be submitted with451

the paper submission before the full submission deadline (see above), or as a separate PDF in the452

ZIP file below before the supplementary material deadline. There is no page limit for the technical453

appendices.454
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NeurIPS Paper Checklist455

1. Claims456

Question: Do the main claims made in the abstract and introduction accurately reflect the457

paper’s contributions and scope?458

Answer: [Yes]459

Justification: The abstract and introduction clearly state the three evaluation axes, the460

standardized dataset/ground-truth pipeline, and the principal empirical findings, and they461

explicitly scope claims to the slide domain (public PPTX corpus, seeded perturbations,462

defined metrics) with limitations noted; these statements match the methods and results463

without overgeneralizing.464

Guidelines:465

• The answer NA means that the abstract and introduction do not include the claims made466

in the paper.467

• The abstract and/or introduction should clearly state the claims made, including the468

contributions made in the paper and important assumptions and limitations. A No or NA469

answer to this question will not be perceived well by the reviewers.470

• The claims made should match theoretical and experimental results, and reflect how much471

the results can be expected to generalize to other settings.472

• It is fine to include aspirational goals as motivation as long as it is clear that these goals473

are not attained by the paper.474

2. Limitations475

Question: Does the paper discuss the limitations of the work performed by the authors?476

Answer: [Yes]477

Justification: The conclusion explicitly states scope limits (public PPTX corpus, seeded478

perturbations, rendering/metrics pipeline) and constrains claims to those settings, while479

summarizing empirical strengths and weaknesses without overgeneralization.480

Guidelines:481

• The answer NA means that the paper has no limitation while the answer No means that482

the paper has limitations, but those are not discussed in the paper.483

• The authors are encouraged to create a separate "Limitations" section in their paper.484

• The paper should point out any strong assumptions and how robust the results are to485

violations of these assumptions (e.g., independence assumptions, noiseless settings, model486

well-specification, asymptotic approximations only holding locally). The authors should487

reflect on how these assumptions might be violated in practice and what the implications488

would be.489

• The authors should reflect on the scope of the claims made, e.g., if the approach was only490

tested on a few datasets or with a few runs. In general, empirical results often depend on491

implicit assumptions, which should be articulated.492

• The authors should reflect on the factors that influence the performance of the approach.493

For example, a facial recognition algorithm may perform poorly when image resolution494

is low or images are taken in low lighting. Or a speech-to-text system might not be used495

reliably to provide closed captions for online lectures because it fails to handle technical496

jargon.497

• The authors should discuss the computational efficiency of the proposed algorithms and498

how they scale with dataset size.499

• If applicable, the authors should discuss possible limitations of their approach to address500

problems of privacy and fairness.501

• While the authors might fear that complete honesty about limitations might be used by502

reviewers as grounds for rejection, a worse outcome might be that reviewers discover503

limitations that aren’t acknowledged in the paper. The authors should use their best504

judgment and recognize that individual actions in favor of transparency play an important505

role in developing norms that preserve the integrity of the community. Reviewers will be506

specifically instructed to not penalize honesty concerning limitations.507

3. Theory assumptions and proofs508
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Question: For each theoretical result, does the paper provide the full set of assumptions and509

a complete (and correct) proof?510

Answer: [NA]511

Justification: [NA]512

Guidelines:513

• The answer NA means that the paper does not include theoretical results.514

• All the theorems, formulas, and proofs in the paper should be numbered and cross-515

referenced.516

• All assumptions should be clearly stated or referenced in the statement of any theorems.517

• The proofs can either appear in the main paper or the supplemental material, but if they518

appear in the supplemental material, the authors are encouraged to provide a short proof519

sketch to provide intuition.520

• Inversely, any informal proof provided in the core of the paper should be complemented521

by formal proofs provided in appendix or supplemental material.522

• Theorems and Lemmas that the proof relies upon should be properly referenced.523

4. Experimental result reproducibility524

Question: Does the paper fully disclose all the information needed to reproduce the main ex-525

perimental results of the paper to the extent that it affects the main claims and/or conclusions526

of the paper (regardless of whether the code and data are provided or not)?527

Answer: [Yes]528

Justification: The draft specifies the evaluation pipeline at a reproducible level of detail: fixed529

slide coordinate frame and units, strict JSON schema validation and Hungarian GT-matching530

with a threshold gate, fully enumerated perturbation operators with seeded randomness531

plus explicit reproducibility checks, and metric definitions with bootstrap CIs. Together we532

believe the provided information is sufficient to replicate the main results within the stated533

scope.534

Guidelines:535

• The answer NA means that the paper does not include experiments.536

• If the paper includes experiments, a No answer to this question will not be perceived well537

by the reviewers: Making the paper reproducible is important, regardless of whether the538

code and data are provided or not.539

• If the contribution is a dataset and/or model, the authors should describe the steps taken to540

make their results reproducible or verifiable.541

• Depending on the contribution, reproducibility can be accomplished in various ways.542

For example, if the contribution is a novel architecture, describing the architecture fully543

might suffice, or if the contribution is a specific model and empirical evaluation, it may be544

necessary to either make it possible for others to replicate the model with the same dataset,545

or provide access to the model. In general. releasing code and data is often one good546

way to accomplish this, but reproducibility can also be provided via detailed instructions547

for how to replicate the results, access to a hosted model (e.g., in the case of a large548

language model), releasing of a model checkpoint, or other means that are appropriate to549

the research performed.550

• While NeurIPS does not require releasing code, the conference does require all submissions551

to provide some reasonable avenue for reproducibility, which may depend on the nature of552

the contribution. For example553

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to554

reproduce that algorithm.555

(b) If the contribution is primarily a new model architecture, the paper should describe the556

architecture clearly and fully.557

(c) If the contribution is a new model (e.g., a large language model), then there should558

either be a way to access this model for reproducing the results or a way to reproduce559

the model (e.g., with an open-source dataset or instructions for how to construct the560

dataset).561

(d) We recognize that reproducibility may be tricky in some cases, in which case authors562

are welcome to describe the particular way they provide for reproducibility. In the563

case of closed-source models, it may be that access to the model is limited in some564

18



way (e.g., to registered users), but it should be possible for other researchers to have565

some path to reproducing or verifying the results.566

5. Open access to data and code567

Question: Does the paper provide open access to the data and code, with sufficient instruc-568

tions to faithfully reproduce the main experimental results, as described in supplemental569

material?570

Answer: [No]571

Justification: Due to ongoing employer data-governance and IP review, we cannot release the572

curated dataset (or code) at submission time. Nevertheless, the experiments rely on publicly573

available PPTX sources and accessible model APIs, and we specify preprocessing, seeded574

perturbations, and metric definitions in sufficient detail to enable faithful reimplementation;575

pending approval, we plan to release scripts post-review.576

Guidelines:577

• The answer NA means that paper does not include experiments requiring code.578

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/579

public/guides/CodeSubmissionPolicy) for more details.580

• While we encourage the release of code and data, we understand that this might not be581

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not582

including code, unless this is central to the contribution (e.g., for a new open-source583

benchmark).584

• The instructions should contain the exact command and environment needed to run to585

reproduce the results. See the NeurIPS code and data submission guidelines (https:586

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.587

• The authors should provide instructions on data access and preparation, including how to588

access the raw data, preprocessed data, intermediate data, and generated data, etc.589

• The authors should provide scripts to reproduce all experimental results for the new590

proposed method and baselines. If only a subset of experiments are reproducible, they591

should state which ones are omitted from the script and why.592

• At submission time, to preserve anonymity, the authors should release anonymized versions593

(if applicable).594

• Providing as much information as possible in supplemental material (appended to the595

paper) is recommended, but including URLs to data and code is permitted.596

6. Experimental setting/details597

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-598

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the599

results?600

Answer: [Yes]601

Justification: The paper specifies the dataset and preprocessing (100 Zenodo decks, 1,948602

slides; fixed 960×540 frame; JSON-schema validation; N=3 low-temperature runs), the603

matching/evaluation procedure (Hungarian with a blended cost and acceptance gate), seeded604

perturbation operators with a severity schedule, and metric definitions with bootstrap CIs605

and the exact extraction prompt, etc., together sufficient to understand the results.606

Guidelines:607

• The answer NA means that the paper does not include experiments.608

• The experimental setting should be presented in the core of the paper to a level of detail609

that is necessary to appreciate the results and make sense of them.610

• The full details can be provided either with the code, in appendix, or as supplemental611

material.612

7. Experiment statistical significance613

Question: Does the paper report error bars suitably and correctly defined or other appropriate614

information about the statistical significance of the experiments?615

Answer: [Yes]616

Justification: Key results include bootstrap 95% confidence intervals, reported in the core617

text and appendix (e.g., parseability by complexity with percentile/BCa intervals), and we618

state what variability they capture (resampling over slides/bins/severities).619
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Guidelines:620

• The answer NA means that the paper does not include experiments.621

• The authors should answer "Yes" if the results are accompanied by error bars, confidence622

intervals, or statistical significance tests, at least for the experiments that support the main623

claims of the paper.624

• The factors of variability that the error bars are capturing should be clearly stated (for625

example, train/test split, initialization, random drawing of some parameter, or overall run626

with given experimental conditions).627

• The method for calculating the error bars should be explained (closed form formula, call628

to a library function, bootstrap, etc.)629

• The assumptions made should be given (e.g., Normally distributed errors).630

• It should be clear whether the error bar is the standard deviation or the standard error of631

the mean.632

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably633

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality634

of errors is not verified.635

• For asymmetric distributions, the authors should be careful not to show in tables or figures636

symmetric error bars that would yield results that are out of range (e.g. negative error637

rates).638

• If error bars are reported in tables or plots, The authors should explain in the text how they639

were calculated and reference the corresponding figures or tables in the text.640

8. Experiments compute resources641

Question: For each experiment, does the paper provide sufficient information on the com-642

puter resources (type of compute workers, memory, time of execution) needed to reproduce643

the experiments?644

Answer: [Yes]645

Justification: All inference is via Azure-hosted VLM APIs (no local training/GPUs), and we646

detail the CPU-only preprocessing/evaluation pipeline—rasterization to 960× 540, seeded647

perturbations, N=3 runs per slide, and Hungarian matching. The required compute is648

dominated by API latency and token usage and is reproducible from the described setup.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or652

cloud provider, including relevant memory and storage.653

• The paper should provide the amount of compute required for each of the individual654

experimental runs as well as estimate the total compute.655

• The paper should disclose whether the full research project required more compute than656

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t657

make it into the paper).658

9. Code of ethics659

Question: Does the research conducted in the paper conform, in every respect, with the660

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?661

Answer: [Yes]662

Justification: The study uses publicly available PPTX material, collects no personal/sensitive663

data, involves no human subjects, and preserves anonymity; models are accessed via Azure664

under organizational policies. We disclose scope and limitations, aligning with the NeurIPS665

Code of Ethics.666

Guidelines:667

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.668

• If the authors answer No, they should explain the special circumstances that require a669

deviation from the Code of Ethics.670

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration671

due to laws or regulations in their jurisdiction).672

10. Broader impacts673
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Question: Does the paper discuss both potential positive societal impacts and negative674

societal impacts of the work performed?675

Answer: [Yes]676

Justification: Positive impacts include safer deployment of VLM-based slide evaluation677

and improved accessibility checks (e.g., color contrast overall visibility of elements in a678

slide). Potential negatives include overreliance on automated judgments and misuse for rigid679

template policing; we bound claims to evaluation-only.680

Guidelines:681

• The answer NA means that there is no societal impact of the work performed.682

• If the authors answer NA or No, they should explain why their work has no societal impact683

or why the paper does not address societal impact.684

• Examples of negative societal impacts include potential malicious or unintended uses685

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,686

deployment of technologies that could make decisions that unfairly impact specific groups),687

privacy considerations, and security considerations.688

• The conference expects that many papers will be foundational research and not tied to689

particular applications, let alone deployments. However, if there is a direct path to any690

negative applications, the authors should point it out. For example, it is legitimate to point691

out that an improvement in the quality of generative models could be used to generate692

deepfakes for disinformation. On the other hand, it is not needed to point out that a generic693

algorithm for optimizing neural networks could enable people to train models that generate694

Deepfakes faster.695

• The authors should consider possible harms that could arise when the technology is being696

used as intended and functioning correctly, harms that could arise when the technology is697

being used as intended but gives incorrect results, and harms following from (intentional698

or unintentional) misuse of the technology.699

• If there are negative societal impacts, the authors could also discuss possible mitigation700

strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-701

nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback702

over time, improving the efficiency and accessibility of ML).703

11. Safeguards704

Question: Does the paper describe safeguards that have been put in place for responsible705

release of data or models that have a high risk for misuse (e.g., pretrained language models,706

image generators, or scraped datasets)?707

Answer: [NA]708

Justification: We release neither models nor datasets; experiments use publicly available709

PPTX sources with CC-By 4.0 license and hosted APIs, and the curated corpus/scripts710

remain internal pending employer review, so no high-risk assets are being released. If a711

future release is approved, it will follow organizational governance with licensing checks,712

de-identification, and access controls.713

Guidelines:714

• The answer NA means that the paper poses no such risks.715

• Released models that have a high risk for misuse or dual-use should be released with716

necessary safeguards to allow for controlled use of the model, for example by requiring717

that users adhere to usage guidelines or restrictions to access the model or implementing718

safety filters.719

• Datasets that have been scraped from the Internet could pose safety risks. The authors720

should describe how they avoided releasing unsafe images.721

• We recognize that providing effective safeguards is challenging, and many papers do not722

require this, but we encourage authors to take this into account and make a best faith effort.723

12. Licenses for existing assets724

Question: Are the creators or original owners of assets (e.g., code, data, models), used in725

the paper, properly credited and are the license and terms of use explicitly mentioned and726

properly respected?727

Answer: [Yes]728
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Justification: All third-party assets are PPTX decks sourced from Zenodo10K under CC-BY729

4.0; we cite the collection and include the URL while not redistributing the files. Hosted730

VLMs are accessed via Azure under provider ToS; no third-party datasets or code are731

re-packaged or released.732

Guidelines:733

• The answer NA means that the paper does not use existing assets.734

• The authors should cite the original paper that produced the code package or dataset.735

• The authors should state which version of the asset is used and, if possible, include a URL.736

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.737

• For scraped data from a particular source (e.g., website), the copyright and terms of service738

of that source should be provided.739

• If assets are released, the license, copyright information, and terms of use in the package740

should be provided. For popular datasets, paperswithcode.com/datasets has curated741

licenses for some datasets. Their licensing guide can help determine the license of a742

dataset.743

• For existing datasets that are re-packaged, both the original license and the license of the744

derived asset (if it has changed) should be provided.745

• If this information is not available online, the authors are encouraged to reach out to the746

asset’s creators.747

13. New assets748

Question: Are new assets introduced in the paper well documented and is the documentation749

provided alongside the assets?750

Answer: [NA]751

Justification: We introduce an evaluation framework but do not release new assets (dataset-752

s/code/models) at submission time; materials remain internal pending employer review.753

The paper documents schemas, perturbations, and metrics to enable reimplementation, but754

asset-side documentation is not applicable without a release.755

Guidelines:756

• The answer NA means that the paper does not release new assets.757

• Researchers should communicate the details of the dataset/code/model as part of their sub-758

missions via structured templates. This includes details about training, license, limitations,759

etc.760

• The paper should discuss whether and how consent was obtained from people whose asset761

is used.762

• At submission time, remember to anonymize your assets (if applicable). You can either763

create an anonymized URL or include an anonymized zip file.764

14. Crowdsourcing and research with human subjects765

Question: For crowdsourcing experiments and research with human subjects, does the paper766

include the full text of instructions given to participants and screenshots, if applicable, as767

well as details about compensation (if any)?768

Answer: [NA]769

Justification: [NA]770

Guidelines:771

• The answer NA means that the paper does not involve crowdsourcing nor research with772

human subjects.773

• Including this information in the supplemental material is fine, but if the main contribution774

of the paper involves human subjects, then as much detail as possible should be included775

in the main paper.776

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or777

other labor should be paid at least the minimum wage in the country of the data collector.778

15. Institutional review board (IRB) approvals or equivalent for research with human779

subjects780

Question: Does the paper describe potential risks incurred by study participants, whether781

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)782
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approvals (or an equivalent approval/review based on the requirements of your country or783

institution) were obtained?784

Answer: [NA]785

Justification: [NA]786

Guidelines:787

• The answer NA means that the paper does not involve crowdsourcing nor research with788

human subjects.789

• Depending on the country in which research is conducted, IRB approval (or equivalent)790

may be required for any human subjects research. If you obtained IRB approval, you791

should clearly state this in the paper.792

• We recognize that the procedures for this may vary significantly between institutions793

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the794

guidelines for their institution.795

• For initial submissions, do not include any information that would break anonymity (if796

applicable), such as the institution conducting the review.797

16. Declaration of LLM usage798

Question: Does the paper describe the usage of LLMs if it is an important, original, or799

non-standard component of the core methods in this research? Note that if the LLM is used800

only for writing, editing, or formatting purposes and does not impact the core methodology,801

scientific rigorousness, or originality of the research, declaration is not required.802

Answer: [Yes]803

Justification: LLMs were used only for manuscript/LaTeX editing and non-substantive code804

assistance in VS Code (refactoring/bug fixes), with all methods, datasets, metrics, and results805

authored and verified by the authors; see Appendix, Declaration of LLM Usage, for details.806

Guidelines:807

• The answer NA means that the core method development in this research does not involve808

LLMs as any important, original, or non-standard components.809

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for810

what should or should not be described.811
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