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Abstract
Propagating gradients through differentiable sim-
ulators allows to improve the training of deep
learning architectures. We study an example from
quantum physics that, at first glance, seems not to
benefit from such gradients. Our analysis shows
the problem is rooted in a mismatch between
the specific form of loss functions used in quan-
tum physics and its gradients; the gradient can
vanish for non-equal states. We propose to add
a scaling term to fix this problematic gradient
flow and regain the benefits of gradient-based op-
timization. We chose two experiments on the
Schroedinger equation, a prediction and a control
task, to demonstrate the potential of our method.

1. Introduction
Differentiable simulators have found their way into Deep
Learning (Um et al., 2020; Wang et al., 2020; Holl et al.,
2020), opening the doors to numerous new training methods.
They enable to propagate feedback more directly, based on
linear approximations instead of on, for instance, expensive
trial-and-error-like search in various reinforcement learn-
ing algorithms (Sutton & Barto, 2018). This can lead to
more efficient learning demonstrated in various areas, such
as mechanical systems (Toussaint et al., 2018; de Avila
Belbute-Peres et al., 2018) or fluids dynamics (Schenck &
Fox, 2018).

Nevertheless using gradients from differentiable simulators
is not free from problems. Non-convexity or explodingly
large gradients can hinder successful learning and can make
it necessary to rethink how gradients flow in a given training
setup. Identifying and removing these weaknesses is key

1School of Computation, Information and Technology, Boltz-
mannstrasse 3, 85748 Garching, Germany. Correspondence
to: Patrick Schnell <patrick.schnell@tum.de>, Nils Thuerey
<nils.thuerey@tum.de>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

to harness the potential that gradient-based optimization
promises.

In this work, we investigate such a case of an ill-behaved
gradient flow found in quantum mechanics where, for physi-
cal reasons, a loss other than the omnipresent mean squared
error loss has to be used. This quantum loss comes with
a suboptimal gradient flow, giving vanishing gradients for
non-matching inputs, and therefore we propose a modifi-
cation of its gradient intended to fix this shortcoming. We
demonstrate the effectiveness of our method on two tasks, a
prediction and control setup, on the Schroedinger equation.

2. Modifying the Gradient Flow of a
Quantum Loss Function

We start with a brief look into quantum physics that will
allow us to illustrate the difficulties that arise from the loss
functions of quantum physics and to explain the solution we
propose.

2.1. Quantum Formalism and Quantum Loss Function

Physicists model quantum states as vectors of a complex
Hilbert space H with norm 1. Two such vectors ψ and
ψ′ ∈ H are physically interpretable only up to a global
phase or, put differently, two vectors ψ and ψ′ correspond
to the same quantum state if there is a phase factor eiθ such
that ψ = eiθψ′. To ensure consistency all operations on
quantum states are required to respect this principle. As an
example, time evolution of a quantum state ψ is described
by the Schroedinger equation, for a system with one spatial
dimension and a potential V given as follows:

i∂tψ = (−∂2x + V ) ψ (1)

As a further example and central to our discussion, similarity
between quantum states ψ1 and ψ2 is measured by using
the inner product 〈·, ·〉 ofH. This allows us to define a loss
function L that is invariant under global phase shifts and
therefore consistent with the mathematical framework of
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Figure 1. Toy example: a) Gradient descent loss curves for the standard gradient (S), mean squared error gradient (L2) and our modified
gradient (M). b) - d) Corresponding trajectories in the x-y-plane

quantum mechanics:

L(ψ1, ψ2) = 1− |〈ψ1, ψ2〉|2 (2)

While this loss function is physically sound and established,
it reveals a weakness when viewed through the lens of back-
propagation: any two quantum states ψ1 and ψ2 orthogonal
to each other give a vanishing gradient yet their loss value
is not zero. When solving a learning task such a mismatch
between quantum loss and its gradient can negatively affect
the learning dynamic; model updates will be dominated
by data points with an already close to optimal prediction
because gradients of data points with poor prediction vanish.

2.2. A Simplified Example and Standard Gradient

To find a better loss function we illustrate the behavior
of the quantum loss with a simpler, visualizable exam-
ple that still captures the geometric essence of the prob-
lem. Let us consider normalized vectors on R2. We define
v(θ) = (cos(θ), sin(θ))T , a target state w = (1, 0)T and
the analogon to the quantum loss (2) together with its gradi-
ent GS , the standard gradient:

L(θ) = 1− 〈v(θ), w〉2 (3)

GS = ∇L (4)

For θ = π/2 the vectors v and w are orthogonal and the
gradient of L vanishes, the same problem as for the quan-
tum loss. We initialize θ to be slightly smaller than π/2 and
visualize the optimization dynamics with gradient descent
in Figure 1a and b. What we see is that the gradient de-
scent steps can only slowly escape from the local maximum

around π/2 and therefore the loss curve is extremely flat at
the beginning.

2.3. Mean Squared Error Gradient

As a first step towards improvement, it appears natural to
consider the gradient GL2 that belongs to the mean squared
error or L2 loss.

GL2(θ) = (v(θ)− w)∂v(θ)
∂θ

(5)

It is the simplest loss for optimization; gradients are a mea-
sure of how much v and w differ and, contrary to the quan-
tum loss, do not vanish if v and w are orthogonal. However,
using it in a quantum physics task is questionable as it is
not invariant under global phase shifts required by quantum
states. Nevertheless we will consider this loss in the toy
example since we deal with a real vector space here. Figure
1a and c show that the absence of the problematic gradients
enables fast progress also in the beginning.

2.4. Modified Gradient

As a final step, we modify the gradient of the inner product
losses (2) and (3) directly to counteract the negative effects
of the inner product. For this we add an additional factor to
the standard gradient GS , giving us the modified gradient
GM :

GM =
∇L√
1− L

(6)

The scaling of this expression is chosen to cancel exactly
the term responsible for the vanishing gradients and it is
completely in tune with the quantum formalism since it
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Figure 2. Quantum simulations: Adam loss curves for the standard gradient (S), mean squared error gradient (L2) and our modified
gradient (M) for a) prediction task and b) control task. The plots show three training curves for each method (transparent colors) and their
mean curve (opaque colors). To increase visual quality we supressed the spikey behavior by smoothing loss curves over ten subsequent
epochs in both plots.

depends only on L, a quantity invariant under global phase
shifts. In the toy example, Figure 1a and d show that this
gradient also successfully overcomes the difficulties at the
beginning. With these three types of gradients, we move to
the actual quantum examples to see if we receive a similar
picture.

3. Experiments
For our experiments, we implement a numerical simula-
tion of equation (1) (Borzı̀ et al., 2017), using a uniform
one-dimensional grid of 20 points with Dirichlet boundary
conditions and a modified Crank-Nicolson scheme (Winckel
et al., 2009) with a time step of 0.2. We consider two types
of tasks, prediction and control, which we evaluate by using
the quantum loss (2) but train differently using the three
types of gradients obtained from (4), (5) and (6). For the
network architecture, we use in both tasks a fully-connected
network with 2 hidden layers and a total of about 10000
parameters.

3.1. Prediction Task

In this type of task, we give a quantum state as input to
a neural network and train it to return the corresponding
quantum state at later time, i.e. the network learns what the
quantum simulator does. For this we generate a set of 100-

step time trajectories of 100 randomly initialized quantum
states and use every state-next-state pair to build a data set
for training. For optimization we use Adam with learning
rate 0.005 and a mini batch size of 200. For each method we
start three runs with different initializations and show these
training curves together with their mean curve in Figure 2a.

We see that the standard gradient (blue) achieves only a
suboptimal result, which we consider to be a consequence
of the suboptimal gradients. Using the mean squared error
gradient (red), physically questionable but mathematically
practical, minimizes the loss to a similar level with notably
fast progress especially in the beginning. Our modified
gradient (green) behaves best: the usage of better and physi-
cally consistent gradients reflects itself in overall less spikey
curves and loss values of about a factor of 2 better than
those of the other methods.

3.2. Control Task

As a second example, we consider the task of manipulating
a quantum system by external action to steer it into a given
configuration. In contrast to the prediction task, we now
require differentiability of the simulator to effectively com-
pute solutions of this inverse problem. For this we solve for
a time-dependent function u(t), introduced via the potential
V into the Schroedinger equation (1). In our numerical ap-
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proximation we use 50 simulator time steps through which
gradients are propagated in order to find a control signal.
We set up the learning problem by generating 100 initial
states and 1 final state, resulting in 100 different versions
of such a control task. The network learns to predict for
each initial state the corresponding signal u(t) that brings
the initial state into the target state. For optimization we
again use Adam with learning rate 0.005 and a mini batch
size of 10.

As before we conduct three runs for each method and show
the results in Figure 2b. In this experiment the mean squared
error gradient (red) yields the worst results, next is the stan-
dard gradient (blue), and our modified gradient (green) finds
the best solution. Overall the learning curves look more sta-
ble than for the other task. These results again support our
picture that incorporating optimization principles in a physi-
cally plausible way leads to better learning performance.

4. Related Work
Optimization

Optimization is a wide field with an abundance of algorithms
(Ye et al., 2019). Minimizing loss functions of training
setups with differentiable simulators can be challenging.
Our work presents a simple adjustment that improves the
training behavior. Besides standard deep learning methods
(Kingma & Ba, 2015), there exist also specialized methods
for optimizing learning setups with differentiable simulators
(Holl et al., 2022; Schnell et al., 2022).

Incorporating Differentiable Models

Many works in deep learning involve differentiable for-
mulations of, for instance, discrete operations (Petersen
et al., 2022), rendering (Kato et al., 2020), and especially
physics simulators. Examples are found in robotics (Tou-
ssaint et al., 2018), rigid bodies (de Avila Belbute-Peres
et al., 2018), molecular dynamics (Wang et al., 2020), cloth
models (Liang et al., 2019), fluid dynamics (Schenck & Fox,
2018). The considered tasks involve reconstruction (Holl
et al., 2022), numerical error correction (Um et al., 2020)
or control (Holl et al., 2020). Including a differentiable
simulator means also incorporating physical principles, but
is not the only way to do this. In a different spirit, this can
also be done by using non-standard loss functions (Raissi
et al., 2019; Tompson et al., 2017). On the technical side,
various software frameworks are available for the efficient
implementation of differentiable models (Hu et al., 2020;
Holl et al., 2020; Schoenholz & Cubuk, 2019).

5. Discussion
Our work serves as an example of how rethinking gradient
flows can improve training in deep learning tasks that in-

volve differentiable simulators. We designed our method to
counteract weaknesses of the quantum physical loss func-
tion but to still be in tune with physical principles. In two
experiments we demonstrated that upholding both of these
ideas achieves better results compared to the other two meth-
ods that integrate only one of them.

Our work can be extended in several ways. On the physics
side, investigating more complex quantum systems such
as spin systems or multiparticle systems would present a
case with more complex interactions. On the learning side,
more sophisticated learning formulations such as an actor-
critic setup would offer an interesting opportunity for further
studies.
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