
Characterizing Overfitting in Kernel Ridgeless Regression
Through the Eigenspectrum

Tin Sum Cheng 1 Aurelien Lucchi 1 Anastasis Kratsios 2 David Belius 3

Abstract
We derive new bounds for the condition num-
ber of kernel matrices, which we then use to en-
hance existing non-asymptotic test error bounds
for kernel ridgeless regression (KRR) in the over-
parameterized regime for a fixed input dimension.
For kernels with polynomial spectral decay, we
recover the bound from previous work; for expo-
nential decay, our bound is non-trivial and novel.
Our contribution is two-fold: (i) we rigorously
prove the phenomena of tempered overfitting and
catastrophic overfitting under the sub-Gaussian
design assumption, closing an existing gap in the
literature; (ii) we identify that the independence
of the features plays an important role in guar-
anteeing tempered overfitting, raising concerns
about approximating KRR generalization using
the Gaussian design assumption in previous liter-
ature.

1. Introduction
Kernel ridge regression (KRR) plays a pivotal role in ma-
chine learning since it offers an expressive and rapidly train-
able framework for modeling complex relationships in data.
In recent years, kernels have regained significance in deep
learning theory since many deep neural networks (DNNs)
can be understood as converging to certain kernel limits.

Its significance has been underscored by its ability to approx-
imate deep neural network (DNN) training under certain
conditions, providing a tractable avenue for analytical explo-
ration of test error and robust theoretical guarantees (Jacot
et al., 2018; Arora et al., 2019; Bordelon et al., 2020). The
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adaptability of kernel regression positions it as a crucial tool
in various machine learning applications, making it impera-
tive to comprehensively understand its behavior, particularly
concerning overfitting.

Despite the increasing attention directed towards kernel
ridge regression, the existing literature predominantly con-
centrates on overfitting phenomena in either the high in-
put dimensional regime or the asymptotic regime (Liang
& Rakhlin, 2020; Mei & Montanari, 2022; Misiakiewicz,
2022), also known as the ultra-high dimensional regime
(Zou & Zhang, 2009; Fan et al., 2009). Notably, the fo-
cus on asymptotic bounds, requiring the input dimension
to approach infinity, may not align with the finite nature of
real-world datasets and target functions. Similarly, classi-
cal Rademacher-based bounds, e.g. (Bartlett & Mendelson,
2002), require that the weights of the kernel regressor sat-
isfy data-independent bounds, a restriction that is also not
implemented in standard kernel ridge regression algorithms.
These mismatches between idealized mathematical assump-
tions and practical implementation standards necessitate a
more nuanced exploration of overfitting in kernel regression
in a fixed input dimension.

Contributions This work aims to understand the overfit-
ting behaviour for kernel ridge regression (KRR). Our main
contributions are summarized as follows:

1. We rigorously derive tight non-asymptotic upper and
lower bounds for the test error of the minimum norm
interpolant under a sub-Gaussian design assumption
on the features. While this assumption assumes inde-
pendence of the features, this point will be relaxed in
contribution #3.

2. Consequently, we show that a polynomially decaying
spectrum yields tempered overfitting (Theorem 4.2),
whereas an exponentially decaying spectrum leads to
catastrophic overfitting (Theorem 4.3), filling a gap in
the existing literature.

3. We extend our analysis to the case of sub-Gaussian but
possibly dependent features. We discover a qualitative
difference in overfitting behavior that was previously
unknown in the literature using the Gaussian design
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Figure 1. Kernel spectra for Laplacian and Gaussian kernels and their overfitting behaviours.
Tempered Overfitting: The empirical kernel spectrum of the Laplacian kernel decays moderately (top left), and so does the quality of its
test-set performance as one departs from the training data (top right).
Catastrophic Overfitting: The Gaussian kernel exhibits rapid spectral decay (bottom left), and so does the reliability of its test-set
performance for inputs far from the training data (bottom right).

assumption to approximate KRR test error. This raises
concerns that previous literature may have oversimpli-
fied the KRR setting by relying on the Gaussian design
assumption.

Motivation This paper is motivated by observations made
in (Mallinar et al., 2022), where the Laplacian kernel (with
a polynomial spectrum) does not suffer from catastrophic
overfitting even without ridge regularization, whereas the
Gaussian kernel (with an exponential spectrum) does. The
correspondence between polynomial and exponential spec-
tral decay rates and the tempered and catastrophic overfitting
regimes is illustrated in Figure 1. However, (Mallinar et al.,
2022) relied on findings from (Simon et al., 2021), which in-
evitably depend on the Gaussian design assumption. We aim
to explore whether it is possible to characterize overfitting
behavior solely based on the kernel eigen-spectrum under a
weaker assumption. The first step, which is undertaken in
this paper, is to relax the assumption to sub-Gaussian.

Organization of the Paper The structure of this paper is
as follows:

1. In Section 2, we discuss how our work differs from
previous studies and complements their results. A sum-
mary for comparison can be found in Table 1.

2. In Section 3, we state the definitions and assumptions
for this paper.

3. In Section 4, we present our main results (Theorems
4.1, 4.2, and 4.3) and interpret their significance, nov-
elty, and improvement compared to previous work.

4. In Section 5, we showcase the empirical results of a
simple experiment to validate our findings.

5. In Section 6, we discuss the implications of our contri-
butions in-depth, including their limitations and poten-
tial directions for future research.

6. In Section A, we present our proof under the Sub-
Gaussian design assumption 3.3.

7. In Section B, we list the technical lemmata used in this
paper.

2. Previous Work
Traditional statistical wisdom has influenced classical ma-
chine learning models to focus on mitigating overfitting with
the belief that doing so maximizes the ability of a model to
generalize beyond the training data. However, these tradi-
tional ideas have been challenged by the discovery of the
“benign overfitting” phenomenon, see e.g (Liang & Rakhlin,
2020; Bartlett et al., 2020; Tsigler & Bartlett, 2023; Haas
et al., 2023), in the context of KRR. A key factor is that tra-
ditional statistics operate in the under-parameterized setting
where the number of training instances exceeds the number
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of parameters. This assumption is rarely applicable to mod-
ern machine learning, where models depend on vastly more
parameters than their training instances, and thus, classical
statistical thought no longer applies.

2.1. (Sub-)Gaussian Design Assumption

Many previous works (Jacot et al., 2020; Bordelon et al.,
2020; Simon et al., 2021; Loureiro et al., 2021; Cui et al.,
2021) require the so-called Gaussian design assumption,
where isotropic kernel feature vectors are replaced by Gaus-
sian vectors, to prove their results on KRR generalization.
(See Assumption 3.4 in Section 3 for details.) In contrast,
we obtain tight bounds on test error under the weaker sub-
Gaussian design assumption, where we replace the isotropic
kernel feature vectors with sub-Gaussian vectors. This seem-
ingly simple extension yields surprisingly many fundamen-
tal differences compared to previous work:

1. Generally, a random vector z = (zk)
p
k=1 ∈ Rp is

isotropic if E
[
zz⊤

]
= Ip, meaning the entries are un-

correlated but possibly dependent on each other. How-
ever, for a Gaussian vector, uncorrelatedness implies
independence. Therefore, the Gaussian design assump-
tion implicitly requires the independence of features,
which, as we will show later, is crucial to the phe-
nomenon of tempered overfitting with a polynomially
decaying spectrum.

2. Also, the argument of many previous works relies heav-
ily on the Gaussian design assumption, which cannot
be generalized to sub-Gaussian design by any univer-
sality argument. For instance, (Simon et al., 2021)
utilizes rotational invariant property of Gaussian vec-
tors; (Bordelon et al., 2020; Loureiro et al., 2021; Cui
et al., 2021) inevitably require the Gaussian design as-
sumption in the Replica method. By relaxing to the sub-
Gaussian assumption, we show that many nice prop-
erties of Gaussian vectors, such as rotational invariant
property, smoothness/continuity, anti-concentration,
are not important to the overfitting behaviour of the
ridgeless regression, extending previous results to a
more general setting.

3. Last but not least, both Gaussian and sub-Gaussian
design assumptions require the feature dimension M
to be finite, while it should be infinite in the case of
a kernel. For the sake of completeness, we provide
a result showing that the overfitting behavior of an
infinite rank kernel can be approximated by its finite
rank truncation. See Proposition A.13 for details.

2.2. Test Error on Ridgeless Regression

Many previous works (Arora et al., 2019; Liang & Rakhlin,
2020; Bordelon et al., 2020; Bartlett et al., 2020; Simon

et al., 2021; Mei et al., 2021; Misiakiewicz, 2022; Bach,
2023; Cheng et al., 2023) are devoted to bounding the KRR
test error in different settings. In the context of benign over-
fitting, a recent related paper (Tsigler & Bartlett, 2023) gives
tight non-asymptotic bounds on the ridgeless regression test
error under the assumption that the condition number of
kernel matrix is bounded by some constant. Our random
matrix theoretic arguments successfully allow us to derive
tight non-asymptotic bounds for the condition number of
the empirical kernel matrix (see Theorem 4.1) and to apply
some of their technical tools without their stylized assump-
tions.

2.3. Overfitting

Recently, (Mallinar et al., 2022) characterized previous re-
sults on overfitting, especially in the context of KRR, and
classified them into three categories 1) benign overfitting
meaning that the learned model interpolates the noisy train-
ing data while exhibiting a negligible reduction in test per-
formance decline, 2) tempered overfitting, which happens
when the learned model exhibits a bounded reduction in
test set performance due resulting from an interpolation
of the training data, and 3) catastrophic overfitting which
covers the case where the test error is unbounded due to
the learned model having interpolated the training data. In
this paper, we characterize the tempered and catastrophic
overfitting cases, omitting benign overfitting which has been
characterized in prior work. According to (Mallinar et al.,
2022), even with Gaussian design assumption, benign over-
fitting occurs only when the spectral eigen-decay is slower
than any polynomial decay λk = Θ

(
k−1−ϵ) for any con-

stant ϵ > 0, for instance the linear-poly-logarithmic decay
λk = Θ

(
k−1 log−a(k)

)
for some constant a > 0. Such

spectral eigen-decay, to the best of our knowledge, does not
appear in commonly-known kernels.

2.4. Comparison to other Results

A comparison of our results to the state-of-the-art in the
literature is detailed in Table 1. Especially relevant is the
comparison to (Barzilai & Shamir, 2023). We note that
this paper is in fact a concurrent work, as it was published
on arXiv just four weeks prior to the submission deadline
for ICML. The strength of (Barzilai & Shamir, 2023) is
the general setting under which they perform their analysis.
However, our analysis yields tighter bounds than theirs for
the class of kernels to which our analysis applies, achieved
via tighter bounds on the involved kernel eigenspectrum.
Importantly, unlike their results, our analysis provides upper
and matching lower bounds on the test error. Additionally,
we address the catastrophic behavior with exponential eigen-
decay, which they have not considered
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Table 1. Comparison with prior works
(Mallinar et al., 2022) (Tsigler & Bartlett, 2023) (Barzilai & Shamir, 2023) This paper

Assumption on kernel Gaus. feature Bound on condition num. Concentrated feature Sub-Gaus. feature
Non-asymptotic bounds × ✓ ✓ ✓

Overfitting for poly. decay ✓ × ✓ ✓
Overfitting for exp. decay ✓ × × ✓

3. Setting
Given a kernel K with reproducing kernel Hilbert space
(RKHS) H, we consider the kernel ridge regression (KRR)
problem:

min
f∈H

N∑
i=1

(f(xi)− yi)
2
+ λ∥f∥2H.

The solution f̂ to the KRR problem, called the kernel ridge
regressor, is unique whenever λ > 0. For λ = 0 and
dim(H) > N , with minor abuse of notation, we write f̂ the
norm-minimizing interpolant:

f̂ ∈ argmin
f(xi)=yi,∀i

∥f∥H.

Given a data-distribution µ on the input space X , using the
Mercer theorem we decompose:

K(x, x′) =

M∑
k=1

λkψk(x)ψk(x
′),

where M ∈ N ∪ {∞} is the kernel rank, λk’s are the
eigenvalues indexed in decreasing order with correspond-
ing eigenfunctions ψk’s. Hence the (random) kernel matrix
K = [K(xi, xj)]i,j can be written concisely in matrix form

K = Ψ⊤ΛΨ,

where Ψ = [ψk(xi)] ∈ RM×N is the design block.

Next, we introduce two important assumptions in this paper.

Assumption 3.1 (Interpolation). Assume M ∈ N and there
exists an integer constant η > 1 (to be determined) such
that M ≥ ηN . Also, we assume that λ = 0 and hence f̂
denotes the norm-minimizing interpolant.

Remark 3.2. Note that Assumption 3.1 only requires the
feature dimension M to be larger than the threshold ηN ,
and M does not necessarily need to be linear in N . This is
different from the so-called proportional regime in (Liang
& Rakhlin, 2020; Liu et al., 2021), where the proportion M

N
converges to some constant γ > 0.

Next, we assume sub-Gaussianity of the eigenfunctions,
which is very standard in KRR literature (to name a few,
(Liang & Rakhlin, 2020; Bartlett et al., 2020; Tsigler &
Bartlett, 2023; Bach, 2023)):

Assumption 3.3 (Sub-Gaussian design). Let M ∈ N. For
every k = 1, ...,M , the random variable ψk(x) is replaced
by an independent sub-Gaussian variable with uniformly
bounded sub-Gaussian norm.

This is a relaxation of the Gaussian design assumption,
which is used in (Bordelon et al., 2020; Cui et al., 2021;
Loureiro et al., 2021; Simon et al., 2021):

Assumption 3.4 (Gaussian design). Let M ∈ N. For every
k = 1, ...,M , the random variable ψk(x) is replaced by an
independent standard Gaussian variable.

Under Assumption 3.4, the learning task is simply linear
regression with the feature vectors ψk(x)’s replaced by M -
dimensional Gaussian inputs ϕk

def.
= Λ1/2ψk ∼ N (0,Λ1/2)

for all k.

4. Main Result
The analysis of our main result consists of three steps. First,
we bound the condition number of the kernel matrix K
under the interpolation assumption (Assumption 3.1) and
sub-Gaussian design assumption (Assumption (Assumption
3.3)) in Theorem 4.1. Next, we use this result to give a
tight bound of the test error and conclude the effect of the
spectral decay on overfitting in Theorem 4.2. Lastly, we
demonstrate the necessity of feature independence by Theo-
rem 4.3. The formal versions of the main theorems can be
found in Section A.

4.1. Condition Number

First, we show that the condition number of the kernel ma-
trix is bounded with polynomial and exponential decays
differently.

Theorem 4.1 (Bounding the Condition Number). Suppose
M,N ∈ N such that M ≥ ηN for some constant η > 1
that is large enough. Let Ψ ∈ RM×N be a matrix with
i.i.d. isotropic random vectors Ψi’s with independent sub-
Gaussian entries as columns. Let Λ = diag(λk)

M
k=1 ∈

RM×M be a diagonal matrix. Then with high probability,
the condition number smax(K)

smin(K) of the matrix K = Ψ⊤ΛΨ ∈
RM×N is bounded by:

1. smax(K)
smin(K) = ON

(
λ1

λN

)
, if λk’s decay polynomially;
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2. smax(K)
smin(K) = ΘN

(
λ1

λN
N
)
, if λk’s decay exponentially

and furthermore Ψ ∈ RM×N is a Gaussian random
matrix with M = ηN .

Proof idea: It is well known that, with high probability,
smax(K) ≍ Nλ1 for both types of eigen-decay. The major
difference between the polynomial and exponential decay
is the lower bound of smin. In the former case, we apply
random matrix concentration from (Vershynin, 2010) to ob-
tain smin(K) ≳ NλN ; in the latter case, we apply a lemma
from (Tao, 2012) and the anti-concentration of Gaussian to
obtain smin(K) ≍ NλN . The full proof can be found in
Lemmata A.6 and Lemmata A.7 in the appendix. □
Intuitively, one might suppose that smax(K)

smin(K) ≈ λ1

λN
. From

Theorem 4.1 and the experiments in Section 5, we can see
that polynomial spectral eigen-decays yields the intuitive
bound smax(K)

smin(K) ≈ λ1

λN
on the condition number. In the latter

case, however, the intuitive bound does not hold even if we
restrict the feature dimension M = ηN and the random
matrix Ψ to Gaussian.
While we apply Theorem 4.1 to bound the test error in the
rest of the paper, the bound of the condition number can
be of independent interest, for instance when studying the
convergence properties of gradient-based methods.

4.2. Classifying Overfitting Regimes

The bound on the condition number of the kernel matrix
in Theorem 4.1 can be applied to bound the test error of
kernel ridgeless regression under the interpolation assump-
tion (Assumption 3.1) and sub-Gaussian design assumption
(Assumption 3.3). To this end, we formally define the test
error as follows:
Let yi = f⋆(xi) + ϵi for all i = 1, ..., N , where f⋆ ∈ H is
the target function and ϵi’s are draws from a centered sub-
Gaussian random variable ϵ with variance E

[
ϵ2
]
= σ2 > 0.

We define the test error (or excess risk) R to be the mean
square error (MSE) between the target function f⋆ and the
norm-minimizing interpolant f̂ of a given fixed dataset of
size N averaging out the noise in the dataset:

R def.
= Ex,ϵ

[
(f⋆(x)− f̂(x))2

]
. (1)

Now, we present our result on overfitting with polynomial
and exponential decays.
Theorem 4.2 (Overfitting with Polynomial and Exponen-
tial Eigen-Decay). Suppose the interpolation assumption
(Assumption 3.1) and the sub-Gaussian design assumption
(Assumption (Assumption 3.3)) hold. 1 Then there exists a
constant C ∈ (0, 1) independent of M,N , such that with
high probability, the followings hold:

1We suppose Assumption (Assumption (Assumption 3.3)) to
hold in the sense that the distributions of the regressor f̂(x) =
K⊤

x K
−1y and the target function f∗(x) evaluated on a ran-

1. if λk’s decays polynomially, then C ≤ R ≤ C−1. In
other words, a kernel with polynomial decay exhibits
tempered overfitting.

2. if λk’s decays exponentially, then R ≥ CN . In other
words, a kernel with polynomial decay exhibits catas-
trophic overfitting.

Proof idea: The proof proceeds similarly to (Tsigler &
Bartlett, 2023), where we first use the upper bound on
the condition number of the kernel matrix in Theorem 4.1
together with the result from (Tsigler & Bartlett, 2023) to
bound the KRR test error from above. Then we apply the
result of the matching lower bound from Theorem (Tsigler
& Bartlett, 2023) to conclude the statement. The full proof
can be found in Corollary A.10 and Theorem A.11 in the
appendix. □

Extension of Previous Results Although the two results
in Theorem 4.2 are not new in the literature, we have pro-
vided a qualitatively better analysis: 1) the upper bound of
the test error of Theorem 4.2 is a result we can recover from
(Barzilai & Shamir, 2023, Theorem 2), but our probability
is of exponential decay which is faster than the Markov
type bound of (Barzilai & Shamir, 2023); 2) the tempered
overfitting behaviour of kernel with polynomial decay, that
is reported in (Cui et al., 2021; Simon et al., 2021; Mallinar
et al., 2022), which used the Gaussian design Assumption
3.4. We replace this with the more general sub-Gaussian
design assumption (Assumption (Assumption 3.3)).

Benign Overfitting As reported in (Bartlett et al., 2020;
Mallinar et al., 2022; Barzilai & Shamir, 2023), if the spec-
tral eigen-decay is much slower than polynomial decay, say
λk = Θk

(
k−1 log−a k

)
for some a > 0, then the overfit-

ting is benign under the Gaussian design assumption. How-
ever, to the best of our knowledge, there is no natural kernel
exhibiting such eigen-decay λk = Θ(k−1 log−a k). Thus,
we only consider polynomial and exponential eigen-decays,
which represent realistic scenarios as in Figure 2. Hence, by
Theorem 4.2, the discussion of benign overfitting is out of
the scope of this paper.

4.3. Independent versus Dependent Features

We further investigate the reason behind tempered over-
fitting with polynomial eigen-decay and discover that the
independence between the entries of the feature vector ψ
plays an important role in bounding the smallest singular

dom test point x are replaced by those with random variables
ψ⊤Λ1/2(Ψ⊤ΛΨ)−1(Ψ⊤θ∗ + ϵ) and ψ⊤θ∗ for some fixed tar-
get vector θ∗ ∈ RM , noise vector ϵ ∈ RN and i.i.d. random
vectors ψ, Ψi’s.
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value smin(K) of the kernel matrix K. Specifically, we
have

Theorem 4.3 (Smallest singular value with dependent fea-
tures). Suppose M,N ∈ N such that M ≥ ηN for some
constant η > 1 large enough. Let Ψ ∈ RM×N be a ma-
trix with i.i.d. isotropic random vectors Ψi’s with (pos-
sibly dependent) sub-Gaussian entries as columns. Let
Λ = diag(λk)

M
k=1 ∈ RM×M be a diagonal matrix with

λk’s decaying polynomially. Then with high probability, we
have

smin(K) ≥ PNλN ,

where P is a positive random variable depending on Ψ.
If the entries of each Ψi are furthermore independent of
each other, that is, if the sub-Gaussian design assumption
(Assumption 3.3) holds, then there exists a constant C > 0,
such that with high probability, P ≥ C, recovering the
result in Theorem 4.1.

Proof idea: The argument follows from random matrix
concentration from (Vershynin, 2010). The full proof can
be found in Lemma A.4 in the appendix. □

In general, when the features are dependent on each other,
the random variable P can vanish to zero as N → ∞, ren-
dering the lower bound in Theorem 4.3 vacuous. Hence
the argument in Theorem 4.2 would break down in the
general feature case (for instance when considering kernel
feature vectors ψ = (ψk(x))

M
k=1, where the eigenfunctions

ψk’s are generally dependent on each other). Indeed, we
discover both tempered and catastrophic overfitting phenom-
ena can occur for kernels with polynomial eigen-decay and
dependent feature vectors (see Figure 2). The neural tan-
gent kernel (NTK) for a 1-hidden layer network is defined
to be K(x, z) = x⊤zκ0(x

⊤z) + κ1(x
⊤z) where κ0(t)

def.
=

1− 1
π arccos(t), κ1(t)

def.
= 1

π

(
t(π − arccos(t)) +

√
1− t2

)
.

According to (Bietti & Mairal, 2019), the NTK exhibits poly-
nomial eigen-decay. This counterexample suggests that the
conclusion drawn in (Mallinar et al., 2022) regarding the
tempered overfitting with polynomial eigen-decay might be
too optimistic.

5. Experiments
We run several simple experiments to validate our theoretical
analysis on overfitting.

5.1. (Sub-)Gaussian Design

First, we validate the main results in Section 4: 1) the bound
of the condition number smax(K)

smin(K) for polynomial and expo-
nential spectra as predicted in Theorem 1; 2) the tempered
and the catastrophic) overfittings for polynomial and expo-
nential spectra.

Figure 2. Test error of kernel interpolation on the unit 2-disk
against the sample size N . (Top): Laplacian kernel K(x, z) =
e−∥x−z∥2 (Bottom): ReLU Neural tangent kernel (NTK) for a
1-hidden layer network

For simplicity, we implement the experiment following As-
sumption (Assumption 3.4). Let ϕk ∼ N (0,Λ) be i.i.d.
Gaussian random vector with covariance Λ = diag{λk}.
Write Φ ∈ RM×N be a matrix with kth column ϕk. For
each pair N and M = 10N , we run over 20 random sam-
plings for the kernel matrix Φ⊤Φ.

Figure 3 confirms that the condition number of the kernel
matrix grows as described in Theorem 4.1: with smax

smin
≍ λ1

λN

in the case of a polynomial spectrum and smax

smin
≍ Nλ1

λN
in the

case of an exponential spectrum. To compute the test error,
we randomly set the true coefficient θ∗ ∼ N (0, IM ) and
let y = (θ∗)⊤ϕ+ ϵ be the label where ϵ ∼ N (0, 1) is the
noise. We evaluate the test error using the mean square error
(MSE) between the true label and the ridgeless regression
on 1000 random points. For each pair N and M = 10N ,
we run over 20 iterations for the same true coefficient. In
Figure 4, we validate Theorem 4.2: the learning curve for
polynomial decay is asymptotically bounded by constants;
while that for exponential decay increases as N → ∞.

To validate Theorem 4.1 under the sub-Gaussian design as-
sumption (Assumption 3.3), we compare the empirical spec-
trum of K = Ψ⊤ΛΨ, where the isotropic features Ψi are
either Gaussian or uniformly distributed (unif[−

√
3,+

√
3]).

In Figure 5, we observe that smin

(
1
nK
)

remains in the same
magnitude as λN for both types of features. To observe the
effect of feature dependence on the smallest singular value
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Figure 3. Validation of Theorem 4.1: The ratios smax
smin

: λ1
λN

for the
polynomial spectrum (top) and smax

smin
: Nλ1

λN
for the exponential

spectrum (bottom) are asymptotically constant.

smin(K), we conduct experiments with cosine and sine fea-
tures. In Figure 6, we observe that smin(K) vanishes, thus
validating our findings in Theorem 4.3.

5.2. Dependent Feature

Additionally, when we transition to kernels, we observe that
the smallest singular value also diminishes (see Figure 7). In
this scenario, the data follows a Gaussian distribution on the
real line. Combined with the insights from Figure 2, where
the Laplacian kernel displays tempered overfitting under
different data distributions, we conclude that the condition
smin(K) ≈ λN is sufficient but not necessary for observing
tempered overfitting in kernels with polynomial decay.

6. Discussion
In this section, we discuss the interpretations of our results
and their possible extensions.

6.1. Implicit Regularization

Intuitively, given a (possibly infinite rank) PDS kernel K,
one decomposes the kernel matrix into: K = K≤l +K>l

where the low-rank part K≤l fits the low-complexity target
function while the high-rank part K>l ≈ (

∑
k>l λk)IN

serves as the implicit regularization. Hence the (normal-
ized) effective rank ρl

def.
=

∑
k>l λl

Nλl+1
measures the relative

strength of the implicit regularization. With exponential
eigen-decay, the effective rank ρl = Θ(N−1) ≪ O(1) is
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Figure 4. Validation of Theorems 4.2 and 4.3: Learning curves for
spectra with polynomial (top) and exponential (bottom) decays.

negligible, hence one can expect the catastrophic overfit-
ting as the implicit regularization is not strong enough to
stop the interpolant using high-frequency eigenfunctions
to fit the noise. With polynomial decay, the effective rank
ρl = Θ(1) shows that the interpolant would fit the white
noise as if it is the target function, hence overfitting is tem-
pered; for even slower decay like linear-poly-logarithmic
decay λk = Θ( 1

k log2 k
) in (Barzilai & Shamir, 2023), the

effective rank ρl = Ω(log l), hence the high-frequency part
is heavily regularized and benign overfitting would occur.

6.2. Sub-Gaussian Design

We emphasize that the sub-Gaussian design assumption (As-
sumption 3.3) represents a significantly weaker assumption
compared to the Gaussian design assumption (Assumption
3.4), which enhances the theoretical significance of our pa-
per over previous literature in several ways:

1. We only necessitate the independence of sub-Gaussian
variables, not their identical distribution, unlike previ-
ous works such as (Bordelon et al., 2020; Cui et al.,
2021; Loureiro et al., 2021), which relied on the
Replica Method and could not circumvent the Gaussian
design assumption.

2. In general, sub-Gaussian vectors lack the rotational
invariance property of Gaussian vectors, which was
crucial in the analyses of (Simon et al., 2021; Mallinar
et al., 2022).
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Figure 5. Empirical singular values are close to the eigen-
spectrum for independent features (top): The features are Gaussian
ψ ∼ N (0, IM ). (bottom): The features are uniformly distributed
ψ ∼ (unif[−

√
3,+

√
3])p.

3. Sub-Gaussian variables are not required to be continu-
ous, unlike Gaussian vectors, where the continuity of
kernels (and consequently the feature vectors) is often
assumed in KRR literature (Zhang et al., 2023; Li et al.,
2023a;b; Haas et al., 2023).

6.3. Beyond Independent Features

Comparing independent and dependent features, Theorem
4.3 offers insights into the lower bound of the smallest
singular value for polynomial eigen-decay and dependent
sub-Gaussian features. Consequently, this revelation under-
scores the qualitative difference in generalization behavior
between independent and dependent features: if the sub-
Gaussian features are dependent, overfitting can escalate
to catastrophic levels (see Figure 2); conversely, indepen-
dent sub-Gaussian features imply tempered overfitting. As
a result, our paper rigorously demonstrates that the theories
presented in (Bordelon et al., 2020; Cui et al., 2021; Simon
et al., 2021) fail to accommodate the possibility of catas-
trophic overfitting with polynomial eigen-decay. Therefore,
our paper provides insights that are currently absent in the
field. It underscores the pivotal role of independence versus
dependent features and prompts further inquiry into identify-
ing additional properties of features that influence tempered
or catastrophic overfitting.
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Figure 6. Empirical smallest singular value vanishes for depen-
dent features. (top): The features are cosines ψ = (cos(k·))Mk=1.
(bottom): The features are sines ψ = (sin(k·))Mk=1.

6.4. Limitations

Our method currently operates solely under the sub-
Gaussian design assumption (Assumption 3.3), presuming
the kernel rank is finite, and the features are independent of
each other. We acknowledge that this remains distant from
the realistic kernel setting.

However, we have the following justifications for the limita-
tions in this paper.

Finite Rank Features To justify whether the finite rank
approximation is sufficient to investigate overfitting be-
haviour, we present the following convergence result of
the variance term V . Fix a (infinite-rank) kernel with Mer-
cer decomposition K =

∑∞
k=1 λkψk(·)ψk(·) and a sample

of size N . For each integer M ∈ N, define the truncated
kernel K(M) =

∑M
k=1 λkψ(·)ψ(·). Let V and V(M) be the

variance terms corresponding to the kernels K and K(M)

respectively. Then there exists an integer M0 such that:

|V − V(M)| ≤ 3V(M) +
σ2

N

whenever M > M0. In particular, the variance V(M) of a
finite rank kernel K(M) has the same overfitting behaviour
as the original one V . See Proposition A.13 in the appendix
for more details.

Concurrent Work We are aware of the concurrent work
(Barzilai & Shamir, 2023), which addresses the same prob-
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with inputs x, z ∼ N (0, 1). (Top): The empirical spectrum of
Laplacian. The smallest singular value vanishes as in Figure 6.
(Bottom): The test error is bounded by some constants as n→ ∞,
exhibiting tempered overfitting.

lem and offers statements valid for a broader class of fea-
tures, particularly including kernel features. However, our
work serves as a complement to theirs. For instance, our
analysis can elucidate overfitting in cases of exponential
decay (where their bounds may be vacuous).

6.5. Future Research

There are several obvious possibilities to extend the results
of this paper:

1. What causes NTK to exhibit catastrophic overfitting
while Laplacian exhibits tempered overfitting? There
is more than just the eigen-spectrum that affects the
overfitting behaviour, which is worth further investiga-
tion.

2. The work (Simon et al., 2021) suggested that the dis-
tribution of the kernel features with realistic data is
similar to Gaussian. Does this suggest that the data
distribution in a realistic dataset leads to independent
eigen-functions? As we have seen in our paper, feature
independence plays an important role in overfitting be-
haviour. This might help us to understand more about
benign overfitting reported in (Zhang et al., 2017).

3. Controlling the condition number of the kernel matrix
in Theorem 4.1 can be of independent interest, for
instance when studying the convergence properties of
gradient-based methods.

Impact Statement
This paper introduces research aimed at pushing the bound-
aries of the Machine Learning field. Our work is predomi-
nantly theoretical, with minimal direct societal implications.
While there are some potential consequences, they are not
unique to our study and, therefore, do not warrant specific
emphasis in this context.
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Appendix

With abuse of notations, the constants c, c1, c2, ... with small letter c may change from line to line.

Denote ∥v∥M
def.
=

√
v⊤Mv for any vector v and matrix M with appropriate dimension.

For an M ×N matrix M, denote M≤l ∈ Rl×N its submatrix containing the first l columns; for M ×M square matrix S,
denote M≤l ∈ Rl×l its submatrix containing the first l columns and rows. Matrices with subscripts ·l1:l2 or ·>l are defined
similarly.

A. Proof
In this section, we will prove the Theorem 4.1 on the condition number of K under Assumption 3.3.

Let us first restate the sub-Gaussian design assumption (Assumption 3.3):

Assumption A.1 (Sub-Gaussian design). Let M ∈ N. For every k ∈ N, the random variable ψk(x) is replaced by an
independent sub-Gaussian variable in RM with uniformly bounded sub-Gaussian norm.

Consider the regressor
f̂(x) = Kx(K+NλI)−1y = ψ(x)⊤Ψ(ΨΛΨ⊤ +NλI)−1y

Effectively, the Sub-Gaussian Design Assumption replace the vector ψ(x) and the columns Ψi of the matrix Ψ ∈ RM×N

by sub-Gaussian vectors with independent entries. Note that, by setup, those vectors ψ(x) and Ψi are i.i.d. to each other.

A.1. Condition number

The control on the largest singular value smax(K) of the kernel matrix directly follows from the literature:

Lemma A.2 (bound on largest singular value, Theorem 9 in (Koltchinskii & Lounici, 2017), Theorem 1 in (Zhivotovskiy,
2024)). Suppose Assumption 3.3 holds, that is, there exists some constant κ > 1 such that∥∥∥⟨v,Λ1/2ψ⟩

∥∥∥
ψ2

≤ κ
√
v⊤Λv

for all v ∈ Rn, where ψ is the random sub-Gaussian vector with the columns Ψi in Ψ as its realization, and ∥·∥ψ2
denote

the sub-Gaussian norm. Then with probability at least 1− e−t, it holds that∥∥∥∥ 1

N
Λ1/2ΨΨ⊤Λ1/2 −Λ

∥∥∥∥
op

≤ 20κ2 ∥Λ∥op

√
4ρ0 +

t

N

whenever N ≥ 4Nρ0 + t, and ρ0
def.
= Tr[Λ]

N∥Λ∥op
is the normalized effective rank of Λ.

In particular, if ρ0 ≤ 1
80(40κ2)2 , then with probability at least 1− e

− N
2(40κ2)2 , it holds that

1

2
N ∥Λ∥op ≤ smax(Ψ

⊤ΛΨ) = smax(Λ
1/2ΨΨ⊤Λ1/2) ≤ 3

2
N ∥Λ∥op .

Remark A.3 (Sub-Gaussian Condition). In (Koltchinskii & Lounici, 2017; Zhivotovskiy, 2024), the random vector ψk are
required to be centered. However, as mentioned Remark 5.18 in (Vershynin, 2010), centering of a sub-Gaussian random
variable X does not change the sub-Gaussian constant by more than 2:

∥X − E [X]∥ψ2
≤ 2 ∥X∥ψ2

.

Hence, by possibly changing the constant κ, we drop the requirement of centered random variable in the statement.

Lemma A.4 (Lower bound of smallest singular value for polynomial spectrum). Suppose Assumption 3.1 holds, λk =
Θk
(
k−1−a) for some constant a > 0, and each column Ψi = (ψki)

M
k=1 ∈ RM is i.i.d. sub-Gaussian isotropic random
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vector, whose entries ψki are not necessarily independent. Then there exists constants c1, c2 > 0 such that, with a probability
of at least 1− 2e−c1N :

smin(K) ≥ c2 min
i
{P 2

i } ·NλN , (2)

where Pi
def.
=

√∑M
i=N+1 ψ

2
ki

M−N is a random variable depending on the inputs xi’s. Furthermore, if Assumption 3.3 holds, then
with probability at least 1− 2Ne−c1N , it holds that

smin(K) ≥ c2
2
NλN . (3)

Proof. By Assumption 3.1, the feature dimension M ≥ θN . First, by Weyl’s theorem (Corollary 4.3.15 in (Horn & Johnson,
2012)): smin(M1) + smin(M2) ≤ smin(M1 +M2) for any any symmetric matrix M1,M2 ∈ RN×N , we have

smin(K) = smin(Λ
1/2Ψ⊤)2 ≥ smin(Λ

1/2
N :θNΨ⊤

N :θN )2 ≥ λN · λθN
λN

smin(ΨN :θN )2

where we write Λ1/2Ψ⊤ = Λ
1/2
N :θNΨ⊤

N :θN + (Λ1/2Ψ⊤ −Λ
1/2
N :θNΨ⊤

N :θN ) and ·N :θN denote the submatrix with columns
ranging from N to θN . Hence with abuse of notation, we replace M by θN in the following argument. Let R⊤

i ∈

RM−N = R(θ−1)N be the i-th row of Ψ>N , and R̂i
def.
=

√
(M−N)

∥Ri∥2
Ri. Note that E

[
∥Ri∥22

]
= (θ − 1)N, ∀i = 1, ..., N .

Let Ψ̂>N
def.
= (R̂i)

N
i=1 ∈ RN×((θ−1)N). Now the matrix Ψ̂⊤

>N is an ((θ − 1)N) × N matrix whose columns R̂i are

independent sub-Gaussian isotropic random matrix with norm
∥∥∥R̂i

∥∥∥
2
=
√
(θ − 1)N . Hence, by Theorem B.13, there exists

constants C8, C9 > 0 (depending only on the sub-Gaussian norm of ψk) such that, for any t > 0, with probability at least
1− 2e−C8t

2

, the inequality holds:
smin(Ψ̂>N ) ≥

√
(θ − 1)N − C9

√
N − t.

Set t =
√
N and θ > (C9 + 2)2 + 1, the inequality holds:

smin(Ψ̂>N ) ≥
√
θN −N − C9

√
N −

√
N ≥

√
N,

with probability at least 1 − 2e−c8N . Notice that Ψ>N = Ψ̂>NP where Pi
def.
=

∥Ri∥2√
(θ−1)N

, ∀i = 1, ..., N and P
def.
=

diag{Pi}ni=1 ∈ RN×N is a random matrix with E
[
P2
]
= IN . Hence, with high probability,

smin(Ψ>N )2 ≥ smin(Ψ̂>N )2smin(P)2 = min
i
{P 2

i }smin(Ψ̂>N )2 ≳ min
i
{P 2

i }N.

Since λM

λN
≍ M−1−a

N−1−a = (θN)−1−a

N−1−a = θ−1−a ≍ 1, thus smin(K) ≳ mini{P 2
i } · NλN . If, furthermore, Assumption 3.3

holds, then each row vector Ri has independent sub-Gaussian entries, that is, write R⊤
i =

(
z
(k)
i

)M
k=N+1

where each z(k)i is

an independent random variable with sub-Gaussian norm ≤ G. Then by remark A.3, P 2
i = 1

(θ−1)N

∑M
k=N+1(z

(k)
i )2 is the

average of some independent sub-exponential variables with sub-exponential norms ≤ G2. Hence by Lemma B.11, it holds
that

P
{∣∣P 2

i − 1
∣∣ ≥ δ

}
≤ 2 exp

(
−C5 min

{
δ2

G4
,
δ

G2

}
((θ − 1)N)

)
for some absolute constantC5 > 0. Write c1 = −C5 min

{
1

4G4 ,
1

2G2

}
(θ−1). Then with a probability at least 1−2Ne−c1N ,

it holds that
P 2
i ≥ 1

2
, ∀i = 1, ..., N.

Remark A.5 (Dependence of features). We can see that the effect of the dependence of features is encrypted in the term
mini{P 2

i } in Lemma A.4. Indeed, the smallest singular value of the kernel matrix with dependent features vanishes (see
Figure 6) while that with independent features remains in the same magnitude of the theoretical lower bound (see Figure 5).

Hence we can bound the condition number for polynomial eigen-decay:
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Lemma A.6 (Condition number for polynomial eigen-decay). Suppose M,N ∈ N such that M ≥ ηN for some constant
η > 1 large enough. Let Ψ ∈ RM×N be a matrix with i.i.d. isotropic random vectors Ψi’s with (possibly dependent)
sub-Gaussian entries as columns. Let Λ = diag(λk)

M
k=1 ∈ RM×M be a diagonal matrix with λk’s decaying polynomially.

Then there exists some constants c1, c2 > 0, such that for N large enough, with probability 1− 2Ne−c1N , we have

smax(K)

smin(K)
≤ c2

λ1
λN

,

Proof. Simply combine Lemmata A.2 and A.4. By possibly choosing a larger constant c1, the claim holds with probability
1− 2Ne−c1N , for N large enough.

For exponential eigen-decay, we use another argument:

Lemma A.7 (Condition number for exponential eigen-decay). Suppose M = ηN for some integer η > 1 large enough. Let
K = Ψ⊤ΛΨ ∈ RN×N be a random matrix where Ψ ∈ RM×N is a Gaussian random matrix, and Λ = diag(λk)

∞
k=1 is a

diagonal matrix with λk = Θk
(
e−ak

)
for some constant a > 0. Then there exist constants c1, c2 > 0 such that for N large

enough, with probability at least 1− δ − 2/N ,

c1
λ1
λN

N ≤ smax(K)

smin(K)
≤ c2
δ2

λ1
λN

N.

Proof. By Lemma A.2, for N large enough, with probability at least 1− 1
N , we have

1

2
Nλ1 ≤ smax(K) ≤ 3

2
Nλ1. (4)

It remains to show that smin is bounded above and below at the magnitude of λN .

For the upper bound, fix the first N − 1 vectors ψ1, .., ψN−1 and pick v0 ∈ SN−1 orthogonal to them. Then

smin(K) = inf
v∈SN−1

M∑
k=1

λk(ψ
⊤
k v)

2 ≤
M∑
k=1

λk(ψ
⊤
k v0)

2 ≤
M∑
k=N

λk(ψ
⊤
k v0)

2.

Since the Gaussian is rotational invariant, we have (ψ⊤
k v0)

2 ∼ χ2(1). By Lemma B.11, hence we have

P
{∣∣(ψ⊤

k v0)
2 − 1

∣∣ ≥ t
}
≤ 2e−t

2/8.

Set t =
√
8 log 2(θ−1)N

δ and By the union bound, we have

P
{∣∣(ψ⊤

k v0)
2 − 1

∣∣ ≤ t : N ≤ k ≤M
}
≥ 1−

M∑
k=N

δ

(θ − 1)N
≥ 1− δ.

Thus with probability of at least 1− δ, we have

smin(K) ≤
M∑
k=N

λk(1 + t) =

(
1 +

√
8 log

2(θ − 1)N

δ

)
M∑
k=N

λk (5)

Since λk = Θk
(
e−ak

)
, there exists some constant c > 0 such that

M∑
k=N

λk ≤ cλN ;

By setting δ = 1
N , the factor

(
1 +

√
8 log 2(θ−1)N

δ

)
becomes constant in line (5) and hence with probability at least 1− 1

N ,

smin(K) ≤ cλN (6)
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for some constant c > 0.

For the lower bound, let KN =
∑N
k=1 λkψkψ

⊤
k ≺ K. Let ΛN = diag(λk)

N
k=1 ∈ RN×N and ΨN = (ψk)

N
k=1 ∈ RN×N

and set M = Λ
1/2
N ΨN which is invertible almost surely. Note that KN = M⊤M. Let R1, ...,Rn be the rows of M and let

C1, ...,Cn be the columns of M−1. For each 1 ≤ i ≤ n, let Ni be a unit normal vector orthogonal to the subspace spanned
by all rows R1, ...,Rn except Ri.

By Lemma B.10, for any k ≤ N and t ∈ (0,∞),

P
{
λN
λk

(ψ⊤
k Nk)

−2 ≥ t−1e−
a
2 (N−k)

}
= P

{
|ψ⊤
k Nk| ≤

√
λN
λk

te
a
2 (N−k)

}

≤ 2√
2π

·
√
λN
λk

te
a
2 (N−k)

≤ 2√
2π

·

√
re−aN

re−ak
e

a
4 (N−k)√t

=
2√
2π

·
√
r

r
e−

a
4 (N−k)√t.

for all k = 1, ..., N . By the union bound, we have

P


λN
λk

(ψ⊤
k Nk)

−2 ≤ t−1e−
a
2 (N−k) : ∀k = 1, ..., N︸ ︷︷ ︸

E

 ≥ 1−
N∑
k=1

2√
2π

·
√
r

r
e−

a
4 (N−k)√t

≥ 1− 2√
2π

·
√
r

r
(1− e−a/4)−1

√
t.

When the event E happens, we have

N∑
k=1

λN
λk

(ψ⊤
k Nk)

−2 ≤
N∑
k=1

t−1e−
a
2 (N−k) ≤ (1− e−a/2)−1t−1,

by Lemma B.9, with probability at least 1− 2√
2π

·
√

r
r (1− e−a/4)−1

√
t, we have

smin(K) ≥ λN (1− e−a/2)t

for any t > 0. Set δ = 2√
2π

·
√

r
r (1− e−a/4)−1

√
t and we have: with probability at least 1− δ,

smin(K) ≥ cδ2λN (7)

for some constant c > 0.

Combining Eq. (4), (6) and (7), we obtain the claim.

A.2. Test Error

In this paper, we use the bias-variance decomposition to analyse the test error R, which is common in literature: (Bartlett
et al., 2020; Tsigler & Bartlett, 2023; Bach, 2023; Li et al., 2023a;b).

With abuse of notation, we write f∗(X) ∈ RN to be the evaluation of f∗ on the training set X = (xi)
N
i=1.

Definition A.8 (Bias-Variance Decomposition of test error). Given the test error R def.
= Ex,ϵ

[
(f⋆(x)− f̂(x))2

]
be the test

error. Define the bias
B def.

= Ex
[
(f⋆(x)−K⊤

xK[f⋆(X)])2
]
,

14
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which measures how accurately the KRR approximates the true target function f⋆. The variance, defined as the difference

V = R− B

quantifies the impact which overfitting to noise has on the test error.

Together with Theorem B.6 from (Tsigler & Bartlett, 2023), we obtain the first statement of Theorem 4.1:

Theorem A.9. Suppose the interpolation assumption (Assumption 3.1) and sub-Gaussian design assumption (Assumption
3.3) hold. Then there exists some constants c1, c2, c3, c4, c5, c6 such that with probability at least 1− c1e

−N/c1 − 2Ne−c2N ,
we have

B ≤ c3∥θ∗>⌊N/c1⌋∥
2
Λ>⌊N/c1⌋

+ c4∥θ∗≤⌊N/c1⌋∥
2λ⌊N/c1⌋;

V ≤ c5 +
c6
N
.

where the target function f∗ is given by the inner product ⟨θ∗,Λ1/2·⟩, where θ∗ ∈ RM is a deterministic vector with
∥θ∗∥Λ <∞. In particular, there exists a constant C > 0 independent to N such that

R = B + V ≤ C.

Proof. By Theorem B.6, there exists a constant c > 0, such that for any l ≤ N/c, with probability of at least 1− ce−N/c,
the bias and the variance is bounded by:

B/c ≤ ∥θ∗>l∥2Λ>l

(
1 +

s1(K
−1
l )2

sN (K−1
l )2

+Nλl+1s1(K
−1
l )

)
+ ∥θ∗≤l∥2Λ−1

≤l

(
1

N2sN (K−1
l )2

+
λl+1

N

s1(K
−1
l )

sN (K−1
l )2

)
V/c ≤

s1(K
−1
l )2

sN (K−1
l )2

l

N
+Ns1(K

−1
l )2

∑
k>l

λ2k,

where Kl
def.
= Ψ⊤

>lΛ>lΨ>l, θ∗ = θ∗≤l ⊕ θ∗>l is the splitting of the target function coefficient. Take l = ⌊N/c⌋. Since

λ = 0, so sN (K−1
l ) = s1(Kl)

−1 and s1(K−1
l ) = sN (Kl)

−1. Hence s1(K
−1
l )2

sN (K−1
l )2

= smax(Kl)
2

smin(Kl)2
. Since Kl is just another

kernel matrix with rank (M − l), by modifying Lemma A.6 w.r.t. the right-shifted polynomial decay, with probability
1− 2Ne−c2N , we have

smax(Kl)

smin(Kl)
≲

λl+1

λl+N
≲

l−a

(l +N)−a
= (1 +N/l)a ≤ (1 +N/(N/c))a = (1 + c)a,

and

Nλl+1s1(K
−1
l ) = Nλl+1sN (Kl)

−1 ≲ N
λl+1

Nλl+N
=

λl+1

λl+N
,

then we can bound the bias term using Theorem B.6:

B/c ≤ c1∥θ∗>l∥2Λ>l
+ ∥θ∗≤l∥2Λ−1

≤l

(
c2N

2λ2l+1

N2
+
λl+1

N

c3N
2λ2l+1

Nλl+N

)
≤ c1∥θ∗>l∥2Λ>l

+ c2∥θ∗≤l∥2Λ−1
≤l

λ2l

≤ c1∥θ∗>l∥2Λ>l
+ c2∥θ∗≤l∥2λl.
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Similarly, we can write the variance term into:

V/c ≤ c3
l

N
+

N

N2λ2l+N

∑
k>l

λ2k

≤ c3
l

N
+

c4
N2λ2l+N

∫ ∞

l

t−2adt

= c3
l

N
+

c4
N2λ2l+N

l−2a+1

= c3
l

N
+

c4
N2(l +N)−2a

l−2a+1

= c3 +
c4
N
,

since l = ⌊N/c⌋.

Corollary A.10 (tempered overfitting). There exists a constants C ∈ (0, 1) independent to N such that, with the same
probability as in Theorem A.9, we have

C ≤ R ≤ C−1.

Proof. It is a direct consequence of Theorems B.6 and B.7 about the non-asymptotic upper bound of the variance V and its
matching lower bound. In more details, we compute the (normalized) effective rank:

ρl
def.
=

1

Nλl+1

M∑
k=l+1

λk ≍ Nλl+1

Nλl+1
≍ 1

for all l = 1, ...,M − 1. Hence the condition (i) in Theorem B.7 would hold for some l = N/c1 where c1 > 1. Then we
apply Theorem B.7 for polynomial decay: there exists constants C,C ′, with a probability at least 1− Ce−N/C , we have

V ≥ C ′

(
l

N
+
N
∑
k>l λ

2
k(∑

k>l λk
)2
)

= Ω

(
l

N
+
N
∫∞
l
t−2adt(∫∞

l
t−2a

)2
)

= Ω(1).

Hence, combining the result with Theorem A.9, there exists constants c1, c2 > 0 independent to N such that c1 ≤ R ≤ c2
with the probability stated in Theorem A.9. Take C = max{(c−1

1 + 1)−1, (c2 + 1)−1} to conclude the claim.

Theorem A.11 (catastrophic overfitting). Suppose interpolation assumption (Assumption 3.1) and sub-Gaussian design
assumption (Assumption 3.4) hold. Then there exists some constants c1, c2 > 0 independent to N such that with probability
at least 1− c1e

−N/c1 , we have
R ≥ c2N.

Proof. We argue with Theorem B.7 again. We compute the (normalized) effective rank:

ρl
def.
=

1

Nλl+1

M∑
k=l+1

λk ≍ λl+1

Nλl+1
≍ 1

N

for all l = 1, ...,M − 1. Hence the condition (i) or (ii) in Theorem B.7 would hold for some l < N . Then we apply Theorem
B.7 for exponential decay: there exists a constant C,C ′, with a probability at least 1− Ce−N/C , we have

R ≥ V ≥ C ′

(
l

N
+
N
∑
k>l λ

2
k(∑

k>l λk
)2
)

= Ω

(
Ne−2al

e−2al

)
= Ω(N).

It may be of independent interest for the trivial bound of smin.
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Lemma A.12 (Trivial bound of the smallest singular value). Suppose the entries of the feature vector ψ ∈ Rp are i.i.d.
draws of a sub-Gaussian variable. (In particular, Assumption 3.3 holds.) Then there exists constants c1, c2 > 0 such that,
for any ϵ > 0, with probability at least 1− c1ϵ− e−c2N , it holds that

smin(K) ≥ ϵ2λN
N

.

Proof. Observe that

smin(K) ≥ smin(Ψ
⊤
≤NΛ≤NΨ≤N ) ≥ λNsmin(Ψ

⊤
≤NΨ≤N ) = λNsmin(Ψ≤N )2 ≥ λN

ϵ2

N
≥ ϵ2λN

N
.

where second last inequality holds with probability at least 1− c1ϵ− e−c2N by Theorem B.12.

A.3. Finite rank approximation of kernels

In this subsection, we discuss approximating the overfitting behavior of kernel ridge regression using truncated kernels. This
serves as a justification for the finite rank assumption in both Gaussian and sub-Gaussian design assumptions.

Since we focus on overfitting behaviour, where the variance term V dominates over the bias term B (see (Cui et al., 2021; Li
et al., 2023a) for details), we show that the variance term from the infinite rank kernel is close to that from its high-rank
truncation.

Proposition A.13 (Finite rank kernel). Let K be a PDS kernel with Mercer decomposition

K(x, x′) =

∞∑
k=1

λkψk(x)ψk(x
′)

with strictly positive eigenvalues λ1 ≥ λ2 ≥ ... and corresponding eigenfunction ψk’s. For any integer M > N , define its
truncation:

K(M)(x, x′) =

M∑
k=1

λkψk(x)ψk(x
′).

Denote by V the variance corresponding to the kernel K, and by V(M) that corresponding to K(M). Fix a random sample
{xi}Ni=1 of size N . Then there exists an integer M0 > N , such that

|V − V(M)| ≤ 3V(M) +
σ2

N

whenever M > M0.

Proof. Consider the variance expression in Lemma B.15, we have:

V = σ2 Tr
[
(Ψ⊤Λ2Ψ)(Ψ⊤ΛΨ)−2

]
, V(M) = σ2 Tr

[
(Ψ⊤

≤MΛ2
≤MΨ≤M )(Ψ⊤

≤MΛ≤MΨ≤M )−2
]
.

To simplify the notation, let

A1 = Ψ⊤
≤MΛ≤MΨ≤M , ∆1 = Ψ⊤

>MΛ>MΨ>M

A2 = Ψ⊤
≤MΛ2

≤MΨ≤M , ∆2 = Ψ⊤
>MΛ2

>MΨ>M .

Note that the matrices A1,A2,∆1,∆2 depends on M and are PDS a.s. Write the singular values as functions of M :

p1(M) = smax(∆1), q1(M) = smin(A1)

p2(M) = smax(∆2), q2(M) = smin(A2).
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By Lemma B.14, both p1 and p2 are decreasing functions in M , and both q1 and q2 are increasing functions in M . Moreover,
by the entry-wise convergence of K(M)(x, x′) → K(x, x′), we have a.s.: 2

lim
M→∞

p1(M) = 0, lim
M→∞

q1(M) = Q1,

lim
M→∞

p2(M) = 0, lim
M→∞

q2(M) = Q2.

where Q1
def.
= smin(Ψ

⊤ΛΨ) > 0 and Q2
def.
= smin(Ψ

⊤Λ2Ψ) > 0 a.s.

Fix an ϵ > 0, then there exists an integer M0 > N such that

p1(M) ≤ ϵ, q1(M) ≥ Q1

2
,

p2(M) ≤ ϵ, q2(M) ≥ Q2

2
,

whenever M > M0. In such case, we have:

(Ψ⊤ΛΨ)−2 =
(
(A1 +∆1)

−1
)2

=
(
(A−1

1 −A−1
1 ∆1(A1 +∆1)

−1
)2

= A−2
1

(
I−∆1(A1 +∆1)

−1
)2
,

where we use the identity of matrix inverse difference: (M1 +M2)
−1 = M−1

1 −M−1
1 M2(M1 +M2)

−1. Then,∥∥∥(I−∆1(A1 +∆1)
−1
)2∥∥∥

op
≤
∥∥I−∆1(A1 +∆1)

−1
∥∥2

op

≤
(
1 +

∥∥∆1(A1 +∆1)
−1
∥∥

op

)2
≤
(
1 + ∥∆1∥op

∥∥(A1 +∆1)
−1
∥∥

op

)2
≤
(
1 + ∥∆1∥op

∥∥A−1
1

∥∥
op

)2
=
(
1 + smax(∆1)smin(A1)

−1
)2

≤
(
1 + ϵ · 2

Q1

)2

.

Hence

V/σ2 = Tr
[
(Ψ⊤Λ2Ψ)(Ψ⊤ΛΨ)−2

]
= Tr

[
(A2 +∆2)(Ψ

⊤ΛΨ)−2
]

= Tr
[
A2(Ψ

⊤ΛΨ)−2
]
+Tr

[
∆2(Ψ

⊤ΛΨ)−2
]

= Tr
[
A2A

−2
1

(
I−∆1(A1 +∆1)

−1
)2]

+Tr
[
∆2(Ψ

⊤ΛΨ)−2
]

≤
∥∥(I−∆1(A1 +∆1)

−1)2
∥∥

op Tr
[
A2A

−2
1

]
+ ∥∆2∥op

∥∥(Ψ⊤ΛΨ)−2
∥∥

op Tr [IN ]

≤
(
1 + ϵ · 2

Q1

)2

V(M)/σ2 + p2(M)smin(Ψ
⊤ΛΨ)−2N

≤
(
1 + ϵ · 2

Q1

)2

V(M)/σ2 + ϵQ−2
1 N,

2In more details, we have 0 ≤ limM→∞ smax(∆1) ≤ limM→∞ ∥∆1∥F → 0; by Lemma B.14 and Weyl’s interlacing Theorem,
smin(K) ≥ limM→∞ smin(A1) ≥ limM→∞(smin(K) − smax(∆1)) ≥ smin(K) − limM→∞(smax(∆1)) → smin(K). Argue
similarly for p2 and q2.
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where we use that fact that Tr[M1M2] ≤ ∥M1∥op Tr[M2] for any PDS matrix M1 in the first inequality. Now set
ϵ = min{Q1

2 ,
1

Q2
1N

2 }, we have

|V − V(M)| ≤ 3V(M) +
σ2

N
.

In Proposition A.13, we can see that for each fixed sample of size N , we can find a truncation level M large enough so that
the decay of the variance V is of the same magnitude of V(M). The extra term does not play an important role in the case of
analysing tempered overfitting where V = Θ

(
σ2
)

or catastrophic overfitting where V → ∞.
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B. Technical Lemmata
This section contains known results from previous work that we use for our main theorems.

Proposition B.1 (Proposition 2.5 in (Rudelson & Vershynin, 2008)). Let G be a n× k matrix whose entries are independent
centered random variables with variances at least 1 and fourth moments bounded by B. Let K ≥ 1. Then there exist
C1, C2 > 0 and δ0 ∈ (0, 1) that depend only on B and K such that if k < δ0n then

P
{

inf
v∈Sk−1

∥Gv∥2 ≤ C1n
1/2, ∥G∥op ≤ Kn1/2

}
≤ e−C2n.

If the random variable is sub-Gaussian, the condition on the operator norm ∥G∥op ≤ Kn1/2 can be dropped.

Theorem B.2 (Corollary 5.35 in (Vershynin, 2010)). Let A be an N × n matrix whose entries are independent standard
normal random variables. Then for every t ≥ 0, with probability at least 1− exp

(
−t2/2

)
, we have

√
N −

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ t.

Theorem B.3 (Theorem 5.39 and Remark 5.40 in (Vershynin, 2010)). Let A be an N × n matrix with independent rows
Ai of sub-Gaussian random vector with covariance Σ

def.
= E

[
AiAi

⊤
]
∈ Rn×n. Then there exists constants C3, C4 > 0

(depending only on the sub-Gaussian norm of entries of A), such that for any t ≥ 0, with probability at least 1− 2e−C3t
2

,
we have ∥∥∥∥ 1

N
A⊤A−Σ

∥∥∥∥
op

≤ max{δ, δ2} ∥Σ∥op .

where δ = C4

√
n
N + t

N . In particular, if Σ = In, we have

√
N −

√
C4n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
C4n+ t.

Theorem B.4 (Theorem 9 (modified) in (Koltchinskii & Lounici, 2017)). Let A be an N × n matrix whose columns are
i.i.d. sub-Gaussian centered random vectors with covariance Σ. Then there exists a constant C > 0, such that, for any
t ≥ 1, with probability at least 1− e−t, it holds that∥∥∥∥ 1nAA⊤ −Σ

∥∥∥∥
op

≤ C ∥Σ∥op min

{
√
ρ, ρ,

√
t

n
,
t

n

}
,

where ρ = Tr[Σ]
n∥Σ∥op

is the (re-scaled) effect rank of the covairance Σ.

Remark B.5 (Dimension-free bound). Theorem B.4 differs from Theorem B.3 in that the bound in the former contains both
dimensions N and n, while the latter only contains n.

Theorem B.6 (Theorem 2.5 in (Tsigler & Bartlett, 2023)). Suppose Assumption 3.3 holds. Let Al = λIN +∑M
k=l+1 λkψkψ

⊤
k ∈ RN×N . Then there exists a constant c > 0, such that for any l < N/c, with probability of at

least 1− ce−N/c, if Al is positive definite, then

B/c ≤ ∥θ∗>l∥2Λ>l

(
1 +

s1(A
−1
l )2

sN (A−1
l )2

+Nλl+1s1(A
−1
l )

)
+ ∥θ∗≤l∥2Λ−1

≤l

(
1

N2sN (A−1
l )2

+
λl+1

N

s1(A
−1
l )

sN (A−1
l )2

)
V/c ≤

s1(A
−1
l )2

sN (A−1
l )2

l

N
+Ns1(A

−1
l )2

∑
k>l

λ2k,

where θ∗ = θ∗≤l ⊕ θ∗>l is the splitting of the target function coefficient; and ∥v∥M
def.
=

√
v⊤Mv for any vector v and matrix

M with appropriate dimension.
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Theorem B.7 (Lemma 7 and Theorem 10 in (Tsigler & Bartlett, 2023)). Suppose sub-Gaussian design assumption 3.3 holds.
In addition, fix constants A > 0, B > 1

N and suppose either (i) the (normalized) effective rank ρl
def.
= 1

Nλl+1

∑M
k=l+1 λk ∈

(A,B); or (ii) l = min{ℓ : ρℓ > B}. Then there exists a constant C,C ′, such that if l < N/C, with a probability at least
1− Ce−N/C , we have

V ≥ C ′

(
l

N
+
N
∑
k>l λ

2
k(∑

k>l λk
)2
)
.

Lemma B.8 (Negative second moment identity, Exercise 2.7.3 in (Tao, 2012)). Let M be an invertible n× n matrix, let
R1, ...,Rn be the rows of M and let C1, ...,Cn be the columns of M−1. For each 1 ≤ i ≤ n, let Ni be a unit normal
vector orthogonal to the subspace spanned by the all rows R1, ...,Rn except Ri. Then we have

∥Ci∥22 = (R⊤
i Ni)

−2 and
n∑
i=1

si(M)−2 =

n∑
i=1

(R⊤
i Ni)

−2.

Proof. Note that R⊤
i Cj = δij and the rows Ri’s spans the space RN . Hence we have Ci = ±∥Ci∥2 Ni for all i and

∥Ci∥22 = (R⊤
i Ci/R

⊤
i Ni)

2 = (R⊤
i Ni)

−2 which proves the first statement. For the second statement, note that

n∑
i=1

λi(M)−2 =

n∑
i=1

λi(M
−1)2 = Tr[(M−1)⊤(M−1)] =

n∑
i=1

∥Ci∥22 =

n∑
i=1

(R⊤
i Ni)

−2.

Lemma B.9 (lower bound of smin). KN =
∑N
k=1 λkψkψ

⊤
k ≺ K. Let ΛN = diag(λk)

N
k=1 ∈ RN×N and ΨN =

(ψk)
N
k=1 ∈ RN×N and set M = Λ

1/2
N ΨN which is invertible almost surely. Note that KN = M⊤M. Let R1, ...,Rn be

the rows of M and let C1, ...,Cn be the columns of M−1. For each 1 ≤ i ≤ n, let Ni be a unit normal vector orthogonal
to the subspace spanned by the all rows R1, ...,Rn except Ri. we have

smin(K) ≥ λN∑N
k=1

λN

λk
(ψ⊤

k Nk)−2
.

Proof. Since smin ≥ sN (KN ), WLOG: assume M = N . Then by Lemma B.8,

sN (KN )−1 ≤
N∑
k=1

sk(KN )−1 =

N∑
k=1

sk(M)−2 =

N∑
k=1

(√
λkψ

⊤
k Nk

)−2

,

where Nk denote a unit normal vector orthogonal to the subspace spanned by the all rows R1, ...,Rn of M except Ri.
Hence

smin ≥ sN (KN ) ≥ λN∑N
k=1

λN

λk
(ψ⊤

k Nk)−2
. (8)

Lemma B.10 (Anti-Concentration Result For Gaussian Laws). Let g be a standard Gaussian variable, then

P {|g| ≤ t} ≤ 2t√
2π
, ∀t ≥ 0. (9)

Lemma B.11 (Sub-Exponential Deviation, see Corollary 5.17 in (Vershynin, 2010)). Let N ∈ N. Let X1, ..., XN be
independent centered random variables with sub-exponential norms bounded by B. Then for any δ > 0,

P

{
|
N∑
i=1

Xi| > δN

}
≤ 2 exp

(
−C5 min

{
δ2

B2
,
δ

B

}
N

)
,

where C5 > 0 is an absolute constant.

In particular, if X ∼ χ(N) is the Chi-square distribution, then P
{
|XN − 1| > t

}
≤ 2e−Nt

2/8, ∀t ∈ (0, 1).
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Theorem B.12 (Theorem 1.1 in (Rudelson & Vershynin, 2009) /Theorem 5.38 in (Vershynin, 2010)). Let A be an N × n
random matrix whose entries are i.i.d. sub-Gaussian random variables with zero mean and unit variance. Then there exists
constants C6 > 0, C7 ∈ (0, 1) such that for any δ > 0,

P
{
smin(A) ≤ δ(

√
N −

√
n− 1)

}
≤ (C6δ)

N−n+1 + CN7 .

In particular, if N = n,
smin(A) ≳ N−1/2

with high probability.

Theorem B.13 (Theorem 5.58 in (Vershynin, 2010)). Let A be an N × n matrix (N ≥ n) with independent columns
Ai ∈ RN of sub-Gaussian isotropic random vector with with ∥Ai∥2 =

√
N almost surely. Then there exists constants

C8, C9 > 0 (depending only on the sub-Gaussian norm of entries of A), such that for any t ≥ 0, with probability at least
1− 2e−C8t

2

, we have √
N − C9

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N + C9

√
n+ t.

Lemma B.14 (Corollary 4.3.12 in (Horn & Johnson, 2012)). Let M1,M2 are symmetric matrix. If M2 is positive
semi-definite, then

smax(M1) ≤ smax(M1 +M2), smin(M1) ≤ smin(M1 +M2).

Lemma B.15 (Variance expression). Recall the definition of the variance V def.
= R − B. In the case of kernel ridgeless

regression where λ = 0 and the kernel matrix K can be written as K = Ψ⊤ΛΨ by Mercer decomposition, the variance
admits the following expression:

V = σ2 Tr
[
(Ψ⊤Λ2Ψ)(Ψ⊤ΛΨ)−2

]
.

Proof. By definition,

V = R− B

= Ex,ϵ
[
(f∗(x)− f̂(x))2

]
− Ex,ϵ

[
(f∗(x)−K⊤

xK
−1f∗(X))2

]
= Ex,ϵ

[
(K⊤

xK
−1ϵ)2

]
= Ex,ϵ

[
ϵ⊤K−1KxK

⊤
xK

−1ϵ
]

= Eϵ
[
ϵ⊤K−1Ψ⊤Λ2ΨK−1ϵ

]
= Eϵ

[
Tr
[
K−1Ψ⊤Λ2ΨK−1ϵϵ⊤

]]
= σ2 Tr

[
K−1Ψ⊤Λ2ΨK−1

]
= σ2 Tr

[
(Ψ⊤Λ2Ψ)(Ψ⊤ΛΨ)−2

]
.
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