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Abstract
A central piece in enabling intelligent agentic behavior in foundation models
is to make them capable of introspecting upon their behavior, reasoning, and
correcting their mistakes as more computation or interaction is available. Even
the strongest proprietary large language models (LLMs) do not quite exhibit the
ability of continually improving their responses sequentially. In this paper, we
develop RISE: Recursive IntroSpEction, an approach for fine-tuning LLMs to
introduce this capability, despite prior work hypothesizing that this capability
may not be possible to attain. Our approach prescribes an iterative fine-tuning
procedure, which attempts to teach the model how to alter its response after having
executed previously unsuccessful attempts to solve a hard test-time problem, with
optionally additional environment feedback. RISE poses fine-tuning for a single-
turn prompt as solving a multi-turn Markov decision process (MDP), where the
initial state is the prompt. Inspired by principles in online imitation and offline
reinforcement learning, we propose strategies for multi-turn data collection and
training so as to imbue an LLM with the capability to recursively detect and correct
its previous mistakes in subsequent iterations. Our experiments show that RISE
enables Llama2, Llama3, and Mistral models to improve themselves with more
turns on reasoning tasks, outperforming several single-turn strategies given an equal
amount of inference-time computation. We also find that RISE scales well, often
attaining larger benefits with more capable models, without disrupting one-turn
abilities as a result of expressing more complex distributions.

1 Introduction
A promising approach to utilizing foundation models, and in particular, large language models
(LLMs), is to treat them as general-purpose decision-making machines, or ”agents”. To be successful,
an LLM agent must not just provide plausible completions for input text, but must exhibit interactive,
goal-directed behavior to accomplish a given task. Put in abstract terms, this requires mastering
two qualities: (a) producing responses that explicitly seek information about the task, followed by
(b) making decisions and improving them by ”thinking” and verifying them at inference time. For
instance, to succeed in using a new coding library, an effective LLM agent should first synthesize
programs, then try the most promising subset against a compiler, use the resulting feedback to
improve the program, and repeat the process for multiple turns. Having the ability to successfully
improve a response in sequential attempts is equivalent to a form of ”self-improvement”, at test time.

To enable test-time self-improvement, recent approaches attempt to repurpose the knowledge stored in
pre-trained models via few-shot prompting [8, 17, 33, 54, 69]. Although prompt tuning in conjunction
with feedback is effective in eliciting improved responses from capable models, it fails to produce
models that can succeed in complex tasks by correcting their own mistakes, such as those that require
logical reasoning [23, 59]. In many of these problems, models contain the “knowledge” needed to
answer a challenging prompt, but fail to elicit that knowledge even when asked to sequentially correct
their mistakes. Fine-tuning the LLM on domain-specific question-answering data [7, 31, 41] can help,
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Figure 1: Recursive Introspection (RISE). Using multi-round training on on-policy rollouts and supervision
from a reward function, RISE trains models that are capable of improving themselves over multiple turns. At
inference, we run majority voting on candidate outputs from different turns to obtain the final response.

but it still does not teach the agent a test-time improvement strategy (see Section 5). A strategy for
improving responses over sequential attempts at test time is crucial for tackling challenging prompts,
where directly attempting the problem in one shot may largely be futile.

Can we train models to be capable of improving their own responses? If done correctly on a
diverse set of problems and scenarios, this could introduce in an LLM, a general procedure for “how”
it can tackle a hard prompt by improving itself as opposed to supervising it with “what” to respond
with, which may not generalize as the test prompt becomes out of distribution. Although one approach
to inducing this capability into a model would be to generate data that showcase improvements over
multiple sequential turns (potentially from highly capable models), we find that simply imitating
these data is not sufficient to enable this capability (Section 5.3). This is due to two reasons: First,
multi-turn data from a different model would not show improvements in the kinds of errors the learner
would make, thereby being irrelevant to the learner [26]. Second, often sequential multi-turn data
collected from proprietary models is also not of high quality since these models are typically not good
at proposing meaningful improvements to their own errors [23] even though they can still provide
useful responses to the problem at hand. Therefore, we need a different strategy to endow models
with a self-improvement capability. Our key insight is to supervise improvements to the learner’s own
responses in an iterative fashion, taking inspiration from methods in online imitation learning [38]
and reinforcement learning (RL) [47]. This supervision can be in the form of oracle responses to the
prompt sampled i.i.d. from more capable models, or be generated from the learner itself.

Our contribution, RISE: Recursive Introspection (Figure 1), utilizes these insights to improve
the self-improvement capability of an LLM over multiple attempts at a given prompt. In each
iteration, our approach bootstraps on-policy rollouts from the learner with better responses at the
next turn obtained by running best-of-N (using a success indicator on the task) on multiple revision
candidates obtained by sampling from the learner itself or using responses from a more capable
model, whichever is more convenient. In this way, we construct rollouts that demonstrate the learner
how it can improve its responses under its own distribution. Then, we fine-tune the learner on these
data using a reward-weighted regression (RWR [36, 37]) objective, that learns from both high- and
low-quality parts of such rollouts. By iteratively repeating this procedure, we are able to instill a
general self-improvement capability into an LLM. Our results show that LLMs trained via RISE can
produce correct responses on more prompts, improving over turns for more challenging prompts.

Even though strong base and intruction-tuned LLMs [25, 63] often fail to improve their responses
over multiple sequential attempts (even when explicitly told about their mistakes previously), RISE
successfully endows similarly-sized LLMs with self-improvement capabilities, resulting in mono-
tonically increasing task performance after each turn. Specifically, on the GSM8K [12] dataset,
RISE demonstrates significant improvement over various models. RISE improves the performance
of LLaMa3-8B by 8.2% and Mistral-7B by 6.6%, entirely using their own data. RISE attains a
17.7% improvement for LLaMa2-7B over the course of 5-turn introspection (outperforming parallel
sampling from the first turn), and a 23.9% improvement for Mistral-7B. In contrast, GPT-3.5 itself
only improves by 4.6% over five turns. We see similar trends on the MATH dataset [20], where RISE
improves LLaMa2-7B by 4.6% and Mistral-7B by 11.1% over five turns. These results consistently
demonstrate RISE’s effectiveness in enhancing reasoning capabilities for different models.

2 Problem Setup and Preliminaries
The goal of our work is to improve LLM performance over sequential attempts / turns at a given
problem. Concretely, given a dataset D = {(xi,y

∗
i )}Ni=1 of problems xi and oracle responses y∗

i ,
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our goal is to obtain an LLM πθ(·|[x, ŷ1:t, p1:t]) that, given the problem x, previous model attempts
ŷ1:t at the problem, and auxiliary instructions p1:t (e.g., instruction to find a mistake and improve the
response; or additional compiler feedback from the environment) solves a given problem as correctly
as possible. To this end, we encode this goal into the following learning objective:

max
πθ

L∑
i=1

Ex,y∗∼D,ŷi∼πθ(·|[x,ŷ1:i−1,p1:i−1]) [I (ŷi == y∗)] . (2.1)

Unlike standard supervised fine-tuning that trains the model π to produce a single response ŷ given
x, Equation 2.1 trains π to also appropriately react to a given history of responses from its own
previous attempts ŷ1:i−1. Equation 2.1 most closely resembles an RL objective, and we will indeed
develop our approach by converting a single-turn problem into a multi-turn MDP. Finally, note that
prompting-based methods such as Self-Refine [33] can still be viewed as training π to optimize
π(y∗|x) but only when only allowed to modulate the prompt pi to optimize Equation 2.1. Naturally,
since the parameters θ are unchanged, this would not be effective in optimizing the objective fully.

3 RISE: Recursive Introspection for Self-Improvement
Since even strong off-the-shelf models do not exhibit an effective ability to improve themselves
when provided with sequential attempts at a given problem [23], a natural next step is to ask how
to train models to induce this capability. In this section, we will develop our approach, RISE, for
fine-tuning foundation models towards improving their own predictions over multiple turns. Our
approach will first convert a problem into a multi-turn MDP, then collect data, and finally run offline
reward-weighted supervised learning in this multi-turn MDP to induce this capability.

Figure 2: Left: Problem formulation. We convert single-turn problems into multi-turn MDPs as discussed
in Section 3.1. The state is given by the prompt, history of prior attempts, and optional feedback from the
environment. An action is a response generated from the LLM given the state of multi-turn interaction so far.
Right: Data collection. We collect data by unrolling the current model k − 1 times followed by an improved
version of the response, which is obtained by either (1) self-distillation: sample multiple responses from the
current model, and use the best response, or (2) distillation: obtain oracle responses by querying a more capable
model. In either case, RISE then trains on the generated data.

3.1 Converting Single-Turn Problems into a Multi-Turn Markov Decision Process (MDP)
The first step in building our approach is to procedurally construct a multi-turn MDP out of a single-
turn dataset of prompts and oracle responses (Figure 2, Left). Given a dataset, D = {(xi,y

∗
i )},

consisting of prompts xi and corresponding oracle responses y∗
i (e.g., math questions and natural

language responses to those questions), we will construct an induced MDPM from D, and then
learn policies in this MDP. An initial state in this MDP is a possible prompt xi ∈ D. We denote
the output response from the foundation model as action a. Given a state s, the next state can
be obtained by concatenating the tokens representing s with the action a proposed by the model,
and an additional fixed prompt f that asks the model to introspect, e.g., “this response is not
correct, please introspect and correct your answer.” (the exact prompt is shown in Appendix
F.4). The reward function is a sparse binary indicator of answer correctness at a given state s,
r([xi, · · · ],a) = 1 if and only if a = y∗

i and is obtained from an answer checking function. This
construction from dataset D to MDPM is shown below:

D = {(xi,y
∗
i )} → M : ρ(s0) = Unif(x1,x2, · · · ,xN ) (3.1)

P (s′|s,a) = δ (s′ = concat[s,a,f ]) (3.2)
r(s,a) = 1 (a = y∗

i if xi ∈ s) . (3.3)
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3.2 Learning in the Multi-Turn MDP
With the MDP construction in place, the next step involves training a model to improve itself over the
course of a rollout. We subscribe to an offline approach to learning that we describe in the following.

Step 1: Data collection for self-improvement. To ensure that rollout data from this multi-turn MDP
is useful for teaching the model how to self-improve, it must satisfy a few desiderata: (1) it must
illustrate the mistakes that the learner is likely to make and showcase how to improve upon them
in the next attempt, (2) the data must illustrate responses that are relevant to the model given the
problem and previous attempts in context, and (3) it must not contain any rollout that degrades in a
subsequent turn. Our data collection strategy (Figure 2, Right) satisfies these desiderata.

In a given round k, for a given problem xi, we unroll the current model πθk(·|·) to produce multiple
sequential attempts, denoted by yi

t ∼ πθk(·|sit). In problems, where external input (e.g., compiler
feedback) is available, we also observe a variable-length, natural language external input, f i

t (e.g., in
math problems we ask the model to correct itself). We also observe a scalar reward value r(sit,y

i
t),

denoted as rit in short. Let us denote this dataset of “on-policy” model rollouts as Don-policy :=
{(sit,yi

t, f
i
t , r

i
t)

T
t=1}.

For each time-step, we construct an improved version of the response yi
t that we will denote by

ỹi
t. We also record the reward score associated with this improved response as r(sit, ỹ

i
t), or r̃it in

short. To obtain an improved version of a response yi
t, we can employ several strategies. Perhaps the

most straightforward approach is to query an off-the-shelf more capable model to provide a correct
response given the prompt xi, the previous response yi

t, and an optional external feedback f i
t . We

refer to this as the distillation variant of our approach, since it uses a strong “teacher” model to guide
self-improvement (note that this is different from the classic notion of knowledge distillation, and we
will in fact show results in Section 5.1 that will help understand the differences).

D̃on-policy + distill :=
{{(

sit, ỹ
i
t, f

i
t , r̃

i
t

)}T

t=1

}|D|

i=1
. (3.4)

The second variant of our approach, which alleviates the need for a teacher model, involves construct-
ing an improved response by sampling multiple times from the learner itself. We refer to this approach
as the self-distillation variant. Concretely, for each state in the dataset, sit ∈ Don-policy, we sample N

responses ỹi
t[0], ỹ

i
t[1], · · · , ỹi

t[N ] ∼ πθ(·|sit), and use the best response from these N candidates (as
measured by the associated reward values r̃it[0], · · · , r̃it[N ]) to relabel the model response at the next
step t+ 1 in an improvement trajectory. Formally, say ỹi

t[m] = argmaxj∈[N ] r(si, ỹ
i
t[j]), then we

label the responses in the dataset Don-policy at step t+ 1 with the improved response and its associated
reward value r̃it[m]:

D̃on-policy + self-distillation :=
{{(

sit+1, ỹ
i
t[m], f i

t+1, r̃
i
t[m]

)}T−1

t=0

}|D|

i=1
. (3.5)

Step 2: Policy improvement. With the aforementioned data construction schemes, we can now
train a model on these datasets. While in general, any offline RL approach can be used to train on
these data, in our experiments we adopt an approach based on weighted supervised learning [37]
due to ease of experimentation and its simplicity. In particular, we perform a weighted supervised
regression, where the weights are given by the exponential transformation of the reward values in D̃.

Reward-weighted RL: max
θ

Exi∼D̃

[
T∑

t=1

log πθ(ỹ
i
t|sit) · exp(rti/τ)

]
, (3.6)

where τ is a temperature parameter to further expand or narrow the difference between good and bad
actions. In our preliminary experiments, we found that Equation 3.6 can often induce a bias towards
increasing log likelihoods of responses where rewards are high, prioritizing updates on easy problems
where rewards are already high. To address this issue, we apply a slight modification to Equation 3.6
and center the exponentiated rewards around the mean value averaged across all attempts on a given
prompt, akin to advantage-weighted regression [36]. We find that the use of advantages in place of
rewards helps us avoid the “rich-gets-richer” phenomenon with easy problems.

3.3 Inference at Deployment Time
RISE can be run in two modes at inference time. The most straightforward way to run the policy
πθ(·|·) trained by RISE is within a multi-turn rollout, where the model samples a new response
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Figure 3: RISE Inference. There are two ways to query the model trained via RISE upon inference: (1)
with oracle (Left): each time the model improves its response, it is allowed to check its answer against an
environment and terminate early as soon as a correct answer is found; or (2) without oracle (Right): we ask the
model to sequentially revise its own responses j times, and perform majority voting on all candidate outputs
from different turns to obtain the final response. If the turn number j is larger than the iteration number k, the
agent only keeps the most recent history with k interactions to avoid test-time distribution shift.

conditioned on the past context (i.e., state in the multi-turn MDP). This past context consists of the
external feedback ptest

i concerning the response ytest
i and the rollout terminates as soon as the current

response is judged to be correct according to the environment’s answer verification function. In other
words, we terminate the rollout as soon as the reward equals to the reward for the oracle response:
r(x,ytest

i ) = r(x,y∗). This protocol queries the reward function after each turn in the rollout. Since
several reward function queries are performed, we refer to this approach as “with oracle”.

RISE can also be run in a mode that avoids the need to query the answer checker or the reward
function within a rollout. In this case, we run full-length rollouts by forcing the model to retry,
ignoring the correctness of the response. We then utilize a self-consistency mechanism [53] based on
majority voting to decide the candidate response at the end of each turn. Concretely, at the end of
each turn j, we identify the response by running a majority vote over all response candidates from
the previous turns (maj

(
ytest
1 ,ytest

2 , · · · ,ytest
j

)
), including turn j. We call this “without oracle”. A

schematic illustration of these approach is shown in Figure 3. Most of our evaluations use no oracle.

At iteration k, since the agent is able to improve its own response from j to j + 1 when j ≤ k, to
avoid test time distribution shift, in both modes, we use a size k shift window to store the most recent
conversation history when the turn number j is larger than the iteration number k.

3.4 Practical Algorithm and Implementation Details
A complete algorithmic pseudocode for each approach is shown in Appendix D. We trained 7B models
via RISE and found that these models often could not adhere to response style and instructions for
improving their responses when generating on-policy data. As a result, before running on-policy data
collection, we find it often useful to run an initial phase of supervised fine-tuning on in-domain, multi-
turn rollouts generated from a capable model to provide style and instruction-following information
to the learner. We call this the “knowledge boosting” stage. We then run on-policy rollouts starting
from a boosted model. In each iteration, we generate 1 trajectory for each unique problem. We then
run fine-tuning, with hyperparameters and details in Appendix F. For iterative fine-tuning, we find
that starting from the base model but training on data from all iterations thus far is more beneficial
than continued fine-tuning from the checkpoint obtained in the previous iteration.

4 When and Why is Self-Improvement Over Turns Possible?
A natural question to ask is why self-improvement with RISE even possible. One might surmise
that the model may simply not have enough knowledge to correct its own mistakes if it is unable to
correctly answer the problem in the first turn. Then, why is it possible to teach the model to correct its
own mistakes? In this section, we provide the reason why this kind of self-improvement is possible,
supported with empirical evidence to justify our hypotheses.

Iteratively teaching a model how to make updates on a given response can be crucial when representing
the target distribution p∗(y|x) requires more capacity than what the model πθ affords by conditioning
on only the input prompt tokens. When the target distribution requires greater capacity, learning a
sequence of conditionals, πθ(yi+1|x,y0:i) followed by marginalization is expected to induce a more
flexible marginal distribution over yT given x. This hypothesis is akin to the difference between
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diffusion models [44] and variational autoencoders (VAEs) [27] in image generation: iteratively fitting
a sequence of generative distributions over intermediate noisy inputs in a diffusion model gives rise
to a more flexible distribution [45] than monolithic variational auto-encoding, even though diffusion
models still utilize an evidence lower-bound objective(ELBO). While the diffusion process utilizes
hand-designed noise schedules, RISE utilizes the base model itself to induce iterative improvements.

Figure 4: Left: The probability of the true answer given
the prompt. Observe that model trained with RISE has higher
probability for the true answer. Right: The training perplex-
ity (loss) of fitting only the oracle answer or a sequence
of answers. Note that fitting a sequence of answers (RISE)
reduces the loss more than fitting the oracle answer (Classic).

To verify this hypothesis, we tracked
the training un-weighted, negative log-
likelihood loss (NLL) values for the ora-
cle response y∗ given the input prompt x
marginalized over intermediate steps in a
multi-turn rollout, and compared it against
the NLL values − log pθ(y

∗|x) attained by
directly attempting to predict the final re-
sponse in Figure 4 (Left, labeled as “Clas-
sic”). Concretely, we sampled 256 prompts
x and their oracle responses y∗ and com-
puted the average − log pθ(y

∗|x) across all
x, along with a 95% confidence interval for
different checkpoints during training. We find that for any number of epochs (including frac-
tional number of epochs on the x-axis), the NLL value is lower when conditioning on multi-turn
data that RISE generates compared to oracle responses to the prompts obtained from an expert.
This suggests that RISE is able to utilize the computation of tokens from previous turns to model the
target distribution. We also measure the average NLL loss on all samples through training, sampled
i.i.d. from the training dataset for RISE and classic fine-tuning and observe a similar trend: RISE
reduces loss more than the standard approach, attaining lower perplexity values (Figure 4 Right).

Figure 5: Fraction of problems
unsolved by pass@B at first turn
that sequential 5-turn RISE sam-
pling solves, where B = 5 × k
(k is the x-axis). RISE can solve
several challenging problems that
sampling at the first turn with
much larger budgets cannot solve.

For knowledge-based question answering, it is not possible for the
model to produce any meaningful improvements because learning
p∗(y|x) is not bounded by insufficient capacity of πθ(y|x), but is
rather unable to match p∗ due to the absence of features that are
critical to learn the correct mapping from x to y. Training with
RISE would likely incentivize hallucinations [26], since more input
tokens appearing from previous attempts would only provide eas-
ier ways to pick up on spurious correlations. However, this is not
the failure mode on reasoning problems [29], where maj@K rates
at turn 1 tend to be higher than pass@1 as we find in our experi-
ments (indicating that performance can be improved by sampling
the model itself). Figure 5 demonstrates that RISE’s sequential
procedure solves many problems unsolved by pass@B for larger B
in the first turn, indicating it learns to access the model’s pre-trained
knowledge differently, rather than merely converting pass@K to
pass@1 performance like most single-turn approaches.

5 Experimental Evaluation
The goal of our experiments is to demonstrate the efficacy of RISE in instilling language models
with the ability to self-improve their responses over turns. Our experiments answer the following
questions: (1) How effectively can RISE improve performance over multiple sequential attempts (i.e.,
turns) at a given prompt?; (2) Does the performance of RISE improve with more rounds of iterative
training?; (3) Does the self-improvement strategy induced by RISE generalize to novel problems
that are out of the training domain? and finally; (4) What is the best data composition for training
RISE? To this end, we compare RISE to other prior and baseline approaches, and perform ablations
on GSM8K [12], MATH [20]. We defer RISE’s performance on code generation tasks to Appendix
B.3. Additional analyses are presented in Appendix C, where we examine the out-of-distribution
generalization capabilities of RISE and explore the model’s behavior in correct-to-correct scenarios.
We also present a detailed study of weak-to-strong generalization, demonstrating how RISE-generated
data from weaker models can enhance the performance of stronger models.

Baselines, comparisons, and evaluation. We compare RISE to several prior methods that attempt
to induce similar self-improvement capabilities: (a) self-refine [23, 33] that prompts a base model
to critique and revise its mistakes; (b) GloRE [19], which trains a separate reward model to locate
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errors and a refinement model to improve responses of a base LLM; and(c) self-consistency [53],
which runs majority voting on multiple responses from the first turn as a baseline to compare to our
sequential strategy. We tried to construct fair comparisons between RISE and these methods using a
similar-sized model [25, 63], but differences in base model, training data, and evaluation setups still
prohibits us from performing an apples-to-apples comparison in some cases. Nonetheless, we can still
understand the ballpark of improvement by contextualizing our results with these prior works. We
also compare to V-STaR [21], but since this is not an fair comparison, we defer it to Appendix B.1.

We evaluate RISE in both modes at inference time: with and without an oracle (Section 3.3) at the
end of five turns (the performance for each turn is in Appendix B.2). Concretely, these metrics are
defined as follows: (1) with oracle, “p1@t5”: this run terminates the rollout as soon as the response
is correct. In other words, this metric allows queries to the final answer verifier at the end of each
turn, and (2) without oracle, “m1@t5”: this run sequentially sample five responses, and we compute
the maj@1 performance on the candidates produced in each turn as detailed in Section 3.3. We also
compare maj@K performance at the first turn for all the models we train.

Approach
GSM8K [11] MATH [20]

w/o oracle w/ oracle w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5 m1@t1 → m5@t1 → m1@t5 p1@t5

RISE (Ours)
Llama2 Base 10.5 22.8 (+12.3) 11.1 (+0.6) 13.9 (+3.4) 1.9 5.1 (+3.2) 1.4 (-0.5) 2.3 (+0.4)
+Boost 32.9 45.4 (+12.5) 39.2 (+6.3) 55.5 (+22.6) 5.5 6.8 (+1.3) 5.5 (0.0) 14.6 (+9.1)
+Iteration 1 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3) 6.3 8.8 (+2.5) 9.7 (+3.4) 19.4 (+13.1)
+Iteration 2 37.3 51.0 (+13.7) 55.0 (+17.7) 68.4 (+31.1) 5.8 10.4 (+4.6) 10.4 (+4.6) 19.8 (+14.0)

SFT on oracle data
Only correct data 27.4 42.2 (+14.9) 34.0 (+6.6) 43.6 (+16.2) 5.8 7.9 (+2.1) 5.5 (-0.3) 12.1 (+6.2)
Correct and incorrect 25.7 41.8 (+16.1) 31.2 (+5.5) 41.5 (+15.8) 5.0 5.2 (+0.2) 5.0 (+0.0) 13.1 (+8.1)

RISE (Ours)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)

+ Iteration 1 35.3 50.6 (+15.3) 59.2 (+23.9) 68.6 (+33.3) 6.7 9.5 (+2.8) 18.4 (+11.1) 29.7 (+22.4)

7B SoTA [63]
Eurus-7B-SFT 36.3 66.3 (+30.0) 47.9 (+11.6) 53.1 (+16.8) 12.3 19.8 (+7.5) 16.3 (+4.0) 22.9 (+10.6)

Self-Refine [33] → m1@t3 → p1@t3 → m1@t3 → p1@t3
Base 10.5 22.4 (+11.9) 7.1 (-3.4) 13.0 (+2.5) 1.9 5.1 (+3.2) 1.9 (0.0) 3.1 (+1.2)
+Iteration 2 37.3 50.5 (+13.2) 33.3 (-4.0) 44.5 (+7.2) 5.8 9.4 (+3.6) 5.7 (-0.1) 9.5 (+3.7)
GPT-3.5 66.4 80.2 (+13.8) 61.0 (-5.4) 71.6 (+5.2) 39.7 46.5 (+6.8) 36.5 (-3.2) 46.7 (+7.0)
Mistral-7B 33.7 48.5 (+14.8) 21.2 (-12.5) 37.9 (+4.2) 7.5 12.3 (+4.8) 7.1 (-0.4) 11.4 (+3.9)
Eurus-7B-SFT 36.3 65.9 (+29.6) 26.2 (-10.1) 42.8 (+6.5) 12.3 19.4 (+7.1) 9.0 (-3.3) 15.1 (+2.8)

GloRE [19] → m1@t3 → p1@t3
+ORM 48.2 49.5 (+1.3) 57.1 (+8.9)
+SORM 48.2 51.6 (+3.4) 59.7 (+11.5) Not studied in [19]
+Direct 48.2 47.4 (-0.8) 59.2 (+11.0)

Table 1: RISE vs. other approaches (Self-Refine, GLoRE) and baselines. Observe that RISE attains the
biggest performance improvement (in brown) between 1-turn (m5@t1) and 5-turn (m1@t5) performance w/o
an oracle on both GSM8K and MATH. This performance gap grows larger when oracle early termination is
allowed (p1@t5 w/ oracle). Self-Refine [33] degrades performance across the board when used without an
oracle, and attains minor performance improvements with an oracle. GLoRE trains a separate refinement model,
but performs worse than RISE; more details about it are in Appendix B.1. Using RISE on top of a better base
model (Mistral-7B) is also effective (positive improvements with multiple turns), and the m1@t5 performance of
Mistral-7B exceeds even state-of-the-art math models such as Eurus-7B-SFT [63]. Simply running single-turn
SFT on data utilized by RISE is not effective at inducing a self-improvement capability, implying that algorithmic
design choices in RISE are crucial for performance. Color coding indicates numbers that can be compared.

5.1 Does RISE improve performance over multiple turns compared to other approaches?
Main results. We present the comparisons in Table 1. First, note that RISE (“Iteration 1” and “Itera-
tion 2”) boosts up the LLama2 base model’s five-turn performance by 15.1% and 17.7% respectively
with each iteration on GSM8K and 3.4% and 4.6% on MATH, w/o any oracle. Interestingly, we
found using prompting-only self-refine [33] largely degrades performance across the board, even
with a strong proprietary model, GPT-3.5. The strongest 7B base models, Mistral-7B and Eurus-7B-
SFT [63], when coupled with standard prompting, are only able to improve their performance, but
only by 5.3% / 11.6% and 0.9% / 4.0% respectively on GSM8K and MATH, which is significantly
lower than our approach. The performance of GLoRE improves only by 3.4% on GSM8K (over two
turns), but this is still lower than our approach, which improves by 6.3% in two turns and 13.4%
in three turns (see Appendix B.1). This indicates that RISE is effective in teaching models how
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to improve their own errors. To summarize, training with RISE gives the largest performance
improvement gains compared to other approaches both with and without the use of an oracle, and
these gains are transferred to other base models.

One might also hypothesize that the performance gains with RISE here are largely a result of utilizing
queries to an off-the-shelf more capable model for providing supervision and not the algorithmic
approach for data collection and training. To address this hypothesis, we store all the data generated
by RISE from more capable models and train on this data via standard single-turn SFT (“SFT on
oracle data). Since not all of this data are guaranteed to be correct, we also run this experiment on
only the correct responses in these oracle data. Observe in Table 1 that this procedure does not still
instill self-improvement capabilities, largely preserving or degrading sequential (“maj@1@turn5”)
performance compared to simply sampling one response in the first turn. This means that the
algorithmic design of RISE is critical, as opposed to the use of expert supervision.

5.1.1 Can RISE Effectively Make Use of Mistakes and Correct Them?
One concern that arises from prior results on self-refinement or self-correction is whether the model
can truly correct itself over turns or whether the improvement comes from the effect of sampling
more answers and picking the best one. In Table 1, we see that sequentially improving responses via
RISE (“maj@1@turn5”) outperforms sampling 5 responses in parallel at the first turn and applying a
majority vote on them (“maj@5@turn1”). Please note that this comparison utilizes an equal number
of samples, with the only difference being that these samples are drawn in parallel at the first turn in
one case and sequentially at the end of five turns in the other. Comparing maj@5 performance at the
end of 1 turn and 5 turns, we observe a consistent 4% to 8% improvement on GSM8K and an 6.5%
improvement on MATH (with Mistral-7B model). This means that RISE can imbue models with a
self-improvement ability, while running parallel sampling alone on any model cannot endow the same
ability. Even the maj@5@turn1 performance of standard single-turn SFT on the data used by RISE
is substantially worse than the sequential maj@1@turn5 performance of RISE, implying that the
algorithmic protocol of RISE plays a critical underlying role. Finally, we also remark that in Figure 5,
we showed that the sequential procedure learned by RISE over five turns could solve a significant
fraction of problems that were unsolved by pass@B for much larger values of B ≫ 5 in the first
turn, implying that sequential RISE can actually tackle prompts that were not solvable by simply
sampling more responses in the first turn. One might speculate if these improvements in sequential
improvement ability largely come at a cost of reduced improvements in first turn performance. We
also observe that running multiple iterations of RISE still preserves the first turn performance while
improving the 5-turn performance.

5.1.2 How Does the Base Model Affect RISE?
The performance of RISE with Llama2-7B on an absolute scale is lower than the best models
specifically fine-tuned on math data (e.g., Eurus-7B-SFT or Mistral-7B). However, we find that
RISE is still effective on top of Mistral-7B base model. In fact, our performance at the end of five
turns outperforms one of the best 7B SFT models, customized to math reasoning. Compare the
m1@t5 performance of Eurus-7B-SFT and Mistral-7B in RISE (ours), to find that Mistral-7B + RISE
outperforms Eurus-7B-SFT.

5.1.3 Self-Distillation Version of RISE

RISE (Self) w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5

Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2)
+ Iteration 1 36.8 44.4 (+7.6) 39.5 (+6.6) 48.7 (+15.9)

Llama-3-8B 45.3 69.7 (+24.4) 52.5 (+7.2) 61.0 (+15.7)
+ Iteration 1 65.6 80.7 (+15.1) 73.8 (+8.2) 81.2 (+15.6)

Table 2: RISE with self-distillation on GSM8K.
RISE is able to improve 5-turn maj@1 performance of
the model with entirely self-generated data and super-
vision, despite the fact that the base Mistral-7B model
does not produce correct answers for several problems.

We compare the performance of RISE with self-
generated data and supervision (Equation 3.4,
N = 16) after one iteration directly on top of
more capable models: Mistral-7B and Llama-3-
8B on GSM8K in Table 2, without any knowledge
boosting phase. We find that this variant also im-
proves the 5-turn performance of the base model
compared to the first turn: compare “m1@t5” vs
“m1@t1” for both the models Llama-3-8B and
Mistral-7B, where RISE boosts the sequential self-
improvement performance by more than 1% com-
pared to turn 1 performance w/o any oracle.

Of course, this version of RISE does not outperform the “m5@t1” performance of the fine-tuned
model. We expect this to be largely a function of one single iteration of training. Since the self-
distillation version of RISE utilizes best-of-N sampling against the same model to produce supervision
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for self-improvement, RISE would first have to match the performance of best-of-N sampling before
it can start to improve over it via reward maximization. Due to the significant gap between the base
model’s m5@t1 and m1@t5 performance, we expect that this will take quite a few iterations or a fully
online RL algorithm. We did not have computational resources and infrastructure to run multiple
iterations, but this is an interesting avenue for future work. In this self-distillation setting, we could
also divide the computation between sequential and parallel sampling strategies to get the best results
at the end of five turns. Nonetheless, this result shows that even by training on self-generated samples,
RISE can actually amplify the sequential sampling performance of the base model.

5.2 Does the Performance of RISE Improve with Iterative Training?

Next, we attempt to understand if RISE improves with multiple rounds of training on on-policy data.
As shown in Tables 1 and 2, the performance of RISE improves from iteration to iteration constantly.
The 5-turn performance of RISE, both with and without an oracle, exhibits a clear improvement with
more rounds. This implies that iterative self-training procedures of the form of STaR [66] can also be
combined with RISE to train models for self-improvement. This also perhaps serves as a strong hint
towards the potential utility of full online reinforcement learning (RL) techniques.

5.3 What Data Compositions and Data Quantity are Crucial for RISE?

We now study how different data compositions affect the performance of RISE with the goal of
answering questions such as should we collect on-policy error correction data like DAgger [38]
or should we bias towards high-quality off-policy data?. To understand the utility of different data
compositions, we enlist the three aspects RISE: (a) the use of multi-turn rollout data for fine-tuning,
(b) the use of unsuccessful / suboptimal rollouts via weighted supervised fine-tuning compared to
naı̈ve supervised learning, which only utilizes successful rollouts for fine-tuning; and (c) the use of
on-policy rollouts and self-generated or oracle data. We will now perform controlled experiments to
understand the effect of each of these factors on the overall performance of RISE.

Figure 6: Left: The importance of multi-turn interaction
history and weighted objectives for training RISE. Note that
training with multi-turn data leads to better self-improvement
performance at the end of 5 turns, than one-turn data from
the original dataset with oracle answers from another model;
also observe that using a weighted objective performs better.
Right: The importance of using all rollouts for learning, in-
stead of only successful rollouts or only successful responses
in the data. Using all data performs best in our results.

(a) Data composition for fine-tuning. We
first study the necessity of using the inter-
action of error correction history in RISE
in Figure 6 (Left). We compare two ap-
proaches: model trained with oracle answers
shown right after the query (“1-turn”) and or-
acle answers shown after intermediate failed
attempts (“Multi-turn”) in Figure 6 (Left).
Even though the latter trains on intermediate
responses that may not always be correct, it
attains a higher performance than training
on the correct response for a given prompt.
This highlights the importance of training
on contexts with a multi-turn interaction his-
tory depicting mistakes from the learner to
improve self-improvement capabilities.

(b) Weighted supervised learning vs unweighted supervised learning. We examine reward-
weighted RL’s impact on multi-turn data in RISE as opposed to simply imitating filtered successful
data. We find that using all the data leads to improved performance over simply filtering good datain
Figure 6 (Right), which reduces sample size. In Figure 6 (Left), we find that reward-weighted training
improves performance on later turns, allowing us to better leverage all the sub-optimal data.

(c) On-policy vs off-policy data; self-generated vs. expert data. RISE runs on-policy rollouts
and seeks improvements on responses that the learner produces. As shown in Figure 9 (Left), a
“DAgger [38]”-style approach that seeks improvements on responses appearing in on-policy rollouts
improves performance (green/orange) compared to using expert data alone (blue/pink). Conceptually,
this addresses the train-test mismatch between the distribution of context tokens, enabling imitation
learning methods to now target the correct distribution. In addition, recent work [26] has shown that
LLMs often memorize “unfamiliar” examples generated by oracle models; by training on on-policy
rollouts, we should be able to eliminate any such potential issues. Thus, while the model trained via
offline imitation is able to reduce loss, these improvements do not generalize to new problems.
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5.4 Error Analysis of RISE over Turns

Following the protocol of Huang et al. [23], in this section, we perform an error analysis of the
improvement performed by RISE (without any oracle feedback) to understand how the fraction of
incorrect and correct responses changes over turns, when no oracle is used for early termination. We
demonstrate this in the form of Venn diagrams in Figure 7. First note that there is a consistent increase
in the portion of problems that stay correct and a consistent decrease in the portion of problems that
stay incorrect, which means that the model is able to answer more and more problems as we increase
the number of turns. Second, there is a consistent decrease in the number of problems that change
from being correct to incorrect, which is often also not the case for strong proprietary LLMs such
as GPT in Huang et al. [23]. We also note that there is a decrease in the total number of incorrect
problems that become correct in the subsequent turn, but this is a direct consequence of a shrinkage in
the size of the incorrect response set as more problems become correct over turns. This indicates that
one can induce “intrinsic” self-improvement (per the terminology of Huang et al. [23]) via fine-tuning
with RISE, even though no external environment input is provided during evaluation.

Figure 7: Change in the fraction of responses that transition their correctness values over the course of
multi-turn rollouts from RISE, w/o oracle. Observe that in general, the fraction of Correct → Correct responses
increases; Incorrect → Incorrect responses decreases; and the fraction of Correct → Incorrect responses also
decreases, indicating that RISE (w/o any oracle) is able to iteratively improve its responses.

Qualitative examples. We also inspect several examples from the GSM8K test set to qualitatively
understand the behavior of RISE over turns and observe different behavior patterns, that we show in
Appendix E. For instance, the trained model may choose to completely rewrite its previous response if
it is totally incorrect in order to get to the correct answer or make small edits if the previous response
is mostly correct. Another interesting pattern we note is that the model implicitly has the ability to
locate errors in previous responses and only refine the erroneous steps. Additionally, the model is
tolerant of noisy environmental feedback when there is no oracle-assisted early termination.

6 Discussion, Future Directions, and Limitations
We presented RISE, an approach for fine-tuning LLMs to be able to improve their own responses over
multiple turns sequentially. RISE prescribes an iterative RL recipe on top of on-policy rollout data,
with expert or self-generated supervision to steer self-improvement. RISE significantly improves
the self-improvement abilities of 7B models on reasoning tasks (GSM8K and MATH), attaining an
improvement over turns that previous work [23] has not observed in strong proprietary models. In
addition, RISE outperforms prior approaches that attempt to tackle similar problems of refinement
and correction, while being simpler in that it does not require running multiple models and works
well with just one model.

Despite these good results, there are still many open questions and limitations. Due to computational
constraints, we were not able to perform more than two iterations of training with RISE, and no more
than one iteration when the supervision comes from the learner itself. Improving with self-generated
supervision will likely require more computation and more iterations, since it will be slower than
when using an off-the-shelf expert model. RISE requires running manual iterations and hence, a
more “online” variant of RISE is likely the solution in the long run, especially when we wish to
scale on-policy learning in a data-efficient manner. Additionally, while our work fine-tunes models
on one task at a time, it will be certainly interesting to include data from the protocols specified by
RISE into general instruction tuning and post-training pipelines. Given the results that fine-tuning
on data prescribed by RISE does not hurt the first-turn performance of any model we trained, we
hypothesize that adding this sort of data in general instruction-tuning pipelines should not hurt either,
while enabling the sequential self-improvement capability that is largely absent from models today.
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Appendices
A Related Work

Several prior works build techniques to improve reasoning and thinking capabilities of foundation
models for downstream applications. Typically these works focus on building prompting techniques
for effective multi-turn interaction with external tools [6, 8, 16, 34, 51, 58, 60], sequentially refining
predictions by reflecting on actions [8, 17, 68], asking the model to verbalize its thoughts [35, 54, 70],
asking the model to critique and revise itself [33, 42] or by using other models to critique a primary
model’s responses [3, 14, 22, 58]. Although a subset of this work does improve its own responses, this
self-correction ability often requires access to detailed error traces (e.g., execution traces from code
compilers [8, 33]) in order to succeed. In fact, [23] and Table 1 both indicate that self-improvement
guided by the LLM itself (i.e., “intrinsic self-correction”) is often infeasible for off-the-shelf LLMs
even when they contain the knowledge required to tackle the prompt given, but fine-tuning with
RISE induces this capability as we show in this paper.

Beyond prompting, previous work also attempts to fine-tune LLM to obtain self-improvement
capabilities [7, 41, 67]. These works attempt to improve reasoning performance by training on self-
generated responses [32, 48, 62, 63, 65]. To achieve this, these works use a combination of learned
verifiers [13, 30, 49, 52], search [15, 28, 35, 40], contrastive prompting on negative data [10, 50], and
iterated supervised or reinforcement learning (RL) [9, 39, 57, 64]. Although our approach also trains
on model-generated data, we aim to introduce a complementary capability to improve performance
over sequential turns of interaction, rather than to improve single-turn performance alone. Other
work fine-tunes LLMs for multi-turn interaction directly via RL [43, 71]: while this is indeed related,
single-turn problems posed in multi-turn scenarios require addressing distinct challenges than generic
multi-turn RL: (i) sample-efficiency is not a concern since the entire environment is fully characterized
by the training dataset of prompts and oracle answers and dynamics are deterministic, and (ii) we
need to generalize to novel test prompts. Multi-turn RL focuses on sample efficiency, which is not as
critical in our setting, though of course learning to generalize from a limited number of initial states
would be appealing. Our main focus is to show that it is possible to train models for self-improvement
via appropriately designing multi-turn fine-tuning objectives. This is orthogonal from the choice of
training approach (RL or not).

The most related to our work are GLoRE [19] and Self-Correct [55], which train separate models to
identify errors and refine incorrect answers of other LLMs. Unlike these works, our approach trains a
single model to produce answers and improve them over more than two turns, which is the maximal
number of turns studied in these works. We show that doing so successfully requires careful design
choices: an iterative on-policy data generation strategy along with a training objective that can learn
from both successful and unsuccessful rollouts. From an algorithmic point of view, RISE is similar to
online imitation learning [38, 46], in that it queries expert supervision on states attained by on-policy
rollouts. On-policy distillation for LLMs [1, 5, 56] utilizes this idea, but queries an expert to provide
completions on partial responses instead of sequential attempts, that we do in this work.

B Additional Results

B.1 Complete Comparisons and Discussion on Math Reasoning Tasks

We provide an extended version of Table 1, with a clear explanation of how we implement baselines
and a discussion of comparisons.

Comparison with Self-Refine [33]. To build a self-refine baseline [33] evaluation, we slightly
modified our evaluation pipeline following the self-refine approach. In this setup (Figure 8), the
model generates an initial response, and then the environment prompts the model to locate errors in
the generated solution and refine its answer based on the initial response and the identified error.

However, our experiments show that without any oracle hint from the environment or human feedback,
the self-refine approach leads to a degradation in performance across all models. Only when oracle
feedback is available to assist with early termination does the self-refine approach provide a slight
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Approach
GSM8K [11] MATH [20]
w/o oracle w/ oracle w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5 m1@t1 → m5@t1 → m1@t5 p1@t5

RISE (Ours)
Llama2 Base 10.5 22.8 (+12.3) 11.1 (+0.6) 13.9 (+3.4) 1.9 5.1 (+3.2) 1.4 (-0.5) 2.3 (+0.4)
+Boost 32.9 45.4 (+12.5) 39.2 (+6.3) 55.5 (+22.6) 5.5 6.8 (+1.3) 5.5 (+0.0) 14.6 (+9.1)
+Iteration 1 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3) 6.3 8.8 (+2.5) 9.7 (+3.4) 19.4 (+13.1)
+Iteration 2 37.3 51.0 (+13.7) 55.0 (+17.7) 68.4 (+31.1) 5.8 10.4 (+4.6) 10.4 (+4.6) 19.8 (+14.0)

RISE (Ours)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
+ Iteration 1 35.3 50.6 (+15.3) 59.2 (+23.9) 68.6 (+33.3) 6.7 9.5 (+2.8) 18.4 (+11.1) 29.7 (+22.4)

SFT on oracle data
Only correct data 27.4 42.2 (+14.9) 34.0 (+6.6) 43.6 (+16.2) 5.8 7.9 (+2.1) 5.5 (-0.3) 12.1 (+6.2)
Correct and incorrect 25.7 41.8 (+16.1) 31.2 (+5.5) 41.5 (+15.8) 5.0 5.2 (+0.2) 5.0 (+0.0) 13.1 (+8.1)

Baselines
GPT-3.5 66.4 80.6 (+14.2) 71.0 (+4.6) 74.7 (+8.3) 39.7 47.8 (+8.1) 45.1 (+5.4) 54.3 (+14.6)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
Eurus-7b-SFT 36.3 66.3 (+30.0) 47.9 (+11.6) 53.1 (+16.8) 12.3 19.8 (+7.5) 16.3 (+4.0) 22.9 (+10.6)

Self-Refine → m1@t3 → p1@t3 → m1@t3 → p1@t3
Base 10.5 22.4 (+11.9) 7.1 (-3.4) 13.0 (+2.5) 1.9 5.1 (+3.2) 1.9 (0.0) 3.1 (+1.2)
+Boost 32.9 45.3 (+12.4) 26.5 (-6.4) 40.9 (+8.0) 5.5 6.5 (+1.0) 2.9 (-2.6) 7.2 (+1.7)
+Iteration1 35.6 49.5 (+13.9) 31.7 (-3.9) 43.7 (+8.1) 6.3 8.7 (+2.4) 5.9 (-0.4) 9.9 (+3.6)
+Iteration2 37.3 50.5 (+13.2) 33.3 (-4.0) 44.5 (+7.2) 5.8 9.4 (+3.6) 5.7 (-0.1) 9.5 (+3.7)
GPT-3.5 66.4 80.2 (+13.8) 61.0 (-5.4) 71.6 (+5.2) 39.7 46.5 (+6.8) 36.5 (-3.2) 46.7 (+7.0)
Mistral-7B 33.7 48.5 (+14.8) 21.2 (-12.5) 37.9 (+4.2) 7.5 12.3 (+4.8) 7.1 (-0.4) 11.4 (+3.9)
Eurus-7b-SFT 36.3 65.9 (+29.6) 26.2 (-10.1) 42.8 (+6.5) 12.3 19.4 (+7.1) 9.0 (-3.3) 15.1 (+2.8)

GloRE → m1@t3 → p1@t3
+ORM 48.2 49.5 (+1.3) 57.1 (+8.9)
+SORM 48.2 51.6 (+3.4) 59.7 (+11.5) N/A
+Direct 48.2 47.4 (-0.8) 59.2 (+11.0)

V-STaR → m64@t1
+STaR 28.0 46.1 (+18.1)
+Verification 28.0 56.2 (+28.2) N/A
+V-STaR 28.0 63.2 (+35.2)

Table 3: Comparing RISE with other approaches (Self-Refine, GLoRE, and V-STaR) and other baseline
approaches. Observe that RISE attains the biggest performance improvements between 1-turn and 5-turn
performance without the use of an oracle on both GSM8K and MATH. This performance gap is even larger
when oracle early termination is allowed (5-turn w/ oracle). Self-Refine largely degrades performance across the
board. GLoRE trains a separate refinement model, but still performs worse than RISE.

performance boost. This highlights the limitation of the self-refine structure in effectively improving
model performance without external guidance, which is also observed in [24].

In contrast, the model trained with RISE can attain consistent performance improvements without
relying on an oracle. By training the model to iteratively refine its responses, our method enables
the model to self-correct and improve its performance over multiple turns. This showcases the
effectiveness of our approach in comparison to the self-refine baseline, as it allows for more robust
and consistent performance gains without the need for the oracle assistance.

Comparison with GLoRE [19]. GLoRE is a multi-model system that relies on a student model
to propose drafts, an Outcome-based Reward Model (ORM) or Step-wise ORM to locate errors
at different granularity levels, and a Global or Local Refinement Model for adjusting these errors.
Since no code was openly available for this approach, in our experiments, we compared to the
numbers from the main paper Havrilla et al. [19]. While the comparison against GLoRE is already
apples-to-oranges since our method only trains a single end-to-end model, while GLoRE trains
multiple models. Performance-wise, GLoRE’s global and local refinement models show little to no
improvement in overall accuracy without an oracle, and even exhibit decreasing accuracy in some
cases. However, when an oracle is used to guide the refinement process, GLoRE demonstrates a 10%
improvement on the 7B model in the GSM8K dataset.

As anticipated, since we run RISE from a less advanced base model (Llama2 7B), we observe a slightly
lower absolute performance compared to GLoRE. However, RISE demonstrates its effectiveness
in self-improvement by sequentially enhancing its performance by an impressive 13.4% within
just 3 turns without an oracle feedback, and by a remarkable 23.4% with an oracle on GSM8K.
This showcase of RISE’s capabilities is particularly noteworthy considering that GLoRE utilizes 3
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Self-Refine

System: You are an AI language model designed to assist with math problem-solving. In this
task, I will provide you with math problems. Your goal is to solve the problem step-by-step,
showing your reasoning at each step. After you have finished solving the problem, present your
final answer as \boxed{Your Answer}.
<One-shot Example 16>
User: <Query>
Agent: <Initial Answer>
User: There is an error in the solution above because of lack of understanding of the question.
What is the error? To find the error, go through each step of the solution, and check if everything
looks good.
Agent: <Critic>
User: Now, rewrite the solution in the required format:
Agent: <Refined Answer>

Figure 8: Prompt for Self-Refine: We follow the standard pipeline of the original paper, prompt the
LLM to refine and correct its previous mistakes.
independent models - one for generating candidate solutions, one reward model for locating errors,
and one refinement model for refinement.

Comparison with V-STaR [21]. V-STaR requires training an additional verifier model to rank
candidate answers generated by the targeted model, but it does not make any sequential revisions
or improvements to a response. While comparing RISE to using a verifier for re-ranking the top 5
responses at the first turn (as a base comparison) would have been informative, we were unable to
find this specific result in the original V-STaR paper. The results presented in the official table 3
for V-STaR correspond to running 64 samples, which improves the base model’s performance by
35.2% for each prompt during evaluation. In contrast, our method, RISE, after the same amount of
finetuning iterations (3 iterations) and using only 5 samples, improves upon the base model by 44.5%
(calculated as 55.0% - 10.5% = 44.5%). This comparison highlights RISE’s efficiency in achieving
significant improvements with fewer samples and iterations compared to V-STaR’s approach of using
a large number of samples without sequential refinement.

Moreover, V-STaR’s performance is inherently bounded by the candidate generator’s performance.
As discussed in Section 5, if there is no correct response among the generated candidates, the problem
remains unsolved. In contrast, we show in Figure 5 that RISE can also solve problems that were not
solved by majority voting with a much higher budget in the first turn. Furthermore, we believe that
combining V-STaR with RISE could lead to even better performance, as RISE can generate better
models and a verifier can be complementarily used for filtering.

Comparison with other base models. Mistral-7B [25] and Eurus-7B-SFT [63] are models that
exhibit comparable performance to our method in terms of the absolute maj@5 performance. However,
it is crucial to note that these base models are fine-tuned using a vast amount of data, including data
specifically tuned for math reasoning performance [63], while our model is fine-tuned on a single
domain. That said, we do show that fine-tuning with RISE can still enhance the performance of
Mistral-7B models.

To summarize, our method offers advantages over GLoRE and V-STaR: end-to-end error correction
with a single model, superior performance with fewer samples, and solving problems unsolvable by
first-turn random sampling. Although our maj@1 performance is lower than GLoRE’s base model
EI, our 5-turn performance surpasses their best performance in both oracle and non-oracle scenarios.
Compared to Mistral-7B and Eurus-7B-SFT, our method achieves comparable performance while
being fine-tuned on a single domain, and generalizes to better base models.

B.2 The Performance of RISE over More Turns than Training
In this section, we evaluate RISE’s performance on GSM8K across multiple turns (up to k=10). Our
analysis reveals several key findings. First, the base model demonstrates limited self-improvement
capability: as we increase the number of turns k, the performance improvement is marginal, showing
only a 0.7% increase (from 10.5% to 11.2%) at k = 10. Notably, this multi-turn performance is
inferior to the strategy of sampling 10 responses in the first turn, which yields a more substantial
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improvement of 17.3% (from 10.5% to 27.8%). This pattern consistently holds across all values of
k from 1 to 10. In contrast, RISE demonstrates significant improvements in two aspects. First, it
substantially enhances the model’s base performance, elevating it from 10.5% to 35.5% after one
iteration, and further to 37.3% after two iterations. More importantly, RISE enables more effective
sequential self-improvement: at k = 10, the model achieves a remarkable performance gain of 22.2%
(from 35.6% to 57.8%) after one iteration, and 23.0% (from 37.3% to 60.3%) after two iterations. This
enhanced self-improvment capability is evident across most values of k, where m1@tk consistently
surpasses mk@t1.

Turn
Base RISE (Iteration 1) RISE (Iteration 2)

mk@t1 m1@tk p1@tk mk@t1 m1@tk p1@tk mk@t1 m1@tk p1@tk

1 10.5 35.6 37.3
2 15.2 11.0 13.0 39.9 41.4 51.9 40.6 42.0 52.8
3 19.2 12.0 13.6 44.5 46.6 58.4 46.5 49.4 60.0
4 21.7 11.9 13.8 48.0 49.4 62.5 49.6 53.4 64.4
5 22.8 11.1 13.9 49.7 50.7 63.9 51.0 55.0 68.4
6 24.9 11.7 14.1 50.9 53.1 68.8 54.1 55.5 69.4
7 26.2 11.4 14.3 55.2 55.1 70.9 55.7 57.0 71.6
8 27.4 11.3 14.3 56.3 55.9 72.9 56.0 58.1 72.9
9 27,5 11.3 14.4 56.6 56.3 74.2 56.9 59.3 74.2

10 27.8 11.2 14.6 57.6 57.8 75.4 57.2 60.3 75.3

Table 4: The performance of RISE with Llama-2-7B over 10 turns on GSM8K. Observe that RISE
consistently improves as more turns are provided (m1@tk increases as turn number k increases). We also find
sequential sampling with RISE (m1@tk) still outperforms parallel sampling (mk@t1), with a larger gap between
these numbers from iteration 1 to 2 of RISE, although parallel sampling for the base model is much better than
sequential sampling. This means RISE is effective at teaching the model how to improve itself.

B.3 The Performance of RISE on Code Generation Tasks
In Table 5, we evaluate RISE’s effectiveness when integrated with Llama-2-7B on two established
Python programming benchmarks: MBPP [2] and CoNaLa [61]. Our experimental results demon-
strate that after a single iteration, RISE significantly enhances the model’s five-turn performance,
yielding improvements of 7.0% and 1.7% on MBPP and CoNaLa, respectively. Notably, these multi-
turn performance gains are achieved while simultaneously improving the first-turn performance: RISE
elevates the initial success rate from 19.0% to 27.0% on MBPP and from 5.3% to 6.1% on CoNaLa,
indicating that the method enhances both immediate and iterative problem-solving capabilities.

Approach
MBPP CoNaLa

w/o oracle w/ oracle w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5 m1@t1 → m5@t1 → m1@t5 p1@t5

Llama2 Base 19.0 29.0 (+10.0) 15.0 (-4.0) 22.0 (+3.0) 5.3 6.8 (+1.5) 5.8 (+0.5) 8.4 (+3.1)
+Iteration 1 27.0 32.0 (+5.0) 34.0 (+7.0) 48.0 (+21.0) 6.1 7.0 (+0.9) 7.8 (+1.7) 13.6 (+7.5)

Table 5: The performance of RISE on MBPP [2] and CoNaLa [61]. Observe that RISE obtains better 5-turn
performance without oracle (m1@t5) compared to both 1-turn performance (m1@t1) and 5-sample first turn
performance (m5@t1).

C Additional Ablations

C.1 Does RISE Also Improve Sequential Performance on Out-of-Distribution Prompts?
In Table 6, our aim is to evaluate the robustness of the strategy induced by RISE on new, unseen
prompts. Specifically, we compare the performance of the RISE model trained with a dataset on
evaluation prompts from another dataset. Note in Table 6, these datasets include MATH, GSM8K, and
SVAMP. Generally, we observe that the model trained on one dataset is still able to improve the base
model’s performance on another dataset over the course of sequential five turns. More concretely,
while the base Llama2 model largely degrades its turn 1 performance over turn 5 performance,
model’s trained with RISE enable a positive performance improvement on these out-of-distribution
prompts. This means that even though these models have not seen queries similar to the evaluation
dataset, simply training with RISE on some kind of mathematical prompts still boosts the efficacy of
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the self-improvement strategy on a new distribution of test prompts. This finding suggests that RISE
is capable of instilling self-improvement procedures that can generalize beyond the distribution of
prompts in the fine-tuning data.

RISE w/o oracle w/ oracle

m1@t1 → m1@t5 p1@t5

GSM8K
Llama2 Base 10.5 11.1 (+0.6) 13.9 (+3.4)
Iteration 1 RISE Model trained on MATH 19.3 32.6 (+13.3) 48.4 (+29.1)

MATH
Llama2 Base 1.9 1.4 (-0.5) 2.3 (+0.4)
Iteration 1 RISE Model trained on GSM8K 4.3 4.4 (+0.1) 12.1 (+7.8)

SVAMP
Llama2 Base 29.2 30.5 (+1.3) 34.0 (+4.8)
Iteration 1 RISE Model trained on MATH 30.1 31.4 (+1.2) 45.9 (+15.8)
Iteration 1 RISE Model trained on GSM8K 42.2 50.0 (+7.8) 63.6 (+21.4)

Table 6: Out-of-distribution generalization of RISE. We evaluate model fine-tuned on MATH on the GSM8K
test set; model fine-tuned GSM8K on MATH; and the model fine-tuned on a mixture of GSM8K and MATH
on the SVAMP data. Observe even though we train on OOD prompts, RISE can still improve sequential
performance.

C.2 Pass@K vs Sequential Sampling via RISE
We now study the performance of sequential sampling with oracle feedback in GSM8K, unlike
relying on majority voting as in Table 1. Specifically, we compare the performance of RISE with
early termination of evaluation rollouts against pass@5 (not maj@5) performance of the RISE model
at the first turn (which makes an equal number of queries to the ground-truth correctness indicator).
Access to ground-truth correctness indicator is expected to improve performance for both parallel
and sequential sampling unsurprisingly, but we see in Figure 9 (Right) that RISE is able to improve
performance more beyond simply sampling more samples at the first turn and computing pass@K,
despite this strong assumption of access to an oracle final answer verifier made by the parallel
sampling approach.

Figure 9: Left: The importance of data sources used for training. We study the performance of the iteration
1 of RISE on GSM8K with different data sources. “Expert” refers to the use of an oracle model, “On-policy”
corresponds to sampling from the learner, and “Best-of-N” means using the best sample out of N from the
learner (here N = 16). Right: Comparing RISE with oracle error feedback (pass@1 @ turn k; solid lines)
to parallel sampling of 5 responses at turn 1 (pass@k @ turn 1; dashed lines) over number of turns k on the
x-axis on GSM8K. Observe that sequential sampling with Iteration 1 and Iteration 2 RISE models consistently
outperforms parallel sampling for all values of turn k; and the gap grows as the number of iterations increases.
In contrast, this trend is absent for base and SFT models.

We would expect parallel sampling via pass@K to be performant when provided access to oracle
answer checking as the model can choose to simply sample K independent responses, if the base
model accuracy on this task is reasonable. Pass@K @ turn 1 also upper bounds the first turn accuracy
of any procedure that does not query the oracle (e.g., with verifiers, with majority voting, etc.).
Hence, access to oracle answer checking for each individual response presents the strongest result
one could expect out of parallel sampling, in one turn. On the other hand, sequential sampling
produces correlated samples and hence should, in principle, not be able to improve over parallel
sampling, unless the model is unable to use the additional tokens and computation provided by the
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feedback self-improvement prompt to meaningfully correct itself. Since the sequential performance
of the model is larger than the parallel performance above, this means that RISE indeed does this
successfully.

C.3 Inclusion of Correct-to-Correct Data
Intuitively, self-improvement over turns is largely only possible when the model can learn to verify
the correctness of its previous response and decide to appropriately modify its response toward
correctness. Thus far, the RISE has only trained on data that showed how to convert incorrect
responses to correct responses but never illustrated how the model could act on correct responses. To
understand if performance can be boosted by also illustrating examples of how the model could act
on correct responses, we ran a number of ablations. We took the RISE data generated during Iteration
1 of training on GSM8K with Llama2-7B and modified the multi-turn rollouts to create several cases.
First, we duplicated the correct response appearing at the end of every successful multi-turn rollout
and trained for one extra turn. This should teach the model that correct responses should not be
modified, unlike incorrect responses appearing in previous turns in the rollout. Second, we also ran a
variant in which the correct response appearing at the end of every successful rollout is followed by a
different correct response. This variant should teach the model that if it chooses to modify a correct
response, it must still produce another correct response.

RISE (Llama2) w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5

Boost 32.9 45.3 (+12.4) 26.5 (-6.4) 40.9 (+8.0)
+RISE (default) 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3)
+Repeating a correct response 34.2 48.9 (+14.6) 46.2 (+12.6) 57.7 (+23.5)
+Appending a different correct response 33.1 49.3 (+16.2) 51.1 (+18.0) 64.9 (+31.8)

Table 7: Comparison of model performance on GSM8K with different mechanisms of adding correct-to-
correct data in RISE. Values in parentheses indicate improvement over m1@t1, note that appending a successful
rollout with a a novel correct response leads to the highest performance gains.

As shown in Table 7, all methods improved performance over the base model, though only appending
with a successful rollout with a novel correct response leads to best performance. The default design
of RISE in the main paper attains a close second position, and repeating a correct response at the
end of a successful rollout largely reduces performance. We suspect that the poor performance of
repeating the same correct response is largely a result of inducing spurious correlations due to data
duplication.

Figure 10: Percentage of correct responses in turn Ti that change to being incorrect in turn Ti+1. This figure
illustrates the percentage of correct responses that change to incorrect responses across consecutive turns (Ti to
Ti+1) for different model configurations. A continuously decreasing trend suggests better self-improvement.

To further investigate self-improvement capabilities, we analyzed the percentage of correct responses
changing to incorrect responses in consecutive turns (Ti to Ti+ 1), as illustrated in Figure 10.
Generally, a decreasing trend suggests better self-improvement, while lower absolute values indicate
better resistance to noisy feedback. The results reveal unexpected patterns across configurations.
The Boost configuration shows the poorest performance, with the highest overall percentages and
an increase from turn 4 to 5, suggesting that it struggles to consistently maintain correct responses.
Repeating a correct response shows the lowest initial percentage (6.3%) but increases from turn 3
onward, indicating potential issues in extended interactions. Both Default RISE and appending a
different correct response demonstrate a favorable trend, steadily decreasing from 12.3% to 3.9% and
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from 9.8% to 3.3%, respectively, suggesting a good balance between maintaining correct responses
and allowing improvements. These findings provide nuanced insights into the stability and self-
improvement capabilities of RISE and align with our earlier observation of its superior performance
in overall accuracy.

C.4 Weak-to-Strong Generalization: RISE on Weak Model Data Improves Strong Models
In this section, we compare the performance of Llama2 and Mistral-7B with RISE in the weak-to-
strong setting [4]. Concretely, we are interested in using data generated via RISE with a weak model
(Llama2-7B) to train a strong model (Mistral-7B). Our analysis reveals intriguing insights into the
transferability of RISE-generated data across models of different capabilities.

RISE w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5

Llama2-7B 10.5 22.8 (+12.3) 11.1 (+0.6) 13.9 (+3.4)
+ Iteration 1 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3)
+ Iteration 1 (Mistral-7B) 27.1 40.1 (+13.0) 45.2 (+18.1) 59.1 (+32.0)

Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2)
+ Iteration 1 35.3 50.6 (+15.3) 59.2 (+23.9) 68.6 (+33.3)
+ Iteration 1 (Llama2-7B) 38.2 55.4 (+17.2) 62.7 (+24.5) 73.5 (+35.3)

Table 8: Weak-to-strong generalization on GSM8K. Comparing performance of RISE when training on rollouts
generated by Llama2-7B vs Mistral-7B. Note that training the Mistral-7B model on rollouts generated by the
weaker Llama2-7B with RISE improves performance compared to using data generated by the Mistral-7B
model itself. However, the reverse is not true: training the Llama2 model on Mistral’s mistakes leads to worse
performance, likely because errors from the Mistral-7B model are harder to comprehend for a worse base model.
All values are in % accuracy, and values in parentheses indicate improvement over m1@t1.

As shown in Table 8, we find that Mistral-7B + Iteration 1 data generated from Llama2 outperforms
training the Llama2-7B model itself on these data (i.e., Llama2-7B + Iteration1) on all the metrics
reported with particularly significant improvements in multi-turn reasoning (m1@t5). In fact, training
on multi-turn rollouts from Llama2-7B also outperforms training on on-policy Mistral-7B rollouts
as well. Interestingly, we observed that training Llama2-7B on multi-turn rollouts from Mistral-7B
performs worse than training on on-policy Llama2-7B rollouts, suggesting that Llama2-7B, despite its
lower absolute performance, demonstrates more informative mistakes that can be leveraged to better
boost the self-improvement capability. This phenomenon underscores the importance of the quality
and nature of errors in the training data, rather than just the overall performance of the model that
generates them. These findings collectively suggest that the data generated from a weaker Llama2
model can still be used to induce a self-improvement capability in a stronger model, although the
reverse is not true (as is also evident from the fact that using GPT-3.5 rollouts in the boosting phase
for training does not improve performance for any model in Table 1). We suspect that this is because
the reverse poses a much harder learning problem since a weak model need to internalize the mistakes
of a stronger model, resulting in hallucinations and memorization [26]. Note that training on these
data does not degrade single-turn performance either. This hints at an added benefit of training with
RISE: weak-to-strong generalization, which can be quite useful in practice when rolling out stronger
models is expensive.
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D Pseudocode

Algorithm 1 Data Collection at Iteration T

1: D′
T ← D′

T−1

2: for index i in {1, . . . , |D|} do
3: s1 ← xi

4: for step T ′ in {1, . . . , T − 1} do
5: yi

T ′ ← argmaxπθT−1
(·|(sit,yi

t,f
i)T

′−1
t=1 + sT ′)

6: siT ′+1, riT ′ ← env.step(siT ′ ,yi
T ′)

7: f i
T ′ = retry message + xi

8: if riT ′ = 1 then
9: break

10: end if
11: end for
12: if riT ′ ̸= 1 then
13: T ′ ← T ′ + 1
14: yi

T ′ ← argmax π̃(·|(sit,yi
t,f

i)T
′−1

t=1 + sT ′)
15: siT ′+1, riT ′ ← env.step(siT ′ ,yi

T ′)
16: end if
17: D′

T ← D′
T ∪

{(
sit,y

i
t,f

i
t, r

i
t

)}T ′

t=1
18: end for

Algorithm 2 Inference at iteration T

1: for index i in {1, . . . , |D|} do
2: s1 ← xi

3: for step T ′ in {1, . . . , N} do
4: yi

T ′ ← argmaxπθT (·|(sit,yi
t,f

i)T
′−1

t=max{1,T ′−T} + sT ′)

5: siT ′+1, riT ′ ← env.step(siT ′ ,yi
T ′)

6: f i
T ′ = retry message + xi

7: end for
8: for step T ′ in {1, . . . , N} do
9: ỹiT ′ ← majority voting{yit}T

′

t=1
10: end for
11: end for
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E Qualitative Examples from RISE
In this section, we provide some qualitative examples showing the nature of edits made by RISE on
various datasets that we train on. We utilize the model from iteration 2 of RISE.

RISE Example (Small Edits)

Query: Mike plays ping pong for 40 minutes. In the first 20 minutes, he scores 4 points. In the
second 20 minutes, he scores 25% more points. How many total points did he score?
Turn-1 Response:
Step 1: In the first 20 minutes, Mike scores 4 points.
Step 2: In the second 20 minutes, Mike scores 25% more points than he did in the first 20
minutes. So, Mike scores 4 + 4 = 8 points in the second 20 minutes.
Step 3: To find the total points, we need to add the points scored in the first and second 20
minutes. total points = 4 + 8 = 12.
Answer: 12 ✗

Turn-2 Response:
I apologize for the mistake. Let’s solve the problem step by step.
Step 1: In the first 20 minutes, Mike scores 4 points.
Step 2: In the second 20 minutes, Mike scores 25% more points than he did in the first 20
minutes. This means he scores 4 + 4 * 25% = 4 + 1 = 5 points in the second 20 minutes.
Step 3: To find the total points, we add the points scored in the first and second 20 minutes: 4 +
5 = 9 points.
Answer: 9 ✓

RISE Example (Big Edits)

Query: In a candy machine, there are 22 more than four times the number of pink gumballs as
there are blue gumballs. If there are 12 blue gumballs how many pink ones are there?

Turn-1 Response:
Step 1: Let’s assume the number of blue gumballs as x. Step 2: According to the given
information, there are 22 more than four times the number of pink gumballs as there are blue
gumballs. So, the number of pink gumballs can be expressed as 4x + 22. Step 3: We are given
that there are 12 blue gumballs, so let’s substitute x with 12 in the equation.
Answer: 54 ✗

Turn-2 Response:
Let’s solve the problem step by step: Step 1: Let’s denote the number of blue gumballs as x.
Step 2: We are given that the number of pink gumballs is 22 more than four times the number
of blue gumballs. So, the number of pink gumballs can be expressed as 4x + 22. Step 3: We are
also given that there are 12 blue gumballs, so we can substitute x = 12 into the expression for
the number of pink gumballs: 4 * 12 + 22 = 48 + 22 = 70 Therefore, there are
boxed70 pink gumballs.
Answer: 70 ✓

Figure 11: Examples of RISE correct its previous behavior in different modes. Some only make changes to a
small part (small edits), some may directly rewrite most of its previous answers (big edits) because the first step
in the previous answer is wrong. The mistaken steps of different turns are highlighted in red, and the correct are
highlighted in green. This demonstrates shows how RISE can correct its previous answers and finally get to a
correct answer.
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RISE Example (Noise Tolerance)

Query: Ryan plants 2 flowers a day in his garden. After 15 days, how many flowers does he have if 5 did
not grow?

Turn-1 Response:
Step 1: Ryan plants 2 flowers a day for 15 days, so he plants a total of 2 flowers/day * 15 days = 30
flowers in his garden. Step 2: However, 5 flowers did not grow, so we need to subtract these non-growing
flowers from the total count. Step 3: Calculate the number of flowers that actually grew in Ryan’s garden.
flowers grew = 30 flowers - 5 flowers = 25 flowers.
Answer: 25 ✓

Turn-2 Response:
Apologies for the mistake. Let’s correct the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, so
he plants a total of 2 flowers/day * 15 days = 30 flowers in his garden. Step 2: Since 5 flowers did not
grow, we need to subtract these non-growing flowers from the total count. Step 3: Calculate the number
of flowers that actually grew in Ryan’s garden. flowers grew = 30 flowers - 5 flowers = 25 flowers.
Answer: 25 ✓

Turn-3 Response:
Let’s reevaluate the solution. Step 1: Ryan plants 2 flowers a day for 15 days, so he plants a total of 2
flowers/day * 15 days = 30 flowers in his garden. Step 2: However, 5 flowers did not grow, so we need
to add these flowers to the total count, as they were planted but did not grow. Step 3: Calculate the total
number of flowers in Ryan’s garden. total flowers = 30 flowers + 5 flowers = 35 flowers.
Answer: 35 ✗

Turn-4 Response
Let’s correct the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, so he plants a total of
2 flowers/day * 15 days = 30 flowers in his garden. Step 2: Since 5 flowers did not grow, we need
to subtract these non-growing flowers from the total count. Step 3: Calculate the total number of
flowers in Ryan’s garden after subtracting the non-growing flowers. total flowers = total planted flowers -
non growing flowers = 30 flowers - 5 flowers=
boxed25 flowers.
Answer: 25 ✓

Turn-5 Response
Let’s reevaluate the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, which is 2 flowers/day * 15
days = 30 flowers in total. Step 2: However, 5 flowers did not grow, so we have to subtract these 5 flowers
from the total. Step 3: Therefore, the total number of flowers Ryan has is 30 flowers (total planted) - 5
flowers (did not grow) =
boxed25 flowers.
Answer: 25 ✓

Figure 12: Examples of RISE’s tolerance of noisy feedback. In the evaluation where there is no oracle, we use
a verifier that always tells the model, ”The answer is incorrect. Please try again. Here’s the question: <Query>”.
We observe that from turn 2 to turn 5, the model is still able to output the correct answer in 3 out of 4 turns.
In the response at turn 4, the model performs half of the solution correctly, and only the last step is wrong. In
addition, in the turns where the model still outputs the correct answer, it doesn’t directly copy the answer from
the previous turn but instead comes up with a new paraphrase. This demonstrates that RISE provides the model
with tolerance to noisy feedback and does not randomly change its behavior upon receiving a revisiting request.
The mistaken steps of different turns are highlighted in red
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RISE Example (Error Localization)

Query: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in
repairs. This increased the value of the house by 150%. How much profit did he make?
Turn-1 Response:
Step 1: Josh buys a house for $80,000. Step 2: He puts in $50,000 in repairs, which increases the value of
the house by 150%. Step 3: To calculate the increase in value, we multiply the cost of the house by 150%
and add it to the cost of the house. increase in value = $80,000 * 150% = $120,000. Step 4: To calculate
the profit, we subtract the cost of the house from its new value. profit = increase in value - $80,000 =
$120,000 - $80,000 = $40,000.
Answer: 40, 000 ✗

Turn-2 Response:
Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step 2: He puts in $50,000
in repairs, and this increases the value of the house by 150%. Step 3: The percentage increase in value is
150% of $80,000, which is $120,000 (80,000 * 1.5 = $120,000). Step 4: To find the actual amount that
would be added to the house’s value after repairs, we need to subtract the amount he spent on repairs from
the increased value, which is $120,000 - $50,000 = $70,000. Step 5: The profit Josh would make is the
difference between the cost of buying the house and the increased value after repairs, which is $70,000 -
$80,000 = -$10,000 ($10,000 less than the initial cost).
Answer: 0 ✗

Turn-3 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step 2:
He puts in $50,000 in repairs. Step 3: This increases the value of the house by 150%. Step 4: To find the
increase in value, we calculate 150% of the original price of the house: 150% of $80,000 = $120,000.
Step 5: The increase in value after repairs is the original price plus 150% of the original price: $80,000 +
$120,000 = $200,000. Step 6: Josh sells the house for $200,000 and made a profit of $200,000 - $80,000
= $120,000.
Answer: 120, 000 ✗

Turn-4 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step
2: He puts in $50,000 in repairs, increasing the value of the house by 150%. Step 3: The increase in
value is 150% of $80,000, which is $120,000 (80,000 * 1.5 = $120,000). Step 4: The total amount spent,
including the purchase of the house and the repairs, is $80,000 + $50,000 = $130,000. Step 5: The profit
Josh made is the increase in value after repairs minus the total amount spent, which is $120,000 - $130,000
= -$10,000. Therefore, Josh made a
boxed0 profit.
Answer: 0 ✗

Turn-5 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step
2: He puts in $50,000 in repairs. Step 3: The repairs increase the value of the house by 150%. Step 4:
The increase in value is $50,000, which is 150% of $33,333 (50,000 / 1.5 = $33,333). Step 5: The repairs
cost $50,000, and the increase in value is $33,333. Step 6: Therefore, Josh’s profit is $33,333 - $50,000 =
-$16,667. Therefore, Josh made a 16676 profit.
Answer: 16676 ✗

Figure 13: Examples of RISE not being able to correct its error within 5 steps but demonstrating meaningful
error localization behavior. Even in turn 2, it has already solved the problem at step 4 but mistakenly takes
another step and reaches the wrong answer. The following turns are unable to correct this small error. Though
this problem remains unsolved, we observe that (1) the model is able to stick to the correct steps, where all
responses reach an intermediate step of 12000 correctly, except for the last response, where the model tries to
modify the answer from one step ahead; (2) the model doesn’t repeat its responses, which is a behavior we notice
when evaluating some off-the-shelf models; and (3) the model is making meaningful changes to the incorrect
steps. In summary, although the final answer is still incorrect, we observe that through RISE, the model is able
to locate the error and perform local computation correctly. The mistaken steps of different turns are highlighted
in red, and the correct steps in turn 2 is highlighted in green.
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F Experimental Details

F.1 Hyperparameters for Fine-Tuning with RISE

For finetuning, we utilize the FastChat codebase, but we customize the loss function to be weighted
by reward. The base models are directly loaded from Hugging Face: hrefhttps://huggingface.co/meta-
llama/Llama-2-7b-hfLlama-2-7b-chat-hf and Mistral-7B-Instruct-v0.2. The hyperparameters used for
finetuning are specified in Table 9.

Hyperparameter Values
bf16 True
epochs 2
per device train batch size 1
gpus 4xA40
gradient accumulation steps 16
learning rate 1e-5
weighted decay 0
warmup ratio 0.04
learning rate scheduler trype cosince
tf32 True
model max length 2048

Table 9: Hyperparameters used for RISE

F.2 Inference Hyperparameters

For API-based models, such as GPT-3.5, we directly query the official web API provided by OpenAI.
In the case of open-source models, we utilize FastChat to serve the model as a web API and interact
with the environment through API calls. Serving a 7B model requires a single A100 or A40 GPU. To
control the randomness and length of answers generated by the LLMs, we employ the hyperparameters
specified in Table 10.

Hyperparameters/Description Open-source GPT
temperature 1.0 0.7
top p 1.0 1
max new tokens 1000 512

Table 10: The hyperparameter settings used for generating responses from open-source and the GPT
models.

F.3 Datasets

The GSM8K dataset consists of 7,473 problems in the training portion and 1,319 problems in the
testing portion. Similarly, the MATH dataset is divided into 7,500 problems for training and 1,000
problems for testing. The training portions of both datasets are used to generate trajectories in each
iteration of the RISE method, while the testing portions are held out for evaluating the performance
of the models. Additionally, the SVAMP dataset, containing 1,000 problems, is used solely for
evaluation purposes to demonstrate the generalizability of our method.

For generating training trajectories, at iteration i, the current model is rolled out for a maximum of i
steps. Subsequently, an expert model, such as GPT-3.5, is employed to take the conversation history
between the current model and the environment and sample 5 responses. Among these responses, the
one with the highest reward is chosen, with arbitrary tie-breaking in case of multiple responses with
the same highest reward.

F.4 Prompts used for seeding RISE on the GSM8K and MATH tasks

Here we show the prompt we used for data generation and model evaluation:
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RISE

System: You are an AI language model designed to assist with math problem-solving. In this
task, I will provide you with math problems. Your goal is to solve the problem step-by-step,
showing your reasoning at each step. After you have finished solving the problem, present your
final answer as \boxed{Your Answer}.

<One-shot Example 15>

User: <Query>

Agent: <Answer>

User: The answer is incorrect. Please try again. Here’s the question: <Query>

Agent: <Answer>

· · ·

Figure 14: Prompt for RISE: We follow the standard pipeline of math problem solving, prompt the
LLM to solve the problem and retry untill exceeds the maximum number of turns
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F.5 One-shot Example

RISE One-shot example

User: Of the 60 students in the drama club, 36 take mathematics, 27 take physics and 20
students take both mathematics and physics. How many drama club students take neither
mathematics nor physics?

Agent: Step 1: To find the number of drama club students who take neither mathematics nor
physics, we first need to determine the number of students taking only math, only physics, and
both math and physics.

Step 2: Out of the 60 students in the drama club, 36 take mathematics and 27 take physics, and
20 students take both mathematics and physics.

Step 3: To calculate the number of students taking only math, we subtract the number of
students taking both from the total taking math: $36 - 20 = 16$.

Step 4: Similarly, to calculate the number of students taking only physics, we subtract the
number of students taking both from the total taking physics: $27 - 20 = 7$.

Step 5: Now, to find the number of students taking neither math nor physics, we subtract the
total number of students taking only math, only physics, and both from the total number of
students in the drama club. This gives us $60 - 16 - 7 - 20 = \boxed{17}$ students taking neither.

Answer: \boxed{17}

Figure 15: One-shot Example: Demonstrates how to solve a math problem step-by-step and the
expected answer format.
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Self-Refine One-shot example

User: Of the 60 students in the drama club, 36 take mathematics, 27 take physics and 20
students take both mathematics and physics. How many drama club students take neither
mathematics nor physics?

Agent: Step 1: To find the number of drama club students who take neither mathematics nor
physics, we first need to determine the number of students taking only math, only physics, and
both math and physics.

Step 2: Out of the 60 students in the drama club, 36 take mathematics and 27 take physics, and
20 students take both mathematics and physics.

Step 3: To calculate the number of students taking only math, we subtract the number of
students taking both from the total taking math: $36 - 20 = 16$.

Step 4: Similarly, to calculate the number of students taking only physics, we subtract the
number of students taking both from the total taking physics: $27 - 20 = 7$.

Step 5: Now, to find the number of students taking neither math nor physics, we add the number
of students taking only math and only physics, then subtract this sum from the total number of
students in the drama club. This gives us $60 - (16 + 7) = \boxed{37}$ students taking neither.

Answer: \boxed{37}
User: There is an error in the solution above because of lack of understanding of the question.
What is the error? To find the error, go through each step of the solution, and check if everything
looks good.

Agent: Step 1: Correct. We need to find the number of students taking neither math nor
physics.

Step 2: Correct. The given information is accurately stated.

Step 3: Correct. The calculation of students taking only math is correct.

Step 4: Correct. The calculation of students taking only physics is correct.

Step 5: Incorrect. The solution adds the number of students taking only math and only physics,
but this does not account for the students taking both subjects. By subtracting this sum from
the total number of students, the solution double-counts the students who take both math and
physics.

User: Now, rewrite the solution in the required format:
Agent: <Same as 15>

Figure 16: One-shot Example: Demonstrates the process of self-critique and error correction based
on the self-critique.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims regarding our approach RISE are justified in the contributions and
scope, though the introduction also motivates the self-improvement capability using their
require in agent problems.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 discusses the limitations of our work pertaining to the factors that
affect performance of RISE, access to limited computation implies only a few runs were run
for the experiments, the use of a proprietary teacher model since not many 7B base models
can provide effective responses.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix F provides a discussion of hyperparameters, reproducing our method,
and empirical observations that led up to making those choices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is publicly available at https://github.com/cmu-mind/RISE
and Appendix F provides a discussion of the hyperparameters.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix F provides these details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to computational costs, we were unable to run experiments more than
once for the paper, though we intend to run experiments with 3 seeds for the final version
of the paper. We do remark though that in our initial experiments while developing RISE,
we found that the method was not sensitive to hyperparameters indicating that RISE does
indeed produce big performance improvements.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include a discussion of compute resources in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the Code of Ethics through the entire study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We address the broader impacts of this work in Section 6.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not present any new sensitive datasets or pre-trained language
models. We only train existing LLMs on standard mathematical reasoning benchmarks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the GSM8K and MATH datasets from HuggingFace, both of which
are open datasets with a CC-BY 4.0 license. We also cite the corresponding papers that
introduce these datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We do provide details of the new data that we collect during the course
of learning, and the approach for training with RISE, along with its hyperparameters in
Appendix F.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects or crowdsourcing.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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