
ALPHAONE: Reasoning Models Thinking Slow and Fast at Test Time

Junyu Zhang^{I,†} Runpei Dong^{I,†} Han Wang^I Xuying Ning^I
Haoran Geng^B Peihao Li^B Xialin He^I Yutong Bai^B
Jitendra Malik^B Saurabh Gupta^I Huan Zhang^I

^IUniversity of Illinois Urbana-Champaign ^BUC Berkeley

[†]Equal contributions. Correspondence: {junyuz6, runpeid2, huanz}@illinois.edu

Abstract

This paper presents ALPHAONE (α 1), a universal framework for modulating reasoning progress in large reasoning models (LRMs) at test time. α 1 first introduces α moment, which represents the scaled thinking phase with a universal parameter α . Within this scaled pre- α moment phase, it dynamically schedules slow thinking transitions by modeling the insertion of reasoning transition tokens as a Bernoulli stochastic process. After the α moment, α 1 deterministically terminates slow thinking with the end-of-thinking token, thereby fostering fast reasoning and efficient answer generation. This approach unifies and generalizes existing monotonic scaling methods by enabling flexible and dense slow-to-fast reasoning modulation. Extensive empirical studies on various challenging benchmarks across mathematical, coding, and scientific domains demonstrate α 1’s superior reasoning capability and efficiency.

1 Introduction

Large Reasoning Models (LRMs) such as OpenAI o1 [26] and DeepSeek-R1 [14] have demonstrated unprecedented progress in approaching human-like system-2 reasoning capabilities, enabling *slow thinking*—slowing down *reasoning progress* at test time. These advanced models are trained to utilize slow thinking via reinforcement learning, enabling LRMs to slow down reasoning progress automatically. Is such automatic slowing down of reasoning progress determined by LRMs sufficiently reliable? According to Kahneman [29], humans typically think fast first and activate slow thinking when running into difficulty, resulting in overall comprehensive but efficient reasoning. While interesting results have been observed, a lot of works have pointed out that the LRMs themselves are prone to *overthinking* [9, 45, 57, 75] or *underthinking* [56, 65, 76]. This is because of *the inability of LRMs to find the optimal human-like system-1-to-2 reasoning transitioning*.

We present **ALPHAONE** (α 1), which efficiently scales LRMs at test time through a *universal* reasoning progress modulation. We introduce *alpha moment*, parameterized by $\alpha \geq 0$, where the thinking process is scaled by α times throughout the generation sequence. To be specific, within a certain token length scaled by α , we stochastically append the reasoning transition token “wait” after structural delimiters “\n\n” under Bernoulli(p_{wait}). Here, p_{wait} is scheduled to change over time to *activate* slow thinking. For example, a simple linear annealing over time indicates a slow thinking first, then fast thinking strategy.

However, we observe that amplifying slow thinking enables LRMs to sustain it automatically. Thus, when p_{wait} reaches 0, we replace “wait” with “</think>” to deactivate slow thinking and switch to fast reasoning. In this fashion, α 1 unifies prior methods like s1 [41], where α 1 reduces to s1 if p_{wait} is 1 or 0 at the end of a reasoning segment within a certain reasoning token length. However, different

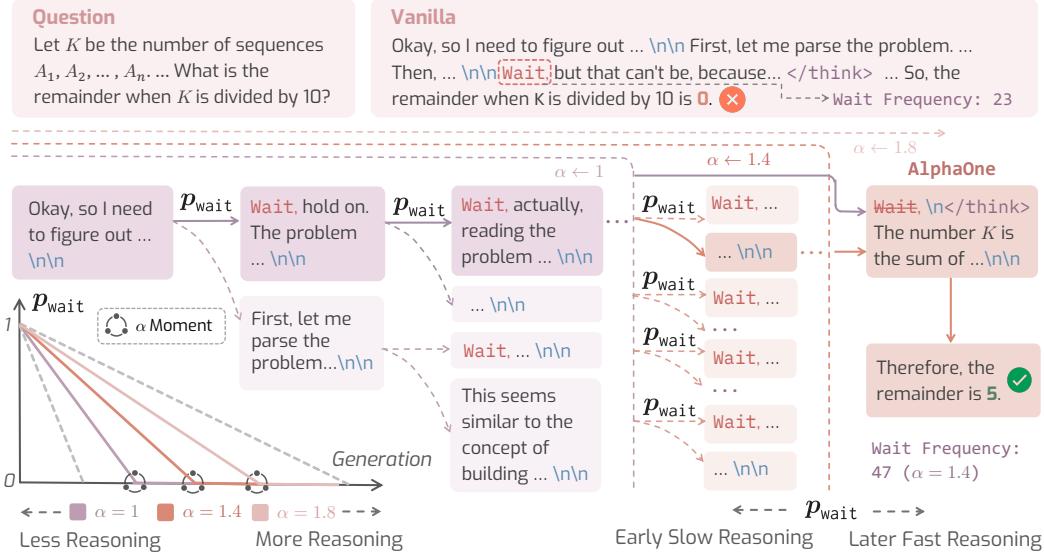


Figure 1: **Overview of ALPHAONE (α_1)**. Here α represents α moment (Section 3). α_1 applies dense reasoning modulation via a user-defined slow thinking scheduling in pre- α moment. In addition, α_1 utilizes a post- α moment modulation by replacing slow thinking transitioning tokens “wait” to “</think>”, which fosters fast thinking. Specifically, α determines when the slow-to-fast reasoning transition occurs. For example, reducing α from 1.4 to 1.0 shifts the α moment earlier, resulting in shorter slow reasoning phase and accelerating the annealing of p_{wait} .

from these works that only explore sparse slow reasoning modulation, α_1 modulates reasoning continuously, supporting both *sparse* and *dense* modulation strategies.

Takeaways. We present insightful findings from different α_1 LRM: i) *Slow thinking first*, then fast thinking, leads to better LRM reasoning. ii) Slow thinking can bring *efficient* test-time scaling.

2 Background & Problem Statement

Revisiting Reasoning Models. Following the success of OpenAI’s o1 model [26], modern LRM solve complex reasoning problems via a *thinking-then-answering* paradigm [14, 25, 50]. Generally, a special end-of-thinking token “</think>” is generated as a *end-of-thinking moment*, transitioning from the thinking phase to the answering phase. During the thinking process, LRM frequently generate slow thinking transitioning tokens such as “wait”, and “hmm”, etc.

Reasoning Progress. Let the overall answer sequence generation process be a *reasoning progress* $\mathcal{P} \in [0, 1]$, where 0 and 1 indicate the start and the end of reasoning. Notably, reasoning progress represents the problem-solving progress instead of the number of tokens. However, it is intractable to measure the exact progress obtained. Hence, we define the reasoning progress following a *reasoning velocity* assumption. Given the total time $t = T > 0$ spent on generating the whole sequence, the *reasoning velocity* at timestep t , \mathcal{V}_t is defined as $\frac{d\mathcal{P}}{dt}$, where dt is the infinitesimal of time. We assume:

Assumption 1. *The reasoning velocity of slow thinking is smaller than that of fast thinking.*

A Universal View of Test-Time Scaling. There are two important components that must be modulated: i) *Thinking phase budget*. As discussed before, o1-like LRM follow a “think-then-answer” paradigm. Therefore, modulating reasoning via scaling up or down the thinking phase budget is required. ii) *Slow thinking scheduling*. Within the thinking phase, the transition to slow thinking should also be modulated, thus increasing or reducing slow thinking according to a certain plan specified by users (e.g., slow thinking first, and then fast thinking).

Based on the above analysis, we establish a unified perspective on test-time scaling and identify key limitations in existing approaches—namely, their failure to consider both reasoning schedule and overall thinking budget jointly. While LRM are indirectly guided to reason more or less—sometimes

Table 1: **Systematic comparison of reasoning results** on different reasoning benchmarks with DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B. Additional results for other models are provided in [Section E](#). P@1: Pass@1 (%); #Tk: number of generated tokens; $\bar{\Delta}_{\text{P@1}}$ (%): average Pass@1 result boost over the base model.

Method	MATHEMATICAL								CODING			SCIENCE		
	AIME24		AMC23		Minerva		MATH500		LiveCode		Olympiad			
	P@1	#Tk	P@1	#Tk	P@1	#Tk	P@1	#Tk	P@1	#Tk	P@1	#Tk	$\bar{\Delta}_{\text{P@1}}$	
<i>DeepSeek-R1-Distill-Qwen-1.5B</i>														
BASE	23.3	7280	57.5	5339	32.0	4935	79.2	3773	17.8	6990	38.8	5999	N/A	
s1*	26.7 _{+3.4}	7798	57.5 _{+0.0}	6418	31.6 _{-0.4}	5826	78.2 _{-1.0}	4733	17.0 _{-0.8}	7025	38.5 _{-0.3}	6673	+0.15	
CoD	30.0 _{+6.7}	6994	65.0 _{+7.5}	5415	29.0 _{-3.0}	4005	81.4 _{+2.2}	3136	20.3 _{+2.5}	6657	40.6 _{+1.8}	5651	+2.95	
$\alpha 1$ (Ours)	30.0 _{+6.7}	5916	70.0 _{+12.5}	4952	34.2 _{+2.2}	4586	81.0 _{+1.8}	3852	24.8 _{+7.0}	5426	45.5 _{+6.7}	4944	+6.15	
<i>DeepSeek-R1-Distill-Qwen-7B</i>														
BASE	46.7	6648	82.5	4624	40.4	4191	87.6	3239	43.5	5885	50.4	5385	N/A	
s1*	46.7 _{+0.0}	7295	80.0 _{-2.5}	5673	42.3 _{+1.9}	6510	92.8 _{+5.2}	5848	44.0 _{+0.5}	5979	54.2 _{+3.8}	6007	+1.48	
CoD	43.3 _{-3.4}	6078	87.5 _{+5.0}	3594	43.4 _{+3.0}	2142	88.8 _{+1.2}	2094	45.0 _{+1.5}	5593	53.5 _{+3.1}	4520	+1.73	
$\alpha 1$ (Ours)	50.0 _{+3.3}	6827	90.0 _{+7.5}	4397	42.3 _{+1.9}	4124	91.2 _{+3.6}	4337	49.8 _{+6.3}	5067	55.7 _{+5.3}	4883	+4.65	

achieving deeper reasoning or pruning unproductive thoughts—we instead aim to explicitly and universally modulate the reasoning process by jointly considering both components.

3 ALPHAONE

α Moment for Universal Modulation. To modulate the thinking phase budget, we scale the thinking phase by at least $\alpha \times$, where $\alpha > 1$ is a universal parameter. Formally, given the average thinking phase token length $\bar{N}_{\text{think}} > 0$ generated, we scale the thinking phase token length to $\alpha \bar{N}_{\text{think}}$, where the moment when the generated token length reaches $\alpha \bar{N}_{\text{think}}$ is dubbed as “ α moment”. In addition to scaling the thinking phase, we modulate the thinking phase via slow thinking scheduling before the α moment. Note that α moment does not represent the new thinking phase transitioning moment.

Pre- α Moment Modulation. Following previous works [41, 75], we activate slow thinking before α moment via appending “wait” after a frequently co-generated structural delimiters “\n\n”. Moreover, the activation of slow thinking is conducted following a user-specified scheduling plan

$\alpha 1$ achieves such scheduling by modeling the activation of slow thinking as a Bernoulli stochastic process. Specifically, $\alpha 1$ appends “wait” following Bernoulli(p_{wait}). Let $t = 0, 1, \dots, T_m$ be the timestamps of generated tokens before α moment, where $T_m = \alpha \bar{N}_{\text{think}}$ represents the timestamp of α moment. p_{wait} is determined by a user-specified scheduling function $\mathcal{S}(t)$,

$$p_{\text{wait}} := \mathcal{S}(t), t = 0, 1, \dots, T_m. \quad (1)$$

$\mathcal{S}(t)$ can be an arbitrary function. $\alpha 1$ adopts linear annealing, which we find the most effective.

Post- α Moment Modulation While an LRM significantly increases slow thinking through pre- α modulation, this extended thinking phase often exhibits *slow thinking inertia*, making it difficult to transition back to fast thinking. Notably, without post- α moment modulation, the LRM substantially reduces the likelihood of generating “</think>”. Furthermore, inserting a few “</think>” tokens does not effectively overcome the inertia, failing to fully restore fast thinking.

After the α moment, we guide $\alpha 1$ to transition into fast reasoning by disabling further slow thinking. Specifically, any generated slow reasoning transition token “wait” is replaced with “</think>” to explicitly mark the end of the thinking phase, reinforcing a shift to fast thinking before entering the answering phase. This deterministic termination strategy allows $\alpha 1$ to conclude reasoning naturally and consistently, enabling more efficient test-time scaling.

4 Experiments

Experimental Setup We evaluate the reasoning capability of LRMs on six benchmarks: (i) mathematical reasoning with AIME24 [40], AMC23 [3], and Minerva [34]; (ii) code generation with

LiveCodeBench [27]; and (iii) scientific reasoning with OlympiadBench [23], reporting average Pass@1 accuracy and generated tokens. Our base models are two $\alpha 1$ -like open-source LRM, DeepSeek-R1-Distill-Qwen-1.5B and 7B [14]. We compare $\alpha 1$ against (i) BASE, the vanilla LRM that transitions between slow and fast thinking automatically; (ii) s1 [41], which enforces monotonically increasing slow thinking by appending “wait” tokens; and (iii) CHAIN OF DRAFT (CoD) [72], which enforces monotonically decreasing slow thinking by restricting each step to at most five words.

Main Results Table 1 shows the systematic comparison results of our $\alpha 1$ and baseline methods, and we observe: i) $\alpha 1$ consistently yields a higher problem-solving accuracy than all baseline methods across all models and benchmarks. This demonstrates both the effectiveness and efficiency of $\alpha 1$. ii) Compared to baseline test-time scaling methods, including s1 and CoD, $\alpha 1$ still achieves significantly better results. iii) Surprisingly, we observe that while $\alpha 1$ modulates reasoning densely without restrictions on reducing the thinking budget. This indicates that $\alpha 1$ achieves more efficient reasoning than baselines, which we provide analysis later.

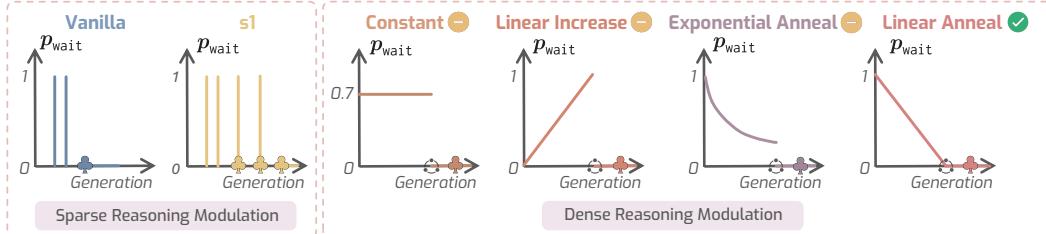


Figure 2: **Visualization of different scheduling strategies.** We detail the functions in Section 4. Here \circlearrowleft represents α moment, and \spadesuit denotes the end of the thinking phase.

Analytic Results As shown in Fig. 2, we study four variants of scheduling strategies for $\mathcal{S}(t)$ defined in Eq. (1), where $T_m = \alpha \bar{N}_{\text{think}}$ represents the timestamp of α moment:

- **Constant:** $\mathcal{S}(t) := p_{\text{constant}}$, where $p_{\text{constant}} \in [0, 1]$ is a constant probability. This represents a consistently more slow thinking strategy, and the increase is large when p_{constant} is larger. Note that when $p_{\text{constant}} = 0$ and $\alpha = 1$, it degenerates to vanilla reasoning models; and when $p_{\text{constant}} < 0.1$ and $\alpha > 1$, it degenerates to s1-like model, where only about two “wait” are appended.
- **Linear increase:** $\mathcal{S}(t) := \frac{1}{T_m} t$, where $t = \{0, 1, \dots, T_m\}$ and $\frac{1}{T_m} > 0$ indicates the increasing coefficient. This scheduling function indicates a fast-to-slow thinking strategy.
- **Exponential anneal:** $\mathcal{S}(t) := \exp(-\gamma t)$, where $t = \{0, 1, \dots, T_m\}$ and $\gamma > 0$ is a hyperparameter that controls annealing speed (here we use $\gamma = 0.3$). This scheduling function indicates a slow-to-fast thinking strategy.
- **Linear anneal:** $\mathcal{S}(t) := -\frac{1}{T_m} t + 1$, where $-\frac{1}{T_m} < 0$ indicates the annealing coefficient. Its modulation is similar to exponential anneal scheduling.

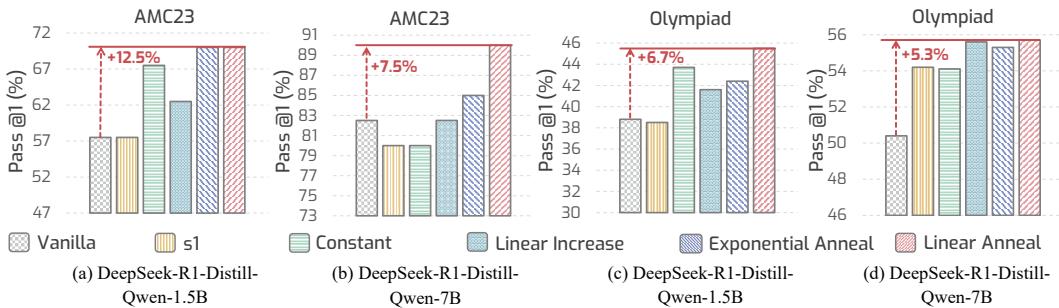


Figure 3: **Ablation study of different scheduling strategies** on (a-b) AMC23 and (c-d) Olympiad-Bench.

Fig. 3 shows the results of $\alpha 1$ using these four different scheduling strategies. We observe that linear annealing consistently yields the highest reasoning accuracy, indicating that the *slow thinking first, then fast thinking* is a better slow thinking scheduling strategy.

5 Conclusions

This paper presents ALPHAONE (α 1), a universal framework for modulating reasoning progress in large reasoning models (LRMs) at test time.

References

- [1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. Phi-4 technical report. *CoRR*, abs/2412.08905, 2024. URL <https://arxiv.org/abs/2412.08905>.
- [2] Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning technical report. *arXiv preprint arXiv:2504.21318*, 2025.
- [3] AI-MO. AIMO Validation Dataset - AMC. <https://huggingface.co/datasets/AI-MO/aimo-validation-amc>, 2024. URL <https://huggingface.co/datasets/AI-MO/aimo-validation-amc>. Accessed: 2025-05-19.
- [4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual language model for few-shot learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/960a172bc7fb0177cccb411a7d800-Abstract-Conference.html.
- [5] Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell. Variational best-of-n alignment. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=W9FZEQj3vv>.
- [6] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefer. Graph of thoughts: Solving elaborate problems with large language models. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024, Vancouver, Canada*, pp. 17682–17690. AAAI Press, 2024. doi: 10.1609/AAAI.V38I16.29720. URL <https://doi.org/10.1609/aaai.v38i16.29720>.
- [7] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsumori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. On the opportunities and risks of foundation models. *CoRR*, abs/2108.07258, 2021.
- [8] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: Process supervision without process. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/30dfe47a3ccbee68cffa0c19ccb1bc00-Abstract-Conference.html.
- [9] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu, Mengfei Zhou, Zhiyong Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do NOT think that much for 2+3=? on the overthinking of o1-like llms. *CoRR*, abs/2412.21187, 2024. doi: 10.48550/ARXIV.2412.21187. URL <https://doi.org/10.48550/arXiv.2412.21187>.

[10] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=KuPixIqPiq>.

[11] Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Aviral Kumar, Rishabh Agarwal, Sridhar Thiagarajan, Craig Boutilier, and Aleksandra Faust. Inference-aware fine-tuning for best-of-n sampling in large language models. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=77gQuDQhE7>.

[12] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 4299–4307, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html>.

[13] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL <https://arxiv.org/abs/2110.14168>.

[14] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jia Shi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghai Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuteng Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

[15] Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma, and Li Yi. DreamLLM: Synergistic multimodal comprehension and creation. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=y01KGvd9Bw>.

[16] Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling? In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=fL4qWkSmtM>.

[17] Li Fei-Fei. *The Worlds I See: Curiosity, Exploration, and Discovery at the Dawn of AI*. Flatiron books: a moment of lift book, 2023. URL https://www.google.com/books/edition/The_Worlds_I_See/6BmhEAAAQBAJ?hl=en&gbpv=0.

[18] Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie Wen. Interpretable contrastive monte carlo tree search reasoning. *CoRR*, abs/2410.01707, 2024. doi: 10.48550/ARXIV.2410.01707. URL <https://doi.org/10.48550/arXiv.2410.01707>.

[19] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. CRITIC: large language models can self-correct with tool-interactive critiquing. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=Sx038qxjek>.

[20] Lin Gui, Cristina Garbacea, and Victor Veitch. Bonbon alignment for large language models and the sweetness of best-of-n sampling. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/056521a35eacd9d2127b66a7d3c499c5-Abstract-Conference.html.

[21] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning with language model is planning with world model. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 8154–8173. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.507. URL <https://doi.org/10.18653/v1/2023.emnlp-main.507>.

[22] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space. *CoRR*, abs/2412.06769, 2024. doi: 10.48550/ARXIV.2412.06769. URL <https://doi.org/10.48550/arXiv.2412.06769>.

[23] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 3828–3850. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.211. URL <https://doi.org/10.18653/v1/2024.acl-long.211>.

[24] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=IkmD3fKBPQ>.

[25] Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey - part 2: Surpassing o1-preview through simple distillation, big progress or bitter lesson? *CoRR*, abs/2411.16489, 2024. doi: 10.48550/ARXIV.2411.16489. URL <https://doi.org/10.48550/arXiv.2411.16489>.

[26] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya. Openai o1 system card. *CoRR*, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL <https://doi.org/10.48550/arXiv.2412.16720>.

[27] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=chfJJYC3iL>.

[28] Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025. URL <https://arxiv.org/abs/2505.00703>.

[29] Daniel Kahneman. *Thinking, fast and slow*. macmillan, 2011. URL https://www.google.com/books/edition/_/SHvzzuCnuv8C?hl=en.

[30] Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms *Actually* correct their own mistakes? A critical survey of self-correction of llms. *Trans. Assoc. Comput. Linguistics*, 12: 1417–1440, 2024. doi: 10.1162/TACL_A_00713. URL https://doi.org/10.1162/TACL_A_00713.

[31] Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language models via self-certainty. *CoRR*, abs/2502.18581, 2025. doi: 10.48550/ARXIV.2502.18581. URL <https://doi.org/10.48550/arXiv.2502.18581>.

[32] Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 3499–3508. PMLR, 2019. URL <http://proceedings.mlr.press/v97/kool19a.html>.

[33] Seongyun Lee, Sue Hyun Park, Yongrae Jo, and Minjoon Seo. Volcano: Mitigating multimodal hallucination through self-feedback guided revision. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 391–404. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.23. URL <https://doi.org/10.18653/v1/2024.nacl1-long.23>.

[34] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V. Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html.

[35] Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E. Gonzalez, and Ion Stoica. S*: Test time scaling for code generation. *CoRR*, abs/2502.14382, 2025. doi: 10.48550/ARXIV.2502.14382. URL <https://doi.org/10.48550/arXiv.2502.14382>.

[36] Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. *arXiv preprint arXiv:2501.19324*, 2025.

[37] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=v8L0pN6E0i>.

[38] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html.

[39] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

[40] Mathematical Association of America. American Invitational Mathematics Examination – AIME. *American Invitational Mathematics Examination – AIME 2024*, February 2024. URL <https://maa.org/math-competitions/american-invitational-mathematics-examination-aime>. Accessed: 2025-05-15.

[41] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *CoRR*, abs/2501.19393, 2025. doi: 10.48550/ARXIV.2501.19393. URL <https://doi.org/10.48550/arXiv.2501.19393>.

[42] Xuying Ning, Dongqi Fu, Tianxin Wei, Wujiang Xu, and Jingrui He. Graph4mm: Weaving multimodal learning with structural information. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/pdf?id=FB2e8PV6qg>.

[43] OpenAI. Introducing gpt-4o and more tools to chatgpt free users. 2024. URL <https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/>.

[44] OpenAI. Thinking with images, April 2025. URL <https://openai.com/index/thinking-with-images/>. Accessed: 2025-05-25.

[45] Xiao Pu, Michael Saxon, Wenyue Hua, and William Yang Wang. Thoughtterminator: Benchmarking, calibrating, and mitigating overthinking in reasoning models. *arXiv preprint arXiv:2504.13367*, 2025. URL <https://arxiv.org/abs/2504.13367>.

[46] Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, Li Yi, and Kaisheng Ma. Shapellm: Universal 3d object understanding for embodied interaction. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and G  l Varol (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XLIII*, volume 15101 of *Lecture Notes in Computer Science*, pp. 214–238. Springer, 2024. doi: 10.1007/978-3-031-72775-7_13. URL https://doi.org/10.1007/978-3-031-72775-7_13.

[47] Zekun Qi, Wenyao Zhang, Yufei Ding, Runpei Dong, Xinqiang Yu, Jingwen Li, Lingyun Xu, Baoyu Li, Xialin He, Guofan Fan, Jiazhao Zhang, Jiawei He, Jiayuan Gu, Xin Jin, Kaisheng Ma, Zhizheng Zhang, He Wang, and Li Yi. Sofar: Language-grounded orientation bridges spatial reasoning and object manipulation. *CoRR*, abs/2502.13143, 2025. doi: 10.48550/ARXIV.2502.13143. URL <https://doi.org/10.48550/arXiv.2502.13143>.

[48] Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-search and best-of-n sampling. *CoRR*, abs/2410.16033, 2024. doi: 10.48550/ARXIV.2410.16033. URL <https://doi.org/10.48550/arXiv.2410.16033>.

[49] Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-tuning. *CoRR*, abs/2503.07572, 2025. doi: 10.48550/ARXIV.2503.07572. URL <https://doi.org/10.48550/arXiv.2503.07572>.

[50] Qwen Team. Preview of qwen qwen1.5-32b. <https://qwenlm.github.io/blog/qwq-32b-preview/>, 2025. Accessed: 2025-03-20.

[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.

[52] Pier Giuseppe Sessa, Robert Dadashi-Tazehozi, L  onard Hussenot, Johan Ferret, Nino Vieillard, Alexandre Ram  , Bobak Shahriari, Sarah Perrin, Abram L. Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk, Andrea Michi, Danila Sinopalnikov, Sabela Ramos Garea, Am  lie H  liou, Aliaksei Severyn, Matthew Hoffman, Nikola Momchev, and Olivier Bachem. BOND: aligning llms with best-of-n distillation. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=0tAXMiSufG>.

[53] Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset and benchmark for chain-of-thought reasoning. In *The Thirty-eighth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=aXeiCbMFFJ>.

[54] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL <https://doi.org/10.48550/arXiv.2402.03300>.

[55] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Language models are multilingual chain-of-thought reasoners. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=fR3wGCK-IXp>.

[56] Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and overthinking: An empirical study of reasoning length and correctness in llms. *arXiv preprint arXiv:2505.00127*, 2025. URL <https://arxiv.org/abs/2505.00127>.

[57] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Ben Hu. Stop overthinking: A survey on efficient reasoning for large language models. *CoRR*, abs/2503.16419, 2025. doi: 10.48550/ARXIV.2503.16419. URL <https://doi.org/10.48550/arXiv.2503.16419>.

[58] Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=348hfcprUs>.

[59] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *CoRR*, abs/2405.09818, 2024. doi: 10.48550/ARXIV.2405.09818. URL <https://doi.org/10.48550/arXiv.2405.09818>.

[60] Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and outcome-based feedback. *CoRR*, abs/2211.14275, 2022. doi: 10.48550/ARXIV.2211.14275. URL <https://doi.org/10.48550/arXiv.2211.14275>.

[61] Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Dynamic self-consistency: Leveraging reasoning paths for efficient LLM sampling. *CoRR*, abs/2408.17017, 2024. doi: 10.48550/ARXIV.2408.17017. URL <https://doi.org/10.48550/arXiv.2408.17017>.

[62] Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=C40pREezgj>.

[63] Han Wang, Gang Wang, and Huan Zhang. Steering away from harm: An adaptive approach to defending vision language model against jailbreaks. *CoRR*, abs/2411.16721, 2024. doi: 10.48550/ARXIV.2411.16721. URL <https://doi.org/10.48550/arXiv.2411.16721>.

[64] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=1PL1NIMMrw>.

[65] Yue Wang, Qiuwei Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Thoughts are all over the place: On the underthinking of o1-like llms. *CoRR*, abs/2501.18585, 2025. doi: 10.48550/ARXIV.2501.18585. URL <https://doi.org/10.48550/arXiv.2501.18585>.

[66] Haoran Wei, Youyang Yin, Yumeng Li, Jia Wang, Liang Zhao, Jianjian Sun, Zheng Ge, and Xiangyu Zhang. Slow perception: Let's perceive geometric figures step-by-step. *CoRR*, abs/2412.20631, 2024. doi: 10.48550/ARXIV.2412.20631. URL <https://doi.org/10.48550/arXiv.2412.20631>.

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Sammi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

[68] Yana Wei, Liang Zhao, Kangheng Lin, En Yu, Yuang Peng, Runpei Dong, Jianjian Sun, Haoran Wei, Zheng Ge, Xiangyu Zhang, and Vishal M. Patel. Perception in reflection. *CoRR*, abs/2504.07165, 2025. doi: 10.48550/ARXIV.2504.07165. URL <https://doi.org/10.48550/arXiv.2504.07165>.

[69] Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 13084–13094. IEEE, 2024. doi: 10.1109/CVPR52733.2024.01243. URL <https://doi.org/10.1109/CVPR52733.2024.01243>.

[70] Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Qizhe Xie. Self-evaluation guided beam search for reasoning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html.

[71] Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and Chunyuan Li. Llava-critic: Learning to evaluate multimodal models. *CoRR*, abs/2410.02712, 2024. doi: 10.48550/ARXIV.2410.02712. URL <https://doi.org/10.48550/arXiv.2410.02712>.

[72] Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less. *CoRR*, abs/2502.18600, 2025. doi: 10.48550/ARXIV.2502.18600. URL <https://doi.org/10.48550/arXiv.2502.18600>.

[73] Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, and Caiming Xiong. Scalable chain of thoughts via elastic reasoning. *arXiv preprint arXiv:2505.05315*, 2025.

[74] Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang, Teja Venkat Korpella, Marziyeh Movahedi, Manling Li, Heng Ji, Huan Zhang, and Tong Zhang. Embodiedbench: Comprehensive benchmarking multi-modal large language models for vision-driven embodied agents. *CoRR*, abs/2502.09560, 2025. doi: 10.48550/ARXIV.2502.09560. URL <https://doi.org/10.48550/arXiv.2502.09560>.

[75] Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: Enhancing small-model reasoning with large model guidance at inference time. *arXiv preprint arXiv:2504.12329*, 2025. URL <https://arxiv.org/abs/2504.12329>.

[76] Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time compute for LLM reasoning. *CoRR*, abs/2502.18080, 2025. doi: 10.48550/ARXIV.2502.18080. URL <https://doi.org/10.48550/arXiv.2502.18080>.

[77] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html.

[78] En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun, Chunrui Han, Zheng Ge, Xiangyu Zhang, Daxin Jiang, Jingyu Wang, and Wenbing Tao. Perception-r1: Pioneering perception policy with reinforcement learning. *CoRR*, abs/2504.07954, 2025. doi: 10.48550/ARXIV.2504.07954. URL <https://doi.org/10.48550/arXiv.2504.07954>.

[79] Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in mathematical reasoning. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 858–875. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-NAACL.55. URL <https://doi.org/10.18653/v1/2024.findings-naacl.55>.

[80] Jiayi Yuan, Hao Li, Xinheng Ding, Wenya Xie, Yu-Jhe Li, Wentian Zhao, Kun Wan, Jing Shi, Xia Hu, and Zirui Liu. Give me fp32 or give me death? challenges and solutions for reproducible reasoning. *arXiv preprint arXiv:2506.09501*, 2025.

[81] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with reasoning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html.

[82] Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? *CoRR*, abs/2502.12215, 2025. doi: 10.48550/ARXIV.2502.12215. URL <https://doi.org/10.48550/arXiv.2502.12215>.

[83] Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan. Planning with large language models for code generation. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=Lr8c00tYbfL>.

[84] Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the performance of large language models on GAOKAO benchmark. *CoRR*, abs/2305.12474, 2023. doi: 10.48550/ARXIV.2305.12474. URL <https://doi.org/10.48550/arXiv.2305.12474>.

[85] Jingnan Zheng, Han Wang, An Zhang, Tai D. Nguyen, Jun Sun, and Tat-Seng Chua. Ali-agent: Assessing llms' alignment with human values via agent-based evaluation. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada*,

December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/b35c38f70065ac6c694089ca93a015bb-Abstract-Conference.html.

- [86] Zhi Zhou, Tan Yuhao, Zenan Li, Yuan Yao, Lan-Zhe Guo, Xiaoxing Ma, and Yu-Feng Li. Bridging internal probability and self-consistency for effective and efficient LLM reasoning. *CoRR*, abs/2502.00511, 2025. doi: 10.48550/ARXIV.2502.00511. URL <https://doi.org/10.48550/arXiv.2502.00511>.
- [87] Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, and Huan Zhang. Dynamath: A dynamic visual benchmark for evaluating mathematical reasoning robustness of vision language models. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=VOAMTA8jKu>.
- [88] Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. *CoRR*, abs/2504.16084, 2025. URL <https://arxiv.org/abs/2504.16084>.

A Related Works

A.1 Large Reasoning Models

Large Reasoning Models are rapidly emerging as a family of foundation models [7] that target human-level system-2 reasoning [29]. Starting from OpenAI’s o1 [26] in 2024, numerous efforts follow this “thinking-then-answering” paradigm. Notably, o1-like Large Language Models (LLMs) can solve increasingly complex reasoning problems after a thorough chain of thoughts [6, 67, 77], such as the IMO competition. These advanced models are mainly developed via large-scale reinforcement learning (RL) to align human preference [12, 14, 51, 54], where a reward model is used to judge model answers [37, 60]. Notable efforts replicating o1’s success include DeepSeek R1, Qwen QwQ, and Phi-4 [1, 14, 50], which typically utilize a special end-of-thinking token “</think>”, after which a solution is output to the user. Recently, some researchers have explored applying RL during post-training fine-tuning, where promising results have been obtained [11, 49, 88].

A.2 Reasoning with Test-Time Scaling

Reasoning with test-time scaling has recently become a useful strategy that empowers LLMs with a scalable reasoning capability at test time. The mainstream methods lie in two categories, *i.e.*, i) parallel scaling and ii) sequential scaling. The key idea of parallel scaling is Best-of-N (BoN) sampling, where the best choice is selected using uncertainty criteria like self-consistency [64], reward model [13, 37], or perplexity [16]. Specifically, one line of work focuses on sequence-level sampling [5, 11, 13, 20, 31, 52, 58, 61, 82, 86], while another line of work utilizes token-/step- level sampling including beam-/tree- based searching [8, 18, 21, 32, 48, 62, 70, 79, 83]. Meanwhile, sequential scaling enhances or reduces slow thinking. This technique typically relies on an iterative refinement and revision of answers generated by LLMs themselves [39, 81] or external feedback [10, 19, 24, 30, 36, 85]. Following this line of research, recent works have been devoted to addressing the underthinking and overthinking issues of modern LRMVs via reinforcing [41] and restricting [72, 73] slow thinking, respectively. Given the non-conflict between parallel scaling and sequential scaling, there exists another group of hybrid scaling methods that leverage both strategies [35, 82].

B Limitations

While ALPHAONE provides a universal view of test-time scaling of LRMVs, and a significant performance boost has been achieved, we identify some possible limitations as follows. i) ALPHAONE targets at o1-style LRMVs, where tokens such as “wait” is proved effective in transitioning into slow thinking. However, future LRMVs may use a different slow thinking transitioning strategy, leading to a possibility of incompatibility with our framework. ii) ALPHAONE relies on α -moment throughout reasoning modulation, and the average thinking phase token length is typically required. This paper obtains it by first running LRMVs on 10 random samples, which requires marginal cost. However, in case that no test questions are available, ALPHAONE can only rely on an empirical thinking phase length that may be suboptimal.

C Broader Impact

This work targets complex reasoning problems with LRMVs, which we believe will lead to no ethical concerns. However, since LRMVs are modern variants of LLMs, any ethical concerns raised by LLMs can potentially exist.

D Additional Implementation Details

D.1 Computational Budget

We used 8 NVIDIA L40S GPUs and 4 NVIDIA A100 80GB GPUs for the experiments.

D.2 Hyper-parameters & Parameters

For reproducibility, we provide the complete set of average thinking phase token length \bar{N}_{think} in [Table 2](#), which are obtained by randomly sampling 10 test questions on each benchmark and averaging the generated token lengths. Since the effective range of α observed in [Figure 7](#) is relatively broad, practical implementations can tolerate variance in this measurement.

Table 2: **Average thinking phase token length** \bar{N}_{think} across different benchmarks. The results are obtained by running LRMs on randomly sampled 10 samples.

Model	AIME24	AMC23	Minerva	MATH500	LiveCode	Olympiad
DeepSeek-R1-Distill-Qwen-1.5B	4130	3303	3101	2435	2172	3417
DeepSeek-R1-Distill-Qwen-7B	4751	3243	3064	2352	3120	3330
Qwen QwQ-32B	2597	2124	1710	1493	4915	2052

D.3 Benchmarks

AIME 2024 The AIME 2024 dataset is a specialized benchmark collection consisting of 30 problems from the 2024 American Invitational Mathematics Examination [\[40\]](#). These problems cover core secondary-school mathematics topics such as arithmetic, combinatorics, algebra, geometry, number theory and probability. The collection places rigorous demands on both solution accuracy and conceptual depth.

AMC 2023 The AMC 2023 dataset consists of 40 problems selected from the AMC 12A and 12B contests. These exams are sponsored by the Mathematical Association of America and target U.S. students in grade 12 and below, featuring challenges in algebra, geometry, number theory, and combinatorics [\[3\]](#).

Minerva Math Minerva Math [\[34\]](#) consists of 272 undergraduate-level STEM problems harvested from MIT’s OpenCourseWare. These problems span solid-state chemistry, information and entropy, differential equations, and special relativity. Each includes a clearly delineated answer—191 verifiable by numeric checks and 81 by symbolic solutions. The benchmark is specifically designed to evaluate multi-step scientific reasoning capabilities in language models.

MATH500 MATH500 comprises a selection of 500 problems extracted from the MATH benchmark [\[37\]](#). The collection covers a range of high-school mathematics domains, including Prealgebra, Algebra and Number Theory. To ensure comparability with prior work, we use the exact problem set originally curated by OpenAI for evaluation.

LiveCodeBench LiveCodeBench [\[27\]](#) is a contamination-free benchmark for evaluating large language models on code. The suite is continuously updated, gathering new problems over time. It currently comprises 400 Python programming tasks released between May 2023 and March 2024, each paired with test samples for correctness verification. Beyond basic code generation, LiveCodeBench also measures advanced capabilities such as self-repair, code execution and test-output prediction.

OlympiadBench OlympiadBench [\[23\]](#) consists of 8,476 Olympiad-level problems that evaluate mathematical and physical reasoning in AI systems. It features a wide difficulty range, open-ended problem generation, expert solution annotations, detailed difficulty labels, and multilingual coverage. The subset we use in our paper contains 675 open-ended, text-only math competition problems in English.

E Additional Results

E.1 Additional Models Results

To further demonstrate the generalization capability of $\alpha 1$, we conduct experiments on two additional model families, including Phi4-reasoning [2] from Microsoft and DeepSeek-R1-Distill-Llama-8B, across math and science benchmarks. [Fig. 4](#) demonstrates that our method consistently achieves large gains.

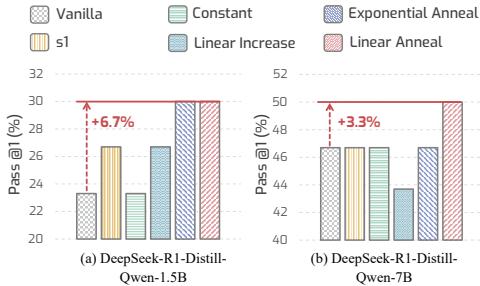


Figure 5: **Ablation study of different scheduling strategies** on AIME24.

E.2 Scheduling Strategy

In addition to the results in [Fig. 3](#) tested on AMC23 and Olympiad, we also show the results tested on AIME24 in [Fig. 5](#). From the results, we observe that the linear increase consistently yields the best performance, which aligns with our previous observation. This further provides evidence that slow-then-fast thinking is an efficient slow-thinking scheduling strategy.

E.3 Scaling Efficiency Analysis

As shown in [Fig. 6](#), $\alpha 1$ consistently achieves positive REP with Deepseek-R1-distill-Qwen-7B, demonstrating stable gains over the base model. Similar to [Fig. 8](#), it outperforms CoD and s1 across nearly all benchmarks, particularly on LiveCodeBench and AIME24.

E.4 Is post- α moment modulation necessary?

Typical test-time scaling methods focus on the modulation of slow thinking within the thinking phase, while $\alpha 1$ consists of a post- α moment modulation that encourages fast thinking. To validate its necessity of enforcing fast thinking in the end, we conduct an ablation study on utilizing the post- α moment modulation, shown in [Table 4](#). We observe: i) Pre- α moment modulation of slow

Table 3: **Cross-linguistic generalization results** with DeepSeek-R1-Distill-Qwen-1.5B.

Method	GaoKao 2024				MGSM					
	Chinese		French		German		Russian		Japanese	
	P@1	#Tk	P@1	#Tk	P@1	#Tk	P@1	#Tk	P@1	#Tk
BASE	65.9	4666	49.2	577	33.6	607	48.0	1751	28.8	966
$\alpha 1$ (Ours)	69.2	4116	50.8	601	37.6	552	56.0	1650	30.4	1130

Figure 4: **Additional reasoning results.** P@1: Pass@1 (%); #Tk: number of generated tokens.

Method	MATHEMATICAL				SCIENCE	
	AIME24		AMC23		Olympiad	
	P@1	#Tk	P@1	#Tk	P@1	#Tk
<i>Microsoft Phi4-reasoning</i>						
BASE	63.3	5677	92.5	2858	60.1	4174
$\alpha 1$ (Ours)	66.7	5532	95.0	2863	62.5	3786
<i>DeepSeek-R1-Distill-Llama-8B</i>						
BASE	26.7	7184	70.0	5011	45.6	5757
$\alpha 1$ (Ours)	33.3	7022	80.0	4282	52.9	4993

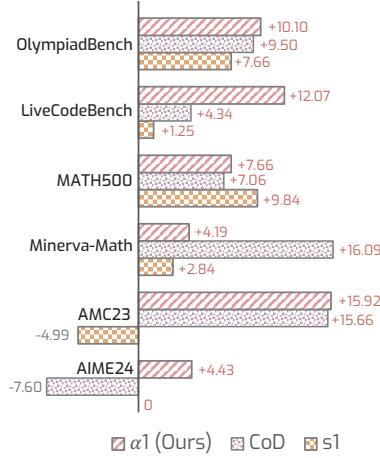


Figure 6: **Scaling efficiency analysis with REP** using Deepseek-R1-distill-Qwen-7B.

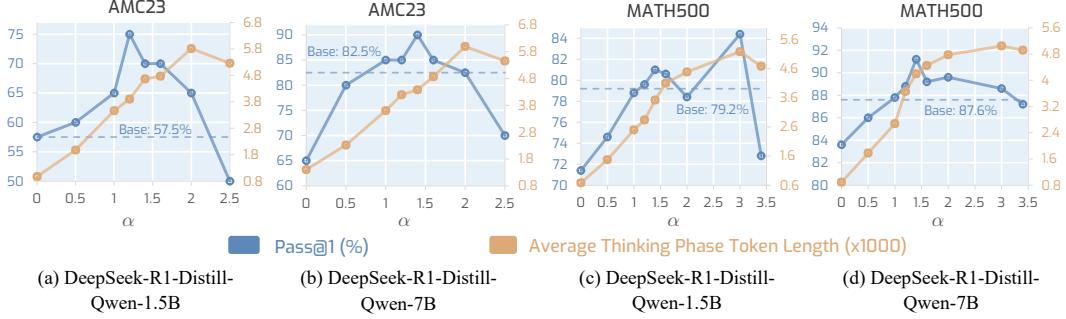


Figure 7: **Scaling property of α .** We scale α from 0 to the maximum value restricted by the maximum token length, and plot the corresponding reasoning Pass@1 and average thinking phase token length on AMC23 and MATH500.

thinking is insufficient. When the post- α moment modulation is reduced to a single operation, the performance of $\alpha 1$ significantly drops. This is because the increase of slow thinking during pre- α moment brings a *slow thinking inertia* (as discussed before in Section 3), leading to a slow thinking intensive reasoning. ii) By utilizing a post- α moment modulation, $\alpha 1$ successfully ends in a fast thinking, which demonstrates the necessity of *combining both slow thinking and fast thinking*.

E.4.1 Can α -moment scale the thinking phase budget?

Fig. 7 shows the results of $\alpha 1$ with different α -moments determined by scaling α from 0 to a maximum value subject to the 8192 token length budget. We observe: i) α -moment enables a *scalable thinking phase budgeting*. By scaling up α , the average thinking phase token length is accordingly scaled up. ii) Interestingly, while the thinking phase is scaled up, there exists a trade-off between the optimal value of α and the resulting reasoning accuracy. This indicates that monotonously increasing the thinking phase budget does not consistently bring better reasoning performance, and it is critical to find the optimal α -moment that results in a satisfactory improvement.

E.5 Does $\alpha 1$ scale more efficiently?

To quantitatively evaluate how different methods trade off reasoning efficiency and accuracy, we introduce the $\mathcal{F}_{\text{REP}}(\mathcal{A}_{\text{method}}; \mathcal{A}_{\text{base}}, T_{\text{norm}})$ (Reasoning Efficiency-Performance, REP) metric. The REP metric is defined as:

$$\mathcal{F}_{\text{REP}}(\mathcal{A}_{\text{method}}; \mathcal{A}_{\text{base}}, T_{\text{norm}}) = \frac{\mathcal{A}_{\text{method}} - \mathcal{A}_{\text{base}}}{T_{\text{norm}}} \quad (2)$$

where $\mathcal{A}_{\text{method}}$ and $\mathcal{A}_{\text{base}}$ denote the reasoning accuracy of the evaluated method and the base model, respectively. T_{norm} is the normalized thinking phase token length, computed by dividing the current thinking phase token length by the maximum token length. Higher REP indicates stronger performance with better reasoning efficiency.

Table 4: **Ablation study on post- α moment modulation.** Without post- α modulation represents our $\alpha 1$ without the suppression of the slow thinking inertia after the α moment.

Method	Post- α Moment Modulation	AIME24		AMC23	
		P@1	#Tk	P@1	#Tk
<i>DeepSeek-R1-Distill-Qwen-1.5B</i>					
BASE	N/A	23.3	7280	57.5	5339
$\alpha 1$ (Ours)	×	26.7	7929	47.5	6903
$\alpha 1$ (Ours)	✓	30.0	5916	70.0	4951
<i>DeepSeek-R1-Distill-Qwen-7B</i>					
BASE	N/A	38.8	5999	82.5	4624
$\alpha 1$ (Ours)	×	30.0	7666	75.0	5878
$\alpha 1$ (Ours)	✓	50.0	6826	90.0	4397

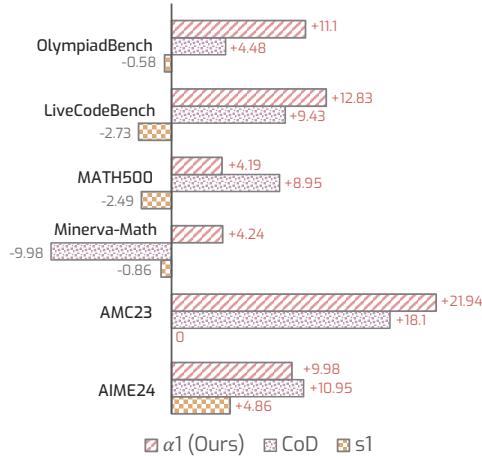


Figure 8: **Scaling efficiency analysis with REP** using Deepseek-R1-distill-Qwen-1.5B. The REP metric is introduced in Eq. (2).

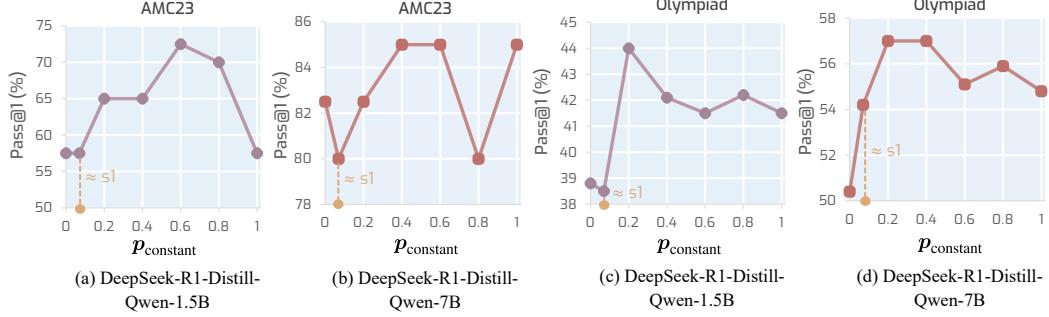


Figure 9: **Scaling property of “wait” frequency** under constant scheduling on AMC23 and OlympiadBench. Increasing p_{constant} leads to a higher frequency of yielding “wait” in the Bernoulli process $\text{Bernoulli}(p_{\text{wait}})$.

We report the REP of CoD, s1, and $\alpha 1$ on six reasoning benchmarks with Deepseek-R1-distill-Qwen-1.5B. Fig. 8 shows that $\alpha 1$ achieves higher REP on most benchmarks, indicating a more favorable balance between reasoning performance and efficiency. Notably, $\alpha 1$ outperforms CoD by **+6.62** and s1 by **+11.68** on Olympiad-Bench, and exceeds CoD by **+14.22** on Minerva-Math.

E.6 How frequent should slow thinking transitioning be?

$\alpha 1$ modulates slow thinking transitioning via sampling from Bernoulli(p_{wait}), which leads to another question of how large should p_{wait} be that can bring a better result. To study this question, we use the constant scheduling function and scale p_{constant} from 0 to 1 to increase the frequency of transitioning to slow thinking. This is because the constant scheduling is a sampling process with a certain probability, and the value of the probability determines how frequently the slow thinking transitioning token will be sampled. Fig. 9 shows the results, from which we observe: i) An extremely low or high frequency of transitioning to slow thinking brings unsatisfactory results (e.g., $p_{\text{constant}} = 0.1$). Similar to the scaling of the thinking phase (e.g., modulating α), the slow thinking frequency also needs to be carefully selected. ii) While an extremely dense or sparse slow thinking transitioning leads to unsatisfactory results, the reasoning performance is decent across a large range of p_{constant} , demonstrating that increasing slow thinking generally brings improved reasoning.

E.7 Cross-linguistic Generalization

We have conducted ablations on cross-linguistic generalization across five languages, including Chinese, French, German, Russian, and Japanese on GaoKao 2024 [84] and MGSM [55] benchmarks. The results demonstrate the superior cross-linguistic generalization capability of $\alpha 1$ in Table 3. Notably, on MGSM, $\alpha 1$ shows substantial gains, with a +4.0% increase for German and an +8.0% improvement for Russian.

E.8 Transitioning Tokens

We provide an ablation study on different transitioning tokens on the AMC23 with DeepSeek-R1-Distill-Qwen-1.5B. As illustrated in Fig. 10, the empirical results show that slow thinking transitioning tokens like “Wait”, “Hmm”, and “Alternatively” generally improve both accuracy and reasoning efficiency, though their effectiveness varies by model. Continuation tokens (“Maybe”, “Then”) offer minor gains, while contrastive tokens (“But”, “However”, “Though”) often disrupt reasoning and reduce performance, especially with “However” and “Though”.

Figure 10: **Ablation study on different transitioning tokens** on AMC23 (8192).

Transitioning Token	Category	Deepseek-1.5B	
		P@1	#Tk
BASE (For Reference)	N/A	57.5	5339
“Wait,”	Slow Thinking	70.0	4952
“Hmm,”	Slow Thinking	72.5	4793
“Alternatively,”	Slow Thinking	70.0	5318
“Maybe,”	Continuation	62.5	5380
“Then,”	Continuation	65.0	5050
“But,”	Contrastive	60.0	5763
“However,”	Contrastive	55.0	5902
“Though,”	Contrastive	55.0	5494

Table 5: **Attention analysis** on slow thinking transitioning. The values are attention after substituting the original token after i -th “\n\n” with “Wait” toward two parts: the user-provided instruction (Question Part) and the intermediate reasoning steps (Reasoning Part). We report results on the DeepSeek-R1-Distill-Qwen-1.5B model on the AMC23 dataset. Special tokens such as “<|begin_of_sentence|>” are excluded from both the question and the reasoning process, so the combined attention does not sum to 1.0.

<i>i</i> -th “\n\n”	Question Part		Reasoning Part	
	Base	$\alpha 1$	Base	$\alpha 1$
2	0.1944	0.1773	0.5016	0.5882
4	0.1389	0.1206	0.6281	0.6643
6	0.0882	0.0877	0.6444	0.6930
8	0.0864	0.0762	0.6168	0.7018
10	0.0792	0.0738	0.6984	0.7209
12	0.0705	0.0752	0.6760	0.7185
14	0.0689	0.0682	0.6360	0.7240

E.9 Slow Thinking Transitioning Analysis

We analyze the quantitative impact of the “Wait” token on attention distributions in the last Transformer layer. This analysis is useful in revealing the dynamics of LLMs during inference, which intuitively improves the understanding of the method and serves as a good alternative for pure theoretical analysis. Specifically, we analyze how substituting the original token after i -th “\n\n” with “Wait” influences the model’s attention toward two parts: the user-provided instruction (question part) and the intermediate reasoning steps (reasoning part). Results are shown in Table 5. When varying the position at which “\n\n” is inserted, the empirical results show that this token consistently shifts attention toward the previously generated reasoning steps. This likely promotes greater *self-reflection on earlier parts* of the solution and enhances the overall quality of the generated answers.

Table 6: **Formatting idiosyncrasies sensitivity** on three variants of prompts. The three variants of prompts are defined in Section E.10. We report the P@1 (#Tk) of the DeepSeek-R1-Distill-Qwen-1.5B on AMC23 and Olympiad benchmarks.

	Standard		Variant A		Variant B	
	AMC23	Olympiad	AMC23	Olympiad	AMC23	Olympiad
Base	57.5 (5339)	38.8 (5999)	55.0 (5410)	37.5 (6028)	62.5 (5270)	38.4 (6106)
$\alpha 1$ (Ours)	70.0 (4952)	45.5 (4944)	65.0 (5161)	43.9 (4995)	72.5 (5075)	45.3 (5037)

E.10 Formatting Idiosyncrasies Sensitivity Analysis

In this section, we study the sensitivity of $\alpha 1$ to formatting idiosyncrasies or prompt design. In addition to the standard prompt from the official technical report that is used in this work, we have conducted additional experiments comparing it with two variants: one adding irrelevant distractions, and another adding explicit reasoning instructions, listed as follows,

- **Standard:** Please reason step by step, and put your final answer within `\boxed{}`
- **Variant A:** Please reason step by step, and put your final answer within `\boxed{}`. The AMC 2023 dataset consists of 40 problems selected from two challenging mathematics competitions. `/OlympiadBench` consists of 8,476 Olympiad-level problems that evaluate mathematical and physical reasoning.
- **Variant B:** You are a helpful assistant. Your role as an assistant involves thoroughly exploring questions through a systematic thinking

Table 7: **Slow thinking inertia analysis** with different number of deterministic terminations. The results are obtained with the DeepSeek-R1-Distill-Qwen-1.5B model, and we report the ratio of problems that remain in the thinking phase after different numbers (No.) of deterministic termination.

No.	AIME24	AMC23	Minerva	MATH500	LiveCode	Olympiad
1	96.7%	75.0%	78.7%	45.0%	92.8%	78.9%
2	90.0%	67.5%	70.2%	39.4%	87.8%	72.6%
3	60.0%	30.0%	24.3%	12.8%	4.3%	39.3%
4	10.0%	5.0%	2.6%	1.2%	0.2%	6.8%
5	3.3%	0.0%	0.7%	0.0%	0.0%	1.2%

process before providing the final precise and accurate solutions. Please reason step by step, and put your final answer within \boxed{}

The results are shown in [Table 6](#). We observe: i) Modifying the prompts brings a performance drop or boost on the base model, where variant A leads to -2.5% drop while variant B brings +5.0% improvement on AMC23. ii) Regardless of the prompt variant, $\alpha 1$ consistently improves the base model by a large margin. Specifically, $\alpha 1$ improves the baseline by +10.0% on AMC23 with both variants. On Olympiad-Bench, $\alpha 1$ achieves a performance boost of +6.4% and +6.9% with variant A and B, respectively.

Table 8: **Normalized REP metric** results. The results are obtained with DeepSeek-R1-Distill-Qwen-1.5B. AVG indicates the global mean REP across all evaluated benchmarks.

	AIME24	AMC23	Minerva	MATH500	LiveCode	Olympiad	AVG
Base	8.60	13.35	-2.20	3.55	6.51	5.00	N/A
s1	-3.74	-13.35	+1.34	-6.04	-9.24	-5.58	-0.30
CoD	+2.35	+4.75	-7.78	+5.40	+2.92	-0.52	+6.99
$\alpha 1$ (Ours)	+1.38	+8.59	+6.44	+0.64	+6.32	+6.10	+10.71

E.11 Slow Thinking Inertia Phenomenon Analysis

As stated before in [Section 3](#), LRM s tend to have a slow thinking inertia issue. After the pre- α modulation phase, the model often continues slow thinking, which can severely affect accuracy and efficiency. When we enforce deterministic termination with a single “</think>”, the model typically does not immediately transition to the answer phase but continues reasoning, as evidenced by the occurrence of slow-reasoning transitioning tokens “Wait” and semantically progressive thoughts. Repeated deterministic termination eventually forces the model to complete its remaining reasoning in just a few tokens before finally entering the answer phase.

In [Table 7](#), we quantify the ratio of problems that remain in the thinking phase after i -th deterministic termination. For example, after the first termination, the model remains in the thinking phase on most problems, indicating that multiple terminations are generally required to conclude the reasoning process. Note that [Table 7](#) shows the results of the DeepSeek-R1-Distill-Qwen-1.5B model, and we also observe similar patterns on larger models like QwQ-32B.

E.12 REP Metric Analysis

To better understand the proposed REP metric, we provide per-task baseline normalization and global mean normalization of the REP metric on DeepSeek-R1-Distill-Qwen-1.5B. [Table 8](#) shows the results. Across these two normalized metrics, $\alpha 1$ consistently achieves higher values, indicating a more favorable balance between reasoning performance and efficiency. Notably, $\alpha 1$ exceeds the task average by +8.59 on AMC23 under the per-task baseline normalization and reaches +10.71 under the global mean normalization.

Table 9: **Results with 32 rollouts.** The results are P@1 (#Tk) with 32 rollouts with DeepSeek-R1-Distill-Qwen-1.5B.

	AIME24	AMC23	Minerva	MATH500	LiveCode	Olympiad
Base	21.1 (7407)	60.2 (5482)	30.5 (5030)	77.8 (3911)	18.7 (6946)	37.9 (6089)
α_1 (Ours)	30.3 (5669)	72.4 (4861)	32.2 (4581)	81.5 (4121)	24.5 (5004)	44.6 (4922)

E.13 Additional Results with More Rollouts

According to Yuan et al. [80], few rollouts (*e.g.*, fewer than 16 rollouts) may lead to unstable results. To further validate the results of α_1 with a large number of rollouts, we conduct experiments with 32 rollouts on all benchmarks with DeepSeek-R1-Distill-Qwen-1.5B and report the P@1 with these 32 rollouts. Table 9 shows the results, demonstrating consistent conclusions with results reported in the main paper: i) Our α_1 yields consistently better performance and reasoning efficiency; ii) As shown in Table 9 with more experiments, the effectiveness of our approach can be even better than we report in Table 1. For example, on AIME24, the improvement increased from the +6.7% reported in Table 1 to +9.2%.

F Artifacts Statements

F.1 Model Artifacts

We utilize three models in our work: DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B, both released under the MIT License, which permits commercial use, modification, and redistribution. These models are distilled from Qwen-2.5 series (Apache 2.0 License). Additionally, we use Qwen QwQ-32B, which is released under the Apache License 2.0, allowing both research and commercial usage. We comply with all respective license terms in our use of these models.

F.2 Data Artifacts

We employ publicly available datasets in our experiments. AIME24, Minerva-Math, LiveCodeBench, and OlympiadBench are released under the MIT License, which permits unrestricted use, modification, and redistribution. The AMC23 dataset does not have an explicitly specified license, so we treat it as having an unspecified license and exercise caution in its usage. We ensure full compliance with the respective license terms of all datasets used.

G Future Works

While our α_1 has been demonstrated to be successful and effective in scaling LMRs at test time, there are some intriguing future works that we are considering:

- *More sophisticated slow thinking scheduling.* This work focuses on simple strategies like the slow-to-fast schedule, which shows strong performance. However, optimal scheduling remains an open question, as human reasoning patterns are complex and not yet fully understood [29]. Promising directions include modulating reasoning progress during both training and inference, or learning a separate *progress modulation model* aligned with human preferences—akin to a progress reward model [37, 60]. In addition, α moment can be adaptively sampled from a subnetwork, and the reasoning scheduling strategy can be adaptively selected when facing different problems. By appropriately formulating the problem of reasoning modulation as an RL-based optimization problem, we may obtain an adaptive α_1 that achieves better generalization capability.
- *Transitioning-token-agnostic modulation.* As shown in Fig. 10, the choice of transitioning token (*e.g.*, “wait”) affects performance due to model-specific training data. This limitation is shared by many test-time scaling methods relying on open-source LMRs like DeepSeek-R1 [14], in contrast to restricted-access models like OpenAI o1. While α_1 supports flexible token choices, removing the dependency on transitioning tokens altogether could further enhance generalization.

- *Multimodal reasoning with multimodal LLMs.* Multimodal LLMs are rapidly advancing and show growing potential in reasoning tasks [4, 15, 38, 42, 43, 46, 59, 63, 87]. Although they currently trail behind text-only LRM, efforts to enhance their reasoning abilities are gaining momentum [22, 28, 33, 53, 66, 68, 69, 71, 78]. Multimodal reasoning remains challenging, as it requires both image understanding and generation [44]. We aim to extend our $\alpha 1$ framework to this domain, fostering synergistic multimodal comprehension and creation [15]. Another promising direction is embodied reasoning—grounding multimodal understanding in real-world interactions with spatial intelligence [17, 47, 74].

H Qualitative Examples

We present qualitative examples from different models and benchmarks to illustrate both cases: instances where $\alpha 1$ helps the model answer correctly, and instances where it still fails to produce the correct answer. Examples show that by appending “wait” frequently after “\n\n” can slow down the thinking process and may help the model achieve better performance. The examples can be found in the following pages.

Successful Example of DeepSeek-R1-Distill-Qwen-1.5B on OlympiadBench: Base fails while $\alpha 1$ passes

Question: A chemist has three bottles, each containing a mixture of acid and water: - bottle A contains 40g of which 10 is acid, - bottle B contains 50g of which 20 is acid, and, - bottle C contains 50g of which 30 is acid. She uses some of the mixture from each of the bottles to create a mixture with mass 60g of which 25 is acid. Then she mixes the remaining contents of the bottles to create a new mixture. What percentage of the new mixture is acid?

Response from Base: <think>

Okay, so I've got this chemistry problem here, and I need to figure out the percentage of acid in the new mixture. Let me try to understand the problem step by step.

First, there are three bottles, each with a mixture of acid and water. The masses and acid concentrations are given as follows:

- Bottle A: 40 grams, 10% acid.
- Bottle B: 50 grams, 20% acid.
- Bottle C: 50 grams, 30% acid.

The chemist is going to use some mixture from each bottle to create a new mixture that's 60 grams with 25% acid. Then, after using some from each bottle, she mixes the remaining contents to create a new mixture. ...

</think>

The chemist has three bottles containing acid and water with the following compositions:

- Bottle A: 40 grams of solution, 10% acid...

The percentage of the new mixture is 18.75).

Response from $\alpha 1$: <think>

Okay, so I've got this chemistry problem here, and I need to figure out the percentage of acid in the new mixture. Let me try to understand the problem step by step.

Wait, actually, the problem says that the chemist uses some mixture from each bottle to create a 60g mixture with 25% acid. Then, she mixes the remaining contents of the bottles to create a new mixture. Hmm, I need to clarify if she uses some from each bottle to make 60g, and then mixes the leftover from each bottle. Or is it that she uses some from each bottle to make 60g, and then uses the leftovers from each bottle to make another mixture? The wording is a bit unclear.

Wait, let me re-read the problem.

Wait, actually, the problem says: ... </think>

The percentage of acid in the new mixture is 17.5%.

Step-by-Step Explanation:

1. Initial Acid Quantities:

- Bottle A: 40g of 10% acid \rightarrow 4g acid.
- Bottle B: 50g of 20% acid \rightarrow 10g acid...

Answer: The new mixture has 17.5% acid.

Correct Answer: 17.5

Failure Example of DeepSeek-R1-Distill-Qwen-1.5B on AMC23: $\alpha 1$ still fails

Question: There is a unique sequence of integers $a_1, a_2, \dots, a_{2023}$ such that $\tan 2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \dots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x + \dots + a_{2022} \tan^{2022} x}$ whenever $\tan 2023x$ is defined. What is a_{2023} ?

Response from $\alpha 1$: <think>

Okay, so I need to find the value of a_{2023} in the given expression for $\tan(2023x)$. The expression is a fraction where the numerator is a sum of odd-powered terms of $(\tan x)$ multiplied by coefficients $a_1, a_3, \dots, a_{2023}$, and the denominator is a sum of even-powered terms of $(\tan x)$ multiplied by coefficients $a_2, a_4, \dots, a_{2022}$. The problem states that this sequence of integers is unique, so I need to figure out what a_{2023} is.

Wait, before jumping into that, I should recall the tangent multiple-angle formulas. I remember that $\tan(nx)$ can be expressed as a ratio of polynomials in $\tan x$, where the numerator is an odd-degree polynomial and the denominator is an even-degree polynomial ...</think>

After carefully considering the expansion of $\tan(2023x)$ and testing various formulas ... which is the coefficient of $\tan^{2023} x$ in the numerator, we look at

the coefficient for ($k = 2023$) in the numerator sum:

$$[a_{2023} = (-1)^{2023-1} \binom{2023}{2023} = (-1)^{2022} \times 1 = 1]$$

Therefore, $a_{2023} = 1.$ \n\n[\n\n1\n\n]

Correct Answer: -1

Successful Example of DeepSeek-R1-Distill-Qwen-7B on Minerva Math: Base fails while $\alpha 1$ passes

Question: A particular star has an absolute magnitude $M = -7$. If this star is observed in a galaxy that is at a distance of 3Mpc, what will its apparent magnitude be?

Response from Base: <think>

Okay, so I need to find the apparent magnitude of a star given its absolute magnitude and the distance to the galaxy it's in. Hmm, let's see. I remember that absolute magnitude is how bright a star appears at a standard distance, which I think is 10 parsecs. Apparent magnitude, on the other hand, is how bright it appears from Earth, which depends on how far away it actually is. The formula that relates absolute magnitude (M), apparent magnitude (m)

...</think>

To find the apparent magnitude of a star given its absolute magnitude and the distance to the galaxy it is in, we use the distance modulus formula. The formula is:
$$m - M = 5 \log(d) - 5$$
where (m) is the apparent magnitude...Rounding to one decimal place, the apparent magnitude is approximately 20.4.

Response from $\alpha 1$: <think>

Okay, so I need to find the apparent magnitude of a star given its absolute magnitude and the distance to the galaxy it's in. Hmm, I remember that absolute magnitude is how bright a star appears at a standard distance, which is 10 parsecs, right? And apparent magnitude is how bright it appears from Earth, which depends on its actual distance. The formula that relates absolute magnitude (M), apparent magnitude (m), and distance (d) in parsecs is the distance modulus formula. I think it's something like $m = M + 5 + 5 \log_{10}(d)$. Wait, let me make sure. Is it plus or minus 5? I think it's plus 5 because as the distance increases, the apparent magnitude increases, meaning it becomes dimmer. So, yes, $m = M + 5 \log_{10}(d) + 5$.

Wait, hold on, no, that's not right...Then, subtract 5:
$$25.3855 - 5 = 20.3855$$

So, the apparent magnitude is approximately 20.3855, which rounds to 20.39.
Therefore, the apparent magnitude of the star is 20.39.

Correct Answer: 20.39

Failure Example of DeepSeek-R1-Distill-Qwen-7B on LiveCodeBench: $\alpha 1$ still fails

Question: You are given a 0-indexed string s and a dictionary of words dictionary. You have to break s into one or more non-overlapping substrings such that each substring is present in dictionary. There may be some extra characters in s which are not present in any of the substrings.

Return the minimum number of extra characters left over if you break up s optimally.

Example 1:

Input: $s = \text{"leetscode"}$, dictionary = $[\text{"leet"}, \text{"code"}, \text{"leetcode"}]$. Output: 1
Explanation: We can break s in two substrings: "leet" from index 0 to 3 and "code" from index 5 to 8. There is only 1 unused character (at index 4), so we return 1.

Example 2:

Input: $s = \text{"sayhelloworld"}$, dictionary = $[\text{"hello"}, \text{"world"}]$. Output: 3
Explanation: We can break s in two substrings: "hello" from index 3 to 7 and "world" from index 8 to 12. The characters at indices 0, 1, 2 are not used in any substring and thus are considered as extra characters. Hence, we return 3.

Constraints: $1 \leq s.length \leq 50$, $1 \leq \text{dictionary.length} \leq 50$, $1 \leq \text{dictionary}[i].length \leq 50$, $\text{dictionary}[i]$ and s consists of only lowercase English letters, dictionary contains distinct words

Response from $\alpha 1$: <think>

Okay, I need to solve this problem where I have to find the minimum number of extra characters left when breaking a string s into substrings that are all present in a given dictionary. Hmm, let's think about how to approach this.

Wait, the problem says that the string must be broken into one or more non-overlapping substrings, each of which is in the dictionary. ... </think>

To solve this problem, we need to break a given string 's' into substrings such that each substring is present in a given dictionary. ...

```
### Solution Code
““python\n \nclass Solution:\n     def minExtraChar(self, s: str, dictionary: List[str]) -> int:\n         n = len(s)\n         dp = [float('inf')] * (n + 1)\n         dp[0] = 0 # Base case: 0 characters, 0 extra\n         for i in range(1, n + 1):\n             for l in range(1, i + 1):\n                 start = i - l\n                 if start < 0:\n                     continue\n                 substring = s[start:i]\n                 if substring in dictionary:\n                     if dp[start] + (n - i) < dp[i]:\n                         dp[i] = dp[start] + (n - i)\n         return dp[n]
```

Explanation

- **Initialization:** The DP array is initialized to handle the base case where no characters are processed, resulting in zero extra characters. ...

- **Result Extraction:** The final result is found in 'dp[n]', which gives the minimum number of extra characters after processing the entire string.

This approach ensures that we efficiently find the optimal way to split the string into valid substrings while minimizing the extra characters, leveraging dynamic programming to explore all possible valid splits.

Successful Example of QwQ-32B on MATH500: Base fails while $\alpha 1$ passes

Question: There are 360 people in my school. 15 take calculus, physics, and chemistry, and 15 don't take any of them. 180 take calculus. Twice as many students take chemistry as take physics. 75 take both calculus and chemistry, and 75 take both physics and chemistry. Only 30 take both physics and calculus. How many students take physics?

Response from Base: <think>

Okay, let's try to tackle this problem step by step. Hmm, so there are 360 people in the school. Out of these, 15 don't take any of the three subjects: calculus, physics, or chemistry. That means $360 - 15 = 345$ students take at least one of those subjects.

Alright, let me note down all the given information:

- Total students: 360
- Take all three (calculus, physics, chemistry): 15
- Don't take any: 15
- Take calculus: 180...</think>

Given the problem, we need to determine the number of students taking physics. Here is the step-by-step reasoning:
\n\n

1. **Total students:** 360
2. **Students not taking any subjects:** 15, so students taking at least one subject: $(360 - 15 = 345)$
3. **Students taking calculus (C):** 180
4. **Students taking all three subjects (C, P, Ch):** 15...Thus, the number of students taking physics is 115.

Response from $\alpha 1$: <think>

Okay, let's try to tackle this problem step by step. Hmm, so there are 360 people in the school. 15 take all three subjects: calculus, physics, and chemistry. Also, 15 don't take any of them. That means the number of students taking at least one of the subjects is $360 - 15 = 345$.

Wait, the total number in the union of calculus, physics, and chemistry is 345. Let me note down the given data first:

- Total students: 360
- Take all three (Calculus, Physics, Chemistry): ...</think>

So simplifying:

$$180 + P + Ch - 180 + 15 = P + Ch + 15 = 345$$

Hence, $P + Ch = 330$. Since $Ch = 2P$, substituting:

$$P + 2P = 330 \rightarrow P = 110.$$

All steps check out, and the Venn diagram regions confirm consistency. Therefore, the number of students taking physics is 110.

Final Answer\n110.

Correct Answer: 110

Failure Example of QwQ-32B on AIME24: $\alpha 1$ still fails

Question: Torus T is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let S be a sphere with a radius 11. When T rests on the outside of S , it is externally tangent to S along a circle with radius r_i , and when T rests on the outside of S , it is externally tangent to S along a circle with radius r_o . The difference $r_i - r_o$ can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

```
[asy] unitsize(0.3 inch); draw(ellipse((0,0), 3, 1.75));  
draw((-1.2,0.1)..(-0.8,-0.03)..(-0.4,-0.11)..(0,-0.15)..(0.4,-0.11)..  
(0.8,-0.03)..(1.2,0.1)); draw((-1,0.04)..(-0.5,0.12)..(0,0.16)..(0.5,0.12)..  
(1,0.04)); draw((0,2.4)-(0,-0.15)); draw((0,-0.15)-(0,-1.75), dashed);  
draw((0,-1.75)-(0,-2.25)); draw(ellipse((2,0), 1, 0.9));  
draw((2.03,-0.02)-(2.9,-0.4)); [/asy]
```

Response from $\alpha 1$: <think>

Okay, so I need to solve this problem about a torus and a sphere. Let me try to understand the setup first. The torus T is formed by revolving a circle with radius 3 around an axis in the same plane, which is 6 units away from the center of the circle. That makes sense—it's like a donut shape where the tube radius is 3 and the distance from the center of the tube to the center of the torus is 6.

Then there's a sphere S with radius 11. The problem says that when the torus rests on the outside of the sphere, it can be externally tangent to the sphere along a circle with radius r_i , and similarly along another circle with radius r_o . The question is asking for the difference $r_i - r_o$, expressed as a fraction m/n where m and n are coprime, and then $m + n$.

Wait, actually, the problem mentions...</think>

Okay, let's start by setting up a coordinate system where the sphere is centered at the origin $((0, 0, 0))$ with radius 11. The torus (T) is generated by revolving a circle of radius 3 around an axis that is 6 units away from the center of the generating circle. Let's place the generating circle in the (x) - (y) plane, centered at $((6, 0, 0))$. The axis of revolution is the (z) -axis, so the torus's axis is the (z) -axis.

When the torus rests on the outside of the sphere, they are externally tangent along a circle. To find the radii (r_i) and (r_o) of these circles of tangency, we need to consider the cross-sectional view in the (x) - (y) plane. Here, the sphere appears as a circle of radius 11 centered at the origin, and the generating circle of the torus is a circle of radius 3 centered at $((6, 0))$.

For the torus to be externally tangent to the sphere, the distance between their centers must equal the sum of their radii. However, since the sphere is much larger, the torus must be positioned such that the distance from the sphere's center to the torus's generating circle's center plus the sphere's radius equals the distance from the sphere's center to the farthest point on the torus. ...

Correct Answer: 127