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Abstract

This paper presents ALPHAONE (1), a universal framework for modulating rea-
soning progress in large reasoning models (LRMs) at test time. «1 first introduces
o moment, which represents the scaled thinking phase with a universal param-
eter . Within this scaled pre-a moment phase, it dynamically schedules slow
thinking transitions by modeling the insertion of reasoning transition tokens as a
Bernoulli stochastic process. After the « moment, o1 deterministically terminates
slow thinking with the end-of-thinking token, thereby fostering fast reasoning
and efficient answer generation. This approach unifies and generalizes existing
monotonic scaling methods by enabling flexible and dense slow-to-fast reasoning
modulation. Extensive empirical studies on various challenging benchmarks across
mathematical, coding, and scientific domains demonstrate «1’s superior reasoning
capability and efficiency.

1 Introduction

Large Reasoning Models (LRMs) such as OpenAl ol [26] and DeepSeek-R1 [14] have demonstrated
unprecedented progress in approaching human-like system-2 reasoning capabilities, enabling slow
thinking—slowing down reasoning progress at test time. These advanced models are trained to
utilize slow thinking via reinforcement learning, enabling LRMs to slow down reasoning progress
automatically. Is such automatic slowing down of reasoning progress determined by LRMs sufficiently
reliable? According to Kahneman [29], humans typically think fast first and activate slow thinking
when running into difficulty, resulting in overall comprehensive but efficient reasoning. While
interesting results have been observed, a lot of works have pointed out that the LRMs themselves are
prone to overthinking [9, 45, 57, 75] or underthinking [56, 65, 76]. This is because of the inability of
LRMs to find the optimal human-like system-1-to-2 reasoning transitioning.

We present ALPHAONE (a1), which efficiently scales LRMs at test time through a universal
reasoning progress modulation. We introduce alpha moment, parameterized by o > 0, where the
thinking process is scaled by « times throughout the generation sequence. To be specific, within a
certain token length scaled by «, we stochastically append the reasoning transition token “wait” after
structural delimiters “\n\n” under Bernoulli(p,,;.). Here, p,.; is scheduled to change over time to
activate slow thinking. For example, a simple linear annealing over time indicates a slow thinking
first, then fast thinking strategy.

However, we observe that amplifying slow thinking enables LRMs to sustain it automatically. Thus,
when p,,;; reaches 0, we replace “wait” with “</think>" to deactivate slow thinking and switch to
fast reasoning. In this fashion, a1 unifies prior methods like s1 [41], where a1 reduces to sl if p, ;.
is 1 or O at the end of a reasoning segment within a certain reasoning token length. However, different
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Figure 1: Overview of ALPHAONE (a1). Here ¢ represents o moment (Section 3). al applies
dense reasoning modulation via a user-defined slow thinking scheduling in pre-ow moment. In addition,
ol utilizes a post-ae moment modulation by replacing slow thinking transitioning tokens “wait” to
“</think>", which fosters fast thinking. Specifically, o determines when the slow-to-fast reasoning
transition occurs. For example, reducing o from 1.4 to 1.0 shifts the « moment earlier, resulting in
shorter slow reasoning phase and accelerating the annealing of p,,;.

from these works that only explore sparse slow reasoning modulation, o1 modulates reasoning
continuously, supporting both sparse and dense modulation strategies.

Takeaways. We present insightful findings from different a1 LRMs: 1) Slow thinking first, then fast
thinking, leads to better LRM reasoning. ii) Slow thinking can bring efficient test-time scaling.

2 Background & Problem Statement

Revisiting Reasoning Models. Following the success of OpenAl’s ol model [26], modern LRMs
solve complex reasoning problems via a thinking-then-answering paradigm [14, 25, 50]. Generally, a
special end-of-thinking token “</think>" is generated as a end-of-thinking moment, transitioning
from the thinking phase to the answering phase. During the thinking process, LRMs frequently
generate slow thinking transitioning tokens such as “wait”, and “hmm”, efc.

Reasoning Progress. Let the overall answer sequence generation process be a reasoning progress
P € [0, 1], where 0 and 1 indicate the start and the end of reasoning. Notably, reasoning progress
represents the problem-solving progress instead of the number of tokens. However, it is intractable to
measure the exact progress obtained. Hence, we define the reasoning progress following a reasoning
velocity assumption. Given the total time ¢ = T" > 0 spent on generating the whole sequence, the
reasoning velocity at timestep t, V; is defined as %, where dt is the infinitesimal of time. We assume:

Assumption 1. The reasoning velocity of slow thinking is smaller than that of fast thinking.

A Universal View of Test-Time Scaling. There are two important components that must be
modulated: i) Thinking phase budget. As discussed before, ol-like LRMs follow a “think-then-
answer” paradigm. Therefore, modulating reasoning via scaling up or down the thinking phase
budget is required. ii) Slow thinking scheduling. Within the thinking phase, the transition to slow
thinking should also be modulated, thus increasing or reducing slow thinking according to a certain
plan specified by users (e.g., slow thinking first, and then fast thinking).

Based on the above analysis, we establish a unified perspective on test-time scaling and identify key
limitations in existing approaches—namely, their failure to consider both reasoning schedule and
overall thinking budget jointly. While LRMs are indirectly guided to reason more or less—sometimes



Table 1: Systematic comparison of reasoning results on different reasoning benchmarks with
DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B. Additional results for other mod-
els are provided in Section E. P@1: Pass@1 (%); #Tk: number of generated tokens; Ape| (%):
average Pass@]1 result boost over the base model.

MATHEMATICAL CODING SCIENCE
Method AIME24 AMC23 Minerva MATHS500 LiveCode Olympiad
P@1 #Tk P@1 #Tk P@1 #Tk P@I #Tk P@I #Tk P@I #Tk  Ape)

DeepSeck-R1-Distill-Qwen-1.5B

BASE 233 7280 57.5 5339 32.0 4935 79.2 3773 17.8 6990 38.8 5999 N/A
s1* 267434 7798 575,00 06418 31.604 5826 782,09 4733 17.00s8 7025 385,03 6673 +0.15
CoD 30.0,67 6994 65.0.75 5415 29.030 4005 81.4,, 3136 20.3,,5 6657 40.6,3 5651 +2.95

al (Ours) 30.0.47; 5916 70.0..,s 4952 34.2.,, 4586 81.0.15 3852 24.8.;) 5426 45.5.;; 4944 +6.15

DeepSeek-R1-Distill-Qwen-7B

BASE 46.7 6648 82.5 4624 40.4 4191 87.6 3239 435 5885 50.4 5385 N/A
s1* 46.7,00 7295 80.0.5 5673 423,19 6510 92.8,5, 5848 44.0,95 5979 542,35 6007 +1.48
CoD 43334 6078 875,50 3594 434,30 2142 88.8,, 2094 45.0.;5 5593 53.5,3; 4520 +1.73

al (Ours) 50.0.:35 6827 90.0.75 4397 42.3.,9 4124 912,34 4337 49.8.55 5067 55.7.5; 4883 +4.65

achieving deeper reasoning or pruning unproductive thoughts—we instead aim to explicitly and
universally modulate the reasoning process by jointly considering both components.

3 ALPHAONE

o Moment for Universal Modulation. To modulate the thinking phase budget, we scale the thinking
phase by at least ax, where o > 1 is a universal parameter. Formally, given the average thinking
phase token length Ny > 0 generated, we scale the thinking phase token length to oIV ink, Where
the moment when the generated token length reaches AN ink is dubbed as “a moment”. In addition
to scaling the thinking phase, we modulate the thinking phase via slow thinking scheduling before
the e moment Note that o moment does not represent the new thinking phase transitioning moment.

Pre-a Moment Modulation. Following previous works [41, 75], we activate slow thinking before o
moment via appending “wait” after a frequently co-generated structural delimiters “\n\n”. Moreover,
the activation of slow thinking is conducted following a user-specified scheduling plan

a1 achieves such scheduling by modeling the activation of slow thinking as a Bernoulli stochastic
process. Specifically, a1 appends “wait” following Bernoulli(p,,;.). Lett = 0,1, ...,T,, be the
timestamps of generated tokens before « moment, where 7,,, = AN think represents the timestamp of
a moment. p,,;, is determined by a user-specified scheduling function S(%),

Pyait = S(t)vt: 0,1,...., . (1)
S(t) can be an arbitrary function. a1 adopts linear annealing, which we find the most effective.

Post-a Moment Modulation While an LRM significantly increases slow thinking through pre-a
modulation, this extended thinking phase often exhibits slow thinking inertia, making it difficult to
transition back to fast thinking. Notably, without post-a moment modulation, the LRM substantially
reduces the likelihood of generating “</think>". Furthermore, inserting a few “</think>" tokens
does not effectively overcome the inertia, failing to fully restore fast thinking.

After the & moment, we guide a1 to transition into fast reasoning by disabling further slow thinking.
Specifically, any generated slow reasoning transition token “wait” is replaced with “</think>" to
explicitly mark the end of the thinking phase, reinforcing a shift to fast thinking before entering the
answering phase. This deterministic termination strategy allows a1 to conclude reasoning naturally
and consistently, enabling more efficient test-time scaling.

4 Experiments

Experimental Setup We evaluate the reasoning capability of LRMs on six benchmarks: (i) math-
ematical reasoning with AIME24 [40], AMC23 [3], and Minerva [34]; (ii) code generation with



LiveCodeBench [27]; and (iii) scientific reasoning with OlympiadBench [23], reporting average
Pass@1 accuracy and generated tokens. Our base models are two ol-like open-source LRMs,
DeepSeek-R1-Distill-Qwen-1.5B and 7B [14]. We compare «1 against (i) BASE, the vanilla LRM
that transitions between slow and fast thinking automatically; (ii) S1 [41], which enforces monotoni-
cally increasing slow thinking by appending “wait” tokens; and (iii) CHAIN OF DRAFT (CoD) [72],
which enforces monotonically decreasing slow thinking by restricting each step to at most five words.

Main Results Table 1 shows the systematic comparison results of our o1 and baseline methods, and
we observe: i) a1 consistently yields a higher problem-solving accuracy than all baseline methods
across all models and benchmarks. This demonstrates both the effectiveness and efficiency of a1. ii)
Compared to baseline test-time scaling methods, including s1 and CoD, a1 still achieves significantly
better results. iii) Surprisingly, we observe that while arl modulates reasoning densely without
restrictions on reducing the thinking budget. This indicates that o1 achieves more efficient reasoning
than baselines, which we provide analysis later.

Vanilla o
Puait Puait Puait Puait Puait pwa)t
1 1 T 1 1
0.7 |
0 > o ——a-4d> . ¢ 4> <> g -S> >
Generation Generation Generation Generation Generation Genemt/on
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Figure 2: Visualization of different scheduling strategies. We detail the functions in Section 4.
Here X represents o moment, and & denotes the end of the thinking phase.

Analytic Results As shown in Fig. 2, we study four variants of scheduling strategies for S(t) defined
in Eq. (1), where T},, = aN pink represents the timestamp of v moment:

» Constant: S(t) := Peonsiants Where Deoneane € [0, 1] is a constant probability. This represents a
consistently more slow thinking strategy, and the increase is large when p..nc 15 larger. Note that
when p_ . = 0 and o = 1, it degenerates to vanilla reasoning models; and when p g gane < 0.1
and o > 1, it degenerates to s1-like model, where only about two “wait” are appended.

* Linear increase: S(t) := =-t, where t = {0,1,...,T,,} and 7 > 0 indicates the increasing
coefficient. This scheduhng function indicates a fast to slow thlnkmg strategy.

» Exponential anneal: S(¢) := exp(—~t), where ¢t = {0,1,...,7,,} and v > 0 is a hyper-
parameter that controls annealing speed (here we use v = 0.3). This scheduling function indicates
a slow-to-fast thinking strategy.

* Linear anneal: S(t) := f—t + 1, where —=— < 0 indicates the annealing coefficient. Its
modulation is similar to exponentlal anneal scheduhng

AMC23 Olympiad Olympiad
7 a1 ymp! ymp
o 89 750 N +6.71% 1+53% §
= 587 -tk : i
S, Sgs | | \ : §
® B ’ \ i §
52 77 § §
75
47 73 & &
(7] vanilla (D s1 (] Constant () Linear Increase Exponential Anneal () Linear Anneal
(a) DeepSeek-R1-Distill- (b) DeepSeek-R1-Distill- (c) DeepSeek-R1-Distill- (d) DeepSeek-R1-Distill-
Qwen-1.5B Qwen-7B Qwen-1.5B Qwen-7B

Figure 3: Ablation study of different scheduling strategies on (a-b) AMC23 and (c-d) Olympaid-
Bench.

Fig. 3 shows the results of a1 using these four different scheduling strategies. We observe that linear
annealing consistently yields the highest reasoning accuracy, indicating that the slow thinking first,
then fast thinking is a better slow thinking scheduling strategy.



5 Conclusions

This paper presents ALPHAONE (1), a universal framework for modulating reasoning progress in
large reasoning models (LRMs) at test time.
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A Related Works

A.1 Large Reasoning Models

Large Reasoning Models are rapidly emerging as a family of foundation models [7] that target human-
level system-2 reasoning [29]. Starting from OpenAl’s ol [26] in 2024, numerous efforts follow this
“thinking-then-answering” paradigm. Notably, ol-like Large Language Models (LLMs) can solve
increasingly complex reasoning problems after a thorough chain of thoughts [6, 67, 77], such as
the IMO competition. These advanced models are mainly developed via large-scale reinforcement
learning (RL) to align human preference [12, 14, 51, 54], where a reward model is used to judge
model answers [37, 60]. Notable efforts replicating o1’s success include DeepSeek R1, Qwen QwQ,
and Phi-4 [1, 14, 50], which typically utilize a special end-of-thinking token “</think>”, after
which a solution is output to the user. Recently, some researchers have explored applying RL during
post-training fine-tuning, where promising results have been obtained [11, 49, 88].

A.2 Reasoning with Test-Time Scaling

Reasoning with test-time scaling has recently become a useful strategy that empowers LLMs with
a scalable reasoning capability at test time. The mainstream methods lie in two categories, i.e.,
i) parallel scaling and ii) sequential scaling. The key idea of parallel scaling is Best-of-N (BoN)
sampling, where the best choice is selected using uncertainty criteria like self-consistency [64],
reward model [13, 37], or perplexity [16]. Specifically, one line of work focuses on sequence-
level sampling [5, 11, 13, 20, 31, 52, 58, 61, 82, 86], while another line of work utilizes token-
/step- level sampling including beam-/tree- based searching [8, 18, 21, 32, 48, 62, 70, 79, 83].
Meanwhile, sequential scaling enhances or reduces slow thinking. This technique typically relies on
an iterative refinement and revision of answers generated by LLMs themselves [39, 81] or external
feedback [10, 19, 24, 30, 36, 85]. Following this line of research, recent works have been devoted
to addressing the underthinking and overthinking issues of modern LRMs via reinforcing [41] and
restricting [72, 73] slow thinking, respectively. Given the non-conflict between parallel scaling
and sequential scaling, there exists another group of hybrid scaling methods that leverage both
strategies [35, 82].

B Limitations

While ALPHAONE provides a universal view of test-time scaling of LRMs, and a significant perfor-
mance boost has been achieved, we identify some possible limitations as follows. i) ALPHAONE
targets at ol-style LRMs, where tokens such as “wait” is proved effective in transitioning into slow
thinking. However, future LRMs may use a different slow thinking transitioning strategy, leading to a
possibility of incompatibility with our framework. ii) ALPHAONE relies on a-moment throughout
reasoning modulation, and the average thinking phase token length is typically required. This paper
obtains it by first running LRMs on 10 random samples, which requires marginal cost. However, in
case that no test questions are available, ALPHAONE can only rely on an empirical thinking phase
length that may be suboptimal.

C Broader Impact

This work targets complex reasoning problems with LRMs, which we believe will lead to no ethical
concerns. However, since LRMs are modern variants of LLMs, any ethical concerns raised by LLMs
can potentially exist.

D Additional Implementation Details

D.1 Computaional Budget

We used 8 NVIDIA L40S GPUs and 4 NVIDIA A100 80GB GPUs for the experiments.
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D.2 Hyper-parameters & Parameters

For reproducibility, we provide the complete set of average thinking phase token length N gpx in
Table 2, which are obtained by randomly sampling 10 test questions on each benchmark and averaging
the generated token lengths. Since the effective range of o observed in Figure 7 is relatively broad,
practical implementations can tolerate variance in this measurement.

Table 2: Average thinking phase token length Ninink across different benchmarks. The results are
obtained by running LRMs on randomly sampled 10 samples.

Model AIME24 AMC23 Minerva MATH500 LiveCode Olympiad
DeepSeek-R1-Distill-Qwen-1.5B 4130 3303 3101 2435 2172 3417
DeepSeek-R1-Distill-Qwen-7B 4751 3243 3064 2352 3120 3330
Qwen QwQ-32B 2597 2124 1710 1493 4915 2052

D.3 Benchmarks

AIME 2024 The AIME 2024 dataset is a specialized benchmark collection consisting of 30
problems from the 2024 American Invitational Mathematics Examination [40]. These problems cover
core secondary-school mathematics topics such as arithmetic, combinatorics, algebra, geometry,
number theory and probability. The collection places rigorous demands on both solution accuracy
and conceptual depth.

AMC 2023 The AMC 2023 dataset consists of 40 problems selected from the AMC 12A and
12B contests. These exams are sponsored by the Mathematical Association of America and target
U.S. students in grade 12 and below, featuring challenges in algebra, geometry, number theory, and
combinatorics [3].

Minerva Math Minerva Math [34] consists of 272 undergraduate-level STEM problems harvested
from MIT’s OpenCourseWare. These problems span solid-state chemistry, information and entropy,
differential equations, and special relativity. Each includes a clearly delineated answer—191 verifiable
by numeric checks and 81 by symbolic solutions. The benchmark is specifically designed to evaluate
multi-step scientific reasoning capabilities in language models.

MATHS00 MATHS500 comprises a selection of 500 problems extracted from the MATH bench-
mark [37]. The collection covers a range of high-school mathematics domains, including Prealgebra,
Algebra and Number Theory. To ensure comparability with prior work, we use the exact problem set
originally curated by OpenAl for evaluation.

LiveCodeBench LiveCodeBench [27] is a contamination-free benchmark for evaluating large
language models on code. The suite is continuously updated, gathering new problems over time. It
currently comprises 400 Python programming tasks released between May 2023 and March 2024, each
paired with test samples for correctness verification. Beyond basic code generation, LiveCodeBench
also measures advanced capabilities such as self-repair, code execution and test-output prediction.

OlympiadBench OlympiadBench [23] consists of 8,476 Olympiad-level problems that evaluate
mathematical and physical reasoning in Al systems. It features a wide difficulty range, open-ended
problem generation, expert solution annotations, detailed difficulty labels, and multilingual coverage.
The subset we use in our paper contains 675 open-ended, text-only math competition problems in
English.

E Additional Results

E.1 Additional Models Results
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To further demonstrate the generalization ca- Figure 4: Additional reasoning results. P@1:
pability of al, we conduct experiments on Pass@1 (%); #Tk: number of generated tokens.

two additional model families, including Phi4-
reasoning [2] from Microsoft and DeepSeek- MATHEMATICAL SCIENCE
R1-Distill-Llama-8B, across math and science
benchmarks. Fig. 4 demonstrates that our

Method AIME24 AMC23 Olympiad

method consistently achieves large gains. P@1 #Tk P@1 #Tk P@l1 #Tk
() vanila () Constant Exponential Anneal Microsoft Phi4-reas0ning
s (1) tinear Increase (7] Linear Anneal BASE 63.3 5677 92.5 2858 60.1 4174
32 52 al (Ours) 66.7 5532 95.0 2863 62.5 3786

+6.7% DeepSeek-R1-Distill-Llama-8B

BASE 267 7184 70.0 5011 45.6 5757
al (Ours) 333 7022 80.0 4282 529 4993

= [0 i

(a) DeepSeek-R1-Distill- (b) DeepSeek-R 1-Distill-
Qwen-1.5B Qwen-7B

Figure 5: Ablation study of different
scheduling strategies on AIME24.

E.2 Scheduling Strategy

In addition to the results in Fig. 3 tested on

AMC23 and Olympiad, we also show the results OlympiadBench g;ﬁd ’
tested on AIME24 in Fig. 5. From the results, 766
we observe that the linear increase consistently , +1207
. . . . LiveCodeBench 434
yields the best performance, which aligns with .25
our previous observation. This further provides e
evidence that slow-then-fast thinking is an effi- MATH500 %Qq y
cient slow-thinking scheduling strategy. '
. 771 +4.19
Minerva-Math ] +16.09
E.3 Scaling Efficiency Analysis o
- . . AMC23 e
As shown in Fig. 6, al consistently achieves 499
positive REP with Deepseek-R1-distill-Qwen- AIME24 77777 +4.43
7B, demonstrating stable gains over the base 760 '
model. Similar to Fig. 8, it outperforms CoD )
and s1 across nearly all benchmarks, particularly @al(Ours) @CoD @sl

on LiveCodeBench and AIME24.

Figure 6: Scaling efficiency analysis with REP
E4 1Is using Deepseek-R1-distill-Qwen-7B.
post-c moment modulation necessary?

Typical test-time scaling methods focus on the modulation of slow thinking within the thinking
phase, while a1 consists of a post-a moment modulation that encourages fast thinking. To validate
its necessity of enforcing fast thinking in the end, we conduct an ablation study on utilizing the
post-a moment modulation, shown in Table 4. We observe: i) Pre-a moment modulation of slow

Table 3: Cross-linguistic generalization results with DeepSeek-R1-Distill-Qwen-1.5B.

GaoKao 2024 MGSM
Method Chinese French German Russian Japanese
P@] #Tk P@1 #Tk P@] #Tk P@1 #Tk P@] #Tk
BASE 65.9 4666 49.2 577 33.6 607 48.0 1751 28.8 966
ol (Ours) 69.2 4116 50.8 601 37.6 552 56.0 1650 30.4 1130
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Figure 7: Scaling property of a. We scale o from 0 to the maximum value restricted by the
maximum token length, and plot the corresponding reasoning Pass@ 1 and average thinking phase

token length on AMC23 and MATHS500.

thinking is insufficient. When the post-o moment modulation is reduced to a single operation,
the performance of a1 significantly drops. This is because the increase of slow thinking during
pre-a moment brings a slow thinking inertia (as discussed before in Section 3), leading to a slow
thinking intensive reasoning. ii) By utilizing a post-a moment modulation, a1 successfully ends in a
fast thinking, which demonstrates the necessity of combining both slow thinking and fast thinking.

E4.1 Can
a-moment scale the thinking phase budget?

Fig. 7 shows the results of a1 with different a-
moments determined by scaling o from O to a
maximum value subject to the 8192 token length
budget. We observe: i) a-moment enables a
scalable thinking phase budgeting. By scaling
up «, the average thinking phase token length
is accordingly scaled up. ii) Interestingly, while
the thinking phase is scaled up, there exists a
trade-off between the optimal value of o and
the resulting reasoning accuracy. This indicates
that monotonously increasing the thinking phase
budget does not consistently bring better reason-
ing performance, and it is critical to find the
optimal a-moment that results in a satisfactory
improvement.

E.5 Does ol scale more efficiently?

To quantitatively evaluate how different methods
trade off reasoning efficiency and accuracy, we
introduce the Frgp (AmethocU Abases Tnorm) (Rea-
soning Efficiency-Performance, REP) metric.
The REP metric is defined as:

-Amethod - -Abase

Fi REP(-Amethod; -Abasea Tnorm) = T
norm

2
where Ajpemod and Ap,se denote the reasoning
accuracy of the evaluated method and the base
model, respectively. Tom is the normalized
thinking phase token length, computed by divid-
ing the current thinking phase token length by
the maximum token length. Higher REP indi-
cates stronger performance with better reasoning
efficiency.

Table 4: Ablation study on post-oc moment mod-
ulation. Without post-az modulation represents our
al without the suppression of the slow thinking
inertia after the « moment.

Post-o Moment AIME24 AMC23

Method

Modulation 561 41k Pe1  #Tk
DeepSeek-R1-Distill-Qwen-1.5B

BASE N/A 23.3 7280 57.5 5339

al (Ours) X 26.7 7929 47.5 6903

al (Ours) v 30.0 5916 70.0 4951
DeepSeek-RI1-Distill-Qwen-7B

BASE N/A 38.8 5999 825 4624

ol (Ours) X 30.0 7666 75.0 5878

al (Ours) v 50.0 6826 90.0 4397

+111
OlympiadBench +4.48
-058 f

+12.83
LiveCodeBench

-273
MATH500 : /895

-2.49
Minerva-Math :l +4.24

-0.86

-9.98

]+2194
] +18.1

AMC23

+9.98
AIME24 +10.95
+4.86

Aal (Ours) @CoD m@sl

Figure 8: Scaling efficiency analysis with REP
using Deepseek-R1-distill-Qwen-1.5B. The REP
metric is introduced in Eq. (2).
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Figure 9: Scaling property of ‘“wait” frequency under constant scheduling on AMC23 and
OlympiadBench. Increasing peonstane leads to a higher frequency of yielding “wait” in the Bernoulli
process Bernoulli(p, ¢ )-

We report the REP of CoD, s1, and a1 on six reasoning benchmarks with Deepseek-R1-distill-Qwen-
1.5B. Fig. 8 shows that a1 achieves higher REP on most benchmarks, indicating a more favorable
balance between reasoning performance and efficiency. Notably, a1 outperforms CoD by +6.62 and
s1 by +11.68 on Olympiad-Bench, and exceeds CoD by +14.22 on Minerva-Math.

E.6 How frequent should slow thinking transitioning be?

a1 modulate slow thinking transitioning via sampling from Bernoulli(p,,;. ), which leads to another
question of how large should p,,;, be that can bring a better result. To study this question, we use the
constant scheduling function and scale pconstant from O to 1 to increase the frequency of transitioning to
slow thinking. This is because the constant scheduling is a sampling process with a certain probability,
and the value of the probability determines how frequently the slow thinking transitioning token
will be sampled. Fig. 9 shows the results, from which we observe: i) An extremely low or high
frequency of transitioning to slow thinking brings unsatisfactory results (e.g., Dconstant = 0.1). Similar
to the scaling of the thinking phase dedget (e.g., modualting ), the slow thinking frequency also
needs to be carefully selected. ii) While an extremely dense or sparse slow thinking transitioning
leads to unsatisfactory results, the reasoning performance is decent across a large range of Pconstant»
demonstrating that increasing slow thinking generally brings improved reasoning.

E.7 Cross-linguistic Generalization

We have conducted ablations on cross-linguistic Figure 10: Ablation study on different transi-
generalization across five languages, includ- tioning tokens on AMC23 (8192).

ing Chinese, French, German, Russian, and
Japanese on GaoKao 2024 [84] and MGSM
[55] benchmarks. The results demonstrate the

D k-1.5B
Transitioning Token Category Ceepseer-7.5P

. . .. .. . P@1 #Tk
superior cross-linguistic generalization capabil-
ity of al in Table 3. Notably, on MGSM, al  BASE (For Reference) N/A 575 5339
shows substantial gains, with a +4.0% increase  “yait,” Slow Thinking 70.0 4952
fpr German and an +8.0% improvement for Rus-  «p » Slow Thinking 72.5 4793
s1an. “Alternatively,” Slow Thinking 70.0 5318
L “Maybe,” Continuation  62.5 5380
E.8 Transitioning Tokens “Then,” Continuation ~ 65.0 5050
We provide an ablation study on different tran-  BYt:~ Contrastive 600 5763
sitioning tokens on the AMC23 with DeepSeek- “However,” Contrastive  55.0 5902
R1-Distill-Qwen-1.5B. As illustrated in Fig. 10,  “Though,” Contrastive ~ 55.0 5494

the empirical results show that slow thinking
transitioning tokens like “Wait”, “Hmm”, and “Alternatively” generally improve both accuracy
and reasoning efficiency, though their effectiveness varies by model. Continuation tokens (“Maybe”,
“Then”) offer minor gains, while contrastive tokens (“But”, “However”, “Though”) often disrupt
reasoning and reduce performance, especially with “However” and “Though”.
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Table 5: Attention analysis on slow thinking transitioning. The values are attention after sub-
stituting the original token after ¢-th “\n\n” with “Wait” toward two parts: the user-provided
instruction (Question Part) and the intermediate reasoning steps (Reasoning Part). We report results
on the DeepSeek-R1-Distill-Qwen-1.5B model on the AMC23 dataset. Special tokens such as
“<|begin_of_sentence|>" are excluded from both the question and the reasoning process, so the
combined attention does not sum to 1.0.

ith “\n\n” Question Part  Reasoning Part

Base al Base al

2 0.1944 0.1773 0.5016 0.5882
4 0.1389  0.1206  0.6281 0.6643
6 0.0882 0.0877 0.6444  0.6930
8 0.0864 0.0762 0.6168 0.7018

10 0.0792 0.0738 0.6984 0.7209
12 0.0705 0.0752 0.6760 0.7185
14 0.0689 0.0682 0.6360 0.7240

E.9 Slow Thinking Transitioning Analysis

We analyze the quantitative impact of the “Wait” token on attention distributions in the last Trans-
former layer. This analysis is useful in revealing the dynamics of LLMs during inference, which
intuitively improves the understanding of the method and serves as a good alternative for pure theo-
retical analysis. Specifically, we analyze how substituting the original token after -th “\n\n” with
“Wait” influences the model’s attention toward two parts: the user-provided instruction (question part)
and the intermediate reasoning steps (reasoning part). Results are shown in Table 5. When varying
the position at which “\n\n” is inserted, the empirical results show that this token consistently shifts
attention toward the previously generated reasoning steps. This likely promotes greater self-reflection
on earlier parts of the solution and enhances the overall quality of the generated answers.

Table 6: Formatting idiosyncrasies sensitivity on three variants of prompts. The three variants of
prompts are defined in Section E.10. We report the P@1 (#Tk) of the DeepSeek-R1-Distill-Qwen-
1.5B on AMC23 and Olympiad benchmarks.

Standard Variant A Variant B

AMC23 Olympiad AMC23 Olympiad AMC23 Olympiad

Base 57.5(5339) 38.8(5999) 55.0(5410) 37.5(6028) 62.5(5270) 38.4(6106)
al (Ours)  70.0 (4952) 45.5(4944) 65.0 (5161)  43.9 (4995) 72.5(5075)  45.3(5037)

E.10 Formatting Idiosyncrasies Sensitivity Analysis

In this section, we study the sensitivity of a1 to formatting idiosyncrasies or prompt design. In
addition to the standard prompt from the official technical report that is used in this work, we have
conducted additional experiments comparing it with two variants: one adding irrelevant distractions,
and another adding explicit reasoning instructions, listed as follows,

e Standard: Please reason step by step, and put your final answer within
\\boxed{}

e Variant A: Please reason step by step, and put your final answer within
\\boxed{}. The AMC 2023 dataset consists of 40 problems selected from two
challenging mathematics competitions. /OlympiadBench consists of 8,476
Olympiad-level problems that evaluate mathematical and physical reasoning.

e Variant B: You are a helpful assistant. Your role as an assistant
involves thoroughly exploring questions through a systematic thinking
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Table 7: Slow thinking inertia analysis with different number of deterministic terminations. The
results are obtained with the DeepSeek-R1-Distill-Qwen-1.5B model, and we report the ratio of
problems that remain in the thinking phase after different numbers (No.) of deterministic termination.

No. AIME24 AMC23 Minerva MATH500 LiveCode Olympiad

1 96.7% 75.0% 78.7% 45.0% 92.8% 78.9%
2 90.0% 67.5% 70.2% 39.4% 87.8% 72.6%
3 60.0% 30.0% 24.3% 12.8% 4.3% 39.3%
4 10.0% 5.0% 2.6% 1.2% 0.2% 6.8%
5 3.3% 0.0% 0.7% 0.0% 0.0% 1.2%

process before providing the final precise and accurate solutions. Please
reason step by step, and put your final answer within \\boxed{}

The results are shown in Table 6. We observe: i) Modifying the prompts brings a performance drop
or boost on the base model, where variant A leads to -2.5% drop while variant B brings +5.0%
improvement on AMC23. ii) Regardless of the prompt variant, a1 consistently improves the base
model by a large margin. Specifically, a1l improves the baseline by +10.0% on AMC23 with both
variants. On Olympiad-Bench, a1l archives a performance boost of +6.4% and +6.9% with variant A
and B, respectively.

Table 8: Normalized REP metric results. The results are obtained with DeepSeek-R1-Distill-Qwen-
1.5B. AVG indicates the global mean REP across all evaluated benchmarks.

AIME24 AMC23 Minerva MATH500 LiveCode  Olympiad AVG

Base 8.60 13.35 -2.20 3.55 6.51 5.00 N/A
sl -3.74 -13.35 +1.34 -6.04 -9.24 -5.58 -0.30
CoD +2.35 +4.75 -7.78 +5.40 +2.92 -0.52 +6.99
al (Ours) +1.38 +8.59 +6.44 +0.64 +6.32 +6.10 +10.71

E.11 Slow Thinking Inertia Phenomenon Analysis

As stated before in Section 3, LRMs tend to have a slow thinking inertia issue. After the pre-«
modulation phase, the model often continues slow thinking, which can severely affect accuracy and
efficiency. When we enforce deterministic termination with a single “</think>", the model typically
does not immediately transition to the answer phase but continues reasoning, as evidenced by the
occurrence of slow-reasoning transitioning tokens “Wait” and semantically progressive thoughts.
Repeated deterministic termination eventually forces the model to complete its remaining reasoning
in just a few tokens before finally entering the answer phase.

In Table 7, we quantify the ratio of problems that remain in the thinking phase after ¢-th deterministic
termination. For example, after the first termination, the model remains in the thinking phase on
most problems, indicating that multiple terminations are generally required to conclude the reasoning
process. Note that Table 7 shows the results of the DeepSeek-R1-Distill-Qwen-1.5B model, and we
also observe similar patterns on larger models like QwQ-32B.

E.12 REP Metric Analysis

To better understand the proposed REP metric, we provide per-task baseline normalization and
global mean normalization of the REP metric on DeepSeek-R1-Distill-Qwen-1.5B. Table 8 shows
the results. Across these two normalized metrics, a1 consistently achieves higher values, indicating a
more favorable balance between reasoning performance and efficiency. Notably, a1 exceeds the task
average by +8.59 on AMC23 under the per-task baseline normalization and reaches +10.71 under the
global mean normalization.
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Table 9: Results with 32 rollouts. The results are P@1 (#Tk) with 32 rollouts with DeepSeek-R1-
Distill-Qwen-1.5B.

AIME24 AMC23 Minerva MATHS500 LiveCode Olympiad

Base 21.1(7407)  60.2(5482)  30.5(5030) 77.8 (3911)  18.7(6946)  37.9 (6089)
al (Ours) 303 (5669) 72.4(4861)  32.2(4581) 81.5(4121)  24.5(5004)  44.6 (4922)

E.13 Additional Results with More Rollouts

According to Yuan et al. [80], few rollouts (e.g., fewer than 16 rollouts) may lead to unstable results.
To further validate the results of a1 with a large number of rollouts, we conduct experiments with 32
rollouts on all benchmarks with DeepSeek-R1-Distill-Qwen-1.5B and report the P@1 with these 32
rollouts. Table 9 shows the results, demonstrating consistent conclusions with results reported in the
main paper: 1) Our a1 yields consistently better performance and reasoning efficiency; ii) As shown
in Table 9 with more experiments, the effectiveness of our approach can be even better than we report
in Table 1. For example, on AIME24, the improvement increased from the +6.7% reported in Table 1
to +9.2%.

F Artifacts Statements

F.1 Model Artifacts

We utilize three models in our work: DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-
Qwen-7B, both released under the MIT License, which permits commercial use, modification, and
redistribution. These models are distilled from Qwen-2.5 series (Apache 2.0 License). Additionally,
we use Qwen QwQ-32B, which is released under the Apache License 2.0, allowing both research and
commercial usage. We comply with all respective license terms in our use of these models.

F.2 Data Artifacts

We employ publicly available datasets in our experiments. AIME24, Minerva-Math, LiveCodeBench,
and OlympiadBench are released under the MIT License, which permits unrestricted use, modification,
and redistribution. The AMC23 dataset does not have an explicitly specified license, so we treat it as
having an unspecified license and exercise caution in its usage. We ensure full compliance with the
respective license terms of all datasets used.

G Future Works

While our a1 has been demonstrated to be successful and effective in scaling LRMs at test time, there
are some intriguing future works that we are considering:

* More sophisticated slow thinking scheduling. This work focuses on simple strategies like the
slow-to-fast schedule, which shows strong performance. However, optimal scheduling remains
an open question, as human reasoning patterns are complex and not yet fully understood [29].
Promising directions include modulating reasoning progress during both training and inference, or
learning a separate progress modulation model aligned with human preferences—akin to a progress
reward model [37, 60]. In addition, & moment can be adaptively sampled from a subnetwork,
and the reasoning scheduling strategy can be adaptively selected when facing different problems.
By appropriately formulating the problem of reasoning modulation as an RL-based optimization
problem, we may obtain an adaptive 1 that achieves better generalization capability.

* Transitioning-token-agnostic modulation. As shown in Fig. 10, the choice of transitioning token
(e.g., “wait”) affects performance due to model-specific training data. This limitation is shared by
many test-time scaling methods relying on open-source LRMs like DeepSeek-R1 [14], in contrast
to restricted-access models like OpenAl ol. While a1 supports flexible token choices, removing
the dependency on transitioning tokens altogether could further enhance generalization.
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* Multimodal reasoning with multimodal LLMs. Multimodal LLMs are rapidly advancing and
show growing potential in reasoning tasks [4, 15, 38, 42, 43, 46, 59, 63, 87]. Although they
currently trail behind text-only LRMs, efforts to enhance their reasoning abilities are gaining
momentum [22, 28, 33, 53, 66, 68, 69, 71, 78]. Multimodal reasoning remains challenging, as it
requires both image understanding and generation [44]. We aim to extend our a1 framework to this
domain, fostering synergistic multimodal comprehension and creation [15]. Another promising
direction is embodied reasoning—grounding multimodal understanding in real-world interactions
with spatial intelligence [17, 47, 74].

H Qualitative Examples

We present qualitative examples from different models and benchmarks to illustrate both cases:
instances where 1 helps the model answer correctly, and instances where it still fails to produce the
correct answer. Examples show that by appending “wait” frequently after “\n\n” can slow down the
thinking process and may help the model achieve better performance. The examples can be found in
the following pages.
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Successful Example of DeepSeek-R1-Distill-Qwen-1.5B on
OlympiadBench:
Base fails while a1 passes

Question: A chemist has three bottles, each containing a mixture of acid
and water: - bottle A contains 40g of which 10 is acid, - bottle B contains
50g of which 20 is acid, and, - bottle C contains 50g of which 30 is acid.
She uses some of the mixture from each of the bottles to create a mixture
with mass 60g of which 25 is acid. Then she mixes the remaining contents of
the bottles to create a new mixture. What percentage of the new mixture is
acid?

Response from Base: <think>

Okay, so I’ve got this chemistry problem here, and I need to figure out the
percentage of acid in the new mixture. Let me try to understand the problem
step by step.

First, there are three bottles, each with a mixture of acid and water. The
masses and acid concentrations are given as follows:

- Bottle A: 40 grams, 10% acid.

- Bottle B: 50 grams, 20% acid.

- Bottle C: 50 grams, 30% acid.

The chemist is going to use some mixture from each bottle to create a
new mixture that’s 60 grams with 25% acid. Then, after using some from
each bottle, she mixes the remaining contents to create a new mixture.
</think>

The chemist has three bottles containing acid and water with the
following compositions:
- Bottle A: 40 grams of solution, 10% acid...

The percentage of the new mixture is [18.75]).

Response from a1: <think>

Okay, so I’ve got this chemistry problem here, and I need to figure out the
percentage of acid in the new mixture. Let me try to understand the problem
step by step.

Wait, actually, the problem says that the chemist uses some mixture from
each bottle to create a 60g mixture with 25% acid. Then, she mixes the
remaining contents of the bottles to create a new mixture. Hmm, I need to
clarify if she uses some from each bottle to make 6@g, and then mixes the
leftover from each bottle. Or is it that she uses some from each bottle
to make 60g, and then uses the leftovers from each bottle to make another
mixture? The wording is a bit unclear.

Wait, let me re-read the problem.

Wait, actually, the problem says: ... </think>

The percentage of acid in the new mixture is 17.5%.
Step-by-Step Explanation:

1. Initial Acid Quantities:

- Bottle A: 40g of 10% acid - 4g acid.

- Bottle B: 50g of 20% acid - 10g acid...

Answer: The new mixture has % acid.

Correct Answer: 17.5
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Failure Example of DeepSeek-R1-Distill-Qwen-1.5B on AMC23: a1 still
fails

Question: There is a unique sequence of integers aj,as,--- ,as023 such that

3 5 2023 . .
tan2023x = wipnitaaan atastan ot tdana fn T whenever tan2023x is defined.

What is agg23?

Response from a1: <think>
Okay, so I need to find the value of asge3 in the given expression for
tan(2023x). The expression is a fraction where the numerator is a sum

of odd-powered terms of (tan x) multiplied by coefficients aq,as,..., a3,
and the denominator is a sum of even-powered terms of (tan x) multiplied
by coefficients asg,a4,...,a9022. The problem states that this sequence of

integers is unique, so I need to figure out what asge3 is.

Wait, before jumping into that, I should recall the tangent multiple-angle
formulas. I remember that tan(nx) can be expressed as a ratio of polynomials
in tan x, where the numerator is an odd-degree polynomial and the denominator
is an even-degree polynomial ...</think>

After carefully considering the expansion of tan(2023x) and testing
various formulas ... which is the coefficient of tan?°?2z in the numerator,
we look at

the coefficient for ( k = 2023 ) in the numerator sum:

[a2023 — (_1)2023—1(3832) — (_1)2022 %1 = 1]

Therefore, agge3 = 1.\n\n[\n\n]

Correct Answer: -1
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Successful Example of DeepSeek-R1-Distill-Qwen-7B on Minerva Math:
Base fails while a1 passes

Question: A particular star has an absolute magnitude M = —7. If this
star is observed in a galaxy that is at a distance of 3Mpc, what will its
apparent magnitude be?

Response from Base: <think>

Okay, so I need to find the apparent magnitude of a star given its absolute
magnitude and the distance to the galaxy it’s in. Hmm, let’s see. I remember
that absolute magnitude is how bright a star appears at a standard distance,
which I think is 10 parsecs. Apparent magnitude, on the other hand, is how
bright it appears from Earth, which depends on how far away it actually is.
The formula that relates absolute magnitude (M), apparent magnitude (m)
...</think>

To find the apparent magnitude of a star given its absolute magnitude
and the distance to the galaxy it is in, we use the distance modulus
formula. The formula is:\n\n[ m - M = 5log(d) - 5 J\n\nwhere (m) is the
apparent magnitude...Rounding to one decimal place, the apparent magnitude

is approximately 20.4. \n\n[\n\n]

Response from al1: <think>

Okay, so I need to find the apparent magnitude of a star given its absolute
magnitude and the distance to the galaxy it’s in. Hmm, I remember that
absolute magnitude is how bright a star appears at a standard distance,
which is 10 parsecs, right? And apparent magnitude is how bright it appears
from Earth, which depends on its actual distance. The formula that relates
absolute magnitude (M), apparent magnitude (m), and distance (d) in parsecs
is the distance modulus formula. I think it’s something like m = M + 5 +
5 logo(d). Wait, let me make sure. Is it plus or minus 5? I think it’s
plus 5 because as the distance increases, the apparent magnitude increases,
meaning it becomes dimmer. So, yes, m = M + 5 log;,(d) + 5.

Wait, hold on, no, that’s not right...Then, subtract 5:\n\n[ 25.3855 - 5 =
20.3855 ]

So, the apparent magnitude is approximately 20.3855, which rounds to

20.39.\n \nTherefore, the apparent magnitude of the star is |20.39

Correct Answer: 20.39
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Failure Example of DeepSeek-R1-Distill-Qwen-7B on LiveCodeBench: a1
still fails

Question: You are given a 0-indexed string s and a dictionary of words
dictionary. You have to break s into one or more non-overlapping substrings
such that each substring is present in dictionary. There may be some extra
characters in s which are not present in any of the substrings.

Return the minimum number of extra characters left over if you break up s
optimally.

Example 1:

Input: s = "leetscode”, dictionary = ["leet"”,"code”,"leetcode”]. Output: 1
Explanation: We can break s in two substrings: "leet” from index @ to 3 and
"code" from index 5 to 8. There is only 1 unused character (at index 4), so
we return 1.

Example 2:

Input: s = "sayhelloworld”, dictionary = ["hello”,"world”]. Output: 3
Explanation: We can break s in two substrings: "hello” from index 3 to 7
and "world"” from index 8 to 12. The characters at indices @, 1, 2 are not
used in any substring and thus are considered as extra characters. Hence,
we return 3.

Constraints:1 <= s.length <= 50, 1 <= dictionary.length <= 50,
1 <= dictionary[i].length <= 50, dictionary[i] and s consists of only
lowercase English letters, dictionary contains distinct words

Response from a1: <think>

Okay, I need to solve this problem where I have to find the minimum number
of extra characters left when breaking a string s into substrings that are
all present in a given dictionary. Hmm, let’s think about how to approach
this.

Wait, the problem says that the string must be broken into one or more
non-overlapping substrings, each of which is in the dictionary. ... </think>

To solve this problem, we need to break a given string ‘s¢ into
substrings such that each substring is present in a given dictionary.

### Solution Code
“‘python\n \nclass Solution:\n def minExtraChar(self, s: str, dictionary:
List[str]) -> int:\n n = 1len(s)\n dp = [float(’inf’)] * (n + 1)\n

dp[@] = @ # Base case: 0 characters, @ extra\n \n for i in range(l,
n + 1):\n for 1 in range(l, i + 1):\n start = i - 1\n if start <
@:\n continue\n substring = s[start:i]J\n if substring in dictionary:\n

if dplstart] + (n - i) < dp[il:\n dp[i] = dp[start] + (n - i)\n\n return dp[n]

### Explanation

- Initialization: The DP array is initialized to handle the base case where
no characters are processed, resulting in zero extra characters.

- Result Extraction: The final result is found in ‘dp[n]¢, which gives the
minimum number of extra characters after processing the entire string.
This approach ensures that we efficiently find the optimal way to split
the string into valid substrings while minimizing the extra characters,
leveraging dynamic programming to explore all possible valid splits.
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Successful Example of QwQ-32B on MATHS00: Base fails while o1 passes

Question: There are 360 people in my school. 15 take calculus, physics,
and chemistry, and 15 don’t take any of them. 180 take calculus. Twice
as many students take chemistry as take physics. 75 take both calculus
and chemistry, and 75 take both physics and chemistry. Only 30 take both
physics and calculus. How many students take physics?

Response from Base: <think>

Okay, let’s try to tackle this problem step by step. Hmm, so there are 360
people in the school. Out of these, 15 don’t take any of the three subjects:
calculus, physics, or chemistry. That means 360 - 15 = 345 students take at
least one of those subjects.

Alright, let me note down all the given information:

- Total students: 360

- Take all three (calculus, physics, chemistry): 15

- Don’t take any: 15

- Take calculus: 180...</think>

Given the problem, we need to determine the number of students taking
physics. Here is the step-by-step reasoning:\n\n

1. Total students: 360

2. Students not taking any subjects: 15, so students taking at least one
subject: (360 - 15 = 345)

3. Students taking calculus (C): 180

4. Students taking all three subjects (C, P, Ch): 15...Thus, the number of

students taking physics is ().

Response from al1: <think>

Okay, let’s try to tackle this problem step by step. Hmm, so there are
360 people in the school. 15 take all three subjects: calculus, physics,
and chemistry. Also, 15 don’t take any of them. That means the number of
students taking at least one of the subjects is 360 - 15 = 345.

Wait, the total number in the union of calculus, physics, and chemistry is
345. Let me note down the given data first:

- Total students: 360

- Take all three (Calculus, Physics, Chemistry): ...</think>

So simplifying:

180 + P + Ch - 180 +15 = P + Ch +15 = 345

Hence, P + Ch = 330. Since Ch = 2P, substituting:

P+ 2P =3P =330 — P = 110.

All steps check out, and the Venn diagram regions confirm consistency.
Therefore, the number of students taking physics is .

Final Answer\n.

Correct Answer: 110
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Failure Example of QwQ-32B on AIME24: a1 still fails

Question: Torus 7T is the surface produced by revolving a circle with radius
3 around an axis in the plane of the circle that is a distance 6 from the
center of the circle (so like a donut). Let S be a sphere with a radius
11. When T rests on the outside of S, it is externally tangent to S
along a circle with radius r;, and when T rests on the outside of S, it
is externally tangent to S along a circle with radius r,. The difference
r; — T, Can be written as %%, where m and n are relatively prime positive

integers. Find m +n.

[asy] unitsize(@.3 inch); draw(ellipse((@,0), 3, 1.75));
draw((-1.2,0.1).(-0.8,-0.03)..(-0.4,-0.11)..(0,-0.15)..(0.4,-0.11)..
(0.8,-0.03)..(1.2,0.1)); draw((-1,0.04)..(-0.5,0.12)..(0,0.16)..(0.5,0.12)..
(1,0.04)); draw((0,2.4)-(0,-0.15)); draw((0,-0.15)-(0,-1.75), dashed);
draw((0,-1.75)-(0,-2.25)); draw(ellipse((2,0), 1, 0.9));
draw((2.03,-0.02)-(2.9,-0.4)); [/asy]

Response from a1: <think>

Okay, so I need to solve this problem about a torus and a sphere. Let me try
to understand the setup first. The torus T is formed by revolving a circle
with radius 3 around an axis in the same plane, which is 6 units away from
the center of the circle. That makes sense—it’s like a donut shape where
the tube radius is 3 and the distance from the center of the tube to the
center of the torus is 6.

Then there’s a sphere S with radius 11. The problem says that when the
torus rests on the outside of the sphere, it can be externally tangent to
the sphere along a circle with radius 7;, and similarly along another circle
with radius r,. The question is asking for the difference r; - r,, expressed
as a fraction m/n where m and n are coprime, and then m + n.

Wait, actually, the problem mentions...</think>

Okay, let’s start by setting up a coordinate system where the sphere
is centered at the origin ((@, @, @) with radius 11. The torus (T) is
generated by revolving a circle of radius 3 around an axis that is 6 units
away from the center of the generating circle. Let’s place the generating
circle in the (x)-(y) plane, centered at ((6, @, @)). The axis of revolution
is the (z)-axis, so the torus’s axis is the (z)-axis.

When the torus rests on the outside of the sphere, they are externally
tangent along a circle. To find the radii (r;) and (r,) of these circles of
tangency, we need to consider the cross-sectional view in the (x)-(y) plane.
Here, the sphere appears as a circle of radius 11 centered at the origin,
and the generating circle of the torus is a circle of radius 3 centered at
(6, 9)).

For the torus to be externally tangent to the sphere, the distance between
their centers must equal the sum of their radii. However, since the sphere
is much larger, the torus must be positioned such that the distance from the
sphere’s center to the torus’s generating circle’s center plus the sphere’s
radius equals the distance from the sphere’s center to the farthest point
on the torus.

Correct Answer: 127
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