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Stephen Zhang 1 Vardan Papyan 1

Abstract
Pruning has emerged as a promising approach
for compressing large-scale models, yet its effec-
tiveness in recovering the sparsest of models has
not yet been explored. We conducted an exten-
sive series of 485,838 experiments, applying a
range of state-of-the-art pruning algorithms to a
synthetic dataset we created, named the Cubist
Spiral. Our findings reveal a significant gap in
performance compared to ideal sparse networks,
which we identified through a novel combinatorial
search algorithm. We attribute this performance
gap to current pruning algorithms’ poor behaviour
under overparameterization, their tendency to in-
duce disconnected paths throughout the network,
and their propensity to get stuck at suboptimal
solutions, even when given the optimal width
and initialization. This gap is concerning, given
the simplicity of the network architectures and
datasets used in our study. We hope that our re-
search encourages further investigation into new
pruning techniques that strive for true network
sparsity.

1. Introduction
The burgeoning complexity of state-of-the-art deep learn-
ing models has made their training and deployment pro-
hibitively expensive. To counteract this increasing demand
for resources, model compression has become increasingly
important in optimizing the computational efficiency of
these networks. Among these techniques, a popular and
proven option is network pruning which induces sparsity in
the model parameters (Hoefler et al., 2021).

Whilst pruning is effective, it is difficult to assess how close
current pruning algorithms are to obtaining the sparsest of
models due to the complexity of the datasets and models
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Figure 1. Sparse Model Visualization. Visualization of a sparse
model, discovered through our combinatorial search algorithm,
trained on the Cubist Spiral dataset. The first two squares on the
left denote the input variables, while the final, larger square depicts
the output from the classifier. The intermediate squares reveal post-
activation states which are connected by edges, corresponding to
entries in weight matrices. At the top of each square, there is a tiny
square that is colored according to the bias of the corresponding
neuron. Blue is used to represent a positive value, orange a negative
value, and white – a value of zero.

used. For the same reason, analyzing and interpreting prun-
ing’s effects on trained models has been challenging which
has allowed for potential shortcomings to go unnoticed.

This paper aims to scrutinize how closely various pruning
algorithms approach the ideal, sparsest network, defined
as the model with the fewest nonzero parameters that can
achieve a specific target accuracy, and reveal the true efficacy
of current pruning techniques.

1.1. Method Overview

To achieve our goals, we engineer the following tools that
will be the basis for our analysis:

Cubist Spiral A synthetic dataset named the Cubist Spiral,
depicted in Figure 2b. The simplicity inherent in the
dataset leads to interpretable sparse models that are
amenable to visualization and analysis.

Combinatorial Search A novel combinatorial search algo-
rithm that searches across model sparsity masks for
an optimal and maximally sparse model. Diverging
from existing naive benchmarks such as random prun-
ing, where the pruned weights are selected randomly,
our algorithm leverages structured sparsity to perform
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an efficient exploration across sparsity masks for the
model.

Sparse Model Visualization A visualization tool, similar
to TensorFlow Playground (Smilkov et al., 2017), de-
signed for inspecting sparse models by graphically
representing their non-zero subnetwork. An example
of a model visualization is shown in Figure 1.

1.2. Contributions

Through an empirical study (code available on GitHub), we
uncover the following deficiencies:

Algorithms Fail to Get Sparsest Model There exists a
disparity between the achievable outcomes and the
current capabilities of pruning techniques in terms of
recovering a sparsest model.

Overparameterization Impedes Pruning Unstructured
pruning techniques are unable to adequately perform
structured pruning resulting in a deterioration of their
performance under overparameterization.

Pruning Fails Under Optimal Conditions Pruning is un-
able to recover the sparsest sparsity masks for the
model even when provided with the optimal width
and initialization.

Through our visualization, we show:

Disconnected Paths Pruning algorithms are unable to cor-
rectly align the parameters of consecutive layers re-
sulting in disconnected paths. This leads to an inflated
number of nonzero parameters that are not contributing
to the expressivity of the network.

Pruning Algorithms Foregoes Sparsity Pruned networks
can be further pruned after training without harming
model performance.

2. Background: Pruning Algorithms
Pruning algorithms are commonly classified into two main
categories: structured and unstructured. In unstructured
pruning, individual weights are pruned, whereas structured
pruning operates at a higher level by pruning entire filters or
channels (Wen et al., 2016; Li et al., 2017; Luo et al., 2017).

Beyond structured and unstructured, pruning algorithms can
also be classified into the following three categories based
on their pruning strategies.

2.1. Dense to Sparse

This category encompasses the methods of Optimal Brain
Damage by LeCun et al. (1989) and its successor, Optimal

(a) Spiral dataset (b) Cubist Spiral dataset

Figure 2. Comparative view of spiral datasets.

Brain Surgeon by Hassibi & Stork (1992); Hassibi et al.
(1993), which are seminal works not only in dense-to-sparse
pruning but in pruning in general. More recently, magnitude-
based pruning approaches have proven to be extremely ef-
fective (Han et al., 2015), leading to state-of-the-art methods
being developed such as Gradual Magnitude Pruning (GMP)
by Zhu & Gupta (2018) and the Lottery Ticket Hypothe-
sis (LTH) by Frankle & Carbin (2018). These techniques
typically start with a dense network configuration and im-
plement pruning either progressively during the training
process or upon its completion. While they offer resource
savings during the inference stage, they do not reduce re-
source utilization during the training phase.

2.2. Pruning at Initialization

Representative methods in this category include Gradient
Signal Preservation (GraSP) by Wang et al. (2019), Prospect
Pruning (ProsPr) by Alizadeh et al. (2021), Single-shot
Network Pruning (SNIP) by Lee et al. (2019), Iterative
Synaptic Flow Pruning (SynFlow) by Tanaka et al. (2020)
and Iter SNIP and FORCE by de Jorge et al. (2021). In
contrast to the previous category, these algorithms involve
pruning neural networks at the initialization stage, followed
by training the already-pruned models. This approach is
beneficial as it conserves resources both during the training
and inference phases, assuming the initial pruning overhead
is negligible.

2.3. Sparse to Sparse

Sparse Evolutionary Training (SET) by Mocanu et al. (2018)
was the pioneer algorithm in this category. Subsequently,
several other algorithms have been introduced, such as
Deep-R by Bellec et al. (2018), Sparse Networks From
Scratch (SNFS) by Dettmers & Zettlemoyer (2019), and
Dynamic Sparse Reparameterization (DSR) by Mostafa &
Wang (2019). The Rigged Lottery (RigL) by Evci et al.
(2020a) has emerged as a state-of-the-art method in this
group. Distinguishing itself from other categories, this ap-
proach initiates with a sparsely connected neural network
and maintains the total number of parameters while dynami-
cally altering the nonzero connections throughout training.
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Figure 3. First Phase. Two structured sparsity masks that would be tested by the first phase of the combinatorial search. It is always the
first d[ℓ−1] columns and d[ℓ] rows that are nonzero inside the masks, denoted by the light red squares. If both sets of masks reach the
target accuracy, the set of masks on the right will be utilized by the second phase as it contains fewer nonzeros.

3. Methodology
3.1. Network

The objective of this study is to evaluate the effectiveness
of pruning algorithms in identifying the sparsest possible
network. Finding it requires a combinatorial search which
is only practical for smaller network architectures, due to its
complexity.

We therefore train four-layer Multilayer Perceptrons (MLPs)
with ReLU activation functions, which take as input two
coordinates and predicts a class label.

All combinatorial search experiments are done on MLPs of
width 16. The pruning algorithms, on the other hand, are
run on MLPs of varying widths:

{3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256},

to examine the impact of overparameterization on their effi-
cacy.

3.2. Dataset

The simplicity of the architecture calls for a simple dataset as
well. We opt for the classical synthetic spiral dataset, notable
for its non-linear separability. To better suit sparse modeling
techniques, we have adapted the spiral by straightening its
naturally curved edges. This modification gives rise to what
we call the Cubist Spiral dataset, a nod to the Cubism art
movement that emphasized the use of minimal geometric
shapes when depicting objects of interest. The classical
spiral and its Cubist counterpart are juxtaposed in Figure 2.

We pick 50, 000 points spaced evenly along the spiral di-
vided equally between the two classes. This deliberate
choice of a large training set stems from our desire to sepa-
rate any issues related to generalization when evaluating the
efficacy of pruning algorithms.

3.3. Combinatorial Search

The combinatorial search is encapsulated in a function
which obtains as input the width of the network D and a
desired target accuracy ρ and returns a list of model sparsity
masks for the MLP. The function involves two phases.

First Phase: Structured Sparsity The first phase per-
forms a grid search over the number of neurons in each
layer that span over the set {1, 2, ..., D}. We denote the
number of neurons in layer ℓ as d[ℓ] with d[0] = 2 and
d[4] = 1. For each neuron configuration, a four-layer MLP
is randomly initialized and masked such that only the first
d[ℓ−1] columns and d[ℓ] rows in layer W [ℓ] are nonzero.
The MLP is then trained and a final accuracy is computed.
Given the results from all the trainings, the configuration
that achieves the desired target accuracy with the fewest
nonzeros is selected. A schematic showing how phase one
operates is displayed above in Figure 3.

Second Phase: Unstructured Sparsity The second phase
iterates over a list of unstructured sparsity masks for each
weight matrix.1 For weight W [ℓ], this list is generated by
the function ELIGIBLEMASKS(d[ℓ−1], d[ℓ]) where d[ℓ−1]

and d[ℓ] are determined based on the optimal configuration
established in the first phase.

To ensure that the combinatorial search is done efficiently,
ELIGIBLEMASKS(d[ℓ], d[ℓ−1]) ensures that each mask for
the weight is confined to the rows and columns essential
for fulfilling the neuron configuration. Furthermore, each
required row and column contains at least one nonzero el-
ement. This assumption is grounded in the notion that the
neuron configuration, as determined in the first phase of the
search, is inherently minimal.

ELIGIBLEMASKS(d[ℓ], d[ℓ−1]) further optimizes the com-
binatorial search by eliminating masks that are functionally
identical but differ merely by permutations of channels.
The symmetry is broken by selecting from all row permuta-
tions the specific arrangement that results in a sequentially
decreasing count of nonzero elements. If two rows have
an equal count of nonzeros, the algorithm converts the bi-
nary vector representations of these masks into their deci-
mal equivalents and arranges them in descending order. A
schematic for phase two is depicted below in Figure 4.

1The combinatorial search iterates only over the masks of the
weight matrices. As for the biases, we assign a value of zero to the
i-th bias entry if and only if the i-th row of the weight matrix in
that layer is zero in the mask.
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Figure 4. Second Phase. A schematic illustration of the second phase of the combinatorial search. Left: A set of unstructured sparsity
masks that would be tested in the second phase, generated by utilizing the minimal structured sparsity masks found in the first phase. The
dark red squares denote the nonzero entries in the unstructured sparsity masks and the light red squares denote the nonzero entries of the
minimal structured sparsity masks found in the first phase. Right: An ineligible mask containing rows and columns without at least one
nonzero element, which does not fully utilize the minimal number of neurons identified in the first phase.

This process provides a list of sparsity masks for each weight
matrix which the combinatorial search then combines to
form a list of masks for the model. These masks are then
applied to models that are randomly initialized prior to any
training. The algorithm for the combinatorial search is
detailed in Algorithm 1 in the Appendix.

3.4. Selection of Pruning Algorithms

We benchmark the following pruning algorithms: GMP,
LTH, GraSP, SNIP, SynFlow, Iter SNIP, FORCE, ProsPr,
and RigL. We depict in Table 1 below each technique’s cate-
gorization along with the FLOPS required to prune and train
an MLP of width 16. We prune multiple models with dif-
ferent budgets of nonzeros for the weights. The budgets are
specifically chosen to be centered around the range where
the combinatorial search can reconstruct the spiral. Further
details are provided in Appendix B and C.

Pruning Techniques Pruning at Initialization Dynamic Sparse Training Dense Training Required FLOPS Required

One Shot Iterative

LTH ✓ 3.4 · 109
Dense Training ✓ 1.5 · 109
GMP ✓ 5.3 · 108
RigL ✓ 2.1 · 108
GraSP ✓ 2.0 · 108
ProsPr ✓ 1.9 · 108
SNIP ✓ 1.9 · 108
Iter SNIP ✓ 1.9 · 108
FORCE ✓ 1.9 · 108
SynFlow ✓ 1.9 · 108

Table 1. Table depicting the categorization and FLOPS required
for each pruning technique that was tested in our experiments.

The aforementioned pruning techniques do not include bias
parameters in the pruning process. To ensure that the com-
parison to the combinatorial search is fair, entries of the bias
are masked based on whether the corresponding column
in the succeeding weight matrix is fully pruned, i.e., b[l]i is
masked if and only if W [l+1]

: , i = 0. The bias corresponding
to the classifier layer always remains fully dense.

3.5. Initialization Experiments

The combinatorial search trains models on a large number of
model masks, where each trained model starts at a different
initialization of the parameters. One might speculate that

the success of the combinatorial search could be tied to the
initialization rather than the actual mask of the parameters.

To study the effect of the parameter initialization on the
success of the pruning algorithms, we pick the best initial-
ization from the combinatorial search – the one that led to
the sparsest model for a given target accuracy, ρ – and use
it to initialize the pruning experiments. If a good initializa-
tion is all that is needed for successful pruning, then the
pruning algorithms should succeed and be able to match the
combinatorial search.

We equalize the comparison with the combinatorial search
by running another round of the combinatorial search, but
this time using the most successful initialization from the
first combinatorial search to account for giving the pruned
models the initialization. This also serves as a sanity check
to verify whether the initialization is advantageous com-
pared to a typical random initialization.

3.6. Optimization

We train the model parameters for 50 epochs using stochas-
tic gradient descent (SGD) with momentum 0.9 and a batch
size of 128. Parameters outside of the determined model
mask are constrained to be zero. A weight decay is applied
for all experiments and set to 5e−4. For the pruning experi-
ments, learning rates {0.05, 0.1, 0.2} are used while for the
combinatorial search, only {0.05, 0.1} are used. We also
utilize three learning rate schedulers: constant learning rate,
a cosine annealing scheduler, and a decay of 0.1 applied at
epochs 15 and 30.

4. Combinatorial Search Results
4.1. Phase One of the Combinatorial Search

Preliminary experiments, which involve running the first
phase of the combinatorial search with varying target sparsi-
ties, reveal three categories of model performance:

1. Below 95% Accuracy: Models in this group were
unable to even approximately reconstruct the spiral.
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2. Between 95% and 99.5% Accuracy: Models within
this range partially reconstructed the spiral as a sparse
combination of polygons. However, they fell short of
complete accuracy due to misclassification of certain
minor segments of the spiral.

3. Above 99.5% Accuracy: Models surpassing 99.5% ac-
curacy demonstrated essentially perfect reconstruction
of the spiral.

Based on this categorization, we rerun the combinatorial
search twice; once with the target accuracy of ρ1 = 95% and
a second time with ρ2 = 99.5%. Figure 5 below contains a
scatter plot of all the models trained in the first phase of the
search.

Figure 5. Phase One of Combinatorial Search. Scatter plot with
each point corresponding to a different model that was trained
with a different structured mask. Two models are highlighted –
the sparsest achieving above 95% accuracy (where the number of
neurons in each layer is 3,3,3) and the sparsest achieving above
99.5% accuracy (where the number of neurons in each layer is
7,3,3) – accompanied by their corresponding reconstructions of
the spiral.

4.2. Phase Two of the Combinatorial Search

Phase two of the algorithm provides a total of 25,992 model
masks to try for the 95% target accuracy and 266,004,066
model masks for the 99.5% target accuracy. Due to compu-
tational limits, we check only a subset of size 63,208 of the
possible model masks for the 99.5% target accuracy. Details
on the subset are given in Appendix D

For ρ1 = 95%, the combinatorial search found the model
presented in Figure 6 below. We refer to this benchmark
model as BENCH-95.

Figure 6. The minimal model found through the second phase of
the combinatorial search that achieved over 95% accuracy. The
model has 30 nonzero parameters and an accuracy of 96.04%.

For ρ2 = 99.5%, the combinatorial search found the model
presented in Figure 7 below. We refer to this benchmark
model as BENCH-995.

Figure 7. The minimal model found through the second phase of
the combinatorial search that achieved over 99.5% accuracy. The
model has 45 nonzero parameters and an accuracy of 99.59%.

4.3. Analysis of Sparse Models

Several observation can be deduced from the minimal mod-
els presented in Figures 6 and 7:

Selective Connectivity Both models exhibit selective con-
nectivity and do not form connections with every neu-
ron in the preceding layer. This suggests a more refined
and efficient architectural design of the network.

Edges to Spiral The initial layers predominantly capture
the spiral’s edges. As we move deeper into the net-
work, these edges are progressively integrated, forming
polygonal shapes. In the last layers, these polygons are
subtracted from one another to, roughly, reconstruct
the spiral structure.

Suboptimal Sparsity The bottom neurons in the second
and third layer of the model in Figure 6, and the bot-
tom neuron in the third layer of the model in Figure
7, can be pruned to obtain a sparser model without
significantly impacting the prediction of either model.
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Hence, although the models are sparse, they can be fur-
ther pruned. We comment on this further in Sections
5.2 and 7.2.

5. Pruning Algorithms Versus Combinatorial
Search

Given the results of the combinatorial search, we run the
pruning experiments with the following budgets of nonzero
weights:

{15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
30, 33, 37, 40, 44, 50, 53, 55, 57, 60, 65}.

Figure 8 below shows the results.

Figure 8. Suboptimality of Pruning Algorithms. The accuracy
versus the number of nonzero parameters after training a four-layer,
16-width MLP on the Cubist Spiral dataset. A large gap is present
across the board between the combinatorial search (Comb.) and
the pruning algorithms, both in the 95%− 99.5% accuracy range
and for accuracies above 99.5%. The Pareto frontiers are manually
extracted from a scatter plot, shown in Figure 20 in Appendix F,
that contains the accuracies of every pruning experiment.

5.1. Suboptimality of Pruning Algorithms

All pruning techniques suffer greatly in the 95%− 99.5%
regime relative to the combinatorial search. In particular, the
combinatorial search achieves above 95% accuracy with just
30 nonzeros. The second best is the dense-to-sparse method
LTH requiring 44 nonzeros to reach the accuracy threshold.
The sparse-to-sparse method RigL reaches the threshold
at 52 nonzeros, while the sparsest pruning at initialization
method that reaches the accuracy threshold is SynFlow with
51 nonzeros.

For accuracies above 99.5%, we again see a gap between
pruning and the combinatorial search. The combinatorial
search obtains above 99.5% accuracy with 45 nonzeros.

The second-best method is GMP, which achieves a similar
level of accuracy with 61 nonzeros, while RigL reaches this
accuracy threshold with 84 nonzeros. The only pruning-at-
initialization method that could reach the threshold within
the tested nonzero budgets is Iter SNIP with 78 nonzeros
and 99.69% accuracy.

5.2. Visualization of Pruned Models

To gain further insight as to why pruned models are strug-
gling to match the combinatorial search, we visualize failed
models generated by various pruning methods in Figures
9 and 10 below and comment on some key observations.
Further examples are provided in Appendix H.

Figure 9. ProsPr Suboptimality. An example of a model, found
through ProsPr, with 59 nonzero parameters that attains an accu-
racy of 76.52%. The nonzero parameters attached to the bottom
four neurons in layer one, bottom two neurons in layer two, and
bottom neuron in layer three form multiple disconnected paths in
the network.

Figure 10. GMP Suboptimality. An example of a model, found
through GMP, with 38 nonzero parameters that attains an accuracy
of 84.03%. The bottom neurons in layers two and three form
a disconnected path. Magnitude-wise, no weights appear to be
prunable.

Disconnected Paths Current pruning algorithms are un-
able to properly align the weights between consecutive lay-
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ers leading to disconnected paths. This occurs when there
is a path in the network that is either disconnected from
the model input or output. Nonzero parameters in a discon-
nected path do not contribute to the expressiveness of the
network and inflate the number of nonzeros in the model.

Suboptimal Sparsity Similar to the models found by the
combinatorial search, the model depicted in Figure 9 is fore-
going a lot of sparsity that could be attained by magnitude
pruning the model after training. This in part is due to the
sub-optimal nature of current pruning algorithms requir-
ing the final nonzero budget to be determined prior to any
pruning or training being done.

6. Impact of Overparameterization on Pruning
In theory, overparameterization should be beneficial to prun-
ing as it increases the number of combinatorial options for
sparsity masks from which to find the optimal mask for a
sparse model. Contrary to this belief, Figure 11 below shows
the results from the experiments measuring the impact of
overparameterization on the success of pruning algorithms.
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Figure 11. Overparameterization Impedes Pruning Algorithms.
The accuracy versus the number of nonzero parameters after train-
ing four-layer MLPs of varying widths on the Cubist Spiral dataset.
From left to right then top to bottom, the subplots correspond to
MLPs of width 3, 7, 64, and 256. More width variations are de-
tailed in Appendix G. The models obtained by the combinatorial
search are included for reference.

6.1. Overparameterization Hinders Pruning

Figure 11 shows that overparameterization harms the per-
formance of most pruning techniques and that at width 256,
all pruning algorithms are largely failing. Furthermore, re-
ducing the network width to 3 increases the performance
of current pruning algorithms indicating that current un-
structured pruning approaches are inadequately performing
structured pruning. In Appendix L, we further prove that
overparameterization leads to more disconnected paths for
pruning methods that utilize a random mask at initialization,
like RigL.

6.2. Optimal Width Limitations

Even when given the optimal width identified by the com-
binatorial search, the pruning methods are still unable to
consistently match the accuracies that were shown to be em-
pirically possible through the combinatorial search. Out of
a total of 18,954 experiments, only two instances of pruning
were able to match or beat the combinatorial search: SNIP
with 29 nonzeros and an accuracy of 95.14% and GMP with
40 nonzeros and an accuracy of 99.68%. Both models were
provided with the optimal widths of 3 and 7 respectively.

7. Impact of Initialization
In this section, we follow the experimental protocol detailed
in Section 3.5, using the unmasked initialization of BENCH-
995. Analogous experiments for BENCH-95 are included
in Appendix A.

7.1. Combinatorial Search Using Optimal Initialization

Running another round of the combinatorial search2 but this
time training all models from the initialization of BENCH-
995 recovers a sparser model that is visualized in Figure
12 below. Due to the neuron configuration found (6,3,2),
increasing the MLP width beyond 16 would not lead to
the combinatorial search finding sparser solutions. Further
explanation can be found in Appendix J.

7.2. Pruning after Training is Insufficient

Figure 7 shows that pruning BENCH-995 obtained from
the first combinatorial search after training will lead to a
sparser model with a neuron configuration of (7, 3, 2) and
42 nonzeros. However, the second combinatorial search
reveals a model that has a neuron configuration of (6, 3, 2)
containing less nonzeros, 38, than what would be obtained
by pruning BENCH-995. This indicates that magnitude
pruning after training is insufficient to find a minimal model.

2Similar to the the (7,3,3) case, we do not perform an exhaustive
combinatorial search over all the generated sparsity masks but
rather only a subset. Details in Appendix D.
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Figure 12. The minimal model found through the second run of
the combinatorial search that achieved over 99.5% accuracy. The
number of neurons in each layer is (6,3,2). The model has 38
nonzero parameters and an accuracy of 99.70%.

7.3. Pruning Fails with Optimal Initialization

Using the BENCH-995 initialization, Figure 13 below cap-
tures pruning’s inability to recover a minimal sparsity mask
for the model despite being given an ideal initialization.
We can see that none of the pruning techniques are able to
recover the minimal sparsity masks that the combinatorial
search is able to find – even when provided with the optimal
width by masking the rows and columns of each layer down
to the largest width of the weight matrices of the sparsest
model found by the combinatorial search.
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Figure 13. Pruning Fails Under Optimal Conditions. Models
obtained by the combinatorial search and models that were pruned
starting from the initialization of BENCH-995. The pruned models
in the left subplot were given the optimal structured sparsity mask
of width 6 determined by the combinatorial search. The subplot on
the right depicts models that were pruned directly from width 16.

Depicted in Figure 14 are models that were pruned with
GMP and RigL that fail to match the model identified by
the combinatorial search.

8. Limitations of the Combinatorial Search
Synthetic Datasets and Small Models The high cost as-
sociated with performing the combinatorial search restricts
our experiments to only synthetic datasets and small models.

(a) An example of a model, found through GMP, with 39 nonzero
parameters that attains an accuracy of 97.73%.

(b) An example of a model, found through RigL, with 52 nonzero
parameters that attains an accuracy of 99.74%. There appear to be
roughly eight nonzero parameters that could be pruned after train-
ing which would still lead to a model that contains more nonzeros
than the one recovered by the combinatorial search depicted in
Figure 12.

Figure 14. Pruning Algorithms Fail Under Optimal Conditions.
Despite being provided with the BENCH-995 initialization and
the optimal width of 6, the pruned models depicted above still
fall short of matching the models recovered by the combinatorial
search.

Still, the shortcomings that are already being exhibited by
pruning techniques in such a simplistic task should raise con-
cerns and inquiries into pruning’s current efficacy. While
it is possible that the deficiencies of pruning algorithms
observed do not extend to more complicated datasets and
larger models, generally speaking, we would not expect an
algorithm that does not work in a simple setting to work in
a more complicated one.

No Guarantee of Sparsest While our combinatorial
search can find a model that is sparser than any of the mod-
els found by pruning, there is no guarantee that the com-
binatorial search finds the optimally sparse model. Rather
the combinatorial search only provides a lower bound on
the sparsity that is attainable for the four-layer MLP yet is
not achieved by existing pruning algorithms – the sparsest
models elude pruning.

9. Related Works
Sparse Representations and Compressed Sensing This
work is predicated on the assumption that pruning algo-
rithms ought to be able to identify the sparsest model. It is
natural to question why such an assumption is even feasi-
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ble. The rationale stems from both empirical and theoretical
works in the fields of sparse representations and compressed
sensing where it is known that, within the framework of lin-
ear models, if the underlying sparse solution is sufficiently
sparse, then pruning algorithms will recover it. For further
details, refer to (Donoho, 2006; Elad, 2010; Candes & Tao,
2005; Tropp, 2006; 2004) and the cited literature.

Strong Tickets Sparked by interest in the lottery ticket
hypothesis (Frankle & Carbin, 2018), numerous works have
shown that, with high probability, there exists a subnetwork
that can attain competitive performance within a sufficiently
overparameterized randomly initialized network, called a
strong lottery ticket (Malach et al., 2020; Ramanujan et al.,
2020; Orseau et al., 2020). Our experiments reveal that,
while the probability of identifying strong lottery tickets
increases with the network’s width, the effectiveness of
current pruning methods in fact diminishes.

Random Pruning In line with our work, previous works
have also benchmarked existing pruning techniques with
naive pruning methods like random pruning (Liu et al., 2022;
Gale et al., 2019). What sets our work apart is that random
pruning, much like existing pruning techniques, remains
susceptible to disconnected paths. This poses a challenge in
achieving the recovery of a maximally sparse model, espe-
cially at high levels of overparameterization. Our approach
to the combinatorial search guarantees that misalignment be-
tween weights is impossible making the search significantly
more efficient in finding a minimal model.

Elucidating Pruning Several recent studies have ex-
pressed concerns about the current state of pruning, particu-
larly with inconsistent benchmarking. Both Liu et al. (2023)
and Blalock et al. (2020) proposed benchmarks for pruning,
the former proposing SMC-Bench and the latter proposing
ShrinkBench. Frankle et al. (2021) assessed several prun-
ing at initialization techniques and remarked how they all
perform similarly and are struggling to prune effectively at
initialization. Evci et al. (2020b) showed that networks that
were pruned at initialization have poor gradient flow leading
to significantly worse generalization. For structured prun-
ing, Liu et al. (2019) observed that the common pipeline
of fine-tuning the pruned model is, at best, comparable to
just training the model from scratch and encouraged a more
careful evaluation of structured pruning. We differentiate
ourselves from prior works by comparing pruning against
the sparsest of models, enabling us to underscore fundamen-
tal issues inherent in current pruning methods.

Plant ’n’ Seek In Fischer & Burkholz (2022), the authors
handcraft sparse networks to solve synthetic problems and
plant them within a larger randomly initialized network.
They find that current pruning techniques are unable to ex-

tract the sparse subnetwork from the larger network either at
initialization or after training. Our work, on the other hand,
does not require handcrafting sparse subnetworks and all
training starts from a completely random initialization. This
experimental setup is more representative of the standard
pruning paradigm, where model sizes might not be large
enough for strong tickets to exist at initialization with high
probability.

Disconnected Paths The tendency of pruning techniques
to induce disconnected paths has previously been observed
in prior works (Frankle et al., 2021; Vysogorets & Kempe,
2023; Pham et al., 2023). Both Frankle et al. (2021) and
Vysogorets & Kempe (2023) propose measuring effective
sparsity, which accounts for the disconnected paths when
assessing sparsity. In Pham et al. (2023), the authors found
that the ratio of the number of connected paths to the number
of active neurons in the model is crucial for the success of
pruning (Node-Path Balancing Principle) and introduced a
novel pruning method that maximizes both quantities.

Pruning and Layer-Collapse It has been shown that cur-
rent pruning techniques can inadvertently prune an entire
layer at higher sparsity rates, effectively turning every path
in the network into a disconnected one (Hayou et al., 2021).
In Lee et al. (2020), the authors showed that an initialization
that preserves layerwise dynamical isometry can assist in
preventing this while Tanaka et al. (2020) proposed the prun-
ing technique SynFlow as a solution. Figure 11 confirms
that SynFlow is more robust to overparameterization com-
pared to other pruning techniques but still fallible. Our work
highlights that the problem is currently manifesting itself
even at lower sparsity rates through disconnected paths and
is more prevalent than just the catastrophic case where an
entire layer is pruned.

10. Conclusion
We provided a comprehensive assessment of state-of-the-
art pruning algorithms against the backdrop of ideal sparse
networks obtained from a novel combinatorial search. Our
findings reveal that current pruning algorithms fail to attain
achievable sparsity levels – even when given the optimal
width and initialization. We associate this discrepancy with
unstructured pruning’s inadequacy at performing structured
pruning, their failure to benefit from overparameterization,
and their tendency to induce disconnected paths while also
foregoing sparsity. Despite the simplicity of the dataset and
network architectures employed in our study, we believe
that the issues highlighted in our work are only exacerbated
at larger scales and we hope that our methods and findings
will be of assistance for future forays into the development
of new pruning techniques.
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A. BENCH-95 Initialization Experiments
We run the same experiments as detailed in Section 7 but using the BENCH-95 initialization.

Figure 15. Benchmark Model with 26 nonzeros that was trained using the BENCH-95 initialization. Attains 96.47% accuracy.

Starting from the fixed initialization of BENCH-95, the combinatorial search is now able to identify a minimal neuron
configuration of (3,2,2) and a benchmark model with 26 nonzeros that attains 96.47% accuracy.

Figure 16 below depicts models obtained by the combinatorial search and models that were pruned starting from the
BENCH-95 initialization.
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Figure 16. Analogous plot to Figure 13 but models are trained from the BENCH-95 initialization. The left subplot shows models that
were provided with the optimal width of 3 via a structured sparsity mask. The right subplot shows models that were directly pruned from
a width of 16. The scatter plot used to generate the Pareto frontiers in this plot are depicted in Figure 23.
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B. Hyperparameters for Pruning Algorithms
To enforce sparsity in the models, we base our implementation on code from: https://github.com/
facebookresearch/open_lth.

B.1. Hyperparameters for GMP

We use the cubic decay schedule detailed in (Zhu & Gupta, 2018) with 199 pruning steps spread out evenly across the
50 epochs of training. We base our implementation of magnitude pruning on code from: https://github.com/
facebookresearch/open_lth.

B.2. Hyperparameters for LTH

We divide the training into five different blocks of 50 epochs of training (i.e. 250 epochs total). Between each block,
we prune p% of the weights where p is chosen so that the final sparsity is reached. Then, we rewind the model back to
initialization along with the learning rate scheduler. This ensures that the hyperparameters are consistent with the rest of the
experiments.

B.3. Hyperparameters for RigL

We use the ERK distribution to determine the sparsity for each layer. For the update schedule, we utilize the hyperparameters:
∆T = 200, α = 0.3, fdecay to be cosine annealing, and we stop updating the mask 75% through training. We base
our implementation of RigL on code from: https://github.com/verbose-avocado/rigl-torch and the
implementation of the ERK distribution on code from: https://github.com/google-research/rigl.

B.4. Hyperparameters for ProsPr

We use the momentum and learning rate used in training to calculate the meta-gradients. We also perform three training
steps to calculate the meta-gradients. We base our implementation of ProsPr on code from: https://github.com/
mil-ad/prospr.

B.5. Hyperparameters for GraSP

We use the hyperparameters and base our implementation of GraSP on code from: https://github.com/
alecwangcq/GraSP.

B.6. Hyperparameters for Iter SNIP and FORCE

We set the number of iterations to be 10 using the exponential decay schedule and just one batch to compute the average
saliency per iteration. We base our implementations of Iter SNIP and FORCE on code from: https://github.com/
naver/force.

B.7. Hyperparameters for SynFlow

We set the number of iterations to 100 with an exponential pruning schedule. We base our implementation of SynFlow on
code from: https://github.com/ganguli-lab/Synaptic-Flow.

B.8. Implementation of SNIP

We base our implementation of SNIP on code from: https://github.com/mil-ad/snip.
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C. FLOPS Measurements

SynFlow FORCE SNIP Iter SNIP ProsPr GraSP RigL GMP Dense LTH

1
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4
·109

1.9 · 108 1.9 · 108 1.9 · 1081.9 · 108 1.9 · 108 2 · 108 2.1 · 108

5.3 · 108

1.5 · 109

3.4 · 109
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O

PS

The FLOPS required for each pruning technique as depicted in Table 1 are measured by pruning and training an MLP of
width 16 with 55 nonzero weights. We measure the FLOPS by computing the number of floating operations utilized by the
nonzero parameters (including biases) in the model throughout pruning and training. We base our implementation on code
from: https://github.com/simochen/model-tools

D. Selection of Subsets of Unstructured Masks for Combinatorial Search
We restrict the unstructured masks from two fronts. The first front is by restricting the masks of W [2] to a subset of all
possible masks. This is done through the for loop on line 3 in Algorithm 1 and instead of choosing all eligible unstructured
masks, we simply choose the first three for the (7,3,3) configuration that are deemed eligible. For the (6,3,2) configuration,
we choose the first six eligible unstructured masks. The second front is by restricting to the set of unstructured masks for the
model to those that contain fewer nonzeros than a certain amount. This amount was set to 49 for the (7,3,3) configuration
and 45 for the (6,3,2) configuration. We also run these experiments with a single learning rate of 0.05.

E. Dependence on Initialization
The combinatorial search does not achieve the same sparse network if different initializations are provided. A similar
dependence of the mask on initialization has previously been observed in Frankle & Carbin (2018) and studied in Zhou et al.
(2019). In the latter, the authors demonstrated that the mask only depends on the sign pattern of the initialization. Inspired by
such observations, we ran exploratory experiments that indicated otherwise, at least in the case of the combinatorial search.
As highlighted in Evci et al. (2020b), the lack of consistency across initializations might be attributed to poor gradient flow
and overall challenges associated with training a sparse network from scratch.

F. Scatter Plots
The scatter plots that were used to generate the Pareto frontiers in Figures 8, 11, and 13 are depicted in Figures 20, 21, and
22 respectively.
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G. Overparameterization: More Widths
We include the plots corresponding to widths 4,5,6,8, 32, and 128 in Figure 17. The scatter plots that were used to generate
the Pareto frontiers in these plots are shown in Figure 24.

H. Additional Playground Visualizations
See Figures 18, 19 to see more visualizations of models that were obtained from pruning a width 16, four-layer MLP that
was randomly initialized.

I. Technical Details of Sparse Model Visualization
The visualization tool operates in two parallel threads. The first thread uses PyTorch to produce the input variables,
post-activation states, and model output by inputting a 512× 512 grid of evenly spaced points in the square [−2.25, 2.25]×
[−2.25, 2.25]. It saves these tensors as well as the model parameters as global variables. The second thread runs a Flask
application that visualizes these tensors using a blend of HTML and JavaScript. Specifically, the squares representing the
input variables, post-activation states, and model output are illustrated using HTML Canvases for efficiency. Meanwhile,
the connections denoting the weight entries are visualized with the JavaScript library D3, through Bezier curves with two
control points.

J. Increasing Width Beyond 16

In Section 7, the first phase of the combinatorial search identified a structured sparsity mask using the width 16 MLP,
comprising 50 nonzero parameters. Suppose we conduct a subsequent combinatorial search with an increased width of
17, which uncovers a solution not attainable at width 16. In this scenario, the structured sparsity mask would necessitate a
minimum of 57 nonzeros. This requirement breaks down as follows: the first layer would need 2× 1 + 1 parameters, the
second layer 1× 1 + 1 parameters, the third layer 1× 17 + 17 parameters, and the classifier layer 17× 1 + 1 parameters,
cumulatively resulting in a total of 57 parameters.

K. Detailed Description of Combinatorial Search Algorithm
The first loop in the function ELIGIBLEMASKS(din, dout) (annotated by line 1) evaluates every conceivable quantity of
nonzero elements in the weight matrix symbolized by n. Since each row and column contains at least one nonzero element,
the minimal count of nonzero elements in the layer is determined by min = max(din, dout). It’s also self-evident that this
count cannot exceed the product max = din · dout.

The second loop (annotated by line 2) explores all eligible counts of nonzero elements in each row of the weight, labeled
as ki. This exploration ensures that the sum of nonzero elements across different rows, ki, equates to the total number of
nonzero elements in the entire weight matrix, n.

The third and concluding nested loop (annotated by line 3) peruses all potential masks of size ki for each row in the weight
matrix, across all rows.

The innermost if statement (annotated by line 4) selects from all row permutations the specific arrangement that results in a
sequentially decreasing count of nonzero elements. If two rows have an equal count of nonzeros, the algorithm converts the
binary vector representations of these masks into their decimal equivalents and arranges them in descending order based on
these decimal values. Finally, it does the final check to verify that the mask is devoid of zero columns and if deemed as an
eligible mask, the mask is padded with zeros so that its dimensions match the weight matrix.
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Figure 17. More Widths The accuracy versus the number of nonzero parameters after training four-layer MLPs of varying widths on the
Cubist Spiral dataset. From left to right then top to bottom, the subplots correspond to MLPs of width 4, 5, 6, 8, 32, and 128.
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(a) Model attained using FORCE. 62 nonzeros and 90.47% accu-
racy. Observe there are a significant number of small magnitude
weights.

(b) Model attained using GraSP. 66 nonzeros and 94.52% accuracy.
Significant number of disconnected paths.

(c) Model attained using Iter SNIP. 78 nonzeros and 99.69% accu-
racy. Significant number of disconnected paths.

(d) Model attained using LTH. 44 nonzeros and 96.23% accuracy.

Figure 18. Visualizations of four-layer MLPs of width 16 that were attained by FORCE, GraSP, Iter SNIP, and LTH. While all pruning
algorithms suffer from disconnected paths to some degree, some do appear to be more robust than others to the issue.
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(a) Model attained using RigL. 52 nonzeros and 97.04% accuracy.
Significant number of disconnected paths.

(b) Model attained using SNIP. 79 nonzeros and 81.30% accuracy.
Significant number of disconnected paths.

(c) Model attained using SynFlow. 42 nonzeros and 94.76% accu-
racy. Presence of small magnitude weights.

Figure 19. Various visualizations of four-layer MLPs of width 16 that were attained by RigL, SNIP, SynFlow.
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Algorithm 1: Combinatorial Search
Input: Desired Accuracy, ρ, and maximal number of channels per layer, D.
Output: The set of all possible model masks S.

Function COMBINATORIALSEARCH(ρ,D):
// Phase One: Loop through all possible numbers of neurons in each layer.
N ← {}
// Two-dimensional input and one-dimensional output.
d[0] = 2, d[4] = 1

for (d[1], d[2], d[3]) ∈ {1, . . . , D}3 do
θ ← MLP(depth=4,width=D)
// Mask layers according to neuron configuration.
for ℓ ∈ {1, 2, 3, 4} do

W [ℓ][ : , d[ℓ] : D] = 0, W [ℓ][d[ℓ−1] : D, : ] = 0, b[ℓ][d[ℓ] : D] = 0

if ACCURACY(θ) > ρ then
N ← N ∪ {(d[1], d[2], d[3])}

// Find successful configuration that minimizes model nonzeros.
d[1], d[2], d[3] ← argmin(d[1],d[2],d[3])∈N (2 ∗ d[1] + d[1]) + (d[1] ∗ d[2] + d[2]) + (d[2] ∗ d[3] + d[3]) + (d[3] ∗ 1 + 1)

// Phase Two: Generate eligible masks for each layer.
for ℓ ∈ {1, 2, 3, 4} do

supp[ℓ] ← ELIGIBLEMASKS(d[ℓ−1], d[ℓ])

return {(s[1], s[2], s[3], s[4]) | s[1] ∈ supp[1], s[2] ∈ supp[2], s[3] ∈ supp[3], s[4] ∈ supp[4]}

Function ELIGIBLEMASKS(d[in], d[out]):
supp← {}
// Calculate min and max possible nonzeros for each layer.
min = max(d[in], d[out])

max = d[in] · d[out]
// Loop through all nonzero counts for the layer’s weights.

1 for n ∈ {min, . . . ,max} do
// Loop over all row-wise nonzero distributions.

2 for (k1, . . . , kd[out]) ∈
{
k ∈ {1, 2, . . . , d[in]}d[out] |

∑d[out]

i=1 ki = n
}

do

// B(k) =
{
v ∈ {0, 1}d[in] |

∑d[in]

i=1 vi = k
}

// Loop over all possible masks for each row in the layer.
3 for s1 ∈ B(k1) ∧ . . . ∧ sd[out] ∈ B(kd[out]) do
4 if ELIGIBLE(STACK(s1, . . . , sd[out])) then

supp← supp ∪ {PADWITHZEROS(s1, . . . , sd[out])}

return supp

Function ELIGIBLE(S):
if S contains zero columns then

return False
// Ensure non-increasing nonzeros across the rows.
for i ∈ {1, . . . ,ROWS(S)− 1} do

if ∥Si,:∥0 > ∥Si+1,:∥0 then
return False

else if ∥Si,:∥0 = ∥Si+1,:∥0 then
if BINARYTODECIMAL(Si,:) > BINARYTODECIMAL(Si+1,:) then

return False

return True
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L. Overparameterization Leads to Disconnected Paths
Theorem L.1. Consider an L-layer multilayer perceptron with weights W [1], ...,W [L] where W [1] ∈
Rd×w,W [2], ...,W [L−1] ∈ Rw×w,W [L] ∈ Rw×C . Suppose the model is randomly pruned such that nℓ nonzero weights
remain in W [ℓ]. Assume that L ≥ 4 and w > maxℓ∈{2,...,L−2}(nℓ + nℓ+1). Then the probability that there is no connected
path in the model tends to one when the width of the model goes to infinity.

Proof: For the proof, we will use the notation that W [ℓ] denotes the unpruned weight matrix, M [ℓ] denotes the mask
generated by randomly pruning layer W [ℓ], and W̃ [ℓ] = M [ℓ] ⊙W [ℓ] denotes the pruned weight matrix. It is clear that if
there are no connected paths between the two layers W̃ [ℓ] and W̃ [ℓ+1], there are no connected paths in the whole pruned
network.

Let A[ℓ]
k denote the set of masks satisfying:

A
[ℓ]
k = {M [ℓ] ∈ Rw×w : M

[ℓ]
1,· ̸= 0, ...,M

[ℓ]
k,· ̸= 0,M

[ℓ]
k+1,· = 0, ...,M

[ℓ]
w,· = 0}

For 2 ≤ ℓ ≤ L− 2, we can express the probability that there are no connected paths between W̃ [ℓ] and W̃ [ℓ+1] as follows:

nl∑
k=1

(
w

k

)
P(No Connected Paths between W̃ [ℓ] and W̃ [ℓ+1]|M [ℓ] ∈ A

[ℓ]
k ) · P(M [ℓ] ∈ A

[ℓ]
k )

For there to be no connected paths between W̃ [ℓ] and W̃ [ℓ+1], that means that all nℓ+1 nonzero entries in M [ℓ+1] must lie
in the remaining w − k columns that are not aligned with the k nonzero rows of M [ℓ]. Thus, we find that

P(No Connected Paths between W̃ [ℓ] and W̃ [ℓ+1]|M [ℓ] ∈ A
[ℓ]
k ) =

nℓ+1∑
r=1

(
w−k
r

)
· |A[ℓ+1]

r |(
w2

nℓ+1

)
Combining everything together, we get that

P(No Connected Paths between W̃ [ℓ] and W̃ [ℓ+1]) =

nℓ∑
k=1

[(
w
k

)
· |A[ℓ]

k |(
w2

nℓ

) ·
nℓ+1∑
r=1

(
w−k
r

)
· |A[ℓ+1]

r |(
w2

nℓ+1

) ]

To see that this term is tending to one as w →∞, notice that

nℓ∑
k=1

(
w

k

)
· |A[ℓ]

k | =
(
w2

nℓ

)
Utilizing this, we can bound the probability as follows:

nℓ∑
k=1

[(
w
k

)
· |A[ℓ]

k |(
w2

nℓ

) ·
nℓ+1∑
r=1

(
w−k
r

)
· |A[ℓ+1]

r |(
w2

nℓ+1

) ]
=

nℓ∑
k=1

(
w
k

)
· |A[ℓ]

k |(
w2

nℓ

) ·
nℓ+1∑
r=1

(
w
r

)
·
∏k−1

j=0

(
w−j−r
w−j

)
· |A[ℓ+1]

r |(
w2

nℓ+1

)


≥
(
w − nℓ + 1− nℓ+1

w

)nℓ−1 nℓ∑
k=1

[(
w
k

)
· |A[ℓ]

k |(
w2

nℓ

) ·
nℓ+1∑
r=1

(
w
r

)
· |A[ℓ+1]

r |(
w2

nℓ+1

) ]

=

(
w − nℓ + 1− nℓ+1

w

)nℓ−1

arriving at the following set of inequalities:(
w − nℓ + 1− nℓ+1

w

)nℓ−1

≤ P(No Connected Paths between W̃ [ℓ] and W̃ [ℓ+1]) ≤ 1

Applying squeeze theorem, we get that the probability is tending to one as w →∞.
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Figure 20. Scatter plots containing the best performing run for each pruning approach at a given number of nonzeros in the model. Pareto
frontiers depicted in Figure 8 are interpolated from the datapoints depicted in this plot.
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Figure 21. Scatter plots containing the best performing run for each pruning approach at a given number of nonzeros in the model. Pareto
frontiers depicted in Figure 11 are interpolated from the datapoints depicted in this plot.
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(a) Models Given Optimal Width of 6
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(b) Width 16

Figure 22. Scatter plots containing the best performing run for each pruning approach at a given number of nonzeros in the model. Pareto
frontiers depicted in Figure 13 are interpolated from the datapoints depicted in this plot.

10 20 30
50

60

70

80

90

100

Nonzero Parameters

A
cc

ur
ac

y

(a) Models Given Optimal Width of 3
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(b) Width 16

Figure 23. Scatter plots containing the best performing run for each pruning approach at a given number of nonzeros in the model. Pareto
frontiers depicted in Figure 16 are interpolated from the datapoints depicted in this plot.
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Figure 24. Scatter plots containing the best performing run for each pruning approach at a given number of nonzeros in the model. Pareto
frontiers depicted in Figure 17 are interpolated from the datapoints depicted in this plot.
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