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ABSTRACT

We study how in-context learning (ICL) in language models is affected by semantic
priors versus input–label mappings. We investigate two setups—ICL with flipped
labels and ICL with semantically-unrelated labels—across various model families
(GPT-3, InstructGPT, Codex, an internal model, and an instruction-tuned variant
of the internal model). First, experiments on ICL with flipped labels show that
overriding semantic priors is an emergent behavior of model scale. While small
language models ignore flipped labels presented in-context and thus rely primarily
on semantic priors from pretraining, large models override semantic priors when
presented with in-context exemplars that contradict priors, despite the stronger
semantic priors that larger models may hold. We next study semantically-unrelated
label ICL (SUL-ICL), in which labels are semantically unrelated to their inputs
(e.g., foo/bar instead of negative/positive), thereby forcing language models to
learn the input–label mappings shown in in-context exemplars in order to perform
the task. The ability to do SUL-ICL also emerges primarily with scale, and large-
enough language models can even perform linear classification better than random
guessing in a SUL-ICL setting. Finally, we evaluate instruction-tuned models and
find that instruction tuning strengthens both the use of semantic priors and the
capacity to learn input–label mappings, but more of the former.

1 INTRODUCTION

Language models can perform a range of downstream NLP tasks via in-context learning (ICL), where
models are given a few exemplars of input–label pairs as part of the prompt before performing the
task on an unseen example [2; 28, inter alia]. To successfully perform ICL, models can (a) mostly use
semantic prior knowledge to predict labels while following the format of in-context exemplars (e.g.,
seeing “positive sentiment” and “negative sentiment” as labels and performing sentiment analysis
using prior knowledge) and/or (b) learn the input–label mappings from the presented exemplars (e.g.,
finding a pattern that positive reviews should be mapped to one label, and negative reviews should be
mapped to a different label).

Prior work on which of these factors drives performance is mixed. For instance, although Min
et al. [25] showed that presenting random ground truth mappings in-context does not substantially
affect performance (suggesting that models primarily rely on semantic prior knowledge), other work
has shown that transformers in simple settings (without language modeling pretraining) implement
learning algorithms such as ridge regression and gradient descent [1; 40; 10].
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Figure 1: An overview of flipped-label ICL and semantically-unrelated label ICL (SUL-ICL),
compared with regular ICL. Flipped-label ICL uses flipped targets, forcing the model override
semantic priors in order to follow the in-context exemplars. SUL-ICL uses targets that are not
semantically related to the task, which means that models must learn input–label mappings in order
to perform the task because they can no longer rely on the semantics of natural language targets.

In this paper, we study how these two factors—semantic priors and input–label mappings—interact
in several experimental settings (see Figure 1 for an example of each setting):

1. In regular ICL, both semantic priors and input–label mappings can allow the model to perform
in-context learning successfully.

2. In flipped-label ICL, all labels in the exemplars are flipped, which means that semantic prior
knowledge and input–label mappings disagree. Labels for the evaluation set stay the same, so
for binary classification tasks, performing better than 50% accuracy in this setting means that the
model is unable to override semantic priors, and performing below 50% accuracy means that the
model is able to learn input–label mappings and override semantic priors.

3. In semantically-unrelated label ICL (SUL-ICL), the labels are semantically unrelated to the task
(e.g., for sentiment analysis, we use “foo/bar” instead of “negative/positive”). Since the semantic
priors from labels are removed, the model can only perform ICL by using input–label mappings.

We run experiments in these settings spanning multiple model families with varying sizes, training
data, and instruction tuning (GPT-3, InstructGPT, Codex, an internal model, an instruction-tuned
variant of the internal model) in order to analyze the interplay between semantic priors and input–label
mappings,1 paying special attention to how results change with respect to model scale. First, we
examine flipped-label ICL, where we find that small models do not change their predictions when
seeing flipped labels, but large models may flip their predictions to follow flipped exemplars (Section
3). This means that the behavior of overriding semantic priors with input–label mappings emerges
with model scale, which should not be taken for granted because larger models presumably have
stronger priors that are more challenging to override.

Second, we compare the SUL-ICL setting to regular ICL (Section 4). We find that small language
models experience a large performance drop when semantic priors are removed, whereas large
language models can perform the task well even without semantic priors from the labels. For some
datasets, doing better than random in the SUL-ICL setting required substantial scaling (e.g., only the
540B internal model achieves above-random performance). We also found this to be true for high-
dimensional linear classification tasks (Section 6). This means that learning input–label mappings
without being given priors is also an emergent ability of large language models for those tasks.

Finally, we study the effect of instruction tuning [24; 46; 7] on ICL abilities (Section 5). We find
that instruction-tuned models achieve better performance than pretraining-only models on SUL-
ICL settings, which means that instruction tuning increases the model’s ability to learn input–label
mappings. On the other hand, we also see that instruction-tuned models are more reluctant to follow
flipped labels, which means that instruction tuning decreases the model’s ability to override semantic
priors more than it increases its ability to learn input–label mappings. Overall, our work aims to
shed light on the interaction between semantic prior knowledge and input–label mappings while
considering the effects of scaling and instruction tuning.

1Many factors can affect ICL, including majority-label bias and recency bias [50]. We mitigated these biases
by providing equal exemplars per class and randomizing the order of input–label pairs. We studied additional
factors in Appendix C.3, Appendix C.4, Appendix C.5, and Appendix C.6. It is still possible, however, that other
factors could be at play, though we believe that the major factors being analyzed are the two described.
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2 EXPERIMENTAL SETUP

2.1 EVALUATION TASKS

We experiment on seven NLP tasks that have been widely used in the literature [16; 41; 42]. These
evaluation tasks and an example prompt/target pair are shown in Figure 9 in the Appendix; additional
dataset details are described in Appendix B. The seven tasks are: Sentiment Analysis [37, SST-
2]; Subjective/Objective Sentence Classification [8, SUBJ]; Question Classification [20, TREC];
Duplicated-Question Recognition [5; 41, QQP]; Textual Entailment Recognition [9; 42, RTE];
Financial Sentiment Analysis [23, FP]; and Hate Speech Detection [26, ETHOS].2

2.2 MODELS

Model Family Model Name (Abbreviation)

GPT-3 ada (a), babbage (b), curie (c), davinci (d)

InstructGPT
text-ada-001 (a-1), text-babbage-001 (b-1),
text-curie-001 (c-1), text-davinci-001 (d-1),
text-davinci-002 (d-2)

Codex code-cushman-001 (c-c-1), code-davinci-001
(c-d-1), code-davinci-002 (c-d-2)

Internal
language model LLM-8B, LLM-62B, LLM-540B

Instruction-tuned
internal language model IT-LLM-8B, IT-LLM-62B, IT-LLM-540B

Table 1: Models used in this paper.

We perform experiments
on five language model
families as shown in Ta-
ble 1. We use three families
of OpenAI language mod-
els accessed via the Ope-
nAI API: GPT-3 [2], In-
structGPT [29], and Codex
[4]. For GPT-3 models,
ada, babbage, curie, and
davinci seem to correspond
to the following model
sizes: 350M, 1.3B, 6.7B,
and 175B [13]. For In-
structGPT and Codex, how-
ever, it is not publicly
known what the sizes of these language models are, but we assume that they are in increasing
model scale for some scaling factor.

We also experiment on three different sizes of an internal language model (LLM-8B, LLM-62B, and
LLM-540B) and their instruction-tuned variants (IT-LLM-8B, IT-LLM-62B, IT-LLM-540B). Our
internal language models have the same training data and protocol and only differ by model size,
which provides an additional data point for the effect of scaling model size specifically. Because
many experiments rely on querying OpenAI models that are not publicly-available, we do not report
the compute used for these experiments.3

2.3 ADDITIONAL EXPERIMENTAL DETAILS

As additional experimental details, we follow the prior literature on in-context learning and use a
different set of few-shot exemplars for each inference example [2; 6; 44, inter alia]. By default,
we use k = 16 in-context exemplars per class, though we also experiment with varying number of
exemplars in Section 4 and Appendix D.2. We also use the “Input/Output” template for prompts
shown in Figure 9, with ablations for input format shown in Appendix C.4 and Appendix C.5, and
the semantically-unrelated “Foo”/“Bar” targets as shown in Figure 9 (ablations for target type are
shown in Appendix C.3). Finally, to reduce inference costs, we use 100 randomly sampled evaluation
examples per dataset, as it is more beneficial to experiment with a more-diverse range of datasets and
model families than it is to include more evaluation examples per dataset, and our research questions
depend more on general behaviors than on small performance deltas (note that all y-axes in our plots
go from 0%–100% accuracy).

2In preliminary experiments (Appendix C.3), we also tried two additional tasks: Question–Answering [32; 41,
QNLI] and Coreference Resolution [18; 42, WSC], but even the largest models had very weak performance on
these tasks in many settings, so we do not include them in further experimentation.

3We used internal resources to evaluate our internal language models, so we do not report these numbers in
order to retain anonymity.
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3 INPUT–LABEL MAPPINGS OVERRIDE SEMANTIC PRIORS IN LARGE MODELS

To what extent do models override semantic priors from pretraining in favor of input–label mappings
presented in-context? When presented in-context exemplars with flipped labels, models that override
priors and learn input–label mappings in-context should experience a decrease in performance to
below random guessing (assuming ground-truth evaluation labels are not flipped).

To test this, we randomly flip an increasing proportion of labels for in-context exemplars. As shown
in Figure 1, for example, 100% flipped labels for the SST-2 dataset would mean that all exemplars
labeled as “positive” will now be labeled as “negative,” and all exemplars that were labeled as
“negative” will now be labeled as “positive.” Similarly, 50% flipped labels is equivalent to random
labels, as we use binary classification datasets (we exclude TREC from this experiment since it has
six classes). We do not change the labels of the evaluation examples, so a perfectly-accurate model
that overrides priors should achieve 0% accuracy when presented with 100% flipped labels.

Figure 2 shows average model performance for each of the model families across all tasks with respect
to the proportion of labels that are flipped (per-dataset results are shown in Figure 16). We see that
there is a similar trend across all model families—at 0% flipped labels (i.e., no labels are changed),
larger models have better performance than small models, which is expected since larger models
should be more capable than smaller models. As more and more labels are flipped, however, the
performance of small models remains relatively flat and often does not dip below random guessing,
even when 100% of labels are flipped. Large models, on the other hand, experience performance
drops to well-below random guessing (e.g,. text-davinci-002 performance drops from 90.3% with 0%
flipped labels to just 22.5% with 100% flipped labels). Note that GPT-3 models remove semantic
priors (i.e., perform at guessing accuracy) but does not override them (i.e., perform significantly
worse than guessing), even when presented with 100% flipped labels. For this reason, we consider all
GPT-3 models to be “small” models because they all behave similarly to each other this way.

These results indicate that large models override prior knowledge from pretraining with input–label
mappings presented in-context. Small models, on the other hand, do not flip their predictions and thus
do not override semantic priors (consistent with Min et al. [25]). Because this behavior of overriding
prior knowledge with input–label mappings only appears in large models, we conclude that it is an
emergent phenomena unlocked by model scaling [47].

0 25 50 75 100
0

20
40
60
80

100

% flipped labels

A
cc

ur
ac

y
(%

)

LLM

LLM-540B
LLM-62B
LLM-8B
Random

0 25 50 75 100
0

20
40
60
80

100

% flipped labels

Codex

code-davinci-002
code-davinci-001
code-cushman-001
Random

0 25 50 75 100
0

20
40
60
80

100

% flipped labels

InstructGPT

text-davinci-002
text-davinci-001
text-curie-001
text-babbage-001
text-ada-001
Random

0 25 50 75 100
0

20
40
60
80

100

% flipped labels

GPT-3

davinci
curie
babbage
ada
Random

Figure 2: The behavior of overriding semantic priors when presented with flipped in-context exemplar
labels emerges with model scale. Smaller models do not flip predictions to follow flipped labels
(performance only decreases slightly), while larger models do (performance decreases to well below
50%). Ground truth labels for evaluation examples are not flipped, so if a model follows flipped
labels, its accuracy should be below 50% when more than 50% of labels are flipped. For example, a
model with 80% accuracy at 0% flipped labels will have 20% accuracy at 100% flipped labels if it
flips its predictions. Accuracy is computed over 100 evaluation examples per dataset with k = 16
in-context exemplars per class and averaged across all datasets.
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Figure 3: Small models rely more on semantic priors than large models do, as performance decreases
more for small models than for large models when using semantically-unrelated targets instead of
natural language targets. For each plot, models are shown in order of increasing model size (e.g., for
GPT-3 models, a is smaller than b, which is smaller than c). We use k = 16 in-context exemplars per
class, and accuracy is calculated over 100 evaluation examples per dataset and averaged across all
datasets. A per-dataset version of this figure is shown in Figure 17 in the Appendix.

4 IN-CONTEXT LEARNING WITH SEMANTICALLY-UNRELATED LABELS CAN
EMERGE WITH MODEL SCALE FOR SOME TASKS

Another way to examine how much models use semantic priors from pretraining versus input–label
mappings is to replace natural language targets with semantically-unrelated targets. If a model mostly
relies on semantic priors for in-context learning, then its performance should significantly decrease
after this change, since it will no longer be able to use the semantic meanings of targets to make
predictions. A model that learns input–label mappings in-context, on the other hand, would be able to
learn these semantically-unrelated mappings and should not experience a major drop in performance.

We use an experimental setup that we call Semantically-Unrelated Label In-Context Learning (SUL-
ICL) to test model behavior in these scenarios.4 In this setup, all natural language targets are swapped
with semantically-unrelated targets (we use “Foo” and “Bar” by default, although we get similar
results with other semantically-unrelated targets—see Appendix C.3). For example, SUL-ICL relabels
examples labeled as “negative” as “foo” and examples labeled as “positive” as “bar” for the SST-2
dataset (Figure 1). We then examine model performance in the SUL-ICL setup (in Appendix C,
we investigate other aspects of the SUL-ICL setup such as remapping inputs, formatting prompts
differently, changing target types, and using out-of-distribution datasets).

In Figure 3, we examine average model accuracy across all tasks on the SUL-ICL setup compared
with a regular in-context learning setup (per-dataset results are shown in Figure 17). As expected,
we see that increasing model scale improves performance for both regular in-context learning and
SUL-ICL. The performance drop from regular ICL to SUL-ICL, however, is far more interesting. We
find that using semantically-unrelated targets results in a greater performance drop from using natural
language targets for small models compared with large models. Because small models are heavily
affected when the semantic meaning of targets is removed, we conclude that they primarily rely on
the semantic meaning of targets for in-context learning rather than learn the presented input–label
mappings. Large models, on the other hand, experience very small performance drops after this
change, indicating that they have the ability to learn input–label mappings in-context when the
semantic nature of targets is removed.5 Hence, the ability to learn input–label mappings in-context
without being given semantic priors can also be seen as an emergent ability of model scale.

4Rong [34] previously evaluated a setup where they replaced natural language targets with non-alphanumeric
characters; our paper uses a similar setup and investigates with more-extensive experimentation.

5For the reasons stated in Section 3, we consider davinci to be a small model.
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Figure 4: In the SUL-ICL setup, larger models benefit more from additional exemplars than smaller
models do. Accuracy is calculated over 100 evaluation examples per dataset and averaged across all
datasets. A per-dataset version of this figure is shown in Figure 18 in the Appendix.
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Figure 5: Some tasks in the SUL-ICL setting emerge with scale and can only be successfully
performed by large-enough models. These experiments use k = 8 in-context exemplars per class.
Accuracy is calculated over 100 evaluation examples.

We next analyze how models perform on a SUL-ICL setup when presented with an increasing
number of in-context exemplars, and we show these data in Figure 4 (per-dataset results are shown
in Figure 18). We find that for the three model families that we tested,6 including more in-context
exemplars results in a greater performance improvement for large models than it does for small
models. This indicates that large models are better at learning from in-context exemplars than small
models are, implying that large models are more capable of using the additional input–label mappings
presented in context to better learn the correct relationships between inputs and labels.

Finally, looking at the per-dataset performance reveals how the ability to perform some benchmark
tasks in the SUL-ICL setting emerges with scale. In Figure 5, we highlight two tasks (RTE and
ETHOS) that seem particularly emergent in the SUL-ICL setting by plotting model performance at
each model size for Codex and LLM models (Figure 18 shows how each model performs for each
dataset). We see that performance on the RTE dataset is around random for LLM-8B and LLM-62B,
yet increases to well above random for LLM-540B. Similarly, the performance on both the RTE and
ETHOS datasets is around random for code-cushman-001 and code-davinci-001, then jumps to 80%+
for code-davinci-002. LLM models seem to emerge earlier on the ETHOS dataset, however, as the
performance spikes when scaling from LLM-8B to LLM-62B. For many datasets that do not show
emergence, even small models can outperform random guessing without many in-context exemplars
(e.g., on SST-2, TREC, SUBJ, FP). These results show another example of how, for some tasks, the
ability to learn input–label mappings in-context without being given semantic priors is only emergent
in large-enough language models.

6We do not run on InstructGPT models or davinci due to the cost of running the large volume of experiments.
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5 INSTRUCTION TUNING WITH EXEMPLARS IMPROVES INPUT–LABEL
MAPPINGS LEARNING AND STRENGTHENS SEMANTIC PRIORS
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Figure 6: Instruction-tuned language models are bet-
ter at learning input–label mappings in the SUL-ICL
setting than pretraining-only language models are. Ac-
curacy is calculated using 100 evaluation examples
per dataset and averaged across six datasets. A per-
dataset version of this figure is shown in Figure 19 in
the Appendix.

A popular technique for improving the
performance of pretrained language mod-
els is to finetune them on a collection of
NLP tasks phrased as instructions, with
few-shot exemplars as part of the finetun-
ing inputs [24; 46; 7; 21]. Since instruc-
tion tuning uses natural language targets,
however, an open question is whether
it improves the ability to learn input–
label mappings in-context or whether it
strengthens the ability to recognize and ap-
ply semantic priors, as both would lead to
an improvement in performance on stan-
dard ICL tasks.

To study this, we run the same experi-
ments from Section 3 and Section 4, and
we now compare LLM models to their
instruction-tuned versions (IT-LLM). We
do not compare InstructGPT against GPT-
3 models in this experiment because we cannot determine if the only difference between these model
families is instruction tuning (e.g., we do not even know if the base models are the same).

Figure 6 shows the average model performance across all datasets with respect to the number of
in-context exemplars for LLM and IT-LLM models. We see that IT-LLM performs better in the
SUL-ICL setting than LLM does, an effect that is most prominent in small models, as IT-LLM-8B
outperforms LLM-8B by 9.6%, almost catching up to LLM-62B. This trend suggests that instruction
tuning strengthens the ability to learn input–label mappings (an expected outcome).

In Figure 7, we show model performance with respect to the proportion of labels that are flipped
for each LLM and IT-LLM model. We find that, compared to pretraining-only models, instruction-
tuned models are worse at flipping their predictions—IT-LLM models were unable to override their
semantics more than what could be achieved by random guessing, even with 100% flipped labels.
Standard LLM models, on the other hand, could achieve as low as 31% accuracy when presented
with 100% flipped labels. These results indicate that instruction tuning either increases the extent to
which models rely on semantic priors when they are available or gives models more semantic priors,
as instruction-tuned models are less capable of flipping their natural language targets to follow the
flipped labels that were presented. Combined with the result from Figure 6, we conclude that although
instruction tuning improves the ability to learn input–label mappings, it concurrently strengthens the
usage of semantic priors, similar to the findings in Min et al. [24].
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Figure 7: Instruction-tuned models are worse than pretraining-only models are at learning to override
semantic priors when presented with flipped labels in-context. We use k = 16 in-context exemplars
per class, and accuracy is calculated using 100 evaluation examples per dataset and averaged across
six datasets. A per-dataset version of this figure is shown in Figure 20 in the Appendix.
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6 LARGE LANGUAGE MODELS CAN PERFORM LINEAR CLASSIFICATION

In addition to the natural language reasoning abilities that we studied throughout the rest of the paper,
we also seek to learn about how model scale affects the ability to perform other tasks. Specifically,
we look at the linear classification task, where large models should perform better than small models
(especially at high dimensions) if their greater capacity to learn input–label mappings as shown in
Section 4 also holds for non-natural-language tasks.
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Figure 8: Successfully performing
16-dimensional linear classification
emerges with model scale for Codex
models. Accuracy is calculated over
100 evaluation examples with k =
16 in-context exemplars per class.
Per-dimension results are shown in
Figure 21 in the Appendix.

To analyze this, we create N -dimensional linear classifi-
cation datasets and examine model behavior with respect
to the number of dimensions in the SUL-ICL setup. In
these datasets, we provide k N -dimensional points above
a threshold and k N -dimensional points below that same
threshold as in-context exemplars, and the model must deter-
mine whether an N -dimensional evaluation point is above
or below the threshold (we do not tell the model the equation
or the threshold). When selecting random N -dimensional
points, we use random integers between 1 and 1000 for each
coordinate value. Algorithm 1 in the Appendix shows the
precise dataset generation procedure.

In Figure 8, we show Codex model performance on N = 16
dimensional linear classification (per-dimension results on
Codex and LLM models are shown in Figure 21 in the Ap-
pendix). The largest model outperforms random guessing by
19% on this task, while smaller models cannot outperform
random guessing by more than 9%, suggesting that there
exists some scaling factor that allows large-enough language
models to perform high-dimensional linear classification.

7 RELATED WORK

7.1 IN-CONTEXT DEMONSTRATIONS PROVIDE SEMANTIC PRIOR KNOWLEDGE

There has been a growing body of work on in-context learning that suggests that good performance is
primarily driven by semantic priors and other factors such formatting and inducing intermediate token
generation. For instance, Min et al. [25] showed the surprising result that using random ground-truth
labels in exemplars barely hurts performance, suggesting that performance is instead mainly driven
by the label space, distribution of input text, and overall format of the sequence. Along the same
lines, Madaan & Yazdanbakhsh [22] and Wang et al. [43] show that for chain-of-thought prompting
[48], logically-incorrect prompts do not hurt performance on multi-step reasoning tasks. On a
theoretical level, Xie et al. [49] provide an explanation of in-context learning in which transformers
infer tasks from exemplars because they are trained to infer latent concepts during pretraining, and
prior knowledge obtained from pretraining data can then be applied to in-context examples. Finally,
Reynolds & McDonell [33] showed that clever zero-shot prompts can outperform few-shot prompts,
which implies that some NLP tasks benefit more from leveraging the model’s existing knowledge than
from learning about the task from in-context exemplars. In this paper, we do not contest the claim that
language models can benefit greatly from semantic prior knowledge—our results instead add nuance
to the understanding of ICL by showing that, when semantic prior knowledge is not available, large-
enough language models can still do ICL using input–label mappings. Our experiments are consistent
with Min et al. [25] for models scaling up to davinci, and we show that learning input–label mappings
only emerges with larger models (e.g., LLM-540B, text-davinci-002, and code-davinci-002).

7.2 LEARNING INPUT–LABEL MAPPINGS

Other recent work has suggested to some degree that language models can actually learn input–label
mappings from exemplars given in-context, which is a more-attractive ability than using semantic
priors because it means that the model would be able to perform a wide range of tasks even if
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those tasks are not seen in or even contradict pretraining data. For instance, transformers trained
from scratch can perform in-context learning on linear-regression datasets with performance that
is comparable to the least-squares estimator [14], and recent work has shown that transformers can
do so by implementing standard learning algorithms such as ridge regression and gradient descent
[1; 40; 10]. In the natural language setting, Webson & Pavlick [45] showed that language models
learn just as fast with irrelevant or misleading prompts during finetuning or prompt-tuning. Our
work makes similar claims about the ability for language models to learn tasks via input–label
mappings only, though it differs crucially in that we observe frozen pretrained transformers without
any additional learning.

7.3 EMERGENT PHENOMENA IN LARGE LANGUAGE MODELS

In this paper we have also focused on the effect of scaling on in-context learning, which relates to a
nascent body of work showing that scaling language models leads to qualitatively-different behavior
[12; 47; 38]. For instance, it has recently been shown that scaling up language models can allow them
to perform a variety of challenging tasks that require reasoning [48; 6; 17; 51]. Our experimental
findings on the flipped-label ICL setup show that language models can learn input–label mappings
even when the input–label mapping contradicts the semantic meaning of the label, demonstrating
another type of symbolic reasoning where language models can learn input–label mappings regardless
of the actual identity of the labels. Although we have shown that this behavior is emergent with
respect to model scale, the investigation of why scaling unlocks such behaviors [49; 3] is still an open
question that we leave for future work.

8 LIMITATIONS

While our study sheds light on the interplay between semantic priors and input–label mappings in
in-context learning for language models, there are several limitations to our work. An open question
is how to apply our findings in a generative setting—we evaluated models on a range of classification
tasks with discrete labels, but we did not test any generation tasks since it is unclear how to study
the role of in-context demonstrations in those settings. Additionally, we examined the emergent
ability of large language models to override semantic priors and learn input–label mappings. It is
unknown, however, whether these emergent abilities may be affected by changes to the pretraining
objective, architecture, or training process, and future work could investigate these factors. Moreover,
as stated in Section 2.3, our experiments were conducted using only 100 evaluation examples per
dataset because we prioritized using more datasets and model families over more evaluation examples
per dataset. Future work could thus evaluate models on our settings using larger evaluation sizes
per dataset. While we prioritized evaluating more model families, we note that our experiments in
Section 5 were only conducted on LLM models, leaving open the question of whether the result
generalizes to other model families as well.

9 CONCLUSIONS

In this paper, we examined the extent to which language models learn in-context by utilizing prior
knowledge learned during pretraining versus input–label mappings presented in-context. We first
showed that large language models may override semantic priors when presented with enough
flipped labels (i.e., input–label mappings that contradict prior knowledge), and that this behavior
emerges with model scale. We then created an experimental setup that we call Semantically-
Unrelated Label In-Context Learning (SUL-ICL) which removes semantic meaning from labels by
replacing natural language targets with semantically-unrelated targets. Successfully doing ICL in the
SUL-ICL setup is another emergent ability of model scale. Additionally, we analyzed instruction-
tuned language models and found that instruction tuning improves the capacity to learn input–label
mappings but also strengthens semantic priors. Finally, we examined language model performance on
linear classification tasks, finding that successfully performing high-dimensional linear classification
emerges with model scale. These results underscore how the in-context learning behavior of language
models can change depending on the scale of the language model, and that larger language models
have an emergent ability to map inputs to many types of labels, a form of true symbolic reasoning in
which input–label mappings can be learned for arbitrary symbols.
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